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Abstract

With the advent of large-scale imaging studies and big health data, and the corresponding growth 

in analytics, machine learning and computational image analysis methods, there are now exciting 

opportunities for deepening our understanding of the mechanisms and characteristics of heart 

disease. Two emerging fields are computational analysis of cardiac remodelling (shape and motion 

changes due to disease) and computational analysis of physiology and mechanics to estimate 

biophysical properties from non-invasive imaging. Many large cohort studies now underway 

around the world have been specifically designed based on non-invasive imaging technologies in 

order to gain new information about the development of heart disease from asymptomatic to 

clinical manifestations. These give an unprecedented breadth to the quantification of population 

variation and disease development. Also, for the individual patient, it is now possible to determine 

biophysical properties of myocardial tissue in health and disease by interpreting detailed imaging 

data using computational modelling. For these population and patient-specific computational 

modelling methods to develop further, we need open benchmarks for algorithm comparison and 

validation, open sharing of data and algorithms, and demonstration of clinical efficacy in patient 

management and care. The combination of population and patient-specific modelling will give 

new insights into the mechanisms of cardiac disease, in particular the development of heart failure, 

congenital heart disease, myocardial infarction, contractile dysfunction and diastolic dysfunction.
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1. Introduction

Heart disease is a leading cause of morbidity and mortality around the world. While 

substantial advances have been made in the detection and treatment of disease, little is 

known about the mechanisms and characteristics of disease development. The design of 

more effective treatments and prevention strategies rely on knowledge of the underlying 

features of developing disease. For example, patients suffering from heart failure with 

preserved ejection fraction do not respond well to conventional treatments that work well for 

other forms of heart failure. It is not known whether these patients exhibit impaired 

ventricular filling through increased myocardial stiffness or delayed myocyte relaxation. 

Many heart failure patients with dyssynchronous contraction respond well to pacemaker 

therapy for cardiac resynchronisation, but approximately one third do not. Patient-specific 

information to predict response to cardiac resynchronisation therapy, including where to 

place the pacing device leads and how to select interventricular pacing delays, would be 

highly beneficial. In sub-clinical disease, interactions between environmental and genetic 

factors together with adverse events lead to adaptations in cardiac shape and motion. With 

recent advances in medical imaging, large-scale cohort studies and medical image analysis, 

it is now possible to address these problems from two perspectives: first by examining how 

the heart changes its shape and function in response to disease and exposure to risk factors; 

and second by identifying biophysical parameters that characterise physiological and 

biomechanical behaviours in health and disease.

Cardiac shape and function continuously adapt (remodel) in response to pre-clinical and 

symptomatic disease, as well as vascular events. Better quantification of this remodelling 

could provide more predictive information on the status of heart health and the progression 

of disease, since these adaptations reflect initially compensatory mechanisms leading 

eventually to decompensated remodelling and heart failure. For example, concentric 

remodelling (relative thickening of the heart walls), increased left ventricular (LV) end-

systolic volume, and increased LV sphericity have all been associated with decreased 

survival in patients with myocardial infarction (Sutton and Sharpe, 2000). Although 

remodelling has typically been characterised as changes in morphology due to vascular 

events, such as myocardial ischaemia or infarction, hypertensive and idiopathic 

cardiomyopathies (i.e. those of unknown origin) also give rise to remodelling features, 

which are important clinical markers of disease progression. Pre-clinical remodelling can 
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occur in asymptomatic individuals, prior to the establishment of clinical manifestations of 

disease, in response to exposure to risk factors and genetic interactions. This type of 

remodelling has also been associated with adverse outcomes (Bluemke et al., 2008).

Changes in physiological parameters, such as contractility and muscle stiffness, are also 

indicative of disease processes. For example, resting myocardial stiffness is a major 

determinant of ventricular function, with large changes in stiffness associated with heart 

failure and myocardial infarction. Increased muscle stiffness is detrimental to the filling 

function of the heart, which in turn increases blood pressure and the amount of contraction 

force required by the muscle. Some forms of heart failure may be associated with increased 

myocardial stiffness, but it is difficult to characterise patients effectively to determine if the 

clinically observed symptoms are due to increased passive tissue stiffness, impaired 

relaxation, impaired contractility or some combination of these.

Mathematical modelling of cardiac shape, motion and physiology is a rapidly developing 

field with the potential for providing detailed information on the mechanisms of disease 

processes and cardiac dysfunction. Models of cardiac function can incorporate geometry, 

motion, microstructure, nonlinear and anisotropic constitutive behaviour, loading conditions, 

and kinematic constraints. Activation models comprise initiation and propagation of action 

potentials, calcium transients and cross-bridge activation and de-activation, active force 

generation and relaxation. Patient-specific biophysical parameters governing myocardial 

stiffness and contractility can be estimated by optimally matching the behaviour of these 

models to data from medical imaging. In this way, medical imaging examinations can be 

augmented with model-based interpretation and thereby provide new information on 

mechanisms of compensatory and decompensated adaptations.

Medical imaging now enables precise quantification of structural and functional information 

on cardiac status and performance, but each modality has particular strengths and 

weaknesses. Multi-detector computed tomography (CT) is very rapid and provides detailed 

3D images at approximately 0.5 mm isotropic resolution. However, exposure to ionising X-

ray radiation prevents this method from being widely used in routine assessments or 

evaluation of children with congenital heart disease. Echocardiography provides lower-cost 

rapid evaluation of function, with more than 50 3D frames per second possible with modern 

3D transducers. However, signal dropout due to poor acoustic windows, particularly in the 

right heart, limits this method in many patients. Transesophageal echocardiography can 

provide better delineation of the right heart, but it is semi-invasive and the patient may need 

sedation during acquisition.R1.1 Cardiac magnetic resonance imaging (MRI) provides a 

range of contrast mechanisms from motion to T1 mapping and perfusion quantification, but 

typically cannot be used in patients with implanted devices. Analysis methods that exploit 

medical imaging must therefore be compatible with a range of modalities, and must 

integrate information from a variety of sources.

This review will examine applications of model-based analysis of cardiac images, with 

emphasis on the breadth available in large population-based imaging studies, and depth 

available in patient specific physiological modelling. We also provide a potential roadmap 
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for the future, which will require closer links between algorithm development and clinical 

applications.

2. Remodelling in Pre-Clinical and Clinical Disease

Much of what is known about multivariable risk factors of cardiac disease has been derived 

from the large cohort Framingham Heart Study, which does not include cardiac geometry 

and function. Recently, several cohort studies have used medical imaging as part of a suite of 

investigations into the effects of risk factors and disease events on heart function. The Multi-

Ethnic Study of Atherosclerosis (MESA) was the first major population study to employ 

cardiac MRI as part of a large-scale epidemiological study to examine the progression of 

disease from pre-clinical manifestations to clinical symptoms, and apply modern imaging 

methods to develop new biomarkers and risk factors to augment those identified by 

Framingham and other population-based studies (Bluemke et al., 2008). Similarly, the UK 

Biobank is an extensive population-based study that recruited 500, 000 people aged between 

40 and 69 years in 2006–2010 from across the UK, with over 6000 participants already 

imaged using cardiac MRI, abdominal MRI, brain MRI, carotid ultrasound, and dual-energy 

X-ray absorptiometry (Petersen et al., 2013). This is now being extended to image 100,000 

participants over the next 6 years. Several other more localised cardiac imaging studies are 

currently being performed in order to identify novel cardiac disease risk factors based on 

cardiac shapes and function.

Atlas-based shape analysis is a powerful tool to quantify shape changes in pre-clinical and 

clinicial disease (Fonseca et al., 2011). Preliminary results in the MESA cohort have shown 

that atlas-based shape measures are more sensitive than traditional remodelling indices for 

describing associations with common risk factors (Medrano-Gracia et al., 2014).

Principal component analysis (PCA) has been used to quantify the major determinants of 

shape variation in MESA participants (Fonseca et al., 2011). In 1,991 MESA participants, 

after correction for height, the major principal modes of shape variation were associated 

with known clinical indices of adverse remodelling, including heart size, sphericity and 

concentricity (Medrano-Gracia et al., 2014). Geometric variations can also be associated 

with traditional risk factors and demographic data. For example, significant differences were 

found between PCA shape modes in sub-cohorts grouped by traditional risk factors 

including sex, ethnicity, smoking and alcohol. Males and African Americans tended to have 

larger hearts and females and Chinese tended to have smaller hearts for their height. Heart 

size increased with history of smoking or alcohol. Female hearts were more spherical than 

males, and Chinese were less spherical than Whites. Differences in sphericity were also 

found due to alcohol use (more spherical with current consumption), and presence of 

diabetes (more spherical with untreated diabetes) at end-systole. Shape indices derived from 

multidimensional atlas-based analysis were more powerfully associated with known risk 

factors such as sex, ethnicity, smoking, hypertension and diabetes than traditional imaging 

markers such as ejection fraction, volume, and LV mass (Medrano-Gracia et al., 2014).

Combinations of shape components may enable calculation of remodelling indices that are 

specifically associated with traditional risk factors, presence of disease, or adverse 
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outcomes. For example, linear discriminant analysis was used to determine that atlas-based 

components are more sensitive to traditional risk factors than standard imaging indices such 

as mass and volume (Zhang et al., 2014). Supervised dimension reduction methods can be 

used to define a single integrated remodelling component that best describes the remodelling 

process in relation to a specific disease process (Zhang et al., 2015). As shown in Figure 1, a 

single shape mode with the strongest association with myocardial infarction was able to 

discriminate patients from asymptomatic subjects with 95% accuracy (Zhang et al., 2015).

Future applications include characterization of the developing heart. Foetal MR imaging is 

provides a promising avenue for early diagnosis of disease and improves pregnancy 

management. Foetal cardiac MRI is currently hampered by the difficulty to measure foetal 

ECG signals, but when method such as metric-optimized gating (Roy et al., 2013) becomes 

clinically applicable, this will open a new exciting area of cardiac image analysis for early 

assessment of congenital heart disease (Wielandner et al., 2013). R1.2 Another important 

application is the quantification of change in longitudinal studies. For example, remission of 

remodelling could identify the benefits of treatment effects. Also, in patients at risk of heart 

failure, longitudinal changes could identify when interventions are required. It may be 

possible that the longitudinal changes in shape which are most important for these 

applications are different from the cross-sectional indices discussed above. R1.4

An important future application of atlas-based analysis is for use in investigating congenital 

heart disease (CHD), which is the most common birth defect with a prevalence of 

approximately 75 in every 1000 births. Due to an improvement in interventions, survival 

rates are increasing, and 90% of infants born with CHD now survive to adulthood. However, 

heart failure is a significant problem for adults with some CHDs, such as hypoplastic left 

heart syndrome and tricuspid atresia, who have a single functioning ventricle and increased 

risk of heart failure remodelling. As a result, CHD patients undergo regular imaging 

investigations in order to identify adverse remodelling in time to intervene. Although there 

has been substantial work on improving analysis of MRI data, analysis of CHD cases 

remains a significant problem, particularly because right ventricular function and 

interdependence between the ventricles is of particular importance, and right and left 

biventricular geometry is complex and variable. A recent analysis method, which 

incorporates representations of all four valves, shows promise for the rapid customisation of 

biventricular models (Gilbert et al., 2014). A regularisation method which penalises 

deviation from affine (D-affine) deformations, together with a polar prediction step to 

improve preconditioning, enabled real-time updates within an interactive segmentation 

framework (Gilbert et al., 2014).

With the variety of shape changes due to different CHD lesions, it is likely that a variety of 

shape templates will be required to analyse patient specific geometry and function. A 

pipeline for creating such templates is possible using image analysis and shape modelling 

methods (Gonzales et al., 2013; Zhang et al., 2012) (Figure 2). Hexahedral bilinear elements 

were used to define the surface mesh topology, allowing for extraordinary nodes (i.e. nodes 

with valence not equal to 4). The mesh was registered to data from CT or MRI, and 

subdivided using a Li-Kobbelt algorithm, which results in a C1 surface (approximately C1 at 

extraordinary nodes). This mesh was converted to a Bezier cubic mesh and input as a 
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template in the interactive customisation process described above (Gilbert et al., 2014). 

Thus, templates describing characteristic lesions, such as congenitally corrected 

transposition of the great arteries, can be interactively customised to MRI data from a range 

of patients with this condition.

3. Physiology and Biomechanics

Although the above geometric analyses precisely quantify cardiac function and remodelling 

during disease, extracting information on the underlying biophysical parameters is now 

possible using computational physiological modelling of cardiac activation and contraction 

(Marchesseau et al., 2013). This approach offers a platform with which clinical information 

from a variety of sources can be integrated in a manner that is consistent with the laws of 

physics to predict the complex mechanical function of the heart, and estimate local stresses 

and contractile forces in cardiac muscle, which cannot be measured directly. This approach 

enables estimation of tissue-specific parameters, which are theoretically independent of 

chamber geometry and loading conditions, unlike traditional indices such as ejection 

fraction and stroke volume. One major issue is that it is difficult to non-invasively estimate 

myocardial stiffness in vivo. In the heart, passive myocardial stiffness increases non-linearly 

with increasing load (Figure 3a). In addition to its non-linear behaviour, myocardial stiffness 

is anisotropic owing to its fibrous and layered architecture (Figure 3b). Typically, stiffness is 

greatest in the fibre direction, intermediate transverse to the fibres in the plane of the layer, 

and least in the direction orthogonal to the layers.

Finite element analysis of cardiac mechanics can incorporate realistic non-linear, anisotropic 

material properties, active force generation, resulting in realistic simulations of cardiac 

mechanics (Chabiniok et al., 2016; Wang et al., 2015). The cardiac cycle is typically 

simulated in five phases: 1) passive diastolic filling, 2) isovolumic contraction, 3) ejection, 

4) isovolumic relaxation and 5) early filling, though by coupling the biventricular model to a 

closed-loop model of the pulmonary and systemic circulations and atria, it is possible for the 

model itself to generate the entire cycle (Kerckhoffs et al., 2007). Physiological parameters 

governing passive myocardial stiffness and the active contraction force can be “reverse 

engineered” from a knowledge of the shape and motion of the heart obtained from MRI 

(Figure 3c), combined with knowledge of the pressure boundary conditions and muscle fibre 

architecture (Wang et al., 2009). Contractility can be quantified by parameters related to 

calcium mediated force production in the muscle sarcomeres, and relaxation can be 

quantified by de-activation of the sarcomeres. In addition to the fibre tension, there is also a 

significant cross-fibre force due to the cross-bridge binding angle, which affects the 

anisotropic dynamic stiffness (Tangney et al., 2013). Patient specific models can be 

customised to image and clinical information (Tangney et al., 2013; Wang et al., 2016). 

Multi-scale models show promise in CHD and predicting outcomes of surgical procedures 

(Meoli et al., 2015).

Although these methods have been applied to data from CT and MRI, echocardiography is 

by far the most common modality for cardiac imaging exams. With recent advances in 3D 

transducers, it is now possible to obtain 50 3D frames per second. In the near future, it 
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should be possible to translate methods between modalities, and integrate the best 

information available from each modality (Figure 4).

Another promising area for future research is the integration of finite element heart models 

with elastography, for example magnetic resonance elastography (MRE), in order to obtain 

information about the dynamic stiffness properties of the heart. MRE is a non-invasive 

imaging technique that quantifies harmonic small (i.e. less than 100 microns) perturbations 

in displacement at a frequency of around 80 Hz. It is possible to apply finite element 

analysis to MRE data to recover anisotropic material properties of heart tissue (Miller et al., 

2015). This method may provide complimentary information to the large deformation finite 

elasticity analysis methods described above. The advantage of MRE is that it does not 

require invasive pressure recordings to estimate myocardial stiffness parameters.

4. Benchmarking and Validation in Cardiac Image Analysis

Research fields can advance more rapidly when researchers are able to reproduce and verify 

results from other studies. Open data sharing, algorithm benchmarking, and validation 

through unit tests are mechanisms to ensure reproducible research. Recently there has been 

significant work on validation of computational models of the heart (Land et al., 2015; 

Niederer et al., 2011). These studies provide important tests for cardiac mechanics 

modelling, even though closed-form (“ground truth”) solutions do not exist. By comparing 

results between code implementations and different methodologies, modelling issues and 

problems can be identified. For example, a cardiac electrophysiology benchmark highlighted 

differences in convergence and solution accuracy between different numerical schemes 

(Niederer et al., 2011).

Open benchmark challenges also provide excellent test beds for comparing algorithms. A 

recent challenge in LV segmentation and calculation of ejection fraction1 resulted in a large 

number of machine learning implementations. Other open challenges in cardiac image 

analysis2, have attracted stimulating research activities from diverse groups to benchmark 

their new developments. One promising avenue of future research is in the training of 

machine learning algorithms using simulated images. Since the availability of ground truth 

data is very limited, and variable between analysts, images can be simulated from parametric 

models of heart shape and motion, with statistical variation derived from population studies 

(Prakosa et al., 2013; Tobon-Gomez et al., 2011) and added noise and image artefacts, so 

that the underlying ground truth is known exactly.

5. Future Directions

Models of cardiac function and physiology provide a tool to analyse large numbers of 

patient studies, as well as patient specific estimation of physiological parameters. In the 

future, medical imaging data on tissue characteristics can be incorporated into these models, 

such as in vivo diffusion tensor imaging myocardial T1 and extracellular volume maps, and 

tissue fingerprinting. The amount of data that are available for cardiovascular practice and 

1http://www.kaggle.com/c/second-annual-data-science-bowl
2http://www.cardiacatlas.org/challenges
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research is growing at an unprecedented pace. Big data analytics, which lies at the 

intersection of cardiac imaging, biomechanical modelling, data mining and machine 

learning, will lead to improved cardiovascular patient care (Suinesiaputra et al., 2015). There 

is a strong potential to discover novel, specific risk factors in addition to traditional 

cardiovascular assessment. Data from administrative, clinical registry, electronic health 

records, and imaging devices can be merged with biometrics, genomics, proteomics, 

simulation data, and other sources, including experimental studies and social media. The 

breadth of population studies and depth of physiological and biomechanical analysis from 

the myocyte level to organ structures will position cardiac image modelling at the heart of 

quantitative cardiovascular medicine.

The key to successfully combine population-based cardiac image modelling with 

biophysical parameters identification is the generation of personalised scores that can be 

mapped within population norms. The ability to customise biomechanical and physiological 

parameters into individual patients could significantly transform clinical care. Although 

population databases will be less accurate than could be obtained with targeted studies using 

invasive procedures for parameter characterization, clinicians are well used to making the 

most from limited resources.R2.3 A future scenario could be rapid imaging sessions with 

echocardiography at clinics for monitoring current status of cardiac remodelling, where 

physicians can investigate 3D biophysical customization of a probabilistic computational 

heart model with visualisation of differential adaptations of cardiac shape and function 

associated with possible adverse effects. With a reference to atlas-based asymptomatic 

cardiac remodelling pathways using studies with long-term outcome measures, the 

combined image-based cardiac model with personalised biomechanical and physiological 

parameters can be extrapolated to predict future remodelling and events. For example, the 

power of large scale physiological modelling may be in nested case-control studies where 

biophysical parameters prove particularly useful in particular patient groups. For example, 

myocardial stiffness may be important in particular types of heart failure (those with 

preserved rather than reduced ejection fraction). Even though the estimate of stiffness may 

not be as accurate as a targeted study with invasive measurements, evaluation on a larger 

number of cases with limited data may be useful in highlighting where targeted detailed 

research studies may be most useful.R2.2-R2.6
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Highlights

1. Population-based large cohort studies give an unprecedented breadth to 

the quantification of population variation and disease development in 

cardiac performance

2. Biophysical properties of myocardial tissue in health and disease can 

be obtained by interpreting imaging data using computational 

modelling

3. Open benchmarks for algorithm comparison and validation, open 

sharing of data and algorithms, and demonstration of clinical efficacy 

in patient management and care are needed for future developments in 

this field
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Figure 1. 
Information maximising component analysis (IMCA) of shape differences between 

asymptomatic subjects and patients with myocardial infarction (MI). Left: visualisation of 

the remodelling index. Right: discrimination of remodelling score (Zhang et al., 2015).
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Figure 2. 
Top: Pipeline for generating templates for CHD lesions: a) 3D image from MRI or CT; b) 

registration with initial model; c) coarse shape customisation; d) refinement through 

subdivision surfaces; e) customisation to different patients; f) patient specific model. 

Bottom: Patient specific model at end-diastole for a 42 year old female with repaired 

tetralogy of Fallot: g) short axis view; h) long axis view; i) model with images; j) valves.
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Figure 3. 
a) Anisotropic mechanical behaviour. b) Diffusion tensor MRI showing muscle fibre 

orientation. c) Left ventricle model customised to patient images. d) Stress derived from a 

biomechanical model. e) Local myocardial work estimated for each of the 17 AHA 

segments.
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Figure 4. 
a) 3D echo dataset showing short and long axis reformatted slices. b) 3D model customised 

to a 3D echo dataset from a healthy volunteer. c) 3D model customised to MRI dataset in the 

same healthy volunteer.
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