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Abstract

Reparameterization of surfaces is a widely used tool in computer graphics
known mostly from the remeshing algorithms. Recently, the surface repa-
rameterization techniques started to gain popularity in the field of medical
imaging, but mostly for convenient 2D visualization of the information ini-
tially represented on 3D surfaces (e.g. continuous bulls-eye plot). However,
by consistently mapping the 3D information to the same 2D domain, surface
reparameterization techniques allow us to put into correspondence anatom-
ical shapes of inherently different geometry. In this paper, we propose a
method for anatomical parameterization of cardiac ventricular anatomies
that include myocardium, trabeculations, tendons and papillary muscles.
The proposed method utilizes a quasi-conformal flattening of the myocar-
dial surfaces of the left and right cardiac ventricles and extending it to cover
the interior of the cavities using the local coordinates given by the solution of
the Laplace’s equation. Subsequently, we define a geometry independent rep-
resentation for the detailed cardiac left and right ventricular anatomies that
can be used for convenient visualization and statistical analysis of the trabec-
ulations in a population. Lastly we show how it can be used for mapping the
detailed cardiac anatomy between different hearts, which is of considerable
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interest for detailed cardiac computational models or shape atlases.

Keywords: parameterization, heart representation, cardiac coordinate
system, surface flattening, cardiac trabeculations, conformal mapping

1. Introduction

Surface parameterization is a bijective mapping from a suitable param-
eter domain to the surface. As the parameter domain itself is usually a
surface, the parameterization represents a mapping from one surface onto
another, providing that the surfaces have the same topology (Sheffer et al.,
2006; Floater and Hormann, 2005). In computational geometry the surfaces
are approximated by 3D triangulated meshes and their parameterization is a
process of creating piecewise linear mappings between the mesh and simpler
triangulated domains such as planar regions, simplicial complexes or spheres
(Sheffer et al., 2006). Surface parameterization is most frequently used in the
field of computer generated imagery (CGI) as a method for mapping textures
onto surfaces to add realism to the simplified polygonal meshes. There are
also many applications in numerous problems such as texture synthesis, de-
tail transfer, mesh completion, mesh editing, remeshing, mesh compression,
object morphing and others.

Planar parameterization of general surfaces always introduces distortion
in either angles or areas as stated by theorema egregium, and isometric (dis-
tance preserving or zero distortion) mappings are possible only for devel-
opable surfaces with zero Gaussian curvature. Thus, parameterization of
arbitrary surfaces used in practice are mappings which minimize these dis-
tortions, such as conformal (angle preserving), equiareal or authalic (area
preserving) and mappings which minimize some combinations of angle and
area distortion. Planar mapping methods can be additionally divided into
free and fixed boundary mappings. Fixed boundary mappings transform the
boundary of a mesh to a predefined boundary in the 2D domain while bound-
ary free methods compute the boundary of 2D domain as part of the solution
that reduces the distortion.

Many of the planar parameterization methods are built upon Tutte’s
formulation of graph embedding, which directly applies to the meshes (Tutte,
1963). These parameterizations normally are performed in two stages. First,
the boundary vertices of the 3D surface mesh are mapped to the boundary
of the predefined 2D region. Afterwards, the positions of the remaining



vertices are obtained by solving a system of linear equations (Pinkall and
Polthier, 1993). Every mesh, which satisfies the Delaunay criterion, will
have a bijective flattening map as suggested by Kharevych et al. (2006).

In medical imaging, harmonic mappings were first applied in neurology
for the analysis and visualization of brain surface, where the complex brain
structure was mapped to a sphere or a planar domain (Hurdal et al., 2000;
Haker et al., 2000; Gu et al., 2004; Joshi et al., 2007; Wang et al., 2012). In
cardiology, reparameterization is mostly used to visualize any functional in-
formation of the ventricular cavities on a discretized or continuous bull’s-eye
plot (Cerqueira et al., 2002). Such information can be coming from imaging
modalities or electro-physiological measurements (Soto-Iglesias et al., 2013).
A similar approach has recently been applied to the description of atria using
a standardized unfold map or rectangular unfold map for the analysis of atrial
fibrillation patients (Tobon-Gomez et al., 2015; Karim et al., 2014). Recently,
harmonic spherical mapping was applied in hepatology for definition of an
inter-patient liver coordinate system (Vera et al., 2014). Surface parameter-
ization was also employed for creation of a normalized parametric domain
for comparison of left ventricular function across subjects (Garcia-Barnes
et al., 2010). Young et al. (2006) developed a finite element parameterization
method for regional analysis of 3D myocardial function and construction of
a 3D model of infarct geometry combined with 3D strain information, which
was also used by Zhang et al. (2014) for mapping of left ventricular regional
remodeling due to myocardial infarction. Another example of normalized
domain is a tissue sampling map proposed by Young et al. (2011) used for
coregistration of CMRI and ex-vivo tissue sampling.

When talking about detailed cardiac anatomy, it is necessary to men-
tion that, although the current imaging techniques made screening of those
structures feasible ex vivo, their accurate segmentation still represents a chal-
lenging task. M. Gao et al. recently proposed a method for a topologically
accurate segmentation by restoring missing topological structures of initially
given segmentations (Gao et al., 2013), which allowed them to preform mor-
phological analysis of such structures in the left ventricle (LV) (Gao et al.,
2014).

In this paper, we propose a method for a patient independent anatomi-
cal parameterization of the interior of cardiac ventricles for the representa-
tion of the detailed ventricular anatomy (myocardium, trabeculations, pap-
illary muscles, etc.). The proposed method represents a generalization of
the parameterization procedure proposed by Paun et al. (2015) used for pa-
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Figure 1: Examples of different shapes of thick shell structures.

rameterization of the detailed cardiac anatomy of left ventricles, which in
general have a ellipsoidal-like shape. Unfortunately, that method introduces
unwanted distortion and folding when applied to the more complex shapes
such as the right ventricle (RV). To overcome such limitations we propose a
general method that can be applied to objects of an arbitrary shape.

2. Methods

2.1. Overview of the Geometry Independent Representation

In this section we will introduce a general framework for representing any
object M with an overall shape of a thick hemispherical shell (in the following
text we will call them shell-like objects for simplicity) based on the fact that
it is homeomorphic to a cylinder. A number of examples of such objects can
be seen in Fig. 1. In order to establish the homeomorphism, apart from the
object M itself, represented by either a surface or volumetric mesh, we will
also require an enclosing surface S, usually represented by a triangulated
mesh, that contains the whole M in its interior.

The whole procedure of calculating the mapping can be described by the
following steps (explained in the following sections and illustrated in Fig. 2):

1. Mapping of S to a suitable planar domain D.
(a) Specifications of landmarks on S to impose a consistent orienta-
tion.
(b) Conformal or quasi-conformal flattening.
2. Mapping of M to the volumetric domain defined by the base D (usually
a cylinder or a prism).

For convenience, the most common symbols used throughout the paper
are listed in Table 1.



Figure 2: Illustration of domain of interest with corresponding surfaces and landmark
points. a) Domain U defined by enclosing surface S, interior surface H, and landmark
points P4, Pr, and Pgr. b) Cylinder domain C' of unit height defined by planar domain
D and corresponding landmarks. Symbols: Pj, - left boundary landmark; Pg - right
boundary landmark; P4 - apical landmark; S - enclosing surface; H - interior surface; U
- domain between S and H; D - planar domain; C - cylinder.

2.2. Specification of the Landmark Points on the Enclosing Surface

In order to define a common representation for the shell-like objects and
achieve a unique correspondence between different instances of such objects,
we propose to fix three landmark points on S (see Fig. 2). These points
will be mapped to predefined locations in the planar domain, thus removing
orientation ambiguity due to rotational and mirror symmetry. Two points,
P;, Pg, related to some easily identifiable features of the object, should be
located on the boundary 0S. The third point, P4, should represent the
position of the pole (apex) of the surface S.

2.3. Mapping of the Enclosing Surface to the Planar Domain

The identification of the landmarks on S'is followed by the mapping step
of the surface S to the planar domain. The planar domain represents the
base of the corresponding normalized reference frame and can be represented
by any convex planar shape. As implied by Riemann Mapping Theorem
(Riemann and Wilkins, 1851), any surface homeomorphic to a disk can be
conformally mapped into any simply-connected region of the plane. The
method we use here is the same as the one used in the paper of De Craene
et al. (2012).

A bijective mapping ¢ : S C R® — D C R?, where S is the enclosing
surface and D is the corresponding planar domain, can be computed by



Table of symbols

S enclosing surface

H  interior surface

U  domain between S and H

0S  boundary of S (curve)

M shell-like object

D surface S mapped to the planar domain
0D boundary of D (curve)

N  object M mapped to the cylinder

P, alandmark (specified by the subscript)

Table 1: List of symbols used in the manuscript.

solving the following system of linear equations:

Ls\os - Xp\op =0 (1)
Xop =X

cos(ty) sin(tg)
cos(ty) sin(ty)

cos(tp) sin(.tB)

where ¢; € [0,27] and B is the number of vertices on 05.

The desired (fixed) boundary coordinates £, ¢ are given by the columns
of matrix X. Lg\ss represents the Laplacian matrix of the surface S with
the rows corresponding to its boundary 95 removed. Xpp and Xp\sp are
the &, ¢ coordinates of the points on the planar domain corresponding to the
boundary and the interior, respectively.

The above methodology provides a simple method for mapping S to the
planar domain D where its corresponding boundary edge 05 is mapped to
the perimeter of D. To impose a unique correspondence between different
enclosing surfaces their landmarks P, Pr and P, are mapped to the same
predefined locations on the planar domain.

2.4. Mapping of the Shell-like Objects to a Cylinder

Let ¢ : M — C be the bijective mapping of the object M C R? onto a
cylinder C C R®. Let ¢(vy) = ve € C for any vy € M. In this section we



will provide the procedure to calculate the ¢ using the ideas of Yezzi and
Prince (2003).
Let S be the enclosing surface of the object M, H the interior surface of

M, U = M\ (SU H) the domain between the S and H (see Fig. 2). Let
f(z,y,2) be a scalar field, the solution to the Laplace’s equation in U:

Af(z,y,z) =0 (3)

with the following boundary conditions
f(:v,y,z) :—1,V(l’,y,2) €S (4>
flzy,2) =1V(z,y,2) € H (5)

Then for every point vy € U we can find a unique integral curve c¢(t) =
(ca(t), cy(t), c.(t)) of the vector field V f such that vy € ¢(t). The curve ¢(t)
can be calculated by solving the following system of equations:

de(t)
) — I (elt) (0
with the condition
c(ty) = vy (7)

By solving (6) in both directions, apart from the solution ¢(t), we also
will obtain the points vy and vg where ¢(t) intersects H and S respectively
and the corresponding values for the parameter t:

c(0) = vg,vs € S (8)
(tmaz) = v, vy € H 9)

Thus we propose to represent any point vy € U by the point vg € S and
the normalized distance d(vy) along the corresponding integral curve c(¢):

i) = [ 52 as [

Having calculated the parameterization of S and the normalized distance
d(vy), and assuming p(vg) = (€, (), then every point vy € U can represented
inside the cylinder ve = (€, (,d(vy)) € C. If necessary, the same point can
also be represented using cylindrical coordinates.

SOly
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Figure 3: Visualization of detailed anatomical meshes and their extracted anatomical
bounding surface meshes. The bounding surfaces are concave hulls of the trabeculated
layer.

3. Geometry independent representation of the cardiac ventricles

The motivation for development of the proposed method was the param-
eterization of the cardiac ventricles for the representation of the detailed
ventricular anatomy of the heart (Fig. 3).

The following subsections will explain how the proposed mapping frame-
work can be applied to two meshes, M, and Mgy (in this paper — triangu-
lated surface meshes), that represent detailed endocardial structures of the
LVs and RVs, respectively. The outer bounding surfaces S and Sgy are
the corresponding anatomical bounding surface meshes extracted from My
and Mpgy. We define the anatomical bounding surface as the concave hull of
the cardiac structures that we want to map onto the geometry independent
representation. The process of obtaining meshes My, Mgy, Spy and Sgy
is described in chapters 4.2.2 and 4.2.3.

Depending on the application, detailed anatomy meshes My, and Mgy
can represent just endocardial structures of interest or all the structures
within the ventricular cavity, and can include a part or the whole myocardial
wall, therefore different anatomical boundary meshes Sy and Sgy can be
used, representing different meaningful anatomical bounding surfaces such
as endocardium or epicardium.

For the interior surface H we use a hemisphere of 5 mm radius located at
the centroid of mitral(tricuspid) annulus. The choice of the centroid of the
mitral (tricuspid) annulus as the origin and the size of the interior surface H
is motivated by the fact that this area is free of any detailed structures we
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Figure 4: Pipeline of proposed method for generation of patient independent representation
of ventricles. Landmarks: IS - inferoseptal, AS - anteroseptal, A - apex.

want to parameterize. The whole pipeline can be seen in the Fig. 4.

3.1. Specification of the Landmark Points

We propose to use the following landmarks for the ventricles: the ventric-
ular apices and two points on the boundary of the septal wall that correspond
to the locations where RV is attached to LV. Specifically, we manually de-
fine two landmark points Prry and Prgry at the basal part of the RV ridges
which divide the wall into lateral and septal part while all other landmarks
are located automatically. From the two manually selected landmark points
and the centroid of the LV boundary edge 0S5y two vectors are constructed
and their intersections with Sy are calculated. As those vectors do not
necessarily intersect Sp, at 0Spy we locate closest points to intersections
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Figure 5: Tllustration of the mapping procedure of the anatomical bounding surface meshes
Srv, Sry to the planar domains Dy, Dy and alignment of the landmarks in the planar
domain. a) Meshes Sy, Sgy with their corresponding landmarks. b) Meshes Sry, Sgry
mapped to a planar domains Dy, Dgry. c¢) Alignment of the landmarks to predefined
places on planar domain.

points on Sy and use them as the landmarks Py and Prry. Both apical
landmarks Pary and P4y are calculated as the furthest points from the
corresponding centroids of the anatomical boundary mesh edges 9Sgy and
0Sry. All the landmarks can be seen in Fig. 5.

3.2. Mapping of the Anatomical Bounding Surface Meshes to the Planar Do-
main

We chose the following planar domains for the bounding surfaces of the
ventricles based on their typical representation encountered in the medical
literature: Sy is mapped to a unit disk Dy and Sgy to half of another
unit disk Dgy where their corresponding boundary edges 0S5y and OSgy
are mapped to 0Dy and dDgy (Fig. 5b).

However, it is in our interest to map the different subjects’ cardiac land-
marks Prryv, Prry and Pary to the same predefined locations on the disk.
Thus after mapping Sz to a unit disk Dy (centered at the origin), we cal-
culate the bisector of the angle between the center of the disk and the two
septal landmarks Pppy and Pgry. Subsequently all the points are rotated to
align the bisector with the positive sense of the axis x. The result is shown in
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Fig. 5b. After correcting the orientation we fit the Thin Plate Splines (TPS)
to the interior vertices of Dry to displace the apical point P4y to the center
of the disk, leaving the boundary 0Sry vertices intact. The results of the
above mentioned alignment of the landmark points can be seen in Fig. 5c.

The half disk shape Dgy was constructed from the unit circle centered at
(1.25,0) (this point was chosen for a convenient visualization of both ventri-
cles, assuming Dy is at (0,0)), using only the points whose x coordinates
satisfy x > 1.25. The procedure of mapping Sgy is the same as for Spy
except the steps of alignment of landmarks and defining Dirichlet conditions.
In this case we place two septal landmarks Prry and Prgry at the corners
of the half disk, namely Ppgry = (1.25,1) and Prry = (1.25,—1). The apex
is again displaced using TPS to a predefined location Psgy = (1.75,0) (the
point in the middle of the lateral and septal boundaries).

3.3. Improved visualization of LV structures

From the Fig. 5b and Fig. 5c we can see that the generated mapping in-
creases the density of the vertices of Dy towards the apex which is visually
unpleasant and hampers visual analysis of the information close to the apex.
Thus, purely for visualization and for better correspondence of our represen-
tation to the AHA regions (Cerqueira et al., 2002), we radially displaced the
interior vertices of Dy using the following equations:

v = (2 + 4?2 cosftan=(y/z)]
Y = (2 + )" sinftan~ (y/)] (1)

where (x,y) and (2,y') are the original and modified vertex coordinates.
For the value of exponent n we chose 1/3, which results in a visually more
homogeneous distribution of information. Fig. 6 illustrates how points at
different geodesic distances from the apex are mapped to the flat domain
in the case of n = 1 and n = 1/3. The colors represent different regions
of geodesic distance field from an apex calculated on Sy, Fig. 6a, Fig. 6b
shows how the distances along the geodesics reduce towards the center, which
is corrected in Fig. 6¢ using (11).

3.4. Mapping of the Detailed Anatomy to Cylinder

After obtaining ¢, that maps meshes Sy and Sgy to the corresponding
planar domains, we proceed with mapping of the detailed anatomy meshes
My and Mgy to the cylinder defined by the corresponding planar domain
as its base.
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Figure 6: Radial displacement of the vertices of Dpy for better visualization and corre-
spondence with AHA segments. Colors represent different regions of geodesic distance
field from an apex calculated on Sy . a) Mesh Sy with calculated geodesic distance field
and its isolines. b) Mesh Dy before radial displaced of its inner vertices. ¢) Mesh Dry
after radial displacement of its inner vertices.

The whole procedure is summarized in Algorithm 1, where the enclosing
surface S and inner surface H are represented by triangulated meshes. The
resulting points vy define the parameterized surface N — a shell-like object
mapped to the reference frame. The application of the Algorithm 1 to the
My is illustrated in Fig. 7.

3.5. Inverse Mapping and Mapping to a Different Geometry

We require our mapping to be bijective, thus we have to make sure that its
inverse exists. To map the parameterized mesh N back to its original shape or
any other, we employ the procedure described in Algorithm 2, which simply
reverses the steps of the Algorithm 1.

4. Datasets

4.1. Synthetic data

For synthetic data we generated tubular structures with two different
regular patterns, circumferential and longitudinal (Fig. 8), similar to Karim
et al. (2014).

Circumferential tubes (Fig. 8a) are created by clipping the scaled down
version of the anatomical bounding surface mesh S by equally spaced planes,
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Figure 7: Illustration of a mapping procedure of a detailed anatomical LV mesh vertex
vy to the patient independent reference frame.

Figure 8: Illustration of two different patterns of tubular structures representing synthetic
data. a) Circumferential tubes. b) Longitudinal tubes.

that are orthogonal to the long axis. The curves obtained by the clipping were
then uniformly subdivided and used as a centerlines of tubular structures.
The radius of the tubes was set to 0.7 mm.
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Algorithm 1 Mapping algorithm (see Fig. 5)

Input: Mesh M (surface of volumetric) and S (surface)

1: Define a hemispherical mesh H of a certain radius within M such that
the centroid of OH coincides with the centroid of 95
Solve the Laplace’s equation within the region S\ H
Compute the gradient field of the Laplace’s equation solution
Map the mesh S to the planar domain D
for each vertex vy; € M do
Compute the streamline F' that passes through vy,
Find the intersection point vg of the streamline F' with the mesh S
and vy with H
Compute the barycentric coordinates of vg in terms of vertices of S
9: Calculate the normalized distance d(vys) of vy, from S using (10)
10: Find the point vp in D using the barycentric coordinates of vg
11: Place vy (image of vy/) at a distance d(vy,) from the vertex vp along
the normal of D.
12: end for

Output: Mesh N consisting of vertices vy with the same connectivity as
the mesh M.

*®

Longitudinal tubes (Fig. 8b) are created by clipping the same meshes by
a plane defined by the ventricle’s apices and centroids of the boundary edges.
The plane was rotated by 30 degree increments and the curves obtained by
the clipping were used as the centroids of the tubes generated using the same
parameters as the radial tubes.

4.2. Human Hearts

4.2.1. Image Datasets

We processed six MRI datasets acquired by a 37T Siemens scanner with
0.44 x 0.44 mm in-plane resolution and slice thickness of 1 to 1.17 mm. The
Dicom datasets (Fig. 9) were provided by the Visible Heart® Laboratory,
and were obtained by MRI scanning perfusion fixed hearts that were gra-
ciously donated by the organ donors and their families through LifeSource.
The aorta, trachea, superior vena cava, and the inferior vena cava (when
possible) of a given specimen were cannulated and attached to a perfusion
fixation chamber as described previously (Anderson et al., 2009, 2008; Eggen
et al., 2012; Goff et al., 2015). This approach preserved/fixed each heart in
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Algorithm 2 Inverse mapping algorithm

Input: Meshes N (surface or volumetric) and S (surface)

1: Define a hemispherical mesh H of a certain radius within M such that
the centroid of OH coincides with the centroid of 0S
Solve the Laplace’s equation within the region S \ H
Compute the gradient field of the Laplace’s equation solution
Map the mesh S to the planar domain D
for each vertex vy € N do
Cast the ray in a normal direction towards the mesh D
Find the intersection point vp of the ray with the mesh D and calcu-
late the distance d

VNUD

8: Compute the barycentric coordinates of vp in terms of vertices of D

9: Find the point vg in S using the barycentric coordinates of vp

10: Compute the streamline F' that passes through vg and calculate the
distance dy gy,

11: Place vertex vy, (image of vy) along the streamline F' at a distance
d= dUSUH ’ d’UN’UD

12: end for

Output: Mesh M

a modified end-diastolic state (atria and ventricles were fully expanded) and
also lungs were dilated. The pericardium and phrenic nerves were left intact.
These hearts were fixed with 10% formalin in PBS solution for at least 24
hours under 40 — 50 mmH g of pressure, and then stored in 10% formalin.

4.2.2. Segmentation

The meshes of the detailed ventricular anatomy (Fig. 10) were generated
from the segmentations of the MRI data with the Seg3D image processing
software (CIBC, 2015). The segmentations were cut at the basal part of
the heart with a plane perpendicular to the LV long axis immediately un-
der the mitral valve and the supraventricular crest. Tendinous chords as
part of the valves protruding into ventricular cavities of heart ventricles were
removed during the segmentation process of the ventricles. As we are fo-
cusing only on the trabeculations, the myocardium was excluded from the
segmentations using the following procedure. First the blood pool was seg-
mented and morphological dilation-erosion (Seg3D, CIBC (2015), kernel size
12 mm) is applied to obtain an approximation to the concave hull of the tra-
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(e) Dataset HH 119 (f) Dataset HH 121

Figure 9: Middle stack short axis view slices of MRI human heart datasets.

beculated endocardium. The blood pool image was then subtracted from the
concave hull image to obtain final segmentation of detailed cardiac ventric-
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ular anatomy. The meshes of the segmentations were obtained in ParaView
(Squillacote, 2008) and were smoothed and uniformly remeshed in ReMesh
(Attene and Falcidieno, 2006). We used 1 iteration of uniform remesh filter
and 3 iterations of Laplacian smooth filter.

4.2.3. Extraction of the Anatomical Bounding Surface Meshes

To be able to parameterize the detailed cardiac anatomy meshes My and
Mgy, we need to define the domain for solving the Laplace equation in which
those meshes will be embedded. The domain is defined by the anatomical
bounding surface and the hemisphere placed at the centroid of the bound-
ary of anatomical bounding surface (i.e. the centroid of the mitral/tricuspid
valve in our case). From the meshes My and Mgy, we first create a binary
volumetric images (1 - detailed cardiac anatomy, 0 - background) of isotropic
resolution 0.5 mm and slightly dilate the images by a constant value of 1.0
mm (Visualization Toolkit (VTK) Schroeder et al. (2006), kernel radius of
2 voxels). The dilation is required to avoid the intersection of this bound-
ing surface, used to define the mapping, and the structures to be mapped.
From the dilated images we extract the boundary surfaces by the Marching
Cubes algorithm (Lorensen and Cline, 1987). The extracted surfaces are then
smoothed with VITK’s window sinc filter and uniformly remeshed.

The next step is to introduce a cut separating the extracted surface into
two parts. The cut is introduced at the highest point of the basal rim of
the extracted surface by clipping it with a plane orthogonal to the LV long
axis, such that the surface is divided into two parts: an inner part, which
is in contact with the blood pool and will be discarded, and an outer part,
which will represent our enclosing surface S. (Fig. 4 Step 1). The outer
part surface is then isolated and smoothed. The enclosing surfaces are then
uniformly remeshed and taken as Spy and Sgy. Lastly we compute the
boundaries (curves) dSpy and 0Sgy of Sy and Sgy.

5. Results

5.1. Algorithm Performance

Our mapping method relies on the solution of the Laplace’s equation of
discretized volumetric domain between the meshes H and S. The stream-
lines of the gradient of the Laplace’s equation solution allows us to map every
point inside the discretized domain. Thus the error introduced by our map-
ping procedure will depend on the resolution of the discretized domain. The
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(e) HH 119 mesh (f) HH 121 mesh

Figure 10: Meshes corresponding to the segmentations, representing only the trabeculated
layer.

Laplace’s equation was solved iteratively until the update between consecu-
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Figure 11: Reconstruction errors and execution times of the algorithm with respect to the
size of the voxels.

tive iterations for every point of the domain was smaller than or equal to a
predefined threshold € = 0.0001. The execution time of our C++ implemen-
tation of the mapping algorithm and its reconstruction error were executed
on a SNOW Linux Cluster equipped with AMD Opteron Abu Dhabi 6378
Processors.

We analyzed how the performance changes with the voxel size of the
discretized domain and the relationship between the speed and the recon-
struction accuracy. The experiment was carried out on the dataset HH 111
(see Fig. 9). The voxel sizes ranged between 0.3 - 1.2 mm in the steps of
0.1 mm where the maximum value was chosen to be slightly bigger than the
maximum slice thickness of our datasets. The reconstruction error is defined
as Euclidean distance between vertices of mesh M and their correspond-
ing vertices of a mesh M that underwent direct and inverse transformation
Y~ (M)]. In Fig. 11 we show the calculated reconstruction errors and exe-
cution times for the whole direct mapping procedure and the time necessary
to calculate the solution of the Laplace’s equation.

As expected, the reconstruction error increases with the increase of the
voxel size of discretized domain while the time to obtain the map and the
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Figure 12: Mapping of synthetic data. The synthetic tubular structures were colored
differently to aid visualization. The circumferential tubes (top row) are colored according
to their position along the long axis, while the longitudinal tubes (bottom row) are colored
according to the angle of the defining plane.

time to solve the Laplace’s equation decreases.

5.2. Reconstruction Accuracy Measure

In all the following experiments we measure the accuracy of our algorithm
in terms of mesh reconstruction. The measurement is carried out by applying
the direct and inverse transform ¢ to the mesh M and calculating the average
point to point distance between M and =1 [ (M)].

5.8. Analysis of the Distortion Caused by the Mapping

5.3.1. Distortion due to the Direct Mapping

It is known that although the conformal flattening preserves angles locally,
it will introduce some distortion globally. The distortion could also increase
due to the use of the TPS for the left ventricle. In this experiment we
wanted to assess visually the distortion introduced by the proposed method
applying it to synthetic data — tubular structures with two different regular
patterns: circumferential and longitudinal, similar to Karim et al. (2014).
Both tubular structure arrangements were then mapped according to the
proposed method.
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From the Fig. 12 one can observe that the more the radial or circumferen-
tial curvature of the bounding mesh D deviates from the one of the ellipsoid
the higher will be distortion in that direction, namely there will be radial or
circumferential inhomogeneities in the planar domain. Circumferential inho-
mogeneity can be seen in the case of LV circumferential tubes. The mapped
circumferential tubes generally nicely follow the perimeter of the disk, but
when approaching the apex we can observe radial inhomogeneities due to
higher deviation of the mesh curvature from the curvature of the ellipse. In
the RV we can observe that the tubes nicely follow the shape perimeter in
lateral part, while they get more stretched when approaching RV ridges (lines
connecting the apex and the reference landmarks at shape corners). Also,
there is higher distortion of the tubes in the septal part caused by the stretch
of ventricular septal wall.

The longitudinally oriented tubes in LV and RV also slightly deviate
from straight lines. Again, this is caused by regional deviations from an
ellipsoid. Those inhomogeneities are more pronounced in the LV than in
the RV because of the applied radial displacement of the vertices of the
disk domain due to (11), thus artificially compressing the vertices towards
the basal segments. The longitudinal tubes in the RV planar domain deviate
from straight lines due to higher stretch of the surface towards the boundary.
Such inhomogeneities are particularly visible in the septal part where certain
tubes make sharper turns due to the high stretch of the basal part of the
septal wall close to the boundary. As the vertices of RV are not displaced
radially outwards (as was done in LV) the longitudinal tubes appear to be
more smooth than in LV.

We would like to emphasize that, although the direct map can introduce
above mentioned inhomogeneities, the introduced distortions will disappear
when we map those structures back to the patient anatomy.

5.3.2. Distortion due to Direct and Inverse Mapping

Since the process of mapping involves discretization of the volumetric
domain enclosed by the anatomical mesh S, we expect some error to be in-
troduced by the discretization. In this experiment we analyze this distortion
by calculating the direct and inverse transform and analyzing the recon-
struction error for all the anatomical meshes (Fig. 10). Fig. 13 depicts the
reconstruction errors.

To obtain the direct and inverse transform of the M meshes we calculated
the solution to the Laplace’s equation using a threshold value ¢ = 0.0001
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HH84 HH88 HH111 HH112 HH119 HH121
LVJRV]LV]RV]LV]JRV]LV]RV]LV]IRV]LV]RV
Mean distance [um]] 1.24 | 1.75]1.28 [ 1.31]11.15/1.70]1.84| 140 1.84|1.50] 1.21[ 1.56 1.48
Median distance [um]] 0.80 | 1.15] 0.81 | 0.90] 0.85| 1.16] 1.23 [ 0.92] 1.25| 0.97] 0.70 | 1.02 0.98
Standard deviation [um]] 1.78 | 2.13] 1.86| 1.64] 1.81[2.11] 2.21]| 1.76 ] 2.16 [ 1.86] 1.95| 2.05 1.94

AVERAGE

Table 2: Mean, median and standard deviation of the reconstruction errors for each mesh.

on the corresponding volumetric domains which we discretized to voxels of
isotropic size of 0.3 mm. This voxel size was chosen to have the highest
resolution of the volumetric domain without increasing too much the com-
putational requirements (going below 0.3 mm required significantly more
computational resources and time).

The mean and median reconstruction error for each ventricle, together
with their standard deviations, are shown in Table 2. The maximum re-
construction error between any given pair of vertices is 35.0 wm, while the
average mean and median reconstruction errors are 1.40 and 0.88 pum with
the average standard deviation of 1.90 um.

5.4. Landmark Placement Sensitivity

Our method relies on the selection of three landmark points on the
anatomical bounding surfaces S, thus we investigated the impact of the in-
accuracies of their localization. In the following experiments we used the
reconstruction error, however the inverse map was calculated using the land-
marks displaced with respect to the ones used for the direct transform. This
approach simulates the scenario when two hearts are mapped to our patient
independent representation with inexact landmark placement, except that
since the same mesh is used, the change can be easily calculated.

We simulated three types landmark placement inaccuracies (in all the
schemes the landmarks were displaced by fixed distances of 1, 3 and 5 mm):

e one of the boundary landmarks is displaced from the optimal position

e both boundary landmarks are displaced towards each other or in the
opposite direction

e the apical landmark is displaced

In the first scheme, we displaced one boundary landmark at a time: Py,
Prry on Sy, and Prry, Prry on Sgy (LV and RV independently), while
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Figure 13: Reconstruction error per vertex. The reconstruction error is calculated as the
vertex to vertex distance between original M meshes and their corresponding instances
after direct and inverse transform. The maximum was observed only in the RV mesh
of HH 84 dataset. Window 1 depicts the region of interest of the HH 8/ dataset’s RV,
showing the location of the highest error. Window 2 is the closeup of the region of interest
of HH 111 dataset’s RV. One can notice that per vertex reconstruction errors of higher
values are very localized over the meshes.

keeping the other two landmarks on S fixed. Every moving landmark was
displaced 1, 3 and 5 mm clockwise and counter-clockwise along the boundary
0S.

The second scheme consisted of simultaneously moving both boundary
landmarks: PLLV and PRLV on SLV7 and PLRV and PRRV on SRV7 while
keeping the apical landmark fixed. The boundary landmarks were displaced
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Figure 14: Average reconstruction errors with respect to the landmark displacement.
Error bars represent one standard deviation. Plots labeled Pary and Pagy show the
reconstruction error when one of the apices is displaced; “Prryv or Pgrry” and “Prry
or Prry” correspond to the displacement of one of the boundary landmarks of RV and
LV respectively; “Prry and Pgrpry” corresponds to the displacement of both boundary
landmarks of the RV.

simultaneously 1, 3 and 5 mm towards and away from each other along the
boundary 95.

In the last scheme we displaced only the apical landmarks P47y and
Pary, while keeping the boundary landmarks fixed. These landmarks were
displaced 1, 3 and 5 mm in four directions (orthogonal) along the surface.

Fig. 14 shows the average reconstruction error for different landmark dis-
placement schemes and distances. As expected, the reconstruction error in
both ventricles increases with the increase of the landmark displacement up
to half the displacement magnitude.

Fig. 15 depicts the per vertex reconstruction error for a scheme where just
the Ppry and Ppry were displaced counter clockwise along their boundaries.
In the RV one can notice that the error is increasing both vertically from the
apex Pagry and laterally around the wall from the Prgy towards the displaced
landmark Prgy. In the LV there is just vertical increase of the error from
the apex P,y towards Pppy, while laterally around the wall the errors have
similar values. From the figure we can observe that the error in the placement
of one of the RV boundary landmarks leads to the inaccuracies limited to
the neighborhood of the landmark. The neighborhood also increases with the
magnitude of the displacement, affecting larger part of the RV with 5 mm

24



Distances [mm]
535

= N W N
o o O o

mmHHI‘WH\'HHHH\‘\'UHM
%

o

1 mm 3 mm

Figure 15: Reconstruction error per vertex for displacement of left boundary landmarks
Prrv and Ppry for 1, 3, and 5 mm (view from the top, HH 88 dataset). Note the
localized error in the RV and the uniformly spread errors in LV.
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displacement. In the case of LV, the change in one landmark Py changes
the location of the bisector (see Section 3.2), which leads to the rotation of
the ventricle. This rotation introduces radially uniform distortion, affecting
mostly the structures in the basal parts of the LV.

In Fig. 16 we show per vertex reconstruction errors introduced by simul-
taneous displacement of the boundary landmarks Ppry and Pgrry towards
each other along the 0Sgy. One can observe a vertical increase of the errors
from the apex Psgry towards Prry and Pgrgry, while laterally they decrease
around the wall from Ppry and Prgy towards the middle of septal and lateral
wall. Again, we observe that the error in the placement of boundary land-
marks leads to inaccuracies limited to the neighborhood of the landmarks,
while the neighborhoods increase with the magnitude of the displacement.

In case of the LV, the visualization of the reconstruction errors on HH
88 is omitted, as the left ventricles have shown invariance to this scheme of
landmark displacement. The displacement of Py and Prry gave the same
result as for the case when landmarks are not displaced at all (Fig. 13). The
invariance to the simultaneous displacement of Prry and Pgrry is caused by
the fact that such displacement of the landmarks does not change the location
of a bisector (see Section 3.2, Fig. 5), thus giving us the same reconstruction
errors as in case of keeping the landmarks in place.

In the last displacement scheme, depicted in Fig. 17, we see that displac-
ing the apical landmarks P4y and Pagry cause the increase of per vertex
reconstruction error towards the apex. As the boundaries are intact, there is
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Figure 16: Reconstruction error per vertex for displacement of left and right boundary
landmarks Prry and Prry simultaneously for 1, 3, and 5 mm towards each other (view
from the top, HH 88 dataset).
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Figure 17: Reconstruction error per vertex for displacement of apical landmarks Pary
and Pygy for 1, 3, and 5 mm (view from the top, HH 88 dataset).
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no change in the reconstruction errors in lateral direction. The placement of
apical landmarks leads to the inaccuracies limited to the apical region, while
the neighborhood is again increasing with the magnitude of the displacement.

5.5. Application to the Human Hearts

We applied our method to twelve detailed anatomy meshes M (6 of right
and 6 of left ventricle) and show their corresponding normalized anatomical
meshes N (subsection 5.5.1). As our mapping is bijective, it allows to map
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the NV meshes to any arbitrary shape represented by its anatomical bounding
surface mesh S. Thus as an example in subsection 5.5.2 we show the results
of mapping of the N meshes to a hemisphere.

5.5.1. Mapping of the Human Heart Datasets to the Normalized Anatomical
Reference Frame

The results of the proposed method are demonstrated on twelve extracted
detailed anatomical meshes M shown in Fig. 10. As mentioned in subsection
2.4, the RV detailed anatomical meshes were mapped to the normalized ref-
erence frame defined by half a cylinder of unit height and with the base being
half the unit disk, while LV meshes are mapped to the volumetric domain
defined by a unit cylinder, namely a cylinder of a unit disk base and unit
height. The Fig. 18 depicts the obtained results.

In the Fig. 18 we can observe the intricate trabecular morphology inherent
to each subject. An increase in the amount of trabeculations as we move from
the base towards the apex can be seen in both ventricles. The basal part of
the septal walls is free of trabeculations and they start to emerge in their
middle parts while, on the lateral wall, we have them present along the whole
wall. The trabeculations, present in the basal part of the lateral walls, are
attached to the wall along their whole length and they form big prominent
ridges. The moderator bands are clearly visible and traversing through the
RV cavities. In the RV, there are more trabeculae traversing through the
cavity and trabeculae emerging from opposite sides of the ventricle and fuse
together to form the papillary muscles. The coarseness of trabeculations or
“sponginess” of the heart increases towards the apex. That coincides with
the observations reported in the literature of a highly trabeculated apical
region where trabeculations form a complex interwoven network.

5.5.2. Inverse Mapping and Mapping to Different Subject Geometries

The proposed bijective map 1) provides means to map any detailed anatom-
ical mesh M to a patient independent volumetric domain defined by the cho-
sen planar domain as a base and unit height. Calculating such bijective map
for different instances of the detailed patient anatomy allows us to map the
anatomy of one patient to any other reference frame and vice versa.

The visualization in a volumetric domain with planar base may not
be very visually pleasing due to trabeculas and moderator band travers-
ing though ventricular cavities. Fig. 19 shows an alternative visualization,
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(e) HH 119 normalized (f) HH 121 normalized

Figure 18: Detailed anatomical meshes M mapped to the proposed normalized anatomical
reference frame.

where the detailed anatomy meshes are mapped onto the domain defined by
a hemisphere.

5.5.3. Mapping of Human Heart Datasets Including Inflow and Outflow Tracts
Throughout the paper we used the segmentations of the LV and RV de-
tailed cardiac anatomy, which were cut by a plane perpendicular to the LV
long axis immediately under the mitral valve and the supraventricular crest.
However the proposed approach can also be used if the parameterization up
to the inflow and outflow tracts is required (such as the one used in Young
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(e) HH 119 mesh (f) HH 121 mesh

Figure 19: Mapping of detailed anatomical meshes M to a hemisphere.

et al. (2011)).

In its proposed form, the parameterization is limited to geometries with
only one opening. This limitation is based on the idea that such geometries
can be conveniently flattened into a disk. However if more than one opening
is present, as in the case of inflow and outflow tracts of the right ventricle
(as in Gilbert et al. (2015)) the proposed approach can be modified in two
ways: use one of the holes as the boundary and leave the other hole in the
interior of the flat disk, similarly to Tobon-Gomez et al. (2015); or if the
2D visualization is not crucial, the parameterization can also be achieved
by mapping the whole chamber to a spherical shell using exactly the same
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Figure 20: Illustration of LV of HH 84 and HH 88 datasets including inflow and outflow
tracts, and them mapped onto each other’s bounding surface. a)Original HH 84 LV mesh.
b)Mesh HH 88 LV mapped onto HH 84 LV bounding surface. c¢)Overlap of a)(gray color)
and b)(turquoise color). d)Original HH 88 LV mesh. e¢)Mesh HH 8/ LV mapped onto HH
88 LV bounding surface. f)Overlay of of d)(gray color) and e)(turquoise color).

methodology with an additional registration step to make sure the holes
match on the sphere.

As an illustration, in Fig. 20 we show two LVs segmented up to the valves,
and mapped to each other’s bounding surface. Fig. 20a,d depict ventricles
of HH 84 and HH 88 segmented up to the aortic and mitral valves. Their
segmentations were cut with two planes placed thorough aortic and mitral
annuli. Fig. 20b,e depict HH 88 LV mapped to HH 84 LV and vice versa,
while Fig. 20c,f displays the overlap of Fig. 20a (gray color) with Fig. 20b
(turquoise color) and Fig. 20d (gray color) with Fig. 20e (turquoise color).

5.5.4. Relationship to the Bulls-eye Plot

In this section we discuss the relationship of the proposed mapping to a
bulls-eye plot using the 17 AHA segments (Fig. 21). For the illustration we
partitioned the LV meshes of the datasets HH 84 and HH 88 (Fig. 22 left
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1. Basal anterior 7. Mid anterior

2. Basal anteroseptal 8. Mid anteroseptal
3. Basal inferoseptal Q. Mid inferoseptal

4. Basal inferior 10. Mid inferior

5. Basal inferolateral 1. Mid inferolateral

X 6. Basal anterolateral 12, Mid anterolateral

3. Apical anterior

]

14. Apical septal LAD Left Anterior Descending
15. Apical inferior RCA Right Coronary Artery
16. Apical lateral LCX Left Circumflex

17. Apex

Figure 21: Illustration of 17 AHA segments and the coronary artery regions with corre-
sponding names and colors used in the text.

side) into 17 segments using the method proposed by Cerqueira et al. (2002)
and our method:

o (Cerqueira with equal partition. The first and fourth row of Fig. 22
represent the segmentation into 17 segments obtained by equal parti-
tioning as proposed by Cerqueira et al. In this case, the ventricle is
divided into 3 equal regions between mitral valve plane and the end of
a cavity. The apical cap is defined as the area beyond the end of the
cavity. The slices were defined by a plane perpendicular to the long
axis (the line from the apex to the center of the mitral valve). The
basal and mid-cavity slices were then divided into 6 equal segments of
60°. The first plane is defined by the long axis and the point in mid
septum, while the other two are rotated 60° with respect to it. The 4
segments of the apical slice are defined by 2 orthogonal planes, where
the first one makes 45° with respect to the mid septum.

o (Cerqueira partitions using landmarks. The second and fifth row in
Fig. 22 represent the ventricular segments defined using an alternative
definition by Cerqueira et al., via specific landmark points. Basal, mid-
cavity, and apical vertical long axis slices were then defined by a plane
perpendicular to the long axis: the basal slice was defined as the area
from the tips of the papillary muscles to the mitral annulus; the mid-
cavity was defined as the region that includes the entire length of the
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papillary muscles; the apical slice was defined from bellow the roots of
the papillary muscles to just before the cavity ends; and the apical cap
was defined as the area of beyond the end of the left ventricular cavity.

The six myocardial segments of basal and mid-cavity slices are then
defined by three planes. The first plane is defined by the long axis and
a point where the right ventricular wall attaches to left ventricular wall
in the anterior side of a heart. The second plane is defined in the same
way except the point is located at the heart’s inferior side. The third
plane is defined by the long axis and a point located radially between
the first and second plane.

The four apical slice segments are defined by two orthogonal planes
passing though the long axis. The first plane is defined as a plane
rotated 45 ° from the mid septum and the second is orthogonal to the
first.

o Fqually sized regions in the flattened domain. The third and sixth rows
of Fig. 22 depict the partition of the datasets into 17 segments obtained
by our method. First we map the datasets to our proposed reference
system and then transfer the segment labels information from the disk
subdivided into regions as in Fig. 21. The labels are then mapped back
to the original reference mesh and displayed.

The right side of Fig. 22 shows HH 84 and HH 8§ LVs labeled using the
above methods and mapped onto each other’s bounding surfaces.

Strictly following the landmark information proposed by Cerqueira et.
al. for defining the planes can be ambiguous, especially in case of high
resolution images. As the roots and the tips of the papillary muscles are
not located in the same plane perpendicular to the long axis, positioning of
those planes is ambiguous and will lead to highly nonuniform longitudinal
length of the regions. Such result can be seen in the second and fifth row of
Fig. 22. Furthermore, defining the roots of the papillary muscles is subject to
variability due to the fact that there are many trabeculations, which merge
together to form the papillary muscles at different levels.

The planes separating the septum from the LV anterior and inferior free
walls are defined by the long axis and the location of attachment of the RV
wall to the LV. Those locations vary along the long axis and will lead to the
nonuniform definition of radial basal and mid-cavity segments.
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Figure 22: Partition of HH84 and HH88 LV meshes into 17 AHA segments and them
mapped onto each other’s bounding surfaces.
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Figure 23: Partition of HH84 and HH88 LV meshes into 17 AHA represented in normalized
reference frame.

If we follow additional guidelines proposed by Cerqueira et al. we can
achieve more uniform segments as can be seen in the first and fourth row
of Fig. 22. One can observe that partitioning by our method (Fig. 22, third
and sixth row) produces similar results as obtained by the one proposed by
Cerqueira et al. when the uniform partition is enforced.

Fig. 23 depicts HH 8/ and HH 88 ILVs AHA 17 segment information
represented in our proposed reference frame. The first column represents the
AHA segments obtained by Cerqueira method enforcing uniform partitions,
the second column — AHA segments obtained by strictly following landmark
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locations proposed by Cerqueira et al., and the third column represents AHA
segments defined by our method. We want to mention that with our method
one can easily redefine the cardiac regions in any way by simply defining
them on the disc, after that the regions can be easily mapped back onto any
cardiac geometry. Furthermore, our method allows partitioning the ventricles
in a transmural direction by labeling additional segments at different depths
from the endocardium in the normalized representation.

6. Discussion

The proposed mapping allows us to define a patient independent reference
frame, where populational statistical analysis can be performed or which can
be used to map the detailed cardiac anatomy from one heart to another
(represented by a smooth surface). To define the reference frame, we chose
a cylindrical volumetric domain of unit height and a unit disk base for the
LV, while for the RV we chose a half cylinder domain of unit height and a
half disk base as defined in section 2.3. The choice of the unit half disk and
the unit disk as a the base parametric domain was motivated by the fact
that such domains are already used by many authors for the visualization of
any LV and RV information in the form of a bulls-eye plot (Cerqueira et al.,
2002).

In relation to other approaches for ventricle re-parameterization, it is
worth to note two general frameworks: use of prolate spheroidal coordinates
and volumetric mesh fitting.

The prolate spheroidal coordinates such as used by Young et al. (2011)
provide an interesting alternative to Cartesian coordinates as they allow to
characterize any point on the elliptical surface in terms of 4 parameters: two
of them related to the size of the ellipsoid and two angles (related to longitu-
dinal and circumferential position of the point on the surface). Aligning this
coordinate system with the cardiac left ventricle would allow representing
every point on the cardiac surface using two parameters. However it should
be noted that neither of cardiac ventricles is elliptical, especially the right
ventricle, thus limiting the advantages of using the prolate spheroidal coor-
dinates instead of Cartesian. On the other hand, just in our case, expressing
cardiac data using prolate spheroidal coordinates would require aligning the
coordinate system with the ventricle by defining the long axis and some
landmarks (for example, the centroids of valves).
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On the other hand the finite element models, such as used in Young et al.
(2011); Gilbert et al. (2015), are more versatile in terms of parameterization
and can be used to represent the whole of the cardiac chambers up to the
valves with any number of holes. In this case, the point correspondence across
the population is established using registration techniques or model fitting
to an image. There are however certain drawbacks to using meshes for pa-
tient independent representation. The meshes based on Bézier and Hermite
elements are limited to ventricles with smooth walls — having trabeculations
adds topological variability to the mesh and hampers establishing point cor-
respondence. On the other hand using tetrahedral or hexahedral meshes
might be a better option for representing the meshes with varying topol-
ogy, but again establishing correspondence in the face of varying topology is
not trivial. It should be noted though that the mesh representations could
be used to define a domain that encloses the trabeculations, reducing the
problem of establishing correspondence to the one we have proposed in this
paper.

We want to emphasize that our method is not limited to the mentioned
planar domain shapes. The user can use a planar domain of any shape that
is the most convenient or suits best for the job. In particular, in situations
where one is not interested in visualization or analysis of the detailed cardiac
anatomy, but solely in transferring such anatomy from one case to another,
or to include it in a model which does not posses such structures, one can
use the same, circular, planar domain for both ventricles.

The method proposed here is a generalization of our previously proposed
parameterization method for the LV (Paun et al., 2015). It represents accu-
rate and invertible mapping defined at every point inside both cardiac cham-
bers and is not limited to any particular geometry of the chamber. Every
point inside the cardiac chamber is characterized by 3 anatomically indepen-
dent coordinates: two coordinates characterizing the point’s projection onto
the smooth anatomical bounding surface of the chamber and distance to that
surface (longitudinal, circumferential positions and the depth).

The major challenge in the calculation of the coordinates is the calculation
of the depth within myocardium, as depending on the shape of the cavity,
trivial approaches like taking the distance along the normal will not work
(this is especially true for the RV shapes). To deal with that challenge, the
proposed method calculates a non-divergent vector field inside the chamber
showing the flow from the bounding surface to the centroid of the mitral
(tricuspid) annulus. This is achieved by solving the Laplace’s equation in
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the interior of the chamber. The depth is then calculated from the distance
along the corresponding streamline, thus providing an invertible mapping for
any interior point independently of the geometry.

The main limitation of our method is the use of a discretized domain for
the solution of the Laplace’s equation. Normally, there is a high density of
the streamlines close to the centroid of the mitral or tricuspid annulus (since
this boundary is very small compared to the bounding surface). Given a
fixed image and mesh resolutions in this neighborhood, whenever there are
structures very close to the centroids, they tend to end up having distorted
triangulation with self intersections. This problem however can be solved by
increasing the resolution of meshes M radially towards the centroid of the
mitral or tricuspid annulus.

Another limitation is the manual landmark placement and the strategy of
fixing the orientation in the proposed representation. From the experiments,
one can see that the inaccuracy in landmark placement in the LV can lead to
an angular error everywhere when different geometries are mapped onto our
representation, while the errors are more localized in RV due to fixing the
landmarks on our representation. We decided not to fix the two LV boundary
landmarks on our representation to reduce possible distortion due to a more
constrained mapping, however if these landmarks were fixed, just as in the
case of RV, the inaccuracies in landmark placement would lead to much
more localized errors. Furthermore, it is possible to automate the landmark
placement using methods proposed by Karavides et al. (2010), Zheng et al.
(2009a), Lu et al. (2009), Zheng et al. (2009b) or Lu et al. (2009).

The time and the accuracy of our algorithm depends on the element size of
the discretized domain. The average total processing time of our algorithm
executed on our 12 detailed anatomy meshes was 9 min 10 s on a single
processor for the image size of 195 x 228 x 301 voxels (isotropic voxel size
of 0.3 mm) and 3000 iterations. The average reconstruction error was on the
level of 1 um.

7. Conclusion

In this paper we presented a framework for mapping the meshes of right
and left ventricular detailed cardiac anatomy to a common subject indepen-
dent reference frame. The proposed method represents a major step towards
the statistical analysis and quantification of different detailed ventricular
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morphologies among patients in a common framework with the potential
application in computational cardiac models.

The framework allows mapping trabeculations from one heart geometry
to another geometry given by a smooth surface. Thus, it is providing us the
means of including different extracted trabecular morphologies to already
available cardiac computational models, where the endocardial surfaces are
modeled as smooth surfaces.

The code used in this manuscript as well as the segmentations of the
detailed cardiac anatomy are publicly available and can be downloaded from
http://physense.upf.edu. The original acquired datasets can be found
and requested from http://www.vhlab.umn.edu/atlas/.
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