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Abstract

Skeletal bone age assessment is a common clinical practice to investigate en-

docrinology, genetic and growth disorders in children. It is generally performed

by radiological examination of the left hand by using either the Greulich and

Pyle (G&P) method or the Tanner-Whitehouse (TW) one. However, both clin-

ical procedures show several limitations, from the examination effort of radiolo-

gists to (most importantly) significant intra- and inter-operator variability. To

address these problems, several automated approaches (especially relying on the

TW method) have been proposed; nevertheless, none of them has been proved

able to generalize to different races, age ranges and genders.

In this paper, we propose and test several deep learning approaches to assess

skeletal bone age automatically; the results showed an average discrepancy be-

tween manual and automatic evaluation of about 0.8 years, which is state-of-

IFor additional information about paper and authors, see http://perceive.dieei.unict.it.
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the-art performance. Furthermore, this is the first automated skeletal bone age

assessment work tested on a public dataset and for all age ranges, races and

genders, for which the source code is available, thus representing an exhaustive

baseline for future research in the field.

Beside the specific application scenario, this paper aims at providing answers to

more general questions about deep learning on medical images: from the com-

parison between deep-learned features and manually-crafted ones, to the usage

of deep-learning methods trained on general imagery for medical problems, to

how to train a CNN with few images.

1. Introduction

Skeletal bone age assessment is a procedure used in pediatric radiology for

both diagnostic and therapeutic investigations (White, 1963) of endocrinology

problems (Carty, 2002), children growth and genetic disorders (Poznanski et al.,

1978). It is usually performed by radiological examination of the left hand, be-5

cause of the discriminant nature of bone ossification stages of the non-dominant

hand, and then compared to chronological age: a discrepancy between the two

values indicates abnormalities. The analysis of left-hand X-ray images is widely

used for the evaluation of bone maturity due to simplicity, minimum radiation

exposure, and the availability of multiple ossification centers. Although there10

is no standard clinical procedure, two clinical methods are mostly employed: 1)

Greulich & Pyle (1959) (G&P) and 2) Tanner-Whitehouse (TW) (Carty, 2002).

The G&P method is the approach used by 76% of radiologists (because of its

simplicity and speed) and is based on the comparison between the whole X-ray

scan and a reference atlas. Nevertheless, it suffers greatly from intra- and inter-15

observer variability (inter-observer differences range from 0.07 to 1.25 years and

intra-observer differences from 0.11 to 0.89 year; see Berst et al., 2001). TW-

based methods, TW2 and TW3 (Carty, 2002; particularly used in the U.S.),

analyze specific bones, instead of the whole hand as in the G&P method, whose

standard maturity varies according to age population, race and gender. In par-20
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ticular, TW methods take into account a set of specific regions of interest (ROIs)

divided into epiphysis/metaphysis ROIs (EMROIs) and carpal ROIs (CROIs),

as in Fig. 1. The development of each ROI is divided into discrete stages, and

each stage is given a letter (A,B,C,D, . . . , I) corresponding to a numerical score

which varies according to race and sex. By adding the scores of all ROIs, an25

overall bone maturity score is achieved. Though being less used because of the

time needed to perform the analysis, TW methods yield a more accurate esti-

mation than the G&P method (King et al., 1994) and their modular structure

make them suitable for automation (see Sect. 2). These methods, like most of

those for automatic medical image analysis, try to replicate a clinical approach30

relying mainly on domain expert feedback. In such cases, the main arising ques-

tion is: are the visual features (from a computer vision perspective) identified

by domain experts or used in the clinical practices suitable to build automated

methods?

To answer this question, in this paper we investigate several deep-learning ap-35

proaches to perform automatic skeletal bone age assessment and compare the

automatically-learned deep features to the ones employed in the TW clinical

methods. Also, most of the existing automated methods either do not release

their code or are tested on non-public X-ray datasets, making those results un-

reproducible and a systematic comparison not possible. In order to provide a40

proper and comprehensive baseline (inexistent so far) for automated skeletal

bone age assessment, we tested our methods on a public X-ray scan dataset,

covering all age ranges, genders and races, and make our source code available.

Beside the contributions to the research on automated skeletal bone age as-

sessment, this work also aims to investigate general questions related to deep-45

learning in the medical imaging field such as: 1) What are the generalization

capabilities of deep-learning approaches, trained on general imagery, for med-

ical image analysis tasks? 2) Training deep-learning methods usually needs

large datasets, often not available in the medical domain: how to perform CNN

training with a small amount of images? 3) How much do deep-learned fea-50

tures differ from those employed in the clinical practices? 4) Can deep-learned
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Figure 1: Regions of Interest (ROIs) used in the Tanner Whitehouse method:

Epiphysis/Metaphysis ROIs and Carpal ROIs

features support the development of new clinical investigation methods?

The remainder of the paper is organized as follows: Sect. 2 presents a crit-

ical analysis of automated skeletal bone age assessment methods as well as of

deep-learning ones in relation to the above questions. Sect. 3 describes our55

deep-learning approaches for skeletal bone age assessment. Sect. 4 shows the

performance evaluation of the tested methods and a comparison to the state-

of-the-art, while Sect. 5 presents the conclusions and future directions.

2. Related Work

The goal of this paper is to perform automatic skeletal bone age assessment60

(BAA) using deep-learning methods. Thus, we will first review existing auto-

mated bone age assessment methods analyzing their advantages and limitations

and then deep-learning–based approaches for medical images according to the

questions raised in Sect. 1. The majority of the automated bone maturity as-

sessment methods using left-hand X-ray scans builds on the TW methods since65
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they are more prone, given their modular structure, to automation than G&P

one. Automated BAA approaches reproducing the TW method can be mainly

classified based on whether they use image processing or knowledge-based tech-

niques and a thorough review can be found at Mansourvar et al. (2013). Most

of the image processing–based ones date back to the 2000s; Pietka et al. (2001,70

2003) propose an EMROI segmentation method by an ad-hoc phalangeal dis-

tance extraction and TW stage assignment is carried out by a fuzzy classifier.

Deformable models have been also largely adopted for EMROI (Davis et al.,

2012; Lin et al., 2012; Giordano et al., 2007) and CROI (Hsieh et al., 2007a;

Adeshina et al., 2014; Zhang et al., 2007) segmentation. EMROIs and CROIs75

have been also used together for accurate and robust bone age assessment (Hsieh

et al., 2007b; Giordano et al., 2010; Seok et al., 2016).

Knowledge-based approaches, mainly relying on decision rules (Seok et al., 2016)

or fuzzy logic (Gertych et al., 2007; Aja-Fernandez et al., 2004) or Bayesian

networks (Mahmoodi et al., 2000), represent the alternative approach for auto-80

mated bone maturity assessment. However, model initialization and generaliza-

tion hampered the achievement of good-enough results for all these methods.

While most of the above methods are based on the TW method, recently, Thod-

berg et al. (2009) proposed BoneXpert, which performs automatic age assess-

ment through a unified model of TW and G&P methods. However, BoneXpert85

needs high-quality X-ray scans to obtain reliable results; in fact, it rejects im-

ages with poor quality or abnormal bone structure, for which cases the analysis

needs to be manual.

Tab. 1 report performance of some state of the methods, in terms of either

mean absolute error (MAE) or mean square error (MSE), as well as the em-90

ployed dataset (if publicly available) and its size, the age range and race they

were devised for. Unfortunately, most of the above methods were tested on pri-

vate X-ray datasets (except for Gertych et al. (2007), which released the dataset

used in our work) or do not provide source code, thus their results are not re-

producible or usable as baselines.95

Despite some methods yield very accurate results, all the existing methods suffer
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Method Dataset # images Age Race MAE MSE

Giordano et al. (2016) Private 360 0–6 Cau 0.39 –

Kashif et al. (2016) Private 1100 0–18 All 0.60 –

Seok et al. (2016) Private 135 NS NS – 0.19

Mansourvar et al. (2015) Private 1100 0–18 All – 0.22

Giordano et al. (2010) Private 106 0–10 Cau 0.75 –

Thodberg et al. (2009) Private 1559 7–17 NS – 0.42 (G&P)

– 0.80 (TW2)

Gertych et al. (2007) Public 1400 0–18 All 2.15 –

Hsieh et al. (2007b)∗ Private 106 0–10 Cau 1.41 –

Pietka et al. (2003)∗∗ Private 360 0–6 Cau 1.93 –

Pietka et al. (2001)∗∗ Private 360 0–6 Cau 2.41 –

Table 1: Performance in terms of either MAE (mean absolute error) or MSE (mean squared

error) of state-of-the-art methods. NS stands for not specified, while Cau for Caucasian race.

∗Performance taken from Giordano et al. (2010). ∗∗Performance taken from Giordano et al.

(2016)

from two main limitations:

• Most of the above methods operate only with X-ray scans of caucasian

subjects younger that 10 years, when bones are not yet fused, thus easier

than in older ages where bones (especially, the carpal ones) overlap.100

• All of them assess bone age by extracting features from the bones (either

EMROIs or CROIs or both of them) commonly adopted by the TW or

G&P clinical methods, thus constraining low-level (i.e., machine learning

and computer vision) methods to use high-level (i.e., coming directly from

human knowledge) visual descriptors. This semantic gap usually limits the105

generalization capabilities of the devised solutions, in particular when the

visual descriptors are complex to extract as in the case of mature bones.

The deep-learning approaches presented in this paper, instead, aim at over-

coming these problems by learning visual features, regardless of age ranges and

races, that may facilitate the assessment process. To the best of our knowledge,110

deep-learning or Convolutional Neural Networks (CNNs) have not been applied

yet for automated skeletal bone age assessment (except for a recent work — Fin-

gerNet, in Lee et al., 2015 — that, however, does not perform any age assessment
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but only finger joint detection in radiographs) while shallow neural networks or

support vector machines have been adopted for image segmentation and age115

assessment (Kashif et al., 2016; Mansourvar et al., 2015; Bocchi et al., 2003;

Tristan-Vega & Arribas, 2008; Zhang et al., 2007; Liu et al., 2008). In Mansour-

var et al. (2015) bone age regression is performed by means of extreme learning

machines over a large dataset of 1,100 X-ray images, achieving promising re-

sults. In particular, the approach is based on content image retrieval concepts,120

and feature extraction is carried out by means of principal component analysis.

In Zhang et al. (2007); Liu et al. (2008), bone segmentation is performed by par-

ticle swarm optimization and bone age regression by neural networks reaching

an average matching between automatic and manual evaluations over 95%. De-

spite the claimed performance, these methods show generalization limitations,125

as the employed features are mainly low-level ones not able to describe complex

structures as bones. On the contrary, deep-learning solutions (in particular,

Convolutional Neural Networks), have been successfully used in a multitude of

other medical imaging applications in past and recent years. One of the first

applications of CNNs on medical images is Lo et al. (1995) for both classifica-130

tion of lung nodules in chest X-ray scans and detection of microcalcifications

in mammograms. A three-layer (two convolutional and one fully-connected)

CNN was trained on small image datasets (e.g., for lung nodules classification

the authors used 55 chest X-ray scans — 25 positives and 30 negatives), suit-

ably augmented, achieving high classification performance. The automatically135

high-level learned features showed characteristic morphological variations of the

investigated body structures. Similar methods were proposed in Sahiner et al.

(1996); Lo et al. (2002), for distinguishing between healthy and cancerous tis-

sues in mammographies (the learned visual features were not reported). After

a break of about two decades, CNNs were re-discovered (mainly because of the140

recent progress in computing hardware) for automated visual analysis and, of

course, applied to medical imaging tasks. In Ciresan et al. (2012), a Deep Neu-

ral Network is applied on stacks of electron microscopy images of brain slices

for pixel-wise classification of neuronal membrane tissue as well as for image
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pre-processing (i.e., foveation and non-uniform sampling). In Malon & Cosatto145

(2013), manually-designed nuclear features combined to learned deep features

extracted by CNNs were used with good results for mitotic figure recognition

in regions of interest of hematoxylin and eosin stained tissue. This work also

shows how CNNs are able to handle the variety of appearances of mitotic figures

and decrease sensitivity to manually-crafted features. Roth et al. (2015) proved150

that training CNNs provides better chances of capturing discriminative features

for anatomy-specific classification in CT images than when using hand-crafted

features.

CNNs have been also employed in a kind of “bagging” configuration as in Roth

et al. (2014); Ciompi et al. (2015), where random representations of VOI are155

used to train a CNN for lymph node detection. CNN outputs are then averaged

to compute the final classification probability for each considered VOI.

The usage of off-the-shelf CNN features has been also recently investigated

(Wolterink et al., 2015; van Ginneken et al., 2015). For example, in van Gin-

neken et al. (2015), CNNs trained on general imagery are employed for clas-160

sification of pulmonary nodules in computed tomography scans yielding accu-

rate classification results. Analogously, Ciompi et al. (2015) use OverFeat (a

pre-trained convolutional neural network) for morphology feature extraction in

automatic classification of pulmonary nodules in CT images.

The effects of deep learning design and training techniques for medical images is165

another important issue. Havaei et al. (2015) explore several CNN architectures

(e.g., two-pathway, cascade architectures, etc.) and different training schemes,

such as Maxout (Goodfellow et al., 2013) hidden units and Dropout (Srivastava

et al., 2014) regularization, for brain segmentation in MRI images. The results

showed that cascaded CNNs perform sensibly worse than one- or two-pathway–170

CNN and regularization enhances the segmentation results.

In conclusion, the current state of the art shows how deep learning for medical

imaging is an active area and, in this paper, we intend to contribute it through

a “deep” analysis of CNNs applied to a classic X-ray image analysis problem.
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3. Convolutional Neural Networks for Automated Skeletal Bone Age175

Assessment

In this section, we describe the deep-learning approaches and configura-

tions we employed to perform automated skeletal bone age assessment: 1) using

off-the-shelf features extracted from CNNs trained on general imagery; 2) fine-

tuning pre-trained CNN models; and 3) building an ad-hoc CNN to take into180

account the peculiarities (e.g., including nonrigid hand/bone deformation) of

the tackled X-ray images. The first approach does not require any model adap-

tation and exploits the global description capability of the last layers of a trained

CNN to capture common yet distinctive low- and middle-level visual patterns

(Razavian et al., 2014). The second approach aims at suiting an existing model185

(trained on a different dataset) to the task at hand, skipping most of kernel

learning but finely adapting the whole network to an unseen kind of images.

The last approach, instead, aims at building from scratch a CNN designed ad-

hoc and training it with task-specific images. All the three approaches share a

similar architecture (see Fig. 2) which is made up of two consecutive networks:190

1) a convolutional network with a variable number of convolutional layers (de-

pending on the employed models) aiming at extracting low and middle-level

visual features, and 2) a regression network, which consists of a variable set of

fully-connected layers followed by a one-neuron output layer providing bone age

estimate.195

3.1. Off-the-shelf CNN feature extraction

A common approach which has been proved to work successfully (Razavian

et al., 2014) consists in using a pre-trained (on another dataset) CNN as a fea-

ture extractor, by providing an input image to the network and reading the

output vector of a fully-connected layer, which can then be used to train a200

simpler classifier, e.g., MLP or SVM. This approach is especially useful if the

dataset on which the network was trained is similar to the target dataset, as the

patterns learned by the convolution kernels are likely to be equally discrimina-

tive. Although this is not our case, since X-ray images are markedly different
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Figure 2: General architecture of deep learning methods for bone age assessment.

It consists of a) a convolutional network consisting of an arbitrary number of convolutional

layers (that can be derived from pre-trained CNN models or can be designed from scratch)

for feature extraction; and b) a regression network consisting of a set of fully connected

layers (generally one or two) and a linear scalar output layer providing the bone age estimate.

from the real world images commonly employed for training general-purpose205

CNNs (e.g., the ImageNet dataset), it is a convenient alternative since it only

requires to train the regression network, which takes as input, features extracted

from one of the deepest layers of off-the-shelf CNN models. More specifically,

in this scenario, the convolution network of our model architecture consists of

a pre-trained CNN from which the final layers are removed so that the output210

of a fully-connected layer is exposed, while the regression network is made up

of one or two layers with ReLU nonlinearity, followed by a linear scalar output

layer. Of course, during training, only the regression network’s weights are up-

dated, while the convolution network is simply used as a feature extractor. As

off-the-shelf CNNs we considered three common pre-trained CNNs as feature215

extractors: OverFeat (Sermanet et al., 2014), GoogLeNet (Szegedy et al., 2015)

and OxfordNet (Simonyan & Zisserman, 2014).

In Sect. 4 the performance of different settings of each CNN model at dif-

ferent layer depths is reported to identify the most suitable off-the-shelf model220

for the problem at hand. This experiment also allowed us to identify the best-
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performing architecture for the regression network, used in the next experiment.

3.2. Fine-tuning CNNs trained on general imagery

Another common alternative for re-using existing models (computationally

expensive to train from scratch) is to use a pre-trained model as initial conditions225

and “fine-tune” it on the target dataset. This technique greatly speeds up

training and helps prevent overfitting, as the starting solution may be already

close to a good local minimum and unlikely to be “moved” too far. Analogously

to the previous case, we fine-tuned OverFeat, GoogLeNet and OxfordNet on our

X-ray image dataset. The corresponding model used for bone age estimation230

was, therefore, designed by using a pre-trained convolutional model (without the

softmax classification layer) as convolutional network of our model architecture,

followed by best-performing regression network identified in the off-the-shelf

feature extraction experimental scenario.

3.3. BoNet: an ad-hoc CNN for Skeletal Bone Age Assessment235

Our last model consists of a CNN — called BoNet — trained from scratch

on the X-ray scan dataset. The advantage of training a new CNN over fine-

tuning an existing one lies in the possibility to tweak the network architecture

to the type of images at hand: optimizing the network for grayscale images,

reducing the number of layers, letting the network learn specific filters instead240

of adapting more generic ones.

We tested several network architecture for BoNet, then chose the one which

achieved the best accuracy as the final model for evaluation (see Sect. 4.5). The

generic layout shared by all architectures is as follows:

• As convolutional network, we employed a sequence of the following mod-245

ules:

– A pre-trained convolutional layer obtained as a grayscale version

(through channel-wise averaging) of OverFeat’s first convolutional
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layer. We chose to adapt the first-layer kernels as they encode com-

mon application-independent low-level visual patterns, while reduc-250

ing the risk of overfit due to the small number of available X-ray

images

– A variable number of convolutional layers: unlike the previous layer,

these are initialized randomly and trained on dataset images only.

– An optional deformation layer (Jaderberg et al., 2015), which learns

an adaptive geometric transformation to apply to input images (or,

equivalently, to feature maps) in order to provide invariance to affine

warping, thus accounting for nonrigid object deformation. This new

layer learns (in an end-to-end fashion) to compute the parameters of

an affine transformation which scales, translates, rotates and crops

an input image in order to tackle object nonrigid deformations. In

detail, the input image is first processed by a localization network

(typically, a small CNN) which computes a 6-dimensional parameter

vector Θ = {θ1, · · · , θ6}, defining the transformation to apply. Then,

a grid of points {(xsi , ysi )} is sampled from the input image, and the

grid points’ new locations {(xti, yti)} are computed by applying the

transformation defined by Θ:

xti
yti

 =

θ1 θ2 θ3

θ4 θ5 θ6



xsi

ysi

1

 (1)

This transformation causes the initial grid to localize a warped crop255

of the original image. A sampler module then resamples the points

in the crop to produce a set of output maps matching the input’s

size, thus making the module transparent to subsequent layers. It is

important to understand that the transformation parameters Θ are

computed for each input image: the module learns to generate such260

parameters according to the characteristics of each input. This layer

can be optionally inserted either before the first convolutional layer
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— thus acting as a pre-processing layer directly on the input image

— or after one of the deeper convolutional layers (as recently done

in Johnson et al. (2015)) — in order to operate on deformations of265

higher-level hand features. Fig. 3 shows an example of transforma-

tions applied by such module when used directly on input images:

the resulting images tend to be more evenly stretched and cropped.

• As regression network, we adopted a single fully connected layer (with

number of neurons decided experimentally) followed by a linear scalar270

layer which outputs the estimated skeletal age for the input image.

Figure 3: Example outputs from the deformation layer when applied before con-

volutional layers. Top row: original images; bottom row: resulting images, more evenly

stretched and cropped.

Each “convolutional layer” includes a ReLU nonlinearity and a max-pooling

layer. Different tested network architectures vary by the presence/position of

the deformation layer, the number of convolutional layers, and the number of

feature maps. According to the results shown in Sect. 4.5 the architecture of275

the best performing CNN, shown in Fig. 4, consists of five convolutional layers,

a deformation layer located after the fourth convolutional layer, a 2048-neuron

fully-connected layer followed by the single-neuron layer providing the estimate.
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4. Experimental Results

In this section, we first describe the dataset and metrics used for performance280

analysis and then report the results obtained by the tested models compared to

the state of the art; finally, a comparative analysis between deep-learned and

hand-crafted features is also presented.

4.1. Dataset

The assessment of the correctness and the accuracy of the CNN-based meth-285

ods, presented in the previous section, was carried out on the Digital Hand At-

las Database System1 (Gertych et al., 2007), a public and comprehensive X-ray

dataset for automated skeletal bone age benchmarking. The dataset contains

1391 X-ray left-hand scans of children of age up to 18 years old, divided by

gender and race. Each X-ray scan comes with two bone age values, provided290

by two expert radiologists. The distribution of images among these categories

is shown in Tab. 2.

4.2. Training details

Images in the dataset were rescaled so that the smallest dimension was 256

pixels, keeping aspect ratio, and normalized to have zero mean and unitary295

standard deviation.

During training, data augmentation was performed by extracting 10 uniformly-

spaced crops from each input image, with the size of the crop depending on the

CNN’s expected input size: 221×221 for OverFeat, 299×299 for GoogLeNet,

and 224×224 for OxfordNet and BoNet. During validation and test, since con-300

volutional layers can process arbitrary-sized input, and fully-connected layers

can be implemented as 1×1 convolutions, we provided a whole rescaled image

as input to the CNN, obtaining as output a 2D map of age estimations corre-

sponding to different regions of the input image, which we averaged to compute

the overall age estimation.305

1http://www.ipilab.org/BAAweb/
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Gender and race

Male Female

Age A. B. C. H. A. B. C. H.

0 2 5 3 4 1 4 3 1

1 5 5 5 5 5 5 5 5

2 5 5 5 5 5 5 5 5

3 5 5 5 5 5 5 5 5

4 5 5 5 5 5 5 5 5

5 9 9 10 9 8 9∗ 7 10

6 6 7 8 9 6 9 7 10

7 7 9 9 10 7 9 8 10

8 5 10 10 10 9 11 9 9

9 7 10 7 10 7 9 8 10

10 14 15 11 12 15 12 12 14

11 15 15 14 14 12 10 13 15

12 15 15 13 15 14 15 15 15

13 15 15 12 15 15 15 13 15

14 12 14 10 14 13 12 11 14

15 10 10 10 10 10 10 10 10

16 10 10 10 10 10 10 10 10

17 10 10 10 10 10 10 10 10

18 10 10 10 10 10 10 10 10

Totals

168 184 167 182 167 175 166 183

700 691

1391

Table 2: Distribution of the dataset images by gender, race and age. Key for race abbre-

viations: A.: asian; B.: black; C.: caucasian; H.: hispanic. ∗Two of the images in the

female/black category in the 5 years age group were not readable. The numbers reported in

the table do not consider them.
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All models were trained using mini-batch stochastic gradient descent on an

MSE loss function, with batch size set to 4, learning rate initially set to 0.002

and decreased with decay 0.0002 (applied at each mini-batch), and momentum

factor set to 0.9. We used the average of the two expert readings as target for

models’ training. Training was carried out for 150 epochs over the augmented310

dataset.

4.3. Evaluation criteria

For all methods under investigation, we evaluated the performance over the

whole Digital Hand Atlas Database using 5-fold cross validation: for each fold

we computed the mean absolute error (MAE) between the two manual readings315

of each X-ray scan and the corresponding estimated age, given as model output.

In the final evaluation between the best performing models based on pre-

trained networks and the finalized BoNet architecture, we provide a detailed

analysis of the accuracy of the trained models on subgroups of the dataset

by age, race and sex. Note that the results computed for each subgroup are320

obtained using the models trained on the whole dataset.

In the tables, best results are underlined for better readability.

4.4. Performance of pre-trained Convolutional Neural Networks

In this section we report the results achieved by our deep learning ap-

proaches. First, we compared the performance of the three off-the-shelf CNNs,325

namely, OverFeat, GoogLeNet, and OxfordNet (at different depth of layers)

when used as feature extractors (as part of the convolutional network shown in

Fig. 2) and combined to four regression networks composed by, respectively, a

single fully-connected layer with 128 neurons — “128” —, two fully-connected

layers with 128 neurons each — “128+128” —, one fully-connected layer with330

256 neurons — “256” —, and two fully-connected layers with 256 and 128 neu-

rons — “256+128”, all followed by a single neuron layer providing bone age

estimate. The results are shown in Tab. 3 and provide some initial interesting
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considerations: 1) performance at the first (i.e., FC1 for OverFeat and Oxford-

Net) fully-connected layers are higher than at deeper layers (i.e., FC2 in Over-335

Feat and OxfordNet); 2) using two 128-neuron layers for the regressor yielded

generally the best performance compared to the other regression settings; 3) off-

the-shelf CNNs were already able to provide a satisfactory accuracy, especially

if compared to state-of-the-art methods (see Tab. 1).

For our fine-tuning experiments, we plugged our best-performing regressor340

(two fully connected layers with 128 neurons each) at the end of each of the three

considered pre-trained CNN models; the achieved results when fine-tuning over

the Digital Hand Atlas dataset are given in Tab. 4, and also compared to the

best performance obtained by the off-the-shelf CNN models according to Tab.3.

Fine-tuning GoogLeNet achieved the best performance (average MAE over the345

two readings was 0.82) enhancing the performance of about 28% with respect

to the off-the-shelf model.

4.5. Performance of BoNet

In order to define the final architecture of BoNet and to compare its perfor-350

mance to pre-trained CNNs as well as to state-of-the-art methods, we performed

several tests using different configurations defined by the following parameters:

• Number of convolutional layers.

• Number of feature maps per convolutional layer.

• Presence and position of the deformation layer. In particular, for a given355

number of convolutional layers and for the best performing configuration

(as number of feature maps), we tested two options for deformation layer

position: a) before all convolutional layers, operating directly on the input

X-rays images (configurations indicated with a “Yes” in Tab. 5) in order

to face nonrigid hand deformation, and b) before the last convolutional360

layer (indicated with “Yes: X ” in Tab. 5, i.e,. after the Xth convolutional
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Table 3: Mean Absolute Error (MAE) achieved using three different ”off-the-shelf” CNN

models for feature extraction at different depth of layers and with different regression settings.

For each CNN model, we underline the best results over all the considered layer depths.

OVFeat stands for OverFeat, GNet for GoogLeNet and OxNet for OxfordNet.

Reading 1 Reading 2

CNN Regression Network Regression Network

128 128+128 256 256+128 128 128+128 256 256+128

OvFeat

FC1 1.26 1.22 1.26 1.25 1.25 1.23 1.24 1.26

FC2 1.38 1.34 1.38 1.35 1.36 1.33 1.37 1.38

GNet

FC 1.18 1.16 1.19 1.18 1.17 1.15 1.18 1.18

OxNet

FC1 1.30 1.31 1.43 1.29 1.37 1.33 1.45 1.36

FC2 1.38 1.42 1.38 1.47 1.39 1.44 1.38 1.42

Table 4: Comparison, in terms of Mean Absolute Error (MAE), between off-the-shelf (OTS)

OverFeat, OxfordNet and GoogLeNet and their fine-tuning (FT) on the Digital Hand Atlas

Database.

CNN model Reading 1 Reading 2 Average Gain

FT OTS FT OTS FT OTS

OverFeat 1.00 1.22 0.94 1.23 0.97 1.22 21%

GoogLeNet 0.86 1.16 0.79 1.15 0.82 1.15 28%

OxfordNet 0.88 1.31 0.79 1.33 0.83 1.32 37%
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layer) to address nonrigid deformation of smaller regions (e.g., bones). For

models with fewer than four convolutional layers, we only tested the de-

formation layer applied directly on input images, since the networks were

too shallow and positioning it at the penultimate layer was unlikely to365

affect the performance.

For all experiments where it was employed, our deformation layer scaled

down the input images by a factor of two and processed them through

the localization network consisting of three convolutional layers with 20

feature maps each (with 5 × 5 kernels) to estimate the deformation pa-370

rameters. All layer’s weights are learned from scratch.

In all models, the first convolutional layer employed 7×7 kernels; the second one

5×5 kernels; and the following layers (if present) 3×3 kernels. After the cascade

of convolutional layers, the regression network was made up of a single 2048-

neuron fully-connected layer followed by the single-neuron regressed estimate.375

Tab. 5 shows the results for several tested configurations. The best CNN

architecture consisted of five convolutional layers, one deformation layer after

the fourth convolutional layer, and the aforementioned regression network. This

version was chosen as the finalized BoNet model.

While satisfactory results can be achieved even with a smaller number of con-380

volutional layers (e.g., four layers reached an average MAE between the two

readings of 0.86), it is interesting to notice that the best results are obtained

when using a number of convolutional layers (five) equal to OverFeat — although

the latter has an additional fully-connected layer. This suggests, conversely to

recent findings Shin et al. (2016), that a combination of a partial initialization385

of low-level kernels and from-scratch training of high-level kernels can be more

effective the fine-tuning existing networks.

As for the deformation layer, there was a performance increase (on average 7%

in networks with more than three convolutional layers) when inserting it deeper

in the network, while the performance sensibly worsened when it was added at390

the beginning. This may be due to: a) operating on the original image has
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the effect of “smoothing out” some structural differences (as shown in Fig. 3)

which may be discriminative for the subsequent analysis; b) bone age assessment

strictly depends on specific region of interests (ROIs) (identified at the deeper

layers, see Fig. 6) rather than on the whole image; thus, it is more important395

to handle the nonrigid deformation (due to different races, gender, etc.) of such

ROIs than of the hands’ (which are less subject to nonrigid transformations in

this specific application).

We finally compared the performance of the final BoNet and the fine-tuned

GoogLeNet and OxfordNet (we excluded OverFeat since, among the tested CNN400

models, it performed the worst) over subgroups of the dataset, defined accord-

ing to age, sex and race. For this evaluation, we split the dataset into the 0-9

and 10-18 age ranges, and computed MAE for each gender, race and age group.

The split into the two age ranges is important to understand methods’ perfor-

mance since bone age assessment is usually easier for young children (indeed405

most of the state-of-the-art methods operate only on younger patients as shown

in Sect. 2) and more complex for adolescents, as bones fuse together and growth

becomes slower. The resulting MAE values are shown in Tab. 6: it may appear

surprising that in many cases the models yielded a higher accuracy on the 10-18

age range than the 0-9 one, where the visual differences between bone formation410

is supposed to be more evident. However, this is easily explained as a dataset

bias, since the number of images in the 10-18 age range is larger (see Tab. 2).

Overall, BoNet outperformed, on average, all the other CNN-based solutions,

reaching an average MAE across all races, genders and age ranges of 0.79. Fur-

thermore, the results suggest that with gray-level X-ray images, many convo-415

lutional layers — as in the case of GoogLeNet — are not strictly necessary.

However, CNNs pre-trained on general imagery performed fairly well (much

better than state-of-the-art automated methods — see next subsection) on Dig-

ital Hand Atlas Database with performance comparable to those achieved by

custom CNNs. In addition, the performance of CNN-based approaches did not420

vary too much with age ranges, genders and races as, instead, in state-of-the-art

methods.
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Table 5: Performance of different network configurations for BoNet. The “Deform.” column

specifies the position of the deformation layer: “No” indicates that the layer is not present;

“Yes” indicates that the deformation layer is the first layer in the model and operates directly

on the input image; “Yes: X ” indicates that the deformation layer has been inserted after

a specific convolutional layer (typically, the second-to-last). The presence and position of

deformation layer was tested for the best performing configuration (as number of feature

maps) for a given number of convolutional layers. “R” stands for “Reading”.

MAE

Deform. Conv. # feat. maps R1 R2 Average

No 2 96, 1024 1.31 0.90 1.10

No 2 96, 2048 1.19 0.87 1.03

Yes 2 96, 2048 2.11 1.10 1.60

No 3 96, 512, 1024 1.10 0.83 0.96

No 3 96, 2048, 1024 1.09 0.84 0.96

No 3 96, 2048, 2048 0.93 0.90 0.91

Yes 3 96, 2048, 2048 0.97 0.89 0.93

No 4 96, 512, 1024, 1024 1.17 0.86 1.01

No 4 96, 1024, 1024, 1024 1.08 0.84 0.96

No 4 96, 2048, 2048, 2048 0.94 0.78 0.86

Yes 4 96, 2048, 2048, 2048 0.92 0.90 0.91

Yes: 3 4 96, 2048, 2048, 2048 0.88 0.80 0.84

No 5 96, 512, 1024, 1024, 1024 1.01 0.82 0.91

No 5 96, 2048, 1024, 1024, 1024 0.91 0.81 0.86

No 5 96, 2048, 2048, 2048, 2048 0.95 0.80 0.87

Yes 5 96, 2048, 2048, 2048, 2048 0.92 0.89 0.91

Yes: 4 5 96, 2048, 1024, 1024, 1024 0.80 0.79 0.79

No 6 96, 512, 1024, 1024, 1024, 1024 1.22 1.17 1.19

No 6 96, 1024, 1024, 1024, 2048, 2048 1.01 1.14 1.07

No 6 96, 2048, 2048, 2048, 2048, 2048 1.07 1.05 1.06

Yes 6 96, 2048, 2048, 2048, 2048, 2048 1.55 1.06 1.30

Yes: 5 6 96, 2048, 2048, 2048, 2048, 2048 0.96 0.98 0.97
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Table 6: Comparison, in terms of Mean Absolute Error (MAE), between BoNet and fine-tuned

OverFeat, OxfordNet and GoogLeNet on age/race/sex subgroups of the Digital Hand Atlas

Database.

Group Reading 1 Reading 2

BoNet GoogLeNet OxfordNet BoNet GoogLeNet OxfordNet

M-all-0-18 0,77 0,94 0,87 0,77 0,82 0,86

M-all-0-9 0,91 1,04 0,90 0,81 0,81 0,86

M-all-10-18 0,68 0,87 0,85 0,74 0,83 0,86

M-asi-0-18 0,64 0,74 0,80 0,51 0,54 0,70

M-asi-0-9 0,44 0,71 0,82 0,35 0,57 0,69

M-asi-10-18 0,74 0,76 0,79 0,59 0,53 0,70

M-blk-0-18 0,73 0,98 0,84 0,70 0,90 0,83

M-blk-0-9 0,89 1,17 0,97 0,66 0,81 0,91

M-blk-10-18 0,63 0,86 0,75 0,73 0,96 0,77

M-cau-0-18 0,84 0,97 0,81 0,95 0,76 0,91

M-cau-0-9 1,11 0,95 0,65 1,16 0,54 0,81

M-cau-10-18 0,66 0,99 0,93 0,80 0,92 0,98

M-his-0-18 0,86 1,03 1,02 0,90 1,05 0,98

M-his-0-9 1,08 1,24 1,12 0,96 1,24 0,98

M-his-10-18 0,69 0,89 0,95 0,86 0,90 0,98

F-all-0-18 0,81 0,82 0,85 0,78 0,76 0,78

F-all-0-9 0,85 0,81 0,84 0,82 0,77 0,79

F-all-10-18 0,79 0,83 0,87 0,75 0,76 0,77

F-asi-0-18 0,85 0,81 0,94 0,84 0,80 0,82

F-asi-0-9 0,91 0,94 0,80 0,88 0,98 0,70

F-asi-10-18 0,81 0,73 1,03 0,81 0,69 0,89

F-blk-0-18 0,94 0,92 0,98 0,73 0,80 0,81

F-blk-0-9 0,87 0,67 0,90 0,71 0,48 0,78

F-blk-10-18 0,98 1,09 1,03 0,74 1,01 0,83

F-cau-0-18 0,66 0,78 0,68 0,67 0,75 0,69

F-cau-0-9 0,56 0,71 0,65 0,68 0,77 0,71

F-cau-10-18 0,72 0,83 0,70 0,65 0,74 0,68

F-his-0-18 0,79 0,78 0,81 0,88 0,71 0,78

F-his-0-9 1,02 0,93 0,98 0,99 0,89 0,94

F-his-10-18 0,63 0,68 0,71 0,80 0,60 0,68
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Method Reading Average

1 2

Giordano et al. (2016) 1.92 1.73 1.82

Giordano et al. (2010) 2.46 2.38 2.42

Gertych et al. (2007) 2.60 1.70 2.10

Hsieh et al. (2007b) 2.78 2.37 2.57

Fine-tuned OxfordNet 0.88 0.79 0.83

Fine-tuned GoogLeNet 0.86 0.79 0.82

BoNet 0.80 0.79 0.79

Table 7: Comparison of performance in terms of MAE between our methods and state-of-the-

art ones over the Digital Hand Atlas Database.

4.6. Comparison with the state of the art

In the last two decades, many automated skeletal bone age assessment meth-

ods, mainly based on the Tanner-Whitehouse procedure, have been proposed425

with accuracies (in terms of MAE) varying from 0.37 to 2.63 years (see Tab. 1).

Nevertheless, all of these methods are either tested on private datasets or their

source code is not available, thus the claimed results are not reproducible. De-

spite, at a first glance of Tab. 1, the accuracy of the tested deep learning ap-

proaches may seem lower of some methods, when we performed a comparison 2
430

over the whole Digital Hand Atlas Database, we observed that both BoNet and

fine-tuning pre-trained CNN models outperformed significantly them, as shown

in Tab. 7. Most importantly, BoNet was able to perform effectively and with

high accuracy bone age assessment for all races, genders and age ranges from 0

to 18 years.435

2For this comparison, we used only our previous implementations of Giordano et al. (2016),

Giordano et al. (2010) and Gertych et al. (2007) and Gertych et al. (2007), which was already

tested on the same dataset. We did not test other methods since the source code was not

available and we did not want to introduce any implementation bias in the evaluation.
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4.7. Hand-crafted features vs deep-learned features

Most of the existing methods, especially those based on the TW clinical

methods, operate on local image patches (or regions of interest) while our deep-

learning methods process images as a whole and do not need any pre-processing

to extract some specific regions of interest. Nevertheless, training a CNN on440

specific images means identifying specific low- and middle-level features that,

given the encouraging performance of BoNet, can be also useful for clinical pro-

cedures.

Fig. 5 shows a comparison between the regions of interest employed by clinicians

when performing the TW methods, and the ones corresponding to the most ac-445

tive neurons at different layers (visualized according to Zeiler & Fergus (2014)).

It can be noted that some of the regions of interest matched (e.g., the ones on

first, third and fifth finger), while others did not (e.g., the ones on second and

forth finger). Also, while TW methods highlight the importance of all carpal

ROIs (Hsieh et al., 2007a; Adeshina et al., 2014; Zhang et al., 2007), the ROIs450

corresponding to the most active neurons (in all the considered images) showed

that only tiny parts of carpal bones were used. Radius and ulna (especially

their reciprocal distance), instead, seemed to be significant parameters for bone

age assessment in all cases. When we analyzed all deep-learned features (not

only those corresponding to the most active neurons), we observed that all TW455

ROIs were indeed learned, although most of them (as in the discussed carpal

bones case) were not particularly significant (i.e., the corresponding neurons

were the less activated in all the images) for the final performance. This sug-

gests that some of the features currently employed by clinicians might not be

necessary, while others should be taken into account. These findings, whose re-460

quire, of course, a deeper investigation, may have a great impact on the clinical

procedures that have been used on the last three/four decades.
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Figure 5: ROIs employed in the TW methods vs ROIs corresponding to the BoNet

learned features (shown in Fig. 6)
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Figure 6: Deep Learned Features for each BoNet layer and corresponding ROIs

27



4.8. Implementation Details

All models and evaluations described in this work were implemented in

Torch3. Pre-trained models4 or public implementations5 were employed where465

applicable. Our experiments were run on a machine with a 3 GHz CPU and 16

GB RAM, equipped with an Nvidia Titan X GPU. Training times ranged from

240 seconds per epoch (two convolutional layers) to 1730 seconds per epoch (six

convolutional layers with deformation layer). Test times, instead, were about

5-7 milliseconds for all models considering network forward times only, i.e., ex-470

cluding data loading and image pre-processing time, which are generally longer

than the actual processing in a realistic hospital setting.

4.9. Available Resources

The Digital Hand Atlas Database System is available at http://www.ipilab.

org/BAAweb/, while the BoNet source code, the code for visualizing deep learned475

features (both written in Torch) as well as the deep learned features are available

at http://perceive.dieei.unict.it. The Overfeat, GoogLeNet and Oxford-

Net CNNs can be found, respectively, in Sermanet et al. (2014), Szegedy et al.

(2015) and Simonyan & Zisserman (2014).

5. Discussion480

In this paper we have investigated the application of deep learning to medi-

cal images, and in particular for automated skeletal bone age assessment using

X-ray images. We have tested several existing pre-trained convolutional neural

networks (OverFeat, GoogLeNet and OxfordNet) on a dataset of about 1,400

X-ray images and proved that deep learning solutions, even trained on general485

3http://torch.ch/
4OverFeat: https://github.com/jhjin/overfeat-torch; OxfordNet: https:

//gist.github.com/ksimonyan/3785162f95cd2d5fee77; GoogLeNet: https://github.

com/Moodstocks/inception-v3.torch.
5Spatial Transformer Networks: https://github.com/qassemoquab/stnbhwd.
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imagery, are able to cope effectively with all possible cases of automated skele-

tal bone age assessment (off-the-shelf GoogLeNet achieved an average MAE

of 1.15, comparable to state-of-the-art performance). Fine-tuning pre-trained

CNN models over the Digital Hand Atlas dataset resulted in an average perfor-

mance gain of about 30%, outperforming methods that exploit low-level visual490

descriptors based on clinical procedures. We also designed and trained from

scratch several a custom CNN — BoNet —, which proved to be the most ef-

fective and robust solution in assessing bone age across races, age ranges and

gender. In particular, BoNet consists of five convolutional layers, one deforma-

tion layer before the last convolutional layer to face nonrigid object deformation,495

one 2048-fully connected layer followed by a single output neuron.

The final considerations that can be drawn from testing several deep learning

models for automated bone age assessment are:

• Effective training a CNN from scratch with a limited number of images is

possible by employing hybrid configurations with the first layer (since it500

encodes low-level and general visual features) initialized from a pre-trained

network, and the following ones trained from scratch using application-

specific images to learn discriminative visual features;

• Using as many convolutional layers as possible does not necessarily mean

high performance. Indeed, in our case, the best performance was achieved505

when employing only five convolutional layers. Furthermore, when testing

off-the-shelf CNN features, better performance were obtained at the least

deep fully-connected layers in all the adopted models (see Tab. 3). This, in

our opinion, uncovers an important aspect of CNN in the medical imaging

domain, i.e., despite deep learned features can be usually transferred and510

reused, their level of aggregation (i.e., layers-depth) is strongly domain-

dependent. This also explains why, in our case, we found that BoNet

outperformed fine-tuned CNN models while recent studies (Shin et al.,

2016) (tested on thoraco-abdominal lymph node detection and interstitial

lung disease classification) found out the opposite.515
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• Exploiting a layer able to cope with nonrigid object deformation enhances

significantly performance. Enriching our CNN with a module able to learn

(in an end-to-end fashion) geometric transformations to tackle nonrigid

deformation led to increased performance.

• Deep-learned features highlighted that some of currently-employed hand-520

crafted features might not be necessary. We observed that all hand-crafted

features were automatically learned by BoNet. However, most of them

(especially carpal ones) did not influence the final performance.

Beside the above findings, to the best of our knowledge, this is the first

work for automated skeletal bone assessment tested on a public dataset for all525

possible cases and whose source code is publicly released, thus serving as a

proper baseline for future research in the field.

6. Acknowledgments

This work has been partially supported by the NVidia GPU Research Center

at University of Torino in Italy.530

References

Adeshina, S., Lindner, C., & Cootes, T. (2014). Automatic segmentation of

carpal area bones with random forest regression voting for estimating skeletal

maturity in infants. In Electronics, Computer and Computation (ICECCO),

2014 11th International Conference on (pp. 1–4).535

Aja-Fernandez, S., De Luis-Garcia, R., Martin-Fernandez, M. A., & Alberola-

Lopez, C. (2004). A computational TW3 classifier for skeletal maturity as-

sessment. A Computing with Words approach. J Biomed Inform, 37 , 99–107.

Berst, M. J., Dolan, L., Bogdanowicz, M. M., Stevens, M. A., Chow, S., &

Brandser, E. A. (2001). Effect of knowledge of chronologic age on the variabil-540

ity of pediatric bone age determined using the Greulich and Pyle standards.

AJR Am J Roentgenol , 176 , 507–510.

30



Bocchi, L., Ferrara, F., Nicoletti, I., & Valli, G. (2003). An artificial neural

network architecture for skeletal age assessment. In Image Processing, 2003.

ICIP 2003. Proceedings. 2003 International Conference on (pp. I–1077–80545

vol.1). volume 1.

Carty, H. (2002). Assessment of skeletal maturity and prediction of adult height

(tw3 method).: 3rd edition. edited by j. m. tanner, m. j. r. healy, h. goldstein

and n. cameron. pp 110. london, etc: W. b. saunders, 2001. isbn: 0-7020-

2511-9. 69.95. Journal of Bone and Joint Surgery, British Volume, 84-B ,550

310–311.

Ciompi, F., de Hoop, B., van Riel, S. J., Chung, K., Scholten, E. T., Oudkerk,

M., de Jong, P. A., Prokop, M., & van Ginneken, B. (2015). Automatic clas-

sification of pulmonary peri-fissural nodules in computed tomography using

an ensemble of 2d views and a convolutional neural network out-of-the-box.555

Medical Image Analysis, (pp. –).

Ciresan, D., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2012). Deep

neural networks segment neuronal membranes in electron microscopy images.

In Advances in neural information processing systems (pp. 2843–2851).

Davis, L., Theobald, B.-J., & Bagnall, A. (2012). Automated bone age as-560

sessment using feature extraction. In H. Yin, J. Costa, & G. Barreto (Eds.),

Intelligent Data Engineering and Automated Learning - IDEAL 2012 (pp. 43–

51). Springer Berlin Heidelberg volume 7435 of Lecture Notes in Computer

Science.

Gertych, A., Zhang, A., Sayre, J., Pospiech-Kurkowska, S., & Huang, H. K.565

(2007). Bone age assessment of children using a digital hand atlas. Comput

Med Imaging Graph, 31 , 322–331.

van Ginneken, B., Setio, A. A., Jacobs, C., & Ciompi, F. (2015). Off-the-

shelf convolutional neural network features for pulmonary nodule detection

in computed tomography scans. In Biomedical Imaging (ISBI), 2015 IEEE570

12th International Symposium on (pp. 286–289). IEEE.

31



Giordano, D., Kavasidis, I., & Spampinato, C. (2016). Modeling skeletal bone

development with hidden markov models. Computer Methods and Programs

in Biomedicine, 124 , 138 – 147.

Giordano, D., Leonardi, R., Maiorana, F., Scarciofalo, G., & Spampinato, C.575

(2007). Epiphysis and metaphysis extraction and classification by adaptive

thresholding and DoG filtering for automated skeletal bone age analysis. Conf

Proc IEEE Eng Med Biol Soc, 2007 , 6552–6557.

Giordano, D., Spampinato, C., Scarciofalo, G., & Leonardi, R. (2010). An

automatic system for skeletal bone age measurement by robust processing of580

carpal and epiphysial/metaphysial bones. Instrumentation and Measurement,

IEEE Transactions on, 59 , 2539–2553.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A. C., & Bengio, Y.

(2013). Maxout networks. In Proceedings of the 30th International Conference

on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013 (pp.585

1319–1327).

Greulich, W. W., & Pyle, S. I. (1959). Radiographic atlas of skeletal develop-

ment of the hand and wrist. The American Journal of the Medical Sciences,

238 , 393.

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A. C., Bengio, Y.,590

Pal, C., Jodoin, P., & Larochelle, H. (2015). Brain tumor segmentation with

deep neural networks. CoRR, abs/1505.03540 .

Hsieh, C. W., Jong, T. L., Chou, Y. H., & Tiu, C. M. (2007a). Computerized

geometric features of carpal bone for bone age estimation. Chin. Med. J.,

120 , 767–770.595

Hsieh, C.-W., Jong, T.-L., & Tiu, C.-M. (2007b). Bone age estimation based

on phalanx information with fuzzy constrain of carpals. Medical & Biological

Engineering & Computing , 45 , 283–295.

32



Jaderberg, M., Simonyan, K., Zisserman, A., & Kavukcuoglu, K. (2015). Spatial

transformer networks. CoRR, abs/1506.02025 . URL: http://arxiv.org/600

abs/1506.02025.

Johnson, J., Karpathy, A., & Li, F. (2015). Densecap: Fully convolutional

localization networks for dense captioning. CoRR, abs/1511.07571 . URL:

http://arxiv.org/abs/1511.07571.

Kashif, M., Deserno, T. M., Haak, D., & Jonas, S. (2016). Feature description605

with sift, surf, brief, brisk, or freak? a general question answered for bone

age assessment. Computers in Biology and Medicine, 68 , 67 – 75.

King, D. G., Steventon, D. M., O’Sullivan, M. P., Cook, A. M., Hornsby, V. P.,

Jefferson, I. G., & King, P. R. (1994). Reproducibility of bone ages when

performed by radiology registrars: an audit of Tanner and Whitehouse II610

versus Greulich and Pyle methods. Br J Radiol , 67 , 848–851.

Lee, S., Choi, M., soo Choi, H., Park, M. S., & Yoon, S. (2015). Fingernet: Deep

learning-based robust finger joint detection from radiographs. In Biomedical

Circuits and Systems Conference (BioCAS), 2015 IEEE (pp. 1–4).

Lin, H.-H., Shu, S.-G., Lin, Y.-H., & Yu, S.-S. (2012). Bone age cluster as-615

sessment and feature clustering analysis based on phalangeal image rough

segmentation. Pattern Recognition, 45 , 322 – 332.

Liu, J., Qi, J., Liu, Z., Ning, Q., & Luo, X. (2008). Automatic bone age as-

sessment based on intelligent algorithms and comparison with TW3 method.

Comput Med Imaging Graph, 32 , 678–684.620

Lo, S.-C. B., Chan, H.-P., Lin, J.-S., Li, H., Freedman, M. T., & Mun, S. K.

(1995). Artificial convolution neural network for medical image pattern recog-

nition. Neural Networks, 8 , 1201–1214.

Lo, S.-C. B., Li, H., Wang, Y., Kinnard, L., & Freedman, M. T. (2002). A

multiple circular path convolution neural network system for detection of625

33

http://arxiv.org/abs/1506.02025
http://arxiv.org/abs/1506.02025
http://arxiv.org/abs/1506.02025
http://arxiv.org/abs/1511.07571


mammographic masses. Medical Imaging, IEEE Transactions on, 21 , 150–

158.

Mahmoodi, S., Sharif, B. S., Chester, E. G., Owen, J. P., & Lee, R. (2000).

Skeletal growth estimation using radiographic image processing and analysis.

IEEE Trans Inf Technol Biomed , 4 , 292–297.630

Malon, C. D., & Cosatto, E. (2013). Classification of mitotic figures with con-

volutional neural networks and seeded blob features. Journal of pathology

informatics, 4 .

Mansourvar, M., Ismail, M. A., Herawan, T., Raj, R. G., Kareem, S. A., &

Nasaruddin, F. H. (2013). Automated bone age assessment: motivation,635

taxonomies, and challenges. Comput Math Methods Med , 2013 , 391626.

Mansourvar, M., Shamshirband, S., Raj, R. G., Gunalan, R., & Mazinani, I.

(2015). An Automated System for Skeletal Maturity Assessment by Extreme

Learning Machines. PLoS ONE , 10 , e0138493.

Pietka, E., Gertych, A., Pospiech, S., Cao, F., Huang, H. K., & Gilsanz, V.640

(2001). Computer-assisted bone age assessment: image preprocessing and

epiphyseal/metaphyseal ROI extraction. IEEE Trans Med Imaging , 20 , 715–

729.

Pietka, E., Pospiech-Kurkowska, S., Gertych, A., & Cao, F. (2003). Integration

of computer assisted bone age assessment with clinical PACS. Comput Med645

Imaging Graph, 27 , 217–228.

Poznanski, A. K., Hernandez, R. J., Guire, K. E., Bereza, U. L., & Garn, S. M.

(1978). Carpal length in children–a useful measurement in the diagnosis of

rheumatoid arthritis and some concenital malformation syndromes. Radiol-

ogy , 129 , 661–668.650

Razavian, A. S., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). Cnn features

off-the-shelf: An astounding baseline for recognition. In Proceedings of the

34



2014 IEEE Conference on Computer Vision and Pattern Recognition Work-

shops CVPRW ’14 (pp. 512–519). Washington, DC, USA: IEEE Computer

Society.655

Roth, H., Lu, L., Seff, A., Cherry, K., Hoffman, J., Wang, S., Liu, J., Turkbey,

E., & Summers, R. (2014). A new 2.5d representation for lymph node detec-

tion using random sets of deep convolutional neural network observations. In

P. Golland, N. Hata, C. Barillot, J. Hornegger, & R. Howe (Eds.), Medical

Image Computing and Computer-Assisted Intervention MICCAI 2014 (pp.660

520–527). Springer International Publishing volume 8673 of Lecture Notes in

Computer Science.

Roth, H. R., Lee, C. T., Shin, H., Seff, A., Kim, L., Yao, J., Lu, L., & Summers,

R. M. (2015). Anatomy-specific classification of medical images using deep

convolutional nets. CoRR, abs/1504.04003 .665

Sahiner, B., Chan, H.-P., Petrick, N., Wei, D., Helvie, M., Adler, D. D., Good-

sitt, M. M. et al. (1996). Classification of mass and normal breast tissue: a

convolution neural network classifier with spatial domain and texture images.

Medical Imaging, IEEE Transactions on, 15 , 598–610.

Seok, J., Kasa-Vubu, J., DiPietro, M., & Girard, A. (2016). Expert system for670

automated bone age determination. Expert Systems with Applications, 50 ,

75 – 88.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y.

(2014). Overfeat: Integrated recognition, localization and detection using

convolutional networks. In International Conference on Learning Represen-675

tations (ICLR 2014). CBLS.

Shin, H., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mol-

lura, D. J., & Summers, R. M. (2016). Deep convolutional neural networks

for computer-aided detection: CNN architectures, dataset characteristics and

transfer learning. IEEE Trans. on Medical Imaging , .680

35



Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. CoRR, abs/1409.1556 .

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.

(2014). Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15 , 1929–1958.685

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Thodberg, H. H., Kreiborg, S., Juul, A., & Pedersen, K. D. (2009). The BoneX-

pert method for automated determination of skeletal maturity. IEEE Trans690

Med Imaging , 28 , 52–66.

Tristan-Vega, A., & Arribas, J. I. (2008). A radius and ulna TW3 bone age

assessment system. IEEE Trans Biomed Eng , 55 , 1463–1476.

White, H. (1963). Radiography of infants and children. JAMA, 185 , 223.

Wolterink, J., Leiner, T., Viergever, M., & Igum, I. (2015). Automatic coro-695

nary calcium scoring in cardiac ct angiography using convolutional neural

networks. In N. Navab, J. Hornegger, W. Wells, & A. Frangi (Eds.), Medical

Image Computing and Computer-Assisted Intervention MICCAI 2015 (pp.

589–596). Springer International Publishing volume 9349 of Lecture Notes in

Computer Science.700

Zeiler, M. D., & Fergus, R. (2014). Computer vision – eccv 2014: 13th european

conference, zurich, switzerland, september 6-12, 2014, proceedings, part i.

chapter Visualizing and Understanding Convolutional Networks. (pp. 818–

833). Cham: Springer International Publishing.

Zhang, A., Gertych, A., & Liu, B. J. (2007). Automatic bone age assessment705

for young children from newborn to 7-year-old using carpal bones. Comput

Med Imaging Graph, 31 , 299–310.

36


	Introduction
	Related Work
	Convolutional Neural Networks for Automated Skeletal Bone Age Assessment
	Off-the-shelf CNN feature extraction
	Fine-tuning CNNs trained on general imagery
	BoNet: an ad-hoc CNN for Skeletal Bone Age Assessment

	Experimental Results
	Dataset
	Training details
	Evaluation criteria
	Performance of pre-trained Convolutional Neural Networks
	Performance of BoNet
	Comparison with the state of the art
	Hand-crafted features vs deep-learned features
	Implementation Details
	Available Resources

	Discussion
	Acknowledgments

