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Abstract

Accurate segmentation of anatomical structures in medical images is important in recent imaging 

based studies. In the past years, multi-atlas patch-based label fusion methods have achieved a great 

success in medical image segmentation. In these methods, the appearance of each input image 

patch is first represented by an atlas patch dictionary (in the image domain), and then the latent 

label of the input image patch is predicted by applying the estimated representation coefficients to 

the corresponding anatomical labels of the atlas patches in the atlas label dictionary (in the label 

domain). However, due to the generally large gap between the patch appearance in the image 
domain and the patch structure in the label domain, the estimated (patch) representation 

coefficients from the image domain may not be optimal for the final label fusion, thus reducing the 

labeling accuracy. To address this issue, we propose a novel label fusion framework to seek for the 

suitable label fusion weights by progressively constructing a dynamic dictionary in a layer-by-

layer manner, where the intermediate dictionaries act as a sequence of guidance to steer the 

transition of (patch) representation coefficients from the image domain to the label domain. Our 

proposed multi-layer label fusion framework is flexible enough to be applied to the existing 

labeling methods for improving their label fusion performance, i.e., by extending their single-layer 

static dictionary to the multi-layer dynamic dictionary. The experimental results show that our 

proposed progressive label fusion method achieves more accurate hippocampal segmentation 

results for the ADNI dataset, compared to the counterpart methods using only the single-layer 

static dictionary.
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1. Introduction

Magnetic resonance imaging (MRI) is an advanced medical imaging technique, which plays 

an essential role in neuroscience research and clinical studies. However, due to the large 

amount of MRI data produced every day, it is time-consuming and expensive to process 

medical images manually. Therefore, automated and accurate segmentation is in high 

demand in existing imaging-based studies, in order to either discover group differences 

between individual subjects or quantify subtle changes over time. For instance, the 

hippocampus is known as an important structure related to Alzheimer’s disease, epilepsy, 

and schizophrenia (Devanand et al., 2007; Dickerson et al., 2001; Holland et al., 2012; Van 

Leemput et al., 2009). Therefore, automated and accurate segmentation of the hippocampus 

is critical.

However, since anatomical structures (i.e., hippocampus) vary significantly across 

individuals, the prior knowledge of shape and appearance learned from a certain template is 

often not sufficient for guiding the segmentation of target anatomical structures. To this end, 

multi-atlas based segmentation methods have been recently developed and achieved great 

success by letting the target labels on the target image follow the consensus of labels of 

multiple atlases with similar local image appearance. Generally, with more atlases, higher 

segmentation accuracy can be achieved by reducing the variations between the target and 

atlas images.

To do the segmentation, followed by registering atlas images to the target image, the latent 

anatomical label on each target image point can be determined by a certain label fusion 

strategy, such as majority voting (MV) Heckemann et al. (2006); Rohlfing et al. (2005). 

Majority voting is a classical label fusion method, which simply chooses the label with the 

highest vote as the final label. To improve the labeling accuracy, local weighted voting 

(LWV) was also proposed by replacing the hard voting (considering only the label 

information) with soft voting which is proportional to the patch-wise appearance similarity 

Sabuncu et al. (2010).

Apparently, the above point-wise label fusion strategies are highly dependent on the 

accuracy of image registration. To address the potential issue of inaccurate registration, 
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many patch-based label fusion methods have been proposed in recent years Artaechevarria et 

al. (2009); Song et al. (2015); Wang et al. (2011); Yan et al. (2013); Zhang et al. (2011). In 

these methods, the main assumption is that, if two image patches have similar appearance, 

they should bear the same anatomical label. The typical patch-based label fusion methods 

include nonlocal patch-based labeling (NPBL) Coupé et al. (2011); Rousseau et al. (2011) 

and sparse patch-based labeling (SPBL) Tong et al. (2013); Zhang et al. (2012a,c). Note that 

all patch-based label fusion methods collect candidate atlas patches in a search 

neighborhood across all registered atlas images. The weights used for label fusion in NPBL 

are proportional to the decayed patch-wise similarities penalized by the exponential 

function. Inspired by the discriminative power of sparse representation Tibshirani (2011); 

Zhang et al. (2012b,a), the SPBL method has been proposed to introduce sparsity into the 

optimization of the weighting vector at each image point. Since the sparsity constraint 

enforces many zero elements in the weighting vector, the SPBL method can reduce the risk 

of taking incorrect or ambiguous patches and finally use only a small number of well-

matched patches for labeling. More advanced methods can be found in Wang et al. (2013); 

Wu et al. (2014), where the pairwise dependency between atlas patches is further modeled to 

avoid the repeating label fusion error by similar atlas patches.

In all of the above state-of-the-art methods, the weights are exclusively optimized in terms 

of patch-wise image appearance. The computed weighting vector is regarded as an 

appearance representation profile and then directly used to determine the (binary) labels for 

the target image. Despite its simplicity and effectiveness, there is no evidence showing that 

such weights are domain-invariant, i.e., the optimized weights derived from the best image 

patch presentation may be not necessarily optimal for label fusion. Fig. 1 demonstrates the 

significant gap of representation profiles estimated in the image domain using appearance 

information (left) and in the label domain using label information (which is assumed to be 

known for the unseen target image). It is clear that there is no guarantee for the current state-

of-the-art label fusion methods to achieve the optimal labeling results by directly applying 

the appearance-based representation profile for label fusion.

To address this issue, we propose a novel label propagation framework to progressively 

convert the representation profile from the image domain to the optimal weighting vector 
(for label fusion) in the label domain by constructing a set of intermediate dictionaries to 

bridge the image domain and the label domain. Such intermediate dictionaries provide a 

sequence of guidance to steer the estimation of the appearance representation profile to the 

optimal weighting vector for label fusion.

Specifically, in the training stage for each target image patch, the initial-layer dictionary 

consists of the original atlas image patches (in the image domain), similar to the most of 

traditional label fusion methods. Since each atlas image patch has its corresponding label 

patch, it is straightforward to build the label patch dictionary (in the label domain) by 

arranging the corresponding label patches with the same order as the original atlas image 

patches in the initial-layer dictionary. To remedy the large transitions from the image domain 

to the label domain, we first apply a label fusion technique (e.g., NPBL or SPBL) to obtain 

the representation profile for each atlas image patch in the initial-layer dictionary, while 

regarding all other instances in the initial-layer dictionary as the atlas image patches. Then, 
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we compute a label probability patch by applying the obtained representation profile to the 

respective atlas label patches. By repeating the above leave-one-out label fusion procedure to 

all the patches in the initial-layer dictionary, we can construct the first-layer intermediate 

dictionary. Similarly, we can construct the subsequent intermediate dictionaries, as shown in 

Fig. 2. In the end, we can construct a sequence of intermediate dictionaries, where the label 

probability patches become sharper and sharper, close to the binary shape of the 

corresponding atlas label patches.

In the testing stage, given the learned multi-layer dictionary at each target image location, 

the final weights for voting the label are also estimated in a progressive way. Specifically, 

starting from the initial layer, we gradually refine the label fusion weights by alternating the 

following two steps. First, we compute the representation profile of the target image patch 

by using the patch dictionary in the current layer. Second, we refine the label probability 

map within the target image patch by applying the latest representation profile to the binary 

atlas label patches, and then use the obtained new probability patch as the new target image 

in the next layer of the label estimation. In this way, we can obtain more and more accurate 

weights to determine the anatomical label for the original target image, with the guidance of 

the intermediate dictionary at each layer.

The contributions of our proposed method include: (1) Since we harness the multi-layer 

dictionary to remedy the gap between patch appearances and anatomical labels, our label 

fusion essentially seeks the best label fusion weights, instead of just patch-wise 

representation; (2) The sequence of built intermediate dictionaries allows us using not only 
appearance features but also structural context information Tu and Bai (2010) to 

significantly improve the robustness in patch representation; (3) Our proposed progressive 

patch representation by a multi-layer dictionary is general enough to be integrated with 

many conventional patch-based segmentation methods for improving their performances. 

Our proposed method has been evaluated in the segmentation of the hippocampus from 

elderly brain MR images in the ADNI dataset. More accurate segmentation results have been 

achieved, compared to the state-of-the-art methods, i.e., NPBL and SPBL.

The remainder of the paper is organized as follows. In Section 2, we present a short 

introduction of the existing hippocampus labeling methods in the literature, followed by a 

detailed description of our progressive multilayer label fusion method. Section 3 shows the 

results of our proposed method in hippocampus segmentation. Then, in Section 4, we give 

the discussion of the proposed method along with the future work. Finally, we conclude our 

work in Section 5.

2. Methods

2.1. Overview

In general, multi-atlas patch-based segmentation aims to determine the label of each point in 

the target image T by using a set of N registered atlas images Is and label images Ls(s = 1, 

…, N). For each voxel υ ∈ ΩT in the target image, PT (υ) is the target patch centered at 

point υ. The candidate atlas patches are recruited within a small neighborhood nυ across all 

N registered atlas images. We assume there are K candidate atlas patches Ps(u) centered at 
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point u(u ∈ nυ) after patch pre-selection Coupé et al. (2011). Note that patch pre-selection is 

often used in a searching neighborhood to speed up the label fusion and also preclude the 

most dissimilar patches. Generally, patch pre-selection provides a balance between the 

segmentation accuracy and computational time. In our implementation, we follow the 

criteria of pre-selection in Coupé et al. (2011) by computing the well-known structural 

similarity measure (SSIM) Wang et al. (2004).

Then, we vectorize each atlas patch Ps(u) into an M-length column vector x⃗s(u) to form a 

patch dictionary X = [x⃗s(u)]s=1, …, N,u∈nυ. Since each atlas patch has label information, it is 

straightforward to construct a corresponding label patch dictionary L = [l⃗s(u)]s=1, …, N;u∈nυ, 

where l⃗s(u) is a binary vector of {0, 1}M representing the particular label (with ‘0’ denoting 

background and ‘1’ denoting the hippocampus in this paper) which is associated with x⃗s(u) 

of atlas patch Ps(u). So the latent label for point υ can be estimated through the interaction 

between the target patch PT (υ) and all candidate atlas patches Ps(u). Given the weight αs(u, 

υ) for the pair of PT (υ) and Ps(u), the predicted label vector φ⃗(υ) for the target point υ can 

be estimated via

(1)

where φ⃗(υ) is a vector of label probability, with each element in φ⃗(υ) associated with one 

point in the target patch PT (υ). Then, it is straightforward to obtain hippocampus 

segmentation within the target patch PT (υ) by binarizing the probability vector φ⃗(υ) by a 

threshold of 0.5.

In the following, we first introduce the calculation of weight αs(u, υ) by the conventional 

patch-wise labeling methods in Section 2.2. Then, we present our multi-layer framework in 

Section 2.3, including the construction of the multi-layer dictionary.

2.2. Conventional patch-based labeling

The principle of the conventional NPBL method is originated from the non-local strategy, 

which was widely used in computer vision, i.e., for image denoising Buades et al. (2005) 

and super-resolution Protter et al. (2009). The applications of NPBL in medical images can 

also be found in Awate and Whitaker (2006); Manjón et al. (2010). In the NPBL method, 

each candidate atlas patch Ps(u) contributes to the final label fusion. And the weight of each 

candidate patch is calculated by a patch-wise similarity between the target patch PT (υ) and 

the candidate patch Ps(u), defined as

(2)

where σ controls the strength of exponential penalty on patch-wise difference.

In contrast to the NPBL method, the SPBL method assumes that the representation should 

be sparse, which means the optimal representation should use a smaller number of atlas 
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patches. Given the patch dictionary X, sparse representation aims to find a sparse linear 

combination of patches in the dictionary X for the best representation of the target patch PT 

(υ). For simplicity, we denote the target patch PT (υ) by y⃗ and consider the weights 

associated with the patch dictionary X forming a weighting vector α⃗. Thus, the estimation of 

weighting vector α⃗ can be formulated as a problem of minimizing the reconstruction error in 

the following energy function:

(3)

In this objective function, the first term measures the reconstruction error, and the second 

term uses the l1-norm constraint on the weighting vector α⃗. The regularization parameter λ 
controls the strength of sparsity on α⃗.

2.3. Proposed method

2.3.1. Multi-layer labeling—The limitation of conventional multi-atlas patch-based 

segmentation methods is that they assume high correlation between original image patches 
and label patches. However, such an assumption may not be held in medical images which 

often have one-to-many mapping between appearance patches and label patches. To mitigate 

the inconsistency between the appearance patches (continuous) and the label patches 

(binary), we hypothesize a pathway of patch evolution that can smoothly transit from the 

image appearance to the corresponding labels. Our solution is to progressively construct a 

dynamic dictionary in a layer-by-layer manner, where a sequence of intermediate 

dictionaries can be constructed to gradually guide the transition from the appearance 
representation profile in the image domain to the optimal weighting vector (label fusion) in 

the label domain. As shown in both ends of Fig. 3, a set of atlas appearance patches (in left 

end) and their associated label patches (in right end) are extracted to form the image and 

label dictionaries, respectively. The constructed intermediate patch dictionaries (displayed in 

the middle of Fig. 3) describe the transition path, in terms of (from fuzzy to sharp) label 

probability maps. In this way, we can formulate the single-layer estimation of the 

representation profile to the multi-layer optimization of the weighting vector (for label 

fusion) by progressively refining the weighting vector with the evolution of the intermediate 

dictionaries from the image appearance to binary labels. The construction of the multi-layer 

dictionary and also the progressive label fusion are detailed below.

2.3.2. Multi-layer patch dictionary construction—In the training stage, to construct 

multi-layer patch dictionaries, we use the original intensity patch dictionary X to form the 

initial layer D(0) = X as shown in the bottom of Fig. 2, i.e., , where . 

Note that we here use k to refer the k-th patch in the dictionary. From the first layer D(1), we 

iteratively construct the intermediate dictionary D(h)(h = 1, …, H − 1) by alternating the 

following three steps.

•
First, starting from h = 1, for each instance  in the 

dictionary D(h−1), we use all the other instances 
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 in D(h−1) to represent the underlying 

instance . In such case, all the other instances in 

D(h−1) form the instance-specific dictionary 

, where  has K − 1 column 

vectors. It should be mentioned that we can obtain the 

patch representation profile  for  via any fusion 

strategy, e.g., non-local mean in Eq.(2) or sparse 

representation technique in Eq.(3). Note that  is the 

column vector of length K − 1.

• Second, since each atom in  is associated with one 

label vector in L, we can build a surrogate atlas-domain 

patch dictionary Lk = [l⃗j]j=1,…,K,j≠k by arranging the atlas 

patches with the same order in . Then, we can compute 

the label patch  by using .

Algorithm 1

Learning the intermediate dictionaries

Input: Intensity atlas patch dictionary , label atlas patch 
dic-
tionary L = [l⃗k], patch number K, and layer number H.

Initialize: h = 1

While h < H

  For the k-th instance do

    1. 

    2. Lk = {l⃗1, …, l⃗k−1, l ⃗k+1, …, l⃗K};

    3. Compute  for  by  according to Eq.(2) or Eq.(3);

    4. ;

    5. .

  End for

, and h = h + 1.

End While

Output: The learned intermediate dictionaries {D(0), ⋯, D(H−1)}.
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• Third, by repeating the above two steps for all instances 

, we can evolve the intermediate patch dictionary 

D(h−1) to D(h) by letting , where .

The proposed procedure of progressively constructing multi-layer dictionary D is briefly 

summarized in Algorithm 1.

2.3.3. Progressive label fusion via multi-layer dictionary—In the testing stage, 

given the multi-layer dictionary D, the weighting vector α⃗ can be gradually refined from 

α⃗(0) at the initial layer (which is optimal only for the patch appearance representation) to 

α⃗(H−1) in the last layer (which is optimal for the label fusion). Hereafter, we call the 

weighting vector α(⃗0) as the appearance representation profile.

Algorithm 2

Multi-layer label fusion

Input: The testing image, multi-layer dictionary D, and label dictionary L.

Initialize: h = 0, y⃗(0) = y⃗.

For each voxel υ do

  While h < H

    1. Compute α⃗(h) for y⃗(h) by D(h) according to Eq.(2) or Eq.(3);

    2. y⃗(h+1) = Lα⃗(h).

  End while

End for

Binarize the probability map y⃗(H).

Output: The segmentation result (binary label map) of the testing image.

In the initial layer, we use the original intensity patch dictionary D(0) to present the target 

image patch y⃗(0) = y⃗ located at υ and thus obtain the representation profile α⃗(0) of the initial 

layer. Conventional label fusion methods stop here and then vote for the label via the 

weights in α(⃗0). Instead, our progressive label fusion method computes the label probability 

patch y⃗(1) by letting y⃗(1) = Lα(⃗0). It is worth noting that the intensity target image vector y⃗(0) 

now turns to a label-probability vector after going through the initial layer. Then, we 

iteratively refine the probability patch vector y⃗(1) until it reaches the the label dictionary. 

Specifically, we use y⃗(1) as the new target patch and further represent it by the intermediate 

dictionary D(1) in the same layer, thus obtaining the new label probability patch y⃗(2). Next, 

we continue to represent y⃗(2) in the second layer using the intermediate dictionary D(2). By 

repeating the same procedure until reaching the last layer, the estimated probability patch 

y(⃗h) becomes sharper and sharper, as shown in Fig. 4. Accordingly, the representation profile 

α(⃗H−1) can be regarded as the best weighting vector, which can be finally used to determine 

the latent label on the target image point υ. The algorithm of the proposed multi-layer label 

fusion is summarized in Algorithm 2.
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3. Experiments

3.1. Dataset

In our experiments, we randomly select 64 3T MRI and 240 1.5T MRI from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) dataset (www.adni-info.org), which include three 

types of subjects, i.e., normal control (NC), MCI (Mild Cognitive Impairment) and 

Alzheimer’s disease (AD). The image resolution is resampled to 1 × 1 × 1mm3. The detailed 

subject information is shown in Table. 1.

The following three pre-processing steps were performed to all subject images. First, we 

removed the skull by a learning based meta-algorithm Shi et al. (2012). Second, we used 

N4-based bias field correction Tustison et al. (2010). Third, we applied intensity 

standardization to normalize the intensity range Madabhushi and Udupa (2006). Both left 

and right hippocampi have been manually labeled for each subject. In our experiments, we 

regard those manual segmentations as ground-truth. To label the target subject, we first 

aligned all the atlas images to the underlying target subject. In order to improve the 

computational efficiency, both atlas selection and patch selection strategies were applied, 

where the selection criterion was based on image intensity similarity.

To evaluate the performance, we use both the Dice ratio and sensitivity to calculate the 

accuracy and stability by comparing the automated segmentation results with the manual 

ground-truth. The Dice ratio is defined to measure the overlap between regions R1 and R2 

via

(4)

Sensitivity is a statistical measure of the segmentation results, which is defined as

(5)

where |.| denotes for the regional volume, and R1 and R2 represent the estimated and ground-

truth labels, respectively.

The mean absolute surface distance (MASD) is a symmetric border positioning measure that 

gives the mean minimal distance between two surfaces Sluimer et al. (2005). Given the two 

surfaces S1 (from the automated segmentation result) and S2 (from the ground-truth 

segmentation), let d̄min(S1, S2) be the average minimal distance from all points on surface S1 

to surface S2, and then MASD can be defined as

(6)
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It should be mentioned that all testing images were evaluated in a leave-one-out manner. 

Specifically, in each leave-one-out case, we use FLIRT in the FSL toolbox Smith et al. 

(2004) with 12 degrees of freedom and the search range of ±20 in all directions, for the 

initial linear registration. For deformable registration, we use the diffeomorphic Demons 

method Vercauteren et al. (2009) with the smoothing kernel size of 2.0, and iteration 

numbers of 15, 10, and 5 in the low, middle, and high resolutions, respectively.

3.2. Parameters setting

3.2.1. Parameter selection—In the following experiments, we fix the patch size as 5 × 5 

× 5mm3 and the search window as 5 × 5 × 5mm3 for constructing the dictionaries. In the 

non-local mean method, the penalty strength σ is set to 0.5, while, in the sparse patch-based 

label fusion method, the sparse constraint λ is set to 0.1. In all experiments, we discard the 

searched candidate atlas patches if the pre-selection threshold on the SSIM measurement is 

less than 0.9.

3.2.2. The influence of atlas number—In order to test the effect of the atlas number, 

we evaluate the labeling accuracy on 64 3T MRI by using a different number of atlases. For 

simplicity, we fix the number of the dictionary layer to 4. As shown in Fig. 5, the average 

Dice ratio keeps increasing as the number of atlases increases. When the atlas number 

reaches beyond 15, the improvement of the Dice ratio becomes marginal. Considering the 

computational time, we thus use 15 atlases throughout all the following experiments.

3.2.3. The influence of the number of layer—In this experiment, we use the same 

dataset as in Section 3.2.2 to investigate the influence of the number of layers on the 

performance of our proposed method. The evolution curve of the average Dice ratio with 

respect to the number of dictionary layers is shown in Fig. 6. It can be observed that the 

improvement of our progressive label fusion method is obvious after using the initial layer 

(corresponding to the baseline methods), i.e., more than 1% improvement of the Dice ratio 

over both the non-local and SPBL methods. Our progressive label fusion framework 

gradually converges after using three layers. Considering the computation time, we use four 

layers (H = 4) in the following experiments.

3.3. Entropy of multi-layer dictionary

We use entropy as a measure of the quality for evaluating our constructed multi-layer 

dictionary. Note that label map with simple constant values has lower entropy, while the 

probability map with complex intensity values has higher entropy. Actually, minimum 

entropy has been used as a good criterion for the design of classification/segmentation 

methods Palubinskas et al. (1998) Viola and Wells III (1997).

Fig. 7 is an example of the evolution of entropy in the multi-layer dictionary. For a testing 

patch (i.e., a green solid block in the (top-left) original image) centered at a (red point) 

voxel, a set of similar patches (i.e., 24 patches used in this figure) are searched (i.e., in the 

blue dash box), along with their corresponding known label patches ((i.e., in the green dash 

box). By construction of a multi-layer patch dictionary as described in Section 2.3.2, we can 

obtain the intermediate dictionaries (i.e., those in the red dash box). The tables in the right 
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panel of this figure provide the corresponding entropies for the patches in the blue, red, and 

green dash boxes.

Each element in the right tables of Fig. 7 shows the entropy of the corresponding patch in 

the multi-layer dictionary (i.e., blue and red dash boxes) as well as in the ground-truth label 

patches (i.e., green dash box). Consistent with our above description, the label patches have 

lower entropy (as shown at the bottom of the right figure). On the contrary, the intensity 

image patches have higher entropy (as shown at the top of the right figure), because of their 

relatively uniform intensity distribution. The right tables also show the entropy of the patch 

element in each layer of the multi-layer dictionary (i.e., layer 0 to layer 3, as shown from the 

middle top to middle bottom of the right figure). Since entropy is related to the minimum 

number of bits required to code the intensity distribution, the predictability is closely related 

to the value of entropy Mangin (2000). That is, a predictable variable has low entropy, while 

an unpredictable variable has high entropy. As shown in Fig. 7, from layer 0 to layer 3, the 

entropy is decreased for most patches, thus, becoming easier to predict. As a result, with the 

increase of the number of layers, the intermediate dictionary becomes sharper and sharper, 

which finally becomes closer to the binary label maps.

3.4. Labeling results for 3T MR images

Table. 2 and Table. 3 show the mean and standard deviation of the Dice ratio on the 

hippocampus (left, right and overall) in linear and deformable registration scenarios, 

respectively. Compared to the baseline non-local and SPBL methods with single-layer 

dictionary, our progressive label fusion framework can improve the labeling accuracy with 

more than 1% increase of the Dice ratio. The maximum improvement is 1.8% between the 

conventional non-local method and our progressive non-local method in the case of linear 

image registration. Also, the improvements over the baseline methods in terms of the overall 

Dice ratio are statistically significant with a p-value less than 0.05 by using paired t-test. 

Significant improvements are indicated with ‘*′ in Table. 2 and Table. 3.

Furthermore, we calculate the surface distance between the ground-truth hippocampus and 

the estimated hippocampus (left and right). The SPBL method is used as the example to 

demonstrate the evolution of the surface distance during the progressive label fusion in Fig. 

8. According to the color bar shown in the right side of Fig. 8, the surface distances keep 

decreasing with the increase of the number of intermediate layers. Table. 4 shows the 

corresponding surface distances on the whole hippocampus in Fig. 8. In accordance with 

Fig. 8, by increasing the number of intermediate layers, the mean surface distance decreases 

gradually. When H = 1, which corresponds to the conventional one-layer SPBL method, the 

maximum distance is 2.83mm, and it significantly decreases to 1.22mm at H = 4 by our 

method.

3.5. Labeling results for 1.5T MR images

We have also applied our multi-layer method on the 240 1.5T MRI dataset. Specifically, we 

test three datasets, including normal control (NC), mild cognitive impairment (MCI) and 

Alzheimers disease (AD), and each dataset has 80 cases as shown in Table. 1. For further 

evaluation, we compute the mean and standard deviation of the hippocampus volumes of the 
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manual ground truths for each dataset in Table. 5. The table shows significant volume 

differences among the three datasets. Specifically, compared to the NC data, the volumes of 

AD and MCI are smaller; in particular, AD has much smaller volume than NC, and also AD 

has the largest volume variation.

Moreover, the evaluation measures (i.e., Dice ratio, sensitivity and MASD) are obtained 

using different combined strategies (i.e., non-local and SPBL under linear or deformable 

registration) on the 1.5T MRI dataset (for AD, MCI and NC), as summarized in Fig. 9, Fig. 

10 and Fig. 11, respectively. Obviously, our progressive methods consistently outperform all 

other methods in all these three evaluation measures, regardless of AD, MCI or NC (with 

larger improvement for the NC subjects). The best result is achieved for our progressive 

SPBL method in the case of using deformable registration. As shown in Fig. 9, compared to 

the baseline methods, our progressive label fusion methods can improve the labeling 

accuracy for more than 1% Dice ratio, in the cases of both linear and deformable 

registrations. According to Fig. 11, the mean surface distance is also getting smaller.

In order to further testify to the effectiveness of our proposed method, we also conduct 

experiments on the mixed datasets of NC, MCI and AD. Table. 6 shows the average Dice 

ratios by the four methods in both linear and deformable registration cases. Obviously, our 

progressive methods consistently outperform the conventional methods. Specifically, 

compared to the conventional non-local method, our progressive method gains 

improvements of 1.3% and 1.5% for the linear and deformable registration cases, 

respectively.

3.6. Computational complexity

As illustrated in Algorithm 1 and Algorithm 2, our proposed multilayer label fusion method 

takes major computational cost in two stages, including (1) dictionary learning and (2) 

progressive multi-layer label fusion. By analyzing the proposed method, we found three 

major factors determine the computational cost in including two stages, including the 

number of layers H, the number of atlas patches K, and the size of each patch M.

Based on these factors, the computational complexities of the dictionary learning and the 

multi-layer label fusion stages are O(HK2M) and O(HM), respectively. Therefore, it costs 

O(HK2M) for each voxel. Considering the computational time, we have used various 

strategies to speed up our algorithm, including parallel programming and patch pre-

selection.

4. Discussion

4.1. Application to volumetric labeling

Algorithms for automatic segmentation of brain structures are important for brain analysis. 

Hippocampal volume has been found as an early biomarker for AD, but it is hindered by 

various limitations of manual segmentation. Although many methods have been proposed 

for hippocampal segmentation in MR images, they often directly determine the label 

according to the weights computed from the appearance representation of the testing image. 

However, the intensity images and label maps are in two different domains, and there is no 
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evidence to show a direct connection between intensity images and label maps. Thus, in Fig. 

2, we construct a bridge to connect these two domains. As shown in Fig. 3, with the help of 

this built ”bridge” (multi-layer dictionary), the probability patches can become sharper and 

sharper, and thus the intensity image domain and the label domain can be better connected. 

In this way, the representation coefficients can be iteratively computed from the built 

dictionaries, and then the latent label can be predicted by applying the estimated coefficients 

to the atlas labels in a layer-by-layer manner. The proposed method shows its potential in 

volumetrical labeling. The optimized dictionary also makes our labeling method more robust 

to registration errors.

4.2. Segmentation quality

The results presented in this work demonstrate that our proposed multilayer label fusion 

method is well-suited for automated hippocampus segmentation. First, we have tested the 

influences of both the atlas and layer number. In Fig. 5, we found that further increasing the 

number of training images will not improve the performance significantly. Considering the 

computational cost, we select 15 as the atlas number in all experiments of this paper. Also, 

the multi-layer dictionary learning makes the probability maps much closer to the label 

maps. Thus, it is also important to choose a suitable layer number. Similar to the atlas 

number, the use of more layers can lead to better results. As shown in Fig. 6, the use of 4 

layers produces the best results for all experiments, and thus we use 4 layers in this paper. To 

further validate the effectiveness of the multi-layer dictionary learning, we analyze each built 

dictionary quantitatively by entropy. It is found that entropy is decreased with the increase of 

the number of layers, which further demonstrates the significance of our multi-layer 

dictionary learning.

As pointed out in Table. 2 and Table. 3, using the 3T MRI, the Dice ratio can exceed 0.85, 

showing good overlap with manual segmentations. Also, the surface of automated 

segmentation is very close to the surface of ground-truth segmentationh. Besides, with the 

1.5T MRI, our proposed progressive methods also outperform all 1-layer methods, in terms 

of Dice ratio, sensitivity, and MASD.

4.3. Comparison to other methods

In our method, we have applied either the NPBL or SPBL as a basic label fusion algorithm 

to obtain the representation profile at each layer. Compared to the original (single-layer) 

NPBL and SPBL methods, our proposed method is consistently better, with statistically 

significant improvements on both the Dice ratio and surface distance. The direct visual 

comparison on the large image dataset also shows better results with our method, compared 

to the two baseline methods.

The performance of our progressive multi-layer label fusion scheme is further compared 

with the performances of other two single-layer algorithms (i.e., non-local and SPBL) on 

both the 3T and 1.5T MRI scans. For both cases of linear and deformable registrations, our 

method outperforms these baseline methods in hippocampal segmentation. On the other 

hand, the use of deformable registration often gives better results than the use of linear 

registration, for all methods (including our method and conventional methods).
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4.4. Limitation and future work

The main limitation of our proposed method is the time complexity, for the case of using a 

large number of layers or a large number of selected atlases. In such case, for each testing 

patch centered at each voxel, a set of patches needs to be selected to estimate the testing 

patch in a leave-one-out manner, for creating a multi-layer dictionary. Since this procedure 

needs to be online, it further increases the computational time for our proposed method.

In this paper, we just focus on segmentation of the hippocampus. With the shown benefit of 

using a multi-layer dictionary for image labeling, it will be interesting to also apply our 

method on the segmentation of other organs in the future.

5. Conclusion

In this paper, we proposed a progressive label fusion framework for multiatlas segmentation 

by dictionary evolution. Different from the conventional label fusion methods, in our 

proposed method, we constructed a sequence of intermediate dictionaries in a multi-layer 

manner to progressively optimize the weights for label fusion. In this way, our proposed 

method seeks for the representation weights that can be progressively improved for final 

label fusion, instead of employing only the original intensity patches based representation 

weights, which are used in the conventional methods. To this regard, our proposed multi-
layer method can also be considered as an extension of the conventional single-layer 
methods. We have applied our novel label fusion method to hippocampus segmentation in 

both 1.5T and 3T MRI brain images from the ADNI dataset. Compared to the state-of-the-
art counterpart label fusion methods with a single-layer dictionary, our proposed multi-layer 
label fusion method achieves better performances.
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Highlights

• A progressive multi-atlas label fusion method by deep 

dictionary evolution is proposed.

• A sequence of intermediate dictionaries was constructed 

to progressively optimize the weights for label fusion.

• As an extension of the conventional single-layer 

methods by improving their label fusion performance.
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Figure 1. 
Demonstration of the significant gap of representation profiles computed in the image 

domain using image appearance and in the label domain using label information.
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Figure 2. 
The progressive label fusion framework. To overcome the large gap between the two 

different dictionaries, i.e., from the original images (red) and label maps (blue), we use a set 

of intermediate dictionaries to gradually encode the transition from the representation profile 
in the original image domain to the optimal weighting vector (for label fusion) in the final 

label domain. Please see text for more details of this figure.
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Figure 3. 
The evolution of the constructed multi-layer dictionary from the continuous appearance 

patches to the binary label patches.
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Figure 4. 
The framework of the proposed method. Conventional methods estimate the patch 
representation profile using only the image dictionary (i.e., green dash box), and then 

directly apply it to the label dictionary (blue dash box) for label fusion. To address the large 

gap between these two different dictionaries (image and label), our method uses a set of 

intermediate dictionaries (red dash boxes) to gradually guide the estimation of the 

representation profile from the image domain to the label domain. In the application stage, 

we sequentially go through these intermediate dictionaries and obtain the final binary label.
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Figure 5. 
The evolution curves of the Dice ratio with respect to the increase of the number of atlas.
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Figure 6. 
The evolution curves of the Dice ratio with respect to the increase of the number of layer.
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Figure 7. 
Multi-layer dictionary and calculated entropy.
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Figure 8. 
The evolution of surface distances between automatic segmentations and manual ground-

truth segmentations from the initial layer (left) to the last layer (right).
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Figure 9. 
Dice ratios on 1.5T MRI of AD, NC and MCI subjects.
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Figure 10. 
Sensitivity on 1.5T MRI of AD, NC and MCI subjects.
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Figure 11. 
MASD on 1.5T MRI of AD, NC and MCI subjects.
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Table 1

Subject information of selected ADNI data used in experiment.

NC MCI AD

3.0 T 20 32 14

1.5 T 80 80 80
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Table 2

The mean and standard deviation of the Dice ratio (in %) in labeling the 3T-MRI hippocampus for the case of 

linear registration.

Method Left Right Overall

Conventional Non-local 85.1±5.7 84.3±5.1 84.7±4.2

*Progressive Non-local 86.8±4.5 86.2±5.1 86.5±3.7

Conventional SPBL 85.8±4.5 85.1±4.8 85.5±3.7

Progressive SPBL 87.1±3.2 86.7±5.3 86.9±3.3
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Table 3

The mean and standard deviation of the Dice ratio (in %) in labeling the 3T-MRI hippocampus for the case of 

deformable registration

Method Left Right Overall

Conventional Non-local 86.8±4.9 86.6±2.9 86.7±3.2

*Progressive Non-local 87.9±4.0 88.1±3.2 88.0±3.0

Conventional SPBL 87.2±3.6 87.1±3.3 87.2±2.9

*Progressive SPBL 88.2±3.6 88.5±3.1 88.3±2.8
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Table 4

The surface distance (unit: mm) on hippocampus labeling between automatic segmentations and manual 

ground-truth segmentations with different number of intermediate layers

Number of Layers H=1 H=2 H=3 H=4

Maximum Distance 2.83 2.00 1.52 1.22

Mean Distance 0.27 0.22 0.19 0.18
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Table 5

Comparison of mean volumes of hippocampus of three data types (AD, MCI and NC) (unit: mm3).

Data Left Right Overall

AD 1627±395 1574±349 3201±711

MCI 1864±365 1790±355 3654±688

NC 2133±302 2080±277 4213±546
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Table 6

The mean and standard deviation of Dice ratio (in %) in labeling 1.5T-MRI hippocampi.

Method Linear Deformable

Conventional Non-local 81.8±3.3 83.4±2.6

Progressive Non-local 83.1±3.1 84.9±2.5

Conventional SPBL 81.9±3.2 83.7±2.6

Progressive SPBL 83.3±3.0 85.1±2.5
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