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Abstract

In prostate cancer radiotherapy, computed tomography (CT) is widely used for dose planning 

purposes. However, because CT has low soft tissue contrast, it makes manual contouring difficult 

for major pelvic organs. In contrast, magnetic resonance imaging (MRI) provides high soft tissue 

contrast, which makes it ideal for accurate manual contouring. Therefore, the contouring accuracy 

on CT can be significantly improved if the contours in MRI can be mapped to CT domain by 

registering MRI with CT of the same subject, which would eventually lead to high treatment 

efficacy. In this paper, we propose a bi-directional image synthesis based approach for MRI-to-CT 

pelvic image registration. First, we use patch-wise random forest with auto-context model to learn 

the appearance mapping from CT to MRI domain, and then vice versa. Consequently, we can 

synthesize a pseudo-MRI whose anatomical structures are exactly same with CT but with MRI-

like appearance, and a pseudo-CT as well. Then, our MRI-to-CT registration can be steered in a 

dual manner, by simultaneously estimating two deformation pathways: 1) one from the pseudo-CT 

to the actual CT and 2) another from actual MRI to the pseudo-MRI. Next, a dual-core 

deformation fusion framework is developed to iteratively and effectively combine these two 

registration pathways by using complementary information from both modalities. Experiments on 

a dataset with real pelvic CT and MRI have shown improved registration performance of the 

proposed method by comparing it to the conventional registration methods, thus indicating its high 

potential of translation to the routine radiation therapy.
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1. Introduction

Prostate cancer (Partin et al., 1993; Shen et al., 2004) is a common type of cancer among 

men worldwide. Clinically, external beam radiation therapy (EBRT) is one of the most 

efficient ways for treating prostate cancer. In EBRT (de Crevoisier et al., 2005), Computed 

Tomography (CT) is of great importance as it provides Hounsfield unit (HU) values, which 

can be used for dose planning purpose. In the planning stage of EBRT, in order to deliver 

prescribed dose to the prostate volume, while spare nearby normal organs from the harmful 

radiation, three critical pelvic organs, i.e., prostate, bladder and rectum, need to be contoured 

precisely. This is quite a difficult task due to low tissue contrast of the prostate, bladder and 

rectum in the CT image, as illustrated in Fig. 1. Also, the low delineation accuracy could 

limit the efficacy in EBRT for prostate cancer treatment and lead to potential side effects 

(Dearnaley et al., 1999). Currently, magnetic resonance imaging (MRI) is often used jointly 

with CT in the MRI-assisted radiation therapy (Roach et al., 1996; Sannazzari et al., 2002; 

Dowling et al., 2012; Metcalfe et al., 2013), since MRI provides high soft tissue contrast and 

makes manual organ delineation accurate. However, CT and MR images are always acquired 

at separate time points, for the same patient. Due to intra-patient anatomical changes, 

accurate soft tissue delineation in MRI cannot be transferred directly to the CT image space. 

Therefore, it is of clinical importance to register the pelvic MR image to the CT image of the 

same patient, for the purpose of accurate contour propagation.

However, there are two main challenges for accurate and robust pelvic MRI-to-CT 

registration. 1) The first challenge comes from local anatomical deformation. This is because 

the CT and MR images of the same patient are always scanned at different time points, 

which may change positions, shapes and appearances of pelvic organs dramatically due to 

possible bladder filling and emptying, bowel gas, and irregular rectal movement. Thus, basic 

linear registration can hardly obtain good registration performance with such a challenge. As 

shown in Fig. 1, the deformations on three crucial pelvic organs are still obvious, even after 

linear alignment of the CT and MR images of the same patient. This necessitates the use of 

non-rigid registration to correct local deformations. 2) The second challenge comes from 

significant appearance difference between the CT and MR images. For example, from Fig. 1, 

there are no obvious intensity differences among the organs of the prostate, bladder and 

rectum in the CT image, and the boundaries between three organs are hard to distinguish. 

But, in the MR image, the bladder has relatively brighter intensity than both the prostate and 

rectum regions, and the boundaries between these three organs are easily detectable. 

Additionally, the texture patterns of the prostate in the MR image are much richer than those 

in CT. Thus, these different characteristics of image appearance make it hard to design a 

common similarity metric in MRI-to-CT image registration, which also makes existing 

available non-rigid registration approaches less efficient in this multi-modality registration 

case.

1.1. Related work

Many approaches have been developed for non-rigid multi-modal image registration, as 

described below.
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1.1.1. Information theory based registration methods—The first category is the 

information theory based methods, which use mutual information (MI) as the similarity 

metric for multi-modal image registration (Collignon et al., 1995; Wells et al., 1996; Maes et 

al., 1997; Viola and Wells III, 1997). Based on this similarity metric, rigid and affine 

registration results can be efficiently obtained between multi-modal images. However, MI is 

a good global similarity measurement, which has limited power in capturing local 

anatomical details, and thus has limited capacity in tackling local deformations. To address 

this issue, normalized mutual information (NMI) (Studholme et al., 1999) and localized 

mutual information (LMI) (Klein et al., 2008) have been proposed to measure the similarity 

between local anatomical structures. However, insufficient number of voxels within the 

image patch undermines the estimation of intensity distribution when computing MI. As a 

result, local anatomical structures are often not well aligned by MI-based registration 

methods. A good review of MI-based image registration methods can be found in (Pluim et 

al., 2003).

Besides MI, Chung et al. (2002) proposed using Kullback–Leibler distance (KLD) as the 

similarity metric to guide multi-modal image registration, by enforcing the joint intensity 

distribution of the to-be-aligned image pair following the priors of learned distributions from 

the well-aligned images. In addition, So and Chung (2011) further proposed using 

Bhattacharyya distance (BD) as the similarity metric, which obtained better registration 

performance compared with KLD-based registration.

However, either MI-based or KLD-based (BD-based) registration methods have a common 

limitation that these methods are all based on the intensity probability distribution, and 

ignore spatial information of anatomical structures. This means that different anatomical 

regions will be found as being matched as long as they have similar intensity distributions.

1.1.2. Image synthesis based registration method—For this kind of methods, one 

image modality is synthesized from the other modality in order to reduce the large 

appearance gap between different modalities. Afterwards, the multi-modal image 

registration problem is simplified to a mono-modal registration problem, where most 

existing registration methods can then be applied. Roche et al. (2001) synthesized an 

ultrasound image and then estimated rigid registration between the ultrasound and the MR 

images. Wein et al. (2008) simulated the ultrasound image from the CT image to solve the 

rigid and affine registration problems.

There are two main problems with the current image synthesis based registration methods. 

The first problem is that the image synthesis is always performed in a single direction. This 

will often introduce bias when performing registration only based on one modality image, 

by ignoring all the anatomical details in the other modality. The second problem is that most 

of the existing works focus on rigid/affine registration. Few work tackles the non-rigid 

registration problem. Since existing methods often synthesize from the image modality with 

rich anatomical details (e.g., MRI) to the image modality with limited anatomical details 

(e.g., ultrasound/CT), it is quite difficult to accurately estimate local deformations based on 

the image modality with limited anatomical details, especially for the case of pelvic images 

where the main pelvic organs often have large local deformations. Therefore, an accurate 
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and robust image synthesis method, which can preserve adequate anatomical details, is 

essential for image synthesis based multi-modal non-rigid registration.

1.1.3. Image synthesis methods—To date, many image synthesis methods are 

proposed although most of them are not for registration purpose.

1.1.3.1. Examplar-based image synthesis: By using sparse representation methods and its 

extension, Ye et al. synthesized T2-weighted MRI and FA maps from T1-weighted MRI (Ye 

et al., 2013). Roy et al. estimated spoiled gradient recalled (SPGR) MRI sequence from 

magnetization prepared rapid gradient echo (MPRAGE) MRI sequence and vice versa (Roy 

et al., 2011, 2013). He also predicted FLAIR image from the combination of T1- and T2-

weighted MRI (Roy et al., 2010). Iglesias et al. synthesized T1-weighted MRI from PD-

weighted MRI (Iglesias et al., 2013). Cordier et al. utilized the brain label image to predict 

FLAIR image (Cordier et al., 2016). The main idea in these methods is using a patch-wise 

prediction process. That is, the new source image can be sparsely represented by the patches 

extracted from an atlas dataset of the same modality, and then the computed sparse 

coefficients can be utilized to estimate the target image patches of another modality. 

However, the optimization is needed in the application stage, which often makes the 

prediction process less efficient. Also, the synthesized results are sometimes noisy due to 

inaccurate predictions.

1.1.3.2. Learning-based image synthesis: In learning-based methods, a training dataset 

with pre-aligned multi-modal image pairs is needed to help build an accurate and robust 

mapping model from one image modality to another. Different machine learning techniques 

are applied. 1) Gaussian mixture regression model. Based on Gaussian mixture regression 

model, Johansson et al. estimated CT image from three MRI sequence (Johansson et al., 

2011) and Roy et al. proposed to synthesize CT image from ultrashort echo-time MRI (Roy 

et al., 2014). Since the anatomical information is ignored in this method, the synthesized 

image is always over-smoothed and not accurate. 2) Deep learning based regression model. 

Convolutional neural networks (CNN) have been applied in Li’s work to predict PET from 

MRI (Li et al., 2014) and shown promising results. However, for training a robust and 

accurate CNN model, a large dataset is needed and also the computational time is long. 3) 

Random forest based regression model. Random forest is a non-linear classification and 

regression method, which can be trained efficiently. Jog et al. built the high resolution T2-

weighted MRI from low resolution T2-weighted MRI with the help of T1-weighted MRI 

(Jog et al., 2014a). He also synthesized FLAIR MRI from the combination of T1, T2 and PD 

weighted MRI (Jog et al., 2014b) by using the concept of random forest. In order to preserve 

the anatomical information and structural continuity during prediction, the patchwise 

manner is incorporated into random forest. Jog et al. synthesized T2-weighted MRI from 

T1-weighted MRI using patch-wise random forest (Jog et al., 2013). Tri et al. proposed to 

apply structured random forest to estimate CT image from MRI data, where he also utilized 

the patch as the regression target (Huynh et al., 2016).

One problem with all aforementioned learning based image synthesis methods is that the 

direction of synthesis model is always from the image modality with rich anatomical details 

to the image modality with limited anatomical details, e.g., synthesizing CT from MRI. 
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Although some works have obtained synthetic MRI (Jog et al., 2014), the source modality 

must have equivalent anatomical details, e.g., multiple modalities are required. This is not 

applicable in many clinical applications. However, by using image synthesis to improve 

multi-modal non-rigid registration problem, we argue that the image synthesis should be 

performed in bidirections: not only synthesizing CT from MRI, but also synthesizing MRI 

from CT. In this way, all the anatomical details can be used to accurately steer the non-rigid 

registration. Thus, an effective image synthesis method, which can accurately build the 

mapping relationship from both CT-to-MRI and MRI-to-CT, is under high demand.

1.1.4. Other multi-modal registration methods—Some feature-based registration 

methods (Shen and Davatzikos, 2002; Zacharaki et al., 2009; Ou et al., 2011; Heinrich et al., 

2012; Toews et al., 2013) estimate deformation fields by leveraging different artificial 

features (e.g., geometric moments (Shen and Davatzikos, 2002), Gabor attributes (Ou et al., 

2011)), rather than directly using image intensities. In this way, the influence of appearance 

differences between modalities can be minimized during registration. However, it is difficult 

to find effective features that can describe common anatomical details and are also invariant 

to the appearance differences. Additionally, some methods conduct the registration and 

segmentation jointly (Ashburner and Friston, 1997; Jia et al., 2012), or use the segmentation 

images (Shen and Davatzikos, 2002) to help improve the multi-modal registration. But, 

accurate segmentation is needed for accurate non-rigid registration, which is often not easy 

to achieve.

1.2. Contributions

In this paper, we propose a novel image-synthesis-based multi-modal non-rigid registration 

method to tackle the challenging problem of pelvic CT/MRI registration. The image contrast 

of the MR pelvic image is better than the counterpart CT image in certain regions. For 

example, the bone in the CT image is more observable than in the MR image. In contrast, 

the MR image has much richer details in soft tissue parts (See Fig. 1). Thus, in order to 

improve image registration for the entire image domain using complementary information 

from both modalities, it is necessary to perform image synthesis in bi-directions. Therefore, 

each original image has its synthesized pseudo image where their anatomical shapes remain 

intact, but with different appearances. Based on the synthesized MR and CT images, we 

propose a dual-core multi-modal image registration method to simultaneously estimate 1) 

one deformation pathway from the synthesized CT image of the counterpart MR image to 

the actual CT image, and 2) the other deformation pathway from the actual MR image to the 

synthesized MR image of the counterpart CT image. It is apparent that the registration in 

each core is free of the appearance gap. Finally, we present a dual-core deformation fusion 

method to obtain a unified deformation pathway, which is then used to propagate the 

segmented contours of the prostate, bladder and rectum from the MRI to the CT domain in 

EBRT of prostate cancer. The contributions of our work can be summarized as follows:

• In order to address the large appearance gap between the CT and MR images, we 

propose to use improved patch-wise random forest with auto-context model for 

bi-directional image synthesis, i.e., synthesizing MRI from CT and also 

synthesizing CT from MRI. Here, we choose random forest as the basic learning 
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method since it has the capacity to build a robust non-linear relationship in an 

efficient way. Inspired by the patch-wise random forest (Jog et al., 2013; Huynh 

et al., 2016), besides CT image synthesis from MRI, we try to tackle the 

challenging problem of MRI synthesis from single CT modality. It is worth 

noting that, synthesizing MRI from single CT modality is a “simple-to-complex” 

image synthesis problem, which is not proposed and solved in previous 

publications. It is of great importance for the following multi-modal pelvic 

registration since it can provide more anatomical details.

• To fully utilize the complementary image information from both modalities, a 

dual-core deformation fusion framework is proposed. This method can 

effectively estimate the deformation pathway between the CT and MR images, 

by iteratively fusing two deformation pathways: 1) from the synthesized CT of 

MRI to the actual CT, and 2) from the actual MRI to the synthesized MRI of CT. 

Experimental results show that the registration accuracy can be boosted under 

this dual-core steered registration framework, compared with the previous 

methods that are often based on single-directional image synthesis.

This paper is a significant extension of our previous conference paper (Cao et al., 2016). In 

particular, we present more details for both the proposed learning-based image synthesis and 

the dual-core deformation fusion framework. Moreover, we also give more detailed 

experimental results on both bi-directional image synthesis and multi-modal image 

registration tasks. In order to evaluate the effectiveness of the proposed method, we further 

use various measurements to fully evaluate both image synthesis performance and 

registration performance, and analyze how the image synthesis will influence or contribute 

to the multi-model registration. A detailed discussion section is also added to analyze the 

advantages and clinical significance of the proposed method. In addition, the limitation and 

future work are discussed.

The rest of this paper is organized as follows. Section 2 presents the learning-based dual-

core multi-modal image registration, including the overview, learning-based bi-directional 

image synthesis and dual-core steered MRI-to-CT registration. Section 3 provides the 

experimental description and results based on a real pelvic dataset. Finally, the discussion 

and conclusion are provided in Section 4 and Section 5, respectively.

2. Method

2.1. Overview

Fig. 2 gives a systematic flowchart of the proposed dual-core steered multi-modal image 

registration method. This method consists of two major steps, as indicated by two asterisks 

in Fig. 2.

• Bi-directional Image Synthesis. A learning-based bi-directional image 

synthesis method is proposed to overcome the appearance gap between CT and 

MRI in multi-modal image registration. Since MRI synthesis from CT is much 

more challenging and novel, our method is particularly described in the context 

of CT-to-MRI synthesis. The same manner can also be performed to MRI-to-CT 
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synthesis. Specifically, in our method, an improved patch-wise random forest is 

first used to directly predict the entire MR image patch from the corresponding 

CT patch, where Haar-like features are employed to better characterize the CT 

patch. Compared to the voxel-wise random forest that only estimates one MRI 

value from a CT patch, the patch-wise random forest can preserve the 

neighboring structured information of the predicted MRI. To increase the overall 

accuracy of image synthesis, we further adopt an auto-context model to deeply 

refine the synthesized MRI by considering the context features in the 

neighborhood. With the improved quality of the synthesized image, the non-rigid 

registration performance can be boosted accordingly. The details of this step are 

described in Sections 2.2 and 2.3.

• Dual-core Steered MRI-to-CT Registration. In the beginning of registration, a 

synthesized MR image ÎMR is obtained from the CT image ICT, and also a 

synthesized CT image ÎCT is obtained from the MR image IMR. Then, the 

deformation pathway between MRI and CT is estimated in two ways: 1) 

registering ÎCT to ICT, and 2) registering IMR to ÎMR, as shown in Fig. 2. 

Eventually, the MR image is warped to the CT image space by following the 

fused deformation pathway φ, which is also refined iteratively under dual-core 
deformation fusion framework. The details of this step are described in Section 

2.4.

2.2. Learning-based image synthesis

2.2.1. Patch-wise random forest (P-RF) regression—The basic theory of random 

forest can be found in (Liaw and Wiener, 2002). It can be used for non-linear classification 

and regression, and has been widely adopted in disease diagnose (Zhang et al., 2016), image 

registration (Wei et al., 2016) and segmentation (Wang et al., 2015; Gao et al., 2016). Here, 

we directly introduce the improved patch-wise random forest for the application of image 

synthesis. Overall, in MR image synthesis from CT, it can be used to regress the MRI patch 

intensity from the corresponding CT patch and build a nonlinear mapping to bridge the 

appearance gap between the two modalities based on multiple decision trees. Fig. 3 

illustrates the training and testing stages of patch-wise random forest for the MR image 

synthesis from CT.

In the training step of patch-wise random forest, the CT and MR images of the same patient 

are already pre-aligned (with the details of the CT and MRI pre-alignment are described in 

Section 3.2). Based on this pre-aligned dataset, we first randomly select N voxels to obtain 

N training samples. Each sample consists of two components: 1) the input appearance 

feature vector extracted from a single CT patch, which can be denoted by x, and 2) the target 

MRI patch intensity value corresponding to the center of the CT patch, which can be 

represented by vector y. For training the non-linear mapping from CT to MRI, the input is N 
CT feature vectors X = [x1, x2, ⋯, xN], along with the corresponding N target MRI patch 

intensity values Y = [y1, y2, ⋯, yN]. Random forest consists of multiple decision trees, with 

each one trained independently. For each tree, its training is conducted by learning a set of 

splitting nodes to recursively partition the training sample set. Specifically, in each split 

node, for a feature indexed by k, its optimal threshold τ is found to best split the training set 
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into left and right subsets SL and SR with consistent target MRI patch intensity values. 

Mathematically, it is to maximize the variance reduction by a split:

argmax
k, τ

V(S) −
NL
N V(SL) −

NR
N V(SR), (1)

SL = (x, y) ∈ S ∣ xk < τ , SR = (x, y) ∈ S ∣ xk ≥ τ , (2)

where V(·) computes the averaged variance of target MRI intensity values across each 

element of the patch vector in the training set, xk indicates the k-th feature, and S indicates a 

training set. Once the optimal combination of feature index and its threshold is found for a 

split node, the training set S is partitioned into SL and SR with the sample numbers NL and 

NR, respectively. The same split operation is recursively conducted on SL and SR, until 1) the 

tree reaches the maximum tree depth, or 2) the number of remaining training samples is too 

few to be split.

In the testing step, given a testing sample with feature vector xnew extracted from a new CT 

patch sample (see the right part of Fig. 3), it is pushed to the root split node of each tree in 

the forest. Under the guidance of the split node (i.e., go left if xnew
k < τ, and go right 

otherwise), the testing sample will arrive at a leaf node of each tree, where the averaged 

target MRI patch intensity values of training samples in that leaf are used as a prediction of 

the tree. The final output of random forest is the average of patch predictions from all trees. 

Obviously, by going through all the voxels in the new CT image, the predicted patches are 

highly overlapping. Thus, by averaging all those overlapping values, the predicted MRI can 

be finally obtained.

Since the target MR image has strong spatial clues, we combine the patch-wise 

representation with random forest for the MR image prediction. The advantage of patch-

wise random forest regression is that, by predicting a MRI patch as a whole, the 

neighborhood information can be naturally preserved and lead to better image synthesis 

eventually. Moreover, since more target values can be obtained as the output for each tree, 

the number of trees in the whole forest can be reduced, which improves the efficiency of the 

prediction.

2.2.2. Feature extraction—Feature extraction is a crucial step for random forest training. 

An effective feature should have the capacity to distinguish different anatomical structures, 

as well as robustness to noise. Typically, it is not effective to directly use patch intensities as 

appearance features, since soft tissues have low contrast in the CT image, and also the CT 

image is always noisy. Therefore, the individual CT values are insufficient to characterize 

different pelvic structures, as they are also sensitive to noise. To solve this problem, we 

extract Haar-like features from CT patch to serve as appearance features for random forest 

training. Specifically, a Haar-like feature (Gao et al., 2016) describes 1) the averaged 
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intensity within a sub-block in the patch, or 2) the averaged intensity difference between two 

sub-blocks in the patch, as shown in Fig. 4.

By using the integral image (Viola and Jones, 2004), in which each position contains the 

summation of the voxel intensity values from the original position to the current location, 

Haar-like feature can be calculated with the constant time complexity. To generate more 

Haar-like features, we randomly sample the information within the patch. Since random 

forest has the inherent capability of feature selection, only the meaningful Haar-like features 

will be retained. It is worth noting that, to cover both local and global appearances for the 

underlying voxel, Haar-like features are extracted from coarse, medium and fine image 

resolutions by using the same patch size, respectively.

2.2.3. Auto-context model (ACM) based image synthesis refinement—In the 

patch-wise random forest, the MR image patch of each voxel is estimated from the Haar-like 

features extracted from the corresponding CT image patch. To build better non-linear 

mapping between the CT patch features and the MR image patch, we further incorporate the 

neighboring prediction results to enhance the patch-wise random forest training. In 

particular, an auto-context model (Tu and Bai, 2010) is adopted to refine the synthesized MR 

image iteratively. In this paper, we perform three layers as illustrated in Fig. 5. Note that, the 

auto-context model is used only in the last two layers, as indicated by a dashed box.

In the first layer, the appearance features (i.e., Haar-like features) from CT images are 

extracted to train a patch-wise random forest. Then, the trained forest is used to generate the 

initial synthesized MR images. In the second layer, to coordinate the prediction information 

in the neighborhood, the Haar-like features (namely the context features, as shown in Fig. 5) 

are further extracted from those initial synthesized MR images, similar to the extraction of 

appearance features. By combining these context features with the CT appearance features, a 

second patch-wise random forest can be trained, which also leads to the update of the 

synthesized MR images and their context features. This process iterates until it reaches the 

maximum number of layers.

2.3. Bi-directional image synthesis

In order to achieve unbiased MRI-to-CT registration and use the complementary information 

from both modalities in registration, the image synthesis should be performed in bi-

directions. Similar to Section 2.2, which proposes a learning-based method for synthesizing 

the MR image from CT, the CT image is also synthesized from MRI by using the same 

implementation: 1) The patch-wise random forest is applied to regress the CT patch from the 

corresponding MR image patch (represented by Haar-like features); 2) Further apply the 

auto-context model to refine the performance of the synthesized CT image. The learning-

based bi-directional image synthesis method is summarized in Algorithm 1.

Algorithm 1

Learning-based Bi-directional image synthesis.

Purpose: Synthesize Modality-A from Modality-B
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Data: Pre-aligned original Modality-A and Modality-B image pairs

Result: ÎA - synthesized Modality-A image

Initialization: Predicted Modality-A image map: PA(0) = 0; Context feature: Xcontext (0) = ∅

Training stage:

If Synthesizing MRI from CT

• Modality-A ← MRI; Modality-B ← CT;

Else If Synthesizing CT from MRI

• Modality-A ← CT; Modality-B ← MRI;

End If

• Extract appearance feature Xappearance from Modality-B image

• Extract target Modality-A intensity patch y

For i ← 1:MaxIteration

• Extract context feature Xcontext (i − 1) from the predicted Modality-A image map PA(i − 1)

• i – th layer structured random forest Fi training ← {(Xappearance, Xcontext (i − 1));Y}

• Update predicted Modality-A image map PA(i)

• i = i + 1

End For

Testing stage:

• Extract appearance feature Xappearance
new  from new Modality-B image IB

For i ← 1:MaxIteration

• Extract context feature Xcontext
new (i − 1) from predicted Modality-A image PA

new(i − 1)

•  i − th layer structured random forest Fi testing {Xappearance
new , Xcontext

new (i − 1)}

• Update predicted Modality-A image map PA
new(i)

• i = i + 1

End For

•  I A = PA
new(i)

2.4. Dual-core steered MRI-to-CT image registration

2.4.1. Intensity-based non-rigid registration—After the CT and MR images are 

synthesized, we have a total of four images: actual CT, actual MRI, synthesized CT from 

MRI, and the synthesized MRI from CT. Based on the actual and synthesized images, we 

can utilize the existing non-rigid registration methods to estimate the deformations 1) from 

the synthesized CT to the actual CT, and 2) from the actual MRI to the synthesized MRI. 

Among various existing registration methods, we choose two popular non-rigid registration 

methods for evaluation: 1) Diffeomorphic Demons (D. Demons) (Vercauteren et al., 2009), 

which is a non-parametric registration method widely used in various applications; 2) 
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Symmetric Normalization (SyN) (Avants et al., 2008), which is a top-ranked method among 

the 14 state-of-the-art non-rigid registration methods evaluated for brain image registration 

in (Klein et al., 2009). For SyN, we use the Advanced Neuroimaging Tool (ANTs) (Avants, 

Tustison et al., 2011) for its implementation.

2.4.2. Dual-core deformation fusion (DDF) for MRI-to-CT registration—To 

overcome the limitation of multi-modal image registration methods that utilize only single-

directional image synthesis, we utilize both synthesized CT and synthesized MRI in MRI-to-

CT image registration, which can take the advantage of complementary information from 

both modalities. Let ICT, ÎCT, IMR and ÎMR denote the actual CT, synthesized CT, actual 

MRI, and synthesized MRI, respectively. Traditionally, a general objective function for the 

conventional MRI-to-CT image registration can be given as:

arg min
φ

ℳ(ICT, φ(IMR)) + λℛ(φ), (3)

where φ is the deformation field to be estimated, ℳ is the dissimilarity metric, and φ(IMR) 

means that deforms the subject MR image to the CT image space with the estimated 

deformation field φ. ℛ is a regularization term, used to constrain the smoothness of the 

estimated deformation field φ.

By using the bi-directional synthesized images, the deformation field can be estimated by 

simultaneously minimizing 1) the dissimilarity between the CT modality core and 2) the 

dissimilarity between the MRI modality core. Then, the registration objective function can 

be rewritten as:

argmin
φ

1
2ℳ ICT, φ I CT + 1

2ℳ I MR, φ(IMR) + λℛ(φ) . (4)

To solve Eq. (4) and reuse the available registration tools, we apply the alternative 

optimization method. Specifically, we optimize the registration between the CT modality 

core (I CT and ÎCT) and the registration between the MRI modality core (ÎMR and IMR) 

separately as below:

argmin
φCT

1
2ℳ ICT, φCT I CT + 1

2λℛ(φCT), (5)

argmin
φMR

1
2ℳ I MR, φMR IMR + 1

2λℛ(φMR) . (6)

Eqs. (5) and (6) are used to minimize the differences 1) between the CT image ICT and the 

warped synthesized CT image φCT (ÎCT), and 2) between the synthesized MR image ÎMR and 
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the warped MR image φMR (IMR), respectively. In order to use the complementary 

information from both modalities, the dual-core deformation fusion is proposed accordingly:

argmin
φ

1
2‖φ − φCT‖2

2 + 1
2‖φ − φMR‖2

2 . (7)

Eq. (7) is used to ensure that the final deformation pathway φ to be close to both separately 

estimated φCT and φMR.

Both φCT and φMR can be optimized by using either D. Demons or ANTs-SyN, although the 

objective functions are slightly different in Eqs. (5) and (6). After estimating φCT and φMR, 

the final deformation φ can be effectively optimized by letting the gradient of Eq. (7) equal 

to zero, which brings to:

φ = 1
2(φCT + φMR) . (8)

However, simple average of deformation pathways may make the well-aligned structures in 

one modality become misaligned after averaging. To alleviate this issue, we approximate the 

optimal solution of Eq. (4) by alternating the dual-core deformation fusion procedure (Eqs. 

(5)–(8)) based on the warped synthesized CT and the original MR images until convergence, 

as summarized in Algorithm 2.

For iteration i, the tentatively warped images I CT
i − 1 and IMR

i − 1 are used to estimate a next set 

of deformations φCT
i  and φMR

i . The estimated deformations are then merged to form a 

combined deformation φi
, which is used to update the currently estimated deformation 

pathway φ = φ ∘ φi. Here, “∘” denotes deformation field composition (Vercauteren et al., 

2009), which means updating deformation field φ by φi. Using this deformation field 

composition can help preserve the quality of the subject image, by warping the original 

moving image ÎCT and IMR for just one time. The whole registration procedure iterates until 

the incremental deformation φi is small enough.

Algorithm 2

Optimization of Eq. (4): Iterative dual-core deformation fusion (DDF).

Data: CT: ICT; synthesized CT: ÎCT; MRI: IMR; synthesized MRI: ÎMR

Result: φ - the final deformation field and approximated solution of Eq. (4)

Initialization: i = 0; I CT
0 = I CT; IMR

0 = IMR; φ = 0;

While (φi
2 > ε)

• i = i + 1;

• Register CT image core: φCT
i = Register (I CT

i − 1, ICT)
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• Register MR image core: φMR
i = Register (IMR

i − 1, I MR)

•
Dual-core deformation fusion: φi = 1

2(φCT
i + φMR

i )

• Update the estimated deformation: φ = φ ∘ φi

• Deform the subject image: I CT
i = φ(I CT, ), IMR

i = φ(IMR)

End While

3. Experiments

3.1. Dataset description

The experimental dataset consists of 20 pairs of CT and MR images acquired from 20 

prostate cancer patients. For this dataset, the oncologists have manually labeled three crucial 

pelvic organs in each image, including the prostate, bladder and rectum. We use these labels 

as the ground-truth. The CT image size is 512 × 512 × 443 with voxel size of 1.172 × 1.172 

× 1 mm3. The MR image size is 256 × 256 × 144 with voxel size of 1 × 1 × 1 mm3. Intra-

subject and inter-subject linear alignments are done with FLIRT (Jenkinson and Smith, 

2001). Then, the unnecessary regions are removed to make the experiments more efficient. 

After preprocessing, both CT and MR images have the same image size (200 × 180 × 80) 

and resolution (1 × 1 × 1 mm3). Note that the cropped image size is large enough to include 

the prostate, bladder and rectum in each patient’s data.

3.2. Image synthesis experiments

For the data used in patch-wise random forest training, both intra-subject and inter-subject 

need to be well aligned. The intra-subject alignment is to register each pair of CT and MR 

images belonging to the same patient. Since it is quite difficult to well-align the CT and MR 

image accurately due to large deformation on soft tissue, we use the manual label image of 

crucial pelvic organs (ground-truth image) to guide accurate pre-alignment. Specifically, 

affine registration is first performed with FLIRT (Jenkinson and Smith, 2001). Then, non-

rigid registration (ANTs-SyN (Avants et al., 2008)) is conducted based on careful parameter 

tuning for each individual subject. For these affine and non-rigid registration steps, we use 

mutual information as the similarity metric and perform the registration using intensity 

images. To further refine the registration results on the crucial pelvic organs between the CT 

and MR images, we use D. Demons to register the respective manual labels of the prostate, 

bladder and rectum in the CT and MR images. The detailed parameter settings of each 

registration step are summarized in Table 1.

Finally, for inter-subject alignment, linear registration (again with FLIRT (Jenkinson and 

Smith, 2001)) is further applied to roughly register all subjects to a common space. Note 

that, for the above registration procedures, all respective transformations are composed into 

a single transformation to warp the image (under registration) for just one time, just avoiding 

multiple interpolations, which often make the final warped image fuzzy. For this pre-aligned 

dataset, the Dice Similarity Coefficients (DSC) values of the manually-segmented prostate, 
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bladder and rectum are 92.8%, 95.7% and 92.3%, respectively. For better evaluating the 

image synthesis performance, the intensity range of MR image is normalized to [0, 4000], 

which is the intensity range for the CT image.

3.2.1. Parameter setting—In image synthesis, the aligned CT and MR image pair is used 

to train our image synthesis models: 1) synthesizing CT from MRI (MRI-to-CT) and 2) 

synthesizing MRI from CT (CT-to-MRI). Table 2 provides parameters of patch-wise 

random forest (P-RF) training for bi-directional image synthesis. Specifically, 2-layer auto-

context model (ACM) and 10-fold cross validation are applied. For P-RF training, the input 

feature sample is extracted from the local 15 × 15 × 15 patch and the output is the 3 × 3 × 3 

patch intensity. Here, more trees and deeper tree depth are used for synthesizing MRI from 

CT, since this simple-to-complex mapping is more difficult. The voxel-wise random forest 

(V-RF) is also applied as the baseline method. Note that V-RF utilizes the same parameter 

setting as P-RF, but its output is a single voxel value, not the 3 × 3 × 3 patch.

3.2.2. Evaluation—Two measurements are used to quantitatively evaluate the image 

synthesis performance: 1) mean absolute error (MAE) and 2) peak signal-to-noise ratio 

(PSNR), which can be defined as:

MAE = 1
lmn ∑

a = 1

l
∑

b = 1

m
∑

c = 1

n
I(a, b, c) − I (a, b, c) , (9)

PSNR = 10 log10
MAXI

2

1
lmn ∑a = 1

l ∑b = 1
m ∑c = 1

n I(a, b, c) − I (a, b, c) 2 , (10)

where I and Î denote the original image and the synthesized image, and the image size 

represents by l, m, and n in three dimensions. Note that a high-quality synthesized image 

should have lower MAE and higher PSNR.

3.2.3. Bi-directional image synthesis results—Table 3 provides the quantitative 

performance of CT image synthesis from MRI, and Table 4 presents the quantitative 

performance of MR image synthesis from CT. From these two tables, we can observe that 

the patch-wise random forest is effective in building non-linear regression models to fill up 

the appearance gap between CT and MRI modalities. Furthermore, the image synthesis 

performance is improved by using more layers with the auto-context model. For both CT 

and MRI synthesis, the improvement achieved by adding the first-layer auto-context model 

is more significant than adding the second layer. This can qualitatively demonstrate the fast 

convergence of the auto-context model. In practice, two-layer auto-context model always 

leads to the convergence.

Figs. 6 and 7 provide detailed visualization of the synthesized CTs and the synthesized 

MRIs for one subject, along with the error maps between the actual and the synthesized 
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images. The results are consistent with the performance in Tables 3 and 4. From Figs. 6 and 

7, we can observe that the boundaries of both bone regions and soft tissue regions are clearer 

and less noisy by using P-RF, compared with results by the V-RF based image synthesis 

method. Moreover, the quality of the synthesized image is further improved by auto-context 

model refinement. The final synthesized image is quite similar to the actual image, by also 

preserving the smoothness and continuity. Note that, to achieve this promising performance, 

a relatively small number of trees (as shown in Table 2) is used to train our image synthesis 

model. This well demonstrates the effectiveness of the P-RF method, which allows obtaining 

adequate output values by using only a small number of trees.

It is reasonable that the performance of the synthesized CT image is much better than the 

synthesized MR image. This is because 1) the texture patterns are much more complex in the 

MR image than in the CT image, thus difficult to estimate, and 2) also the appearance in the 

MR image is more diverse than in the CT image. As shown in Figs. 6 and 7, the error maps 

of synthesized MRI are fuzzy, and also the synthesized MR images are smoother than the 

actual ones. However, the boundaries of pelvic tissues in the synthesized MR images are 

clear, and the appearance relationship is consistent between the synthesized MR image and 

the actual MR image, which provide crucial reference information for guiding the 

subsequent image registration.

3.3. Image registration experiments

In this section, the experiments are performed by registering the CT and MRI of each subject 

from the total 20 subjects. At each time, the image synthesis model is trained from the 18 

selected subjects (using the pre-aligned dataset). Then, the registration is tested upon the 

remaining 2 subjects (using their original data, instead of pre-aligned data). After repeating 

10 times, all subjects are used as testing subjects to perform the registration experiment. The 

averaged results are reported in the following section.

3.3.1. Evaluation—After the MR image is registered to the CT image, we use two kinds 

of measurements to evaluate the registration performance: 1) Volume overlap. Specifically, 

Dice Similarity Coefficient (DSC) between manual labels on CT (LCT) and aligned MRI 

(LMR) is used as the main measurement to evaluate the registration performance. Besides, 

sensitivity (SEN) and positive predictive value (PPV) are also used to compare the proposed 

method with the existing methods. 2) Surface distance. Specifically, the distance 

measurement is used to account for the boundary discrepancies between the CT labels and 

the aligned MRI labels. Here, symmetric average surface distance (SASD) and Hausdorff 

distance (HAUS) are calculated to further demonstrate the registration performance. Eqs. 

(11)–(14) below provide the definition of all these measurements.

DSC =
2 ∣ LCT ∩ LMR ∣

∣ LCT ∣ + ∣ LMR ∣ , (11)
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SEN =
∣ LCT ∩ LMR ∣

∣ LCT ∣ , PPV =
∣ LCT ∩ LMR ∣

∣ LMR ∣ , (12)

SASD = 1
2 mean

u ∈ LCT
min

v ∈ LMR
d(u, v) + mean

u ∈ LMR
min

v ∈ LCT
d(u, v) , (13)

HAUS = max max
u ∈ LCT

min
v ∈ LMR

d(u, v) + max
u ∈ LMR

min
v ∈ LCT

d(u, v) . (14)

Here, L means a binary label mask from prostate, bladder and rectum. d(u, v) is the 

Euclidean distance between voxels u and v. The unit of the distance measurement is 

presented by millimeter (mm). A good registration result should have higher volume overlap 

and lower surface distance.

3.3.2. MRI-to-CT registration results—As described in Section 2.4, two state-of-the-art 

non-rigid registration methods (D. Demons and ANTs-SyN) are used in our experiment, 

with their detailed parameter settings shown in Table 5. For the preprocessed data, the CT 

and MRI of the same patient are already linearly aligned. The DSC values of prostate, 

bladder, and rectum after linear registration are 85.66% ± 5.65%, 89.29% ± 2.18% and 

78.44% ± 3.54%, respectively, and we regard these results as the baseline.

Fig. 8 illustrates the MRI-to-CT registration results under different layers of ACM for image 

synthesis, and different dual-core deformation fusion (DDF) iterations for image 

registration, respectively. The mean DSC values of prostate, bladder, and rectum are 

evaluated. Here, the registration results in Fig. 8(a) use 3 iterations (3-iter) DDF, while the 

registration results in Fig. 8(b) use 2 layers (2-layer) ACM.

As shown in Fig. 8(a), more layers of ACM lead to better registration accuracy due to better 

quality of the synthesized images. Fig. 8(b) demonstrates that the DDF framework improves 

registration performance of both D. Demons and ANTs-SyN iteratively. In practice, we 

found that it is enough to have 2-layer ACM in image synthesis and 3 iterations (3-iter) in 

DDF.

Table 6 provides the mean and standard deviation of DSC of the total 20 subjects for the 

three crucial pelvic organs. It can be observed that, for D. Demons, which is originally not 

applicable for multi-modal image registration, can now work well by introducing the 

synthesized image. For ANTs-SyN, using MI as similarity metric obtains reasonable 

registration results on the original CT and MRI. However, as shown in Table 6, better 

performance can be obtained by using the synthesized image. This demonstrates that using 

synthesized image can enhance the performance of multi-modal image registration method. 
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Moreover, the best performance is achieved by using our proposed dual-core deformation 

fusion algorithm. The consistently higher DSC and the lower standard deviation by our 

proposed method demonstrate both its robustness and accuracy in solving multi-modal 

image registration problem.

We further provide the mean SEN, PPV, SASD, and HUAS values of three pelvic organs 

(prostate, bladder and rectum) in Tables 7 and 8 to compare our proposed bi-directional 

image synthesis based registration method with single-directional image synthesis based 

registration method.

From Tables 7 and 8, we observe that our proposed bidirectional image synthesis based 

method consistently obtains higher SEN and PPV and also lower SASD and HAUS, 

compared with the single-directional image synthesis based registration methods. This 

demonstrates that, by using the complementary information from both modalities, the 

performance is significantly improved for multi-modal image registration. It is worth noting 

that, for all cases, the PPVs always have higher values than SENs. This phenomenon occurs 

when the organ contour is under-segmented compared with the ground truth. It is reasonable 

in our MRI-to-CT registration case, since the manual labels on MRI are always smaller than 

those on CT. Due to the low tissue contrast in CT, the manual labels on CT image always 

include more regions due to the difficulty of identifying the organ boundaries.

Fig. 9 provides the visualized registration results after ANTs-SyN registration for 3 subjects 

in the dataset. For each subject, the first row shows the actual CT and MR images and the 

corresponding synthesized MR and CT images, which are all used in our proposed iterative 

DDF registration framework. The second row provides the registration results, i.e., the 

warped MR image, by using the actual CT and MR image (CT & MRI), single-directional 

image synthesis (CT & S-CT, S-MRI & MRI), and our bi-directional image synthesis 

based registration method (Proposed). The visualized registration results are corresponding 

with those shown in Table 6. The yellow contours indicate CT’s ground-truth labels of the 

prostate, bladder and rectum. The red contours denote the labels of warped MR image after 

registration. From the overlaps between the ground-truth labels and the warped (estimated) 

labels, we can also observe that using single-directional synthesized image can partially 

improve the registration result, compared to the case of only using actual CT and MR 

images. Furthermore, it is obvious that our proposed method can better preserve the 

structures of pelvic organs during registration, and also achieves much higher registration 

performance.

4. Discussion

We have presented a novel image-synthesis-based multi-modal pelvic registration method to 

help improve the accuracy and efficiency of prostate cancer radiation therapy. Compared 

with the traditional image synthesis based methods, which only perform single-directional 

image synthesis, we proposed a bi-directional image synthesis based registration method and 

for the first time tackled the challenging problem of the MR image synthesis from the single 

CT modality. The bi-directional image synthesis can provide adequate anatomical 

information from both modalities, thus boosting the performance of MRI-to-CT non-rigid 
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registration. The promising experimental results also show the potential of translation to the 

routine clinical application.

For image synthesis, the training time of each random forest model is about 3.5 h on a 2.93 

GHz 12-core Intel processor, while the testing time is about 5 min for each synthesized 

image by using the 2-layer auto-context model. For the proposed registration method, each 

DDF iteration takes about 2 min by using D. Demons, while 3 min by using ANTs-SyN. In 

the application stage, if using three DDF iterations (i.e., the same setting in the experiment 

section), registering a new pair of CT and MRI costs less than 15 min, which can be further 

improved with the optimization of implementations.

The topic of the MR image synthesis from CT is worth to discuss individually. Besides 

affording a new idea for multi-modal image registration problem, it can also be widely used 

in other medical image analysis tasks. The drawback of current MRI synthesis methods is 

that more image modalities are needed to predict MRI, which limits their clinical 

applications. In this paper, we attempt to solve this problem by using a common machine 

learning technique, random forest, with the consideration of the characters from each image 

modality. Reasonable and promising MRI synthesis results are obtained, and we have 

already proved its positive role in solving multi-modal registration problem. For future work, 

we will try to develop more advanced approach to further improve the image synthesis 

performance.

It is obvious that, for image synthesis based multi-modal registration, the quality of the 

synthesized image will influence the registration performance. Based on machine learning 

techniques, a specific detail can be hardly predicted when the source modality has no 

information about this detail. An example is the subject 1 in Fig. 9. Some fills in the rectum 

region show different appearance with the regular rectum appearance in the MR image, 

while there is no difference in the CT image. Thus, this anatomical detail cannot be 

predicted accurately in the synthesized MRI since no information is provided by the source 

CT. This will affect the registration when only using single modality pair. The proposed 

iterative dual-core deformation fusion in this paper can help mitigate this problem. The 

fusion procedure can correct the mis-alignment in one modality core with the help of 

another modality core to largely avoid the registration errors.

Further work on this topic should consider the inter-subject MRI-to-CT pelvic registration 

problem. It is more difficult to tackle, compared with intra-subject registration presented in 

this paper, since the pelvic organs are quite variable across time and subjects. Also, a larger 

dataset is needed to further verify the effectiveness of the proposed image synthesis and 

registration method.

5. Conclusion

In this paper, we have proposed a bi-directional image synthesis based dual-core multi-

modal image registration method to register the pelvic MR image to the CT image for 

facilitating more accurate prostate cancer radiation therapy. To obtain accurate MRI-to- CT 

registration, image synthesis is proposed to fill up the appearance gap between the two 
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modalities. In particular, the patch-wise random forest and auto-context model are used to 1) 

synthesize CT from MRI (complex-to-simple mapping), and also 2) synthesize MRI from 

CT (simple-to-complex mapping). This bi-directional image synthesis can effectively reduce 

the bias for registration, compared with single-directional image synthesis. Furthermore, we 

proposed an iterative dual-core deformation fusion framework to steer the estimation of the 

deformation pathway from the MR image to the CT image by fully utilizing the 

complementary information in multiple modalities. Experimental results show that our 

proposed method can achieve higher registration performance than the conventional methods 

under various evaluation measurements.
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Fig. 1. 
Pelvic CT and MRI from the same patient, which scanned at different time points. Left two 

images: CT and labeled CT; Right two images: labeled MRI and MRI. The CT and MRI 

have already been linearly registered.

Cao et al. Page 22

Med Image Anal. Author manuscript; available in PMC 2018 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The framework of the proposed dual-core steered MRI-to-CT image registration based on 

bi-directional image synthesis. The actual CT and actual MRI are already linearly aligned.

Cao et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2018 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
An illustration of training and testing in patch-wise random forest for MR image synthesis 

from CT.
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Fig. 4. 
An illustration of Haar-like features extraction within a single patch. Two ways of Haar-like 

feature generation: (a) the averaged intensities within a sub-block; (b) the averaged intensity 

differences between two sub-blocks.
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Fig. 5. 
Iterative refinement of synthesized MRI with auto-context model.
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Fig. 6. 
Visualization of the synthesized CT image (S-CT) from MRI for one subject.
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Fig. 7. 
Visualization of the synthesized MR image (S-MRI) from CT for one subject.
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Fig. 8. 
MRI-to-CT non-rigid registration results by using the proposed registration method. (a) The 

mean DSC values of prostate, bladder and rectum by different number of ACM layers in 

image synthesis. (b) The mean DSC values of prostate, bladder and rectum with respect to 

different DDF iterations in Algorithm 2. Note that, 3-iter DDF is applied in (a), while 2-

layer ACM is used in (b).
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Fig. 9. 
Examples of the synthesized images and the registration results (with ANTs-SyN) for 3 

subjects in the dataset. Yellow contours are the contours of the prostate, bladder and rectum 

of the original CT image, used as ground-truth. Red Contours are the warped contours of the 

prostate, bladder and rectum after respective registrations. (For interpretation of the 

Cao et al. Page 30

Med Image Anal. Author manuscript; available in PMC 2018 April 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Table 1

Parameter settings of intra-subject CT and MRI registration for generating the pre-aligned dataset.

Affine (FLIRT) (Intensity 
image)

Non-rigid (ANTs-SyN) (Intensity image) Non-rigid (D. Demons) (Label 
image)

Parameter Setting flirt antsRegistration DemonsRegistration

-in $MR_intensity_image -d 3 -f $CT_label_image

-ref $CT_intensity_image -m MI [$CT_intensity_image, -m $MR_label_image

-out $registered_image $MR_intensity_image, 1] -o $warped_label_image

-omat transformation.mat -o [$output_file] -O $out_deformationfield

-cost MI -t SyN [0.3, 3, 0] -s 2

-searchcost MI -c [80 × 80 × 60, 1.e-6, 10] -a 0

-searchrx -20 20 -s 4 × 2 × 1vox -i 30 × 20 × 20

-searchry -20 20 -f 3 × 2 × 1

-searchrz -20 20 *common setting, parameters fine-tuned for each 
individual subject
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Table 3

Quantitative results of CT image synthesis from MRI by voxel-wise random forest (V-RF) and patch-wise 

random forest (P-RF) with auto-context model refinements (1-layer ACM and 2-layer ACM).

V-RF P-RF 1-layer ACM (P-RF) 2-layer ACM (P-RF)

MAE 58.61 ± 4.63 51.24 ± 3.81 40.97 ± 3.64 38.64 ± 3.42*

PSNR 29.17 ± 0.91 31.68 ± 0.89 33.80 ± 0.88 34.34 ± 0.91*

*
indicates significant improvements via paired t-tests, p < 0.05.

The bold is used to show the best performance.
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Table 4

Quantitative results of MRI image synthesis from CT by voxel-wise random forest (V-RF) and patch-wise 

random forest (P-RF) with auto-context model refinements (1-layer ACM and 2-layer ACM).

V-RF P-RF 1-layer ACM (P-RF) 2-layer ACM (P-RF)

MAE 149.81 ± 10.32 139.48 ± 9.79 128.11 ± 8.81 124.03 ± 8.14*

PSNR 24.47 ± 0.94 25.50 ± 0.83 26.01 ± 0.82 26.32 ± 0.82*

*
indicates significant improvements via paired t -tests, p < 0.05.

The bold is used to show the best performance.
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Table 5

Implementation details for D. Demons and ANTs-SyN, respectively.

D. Demons ANTs-SyN

Parameter Setting DemonsRegistration antsRegistration

-f $intensity_image -d 3

-m $intensity_image -m MI [$intensity_image,

-o $warped_image $intensity_image, 1]

-O $out_deformationfield -o [$output_file]

-s 2 -t SyN [0.4, 3, 0]

-a 0 -c [30 × 30 × 20]

-i 20 × 15 × 15 -s 4 × 2 × 1vox

-f 3 × 2 × 1
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Table 7

Comparison of mean SEN and PPV values of three pelvic organs after non-rigid registration based on single-

directional image synthesis (CT & S-CT, S-MRI & MRI), and our proposed bi-directional image synthesis 

under 3-iter DDF (Proposed).

Metric Method Single-directional Bi-directional

CT & S-CT S-MRI & MRI Proposed

SEN (%) D. Demons 80.41 ± 8.48 83.55 ± 7.31 86.59 ± 6.28*

ANTs-SyN 83.87 ± 7.10 84.27 ± 6.30 86.39 ± 5.21*

PPV (%) D. Demons 93.43 ± 3.22 94.39 ± 2.10 95.16 ± 1.82*

ANTs-SyN 93.42 ± 2.95 94.29 ± 2.28 95.40 ± 1.69*

*
indicates significant improvement via paired t -tests (p < 0.05).

The bold is used to show the best performance.
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Table 8

Comparison of mean SASD and HAUS values of three pelvic organs after non-rigid registration based on 

single-directional image synthesis (CT & S-CT, S-MRI & MRI), and our proposed bi-directional image 

synthesis under 3-iter DDF (Proposed).

Metric Method Single-directional Bi-directional

CT & S-CT S-MRI & MRI Proposed

SASD (mm) D. Demons 1.25 ± 0.67 1.68 ± 0.79 1.03 ± 0.64*

ANTs-SyN 1.38 ± 0.77 1.25 ± 0.74 1.10 ± 0.71*

HAUS (mm) D. Demons 8.89 ± 2.74 8.57 ± 3.01 6.71 ± 2.30*

ANTs-SyN 7.63 ± 2.73 7.18 ± 2.02 6.69 ± 1.94*

*
indicates significant improvement via paired t -tests (p < 0.05).

The bold is used to show the best performance.
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