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Abstract

Computational models of heart electrophysiology achieved a considerable in-

terest in the medical community as they represent a novel framework for the

study of the mechanisms underpinning heart pathologies. The high demand

of computational resources and the long computational time required to eval-

uate the model solution hamper the use of detailed computational models in

clinical applications. In this paper, we present a multi-front eikonal algorithm

that adapts the conduction velocity (CV) to the activation frequency of the

tissue substrate. We then couple the eikonal new algorithm with the Mitchell-

Schaeffer (MS) ionic model to determine the tissue electrical state. Compared to

the standard eikonal model, this model introduces three novelties: first, it eval-

uates the local value of the transmembrane potential and of the ionic variable

solving an ionic model; second, it computes the action potential duration (APD)

and the diastolic interval (DI) from the solution of the MS model and uses them

to determine if the tissue is locally re-excitable; third, it adapts the CV to the

underpinning electrophysiological state through an analytical expression of the

CV restitution and the computed local DI. We conduct series of simulations on
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a 3D tissue slab and on a realistic heart geometry and compare the solutions

with those obtained solving the monodomain equation. Our results show that

the new model is significantly more accurate than the standard eikonal model.

The proposed model enables the numerical simulation of the heart electrophys-

iology on a clinical time scale and thus constitutes a viable model candidate for

computer-guided radio-frequency ablation.

Keywords: Cardiac Electrophysiology, Multi-front eikonal model, Dijkstra

algorithm, Mitchell And Schaeffer model, Clinical time scale, Conduction

velocity

1. Introduction

The propagation of an electrical stimulus in the cardiac tissue is mathemati-

cally described by the bidomain model Tung (1978); Clements et al. (2004) that

is a system of a parabolic reaction-diffusion and an elliptic PDEs describing

the electrical state of an intracellular and an extracellular continuum media,

separated by the cell membrane. The electrical state of the cell membrane

characterising the reaction term is described by a non-linear system of ODEs

that either represents the biophysical fluxes of the ion species across the cell

membrane (Luo & Rudy (1991, 1994); Ten Tusscher et al. (2004)), or that tries

to reproduce the shape of the action potential in a phenomenological man-

ner (Mitchell & Schaeffer (2003); Aliev & Panfilov (1996)). When intracellular

and extracellular conductivity tensors are considered proportional up to a given

constant, it is possible to simplify the bidomain description with the so-called

monodomain approximation Clements et al. (2004). The problem is thus charac-

terised by only a parabolic non-linear reaction-diffusion equation. Even though

computationally improved, the monodomain simplification still requires solving

the non-linear system that arises from the numerical discretization. Since the

characteristic space and time scales of the electrophysiology are small compared

to the standard left ventricular dimension and cycle the length, the compu-

tational demand of the monodomain simplification is still too high in view of
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clinical applications, where the time is one of the principal constraints. Ap-

proaches based on proper orthogonal decomposition (POD) were applied to the

bidomain model, furnished good results in terms of performances Corrado et al.

(2016) and allowed to cope with state corrections on electrophysiology data as-

similation Corrado et al. (2015). However, the requirement of building a data set

of snapshots prevents their application to domains with strong heterogeneities.

The eikonal model describes the propagation of an electrical stimulus from

a region Γ of the cardiac tissue domain ΩH in terms of isochronous surfaces.

Thus, the eikonal model captures the propagation of the activation front, when

the propagation velocity is known. Due to the causality of the propagation

front, the eikonal equation can be solved in a very efficient way, either by fast

marching methods (FMM) Sethian (1996) or by Dijkstra algorithm Wallman

et al. (2012). The required computational time and resources enable it to be

an optimal candidate in view of clinical applications. In this work, we adopt

the Dijkstra algorithm for the numerical solution of the eikonal equation, since

it has been shown to be very efficient Wallman et al. (2012). We suitably

modify that algorithm by taking into account of the multi-front activations

Wallman et al. (2013); Pernod et al. (2011); Sermesant et al. (2007) and the CV

variations related to the tissue electrophysiology. We describe the cell membrane

action potential with the MS model Mitchell & Schaeffer (2003) and we use

the asymptotic expression introduced in Cain et al. (2004) to locally adapt

CV to the heart rate. The work is organised as follows: in section 2.1, we

introduce the monodomain MS ionic model and its restitution properties. In

section 2.2, we present the modified eikonal model and its algorithm. In section

2.3, we describe the proposed eikonal MS algorithm. In section 3, we apply the

proposed algorithm to a tissue slab and to a ventricular geometry obtained by

CT segmentation. We show through series of simulations the accuracy of the

new algorithm and its performances.
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2. Methods

2.1. The Monodomain Mitchell and Schaeffer model

The MS ionic model Mitchell & Schaeffer (2003) is a two state variable ODE

system that describes the ionic fluxes across the cell membrane with a gated-

inward and an ungated outward ionic current. When incorporated into a tissue

ΩH with boundary Σ and for a time interval [0, T ], the MS monodomain model

leads to the following system:

Am (Cm∂tVm + βIion(Vm,h))− div(Dm∇Vm) = AmIapp, in ΩH × (0, T ),

∂th + g(Vm,h) = 0, in ΩH × (0, T ),

Dm∇Vm · n = 0, on Σ,

Iion(Vm,h) = −h (Vm − Vmin)2 (Vmax − Vm)
τin (Vmax − Vmin)3 + (Vm − Vmin)

τout (Vmax − Vmin) ,

g(Vm,h) =

 h−1
τopen

, if Vm ≤ Vgate,

h
τclose

, if Vm > Vgate,

(1)

where Vm is the transmembrane potential, h is the gating variable of the inward

current, Vmin, Vmax are the minimum and the maximum characteristic values of

the transmembrane potential, Cm is the membrane capacitance per area unit, β

is a reaction factor, typically β = Cm (Vmax − Vmin), Am is the cell surface per

volume unit, Dm is the bulk conductivity, Iapp is an external stimulus triggering

the activation, Vgate is the gate potential where inward channels switch between

open and close, and τin, τout, τopen and τclose are the 4 time constants character-

ising the four phases of the action potential. When the tissue is activated, the

transmembrane potential shows an upstroke. For a single activation, the elapsed

time such as Vm ≥ Vgate is defined as the action potential duration (APD), while

for two consecutive activations the elapsed time such as Vm < Vgate is defined

as the diastolic interval (DI). According to Mitchell & Schaeffer (2003), it is

possible to express the APD at the (n + 1)-th beat as a function of the DI at
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the n-th beat, with the following leading order approximation:

APDn+1 (DIn) = τclose log
(
h (DIn)
hmin

)
, (2)

hmin = 4 τin

τout
,

h (DIn) = 1− (1− hmin) e−
DIn
τopen .

To obtain restitution for CV , we first define the diffusivity tensor as:

σm =
Dm

AmCm
,

with a longitudinal component σlm, parallel to the local fibre direction ~a and

transversal one σtm, and then re-arrange it as follows:

σm = σtmI +
(
σlm − σtm

)
~a⊗ ~a = σlm

(
ρI + (1− ρ)~a⊗ ~a

)
= σlmD (3)

where ρ = σtm/σ
l
m ≤ 1 is the ratio between the transversal and longitudinal

diffusivity components and D is a dimensionless tensor that describes the tissue

anisotropy. In Cain et al. (2004), the authors obtain an expression for the CV

restitution on a 1D filament. In this work, we use the hypothesis that the

ratio between transversal and longitudinal components of the CV is equal to ρ

and does not vary with the frequency. Thus, we characterise the longitudinal

component of the CV with the following expression:

CVn+1 (DIn) = 1
4

(
3
√
h (DIn)− hmin −

√
h (DIn)

)√2σlm
τin

. (4)

Remark. In multi-dimension problems (2D, 3D), the conductivity tensor D has

two eigenvalues: the former is equal to 1 and corresponds to the conductivity in

the fibre direction; the second is equal to ρ that corresponds to the conductivity

in the transverse direction. If ρ = 1/2 for instance, the CV is
√

2 faster than

it should be in the transverse direction. We take into account this issue in the

next paragraph.
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2.2. The eikonal model for the activation

The eikonal equation describes the propagation of an electrical wavefront

generated on a region Γ and through a non-homogeneous anisotropic continuum

ΩH . Denoting by Tact(~x) the time at which the wavefront reaches the point ~x

and by F (~x) the characteristic velocity the wavefront propagates in the medium,

the eikonal equation reads as follows: F
√

(∇Tact)ᵀD ∇Tact = 1 on ΩH

Tact = 0 on Γ
(5)

where D is the tensor introduced in (3) that takes into account of the propaga-

tion anisotropy. To obtain the same conduction velocity values in the eikonal

model and in the monodomain Mitchell and Schaeffer model, from (4) and (5)

it follows:

F = α

√
2σlm
τin

α(DIn) = 1
4

(
3
√
h (DIn)− hmin −

√
h (DIn)

) (6)

Once the space distribution DIn(~x) is known, it is possible to determine the

activation times for a particular electrical state of the medium by solving the

eikonal equation (5). In this paper, the eikonal equation is solved using a Di-

jkstra algorithm Wallman et al. (2012) which has been modified in order to

take into account of the presence of re-excitable regions Wallman et al. (2013);

Pernod et al. (2011); Sermesant et al. (2007) and of the local variations on the

CV . Differently from Wallman et al. (2013); Pernod et al. (2011), in this paper,

we solve numerically the ionic MS model on each node of the graph, we use the

computed solution to determine whether the point is re-excitable, its value of

the DI and we compute the propagation velocity of the medium from the elec-

trophysiological state of the tissue through the DI. This has many advantages:

First, it allows taking into account of the spatial heterogeneity of the param-

eters that characterise the ionic model and thus of their high impact on the

electrical wave propagation; the heterogeneity of the parameters characterising

the ionic model can be considered nodal-wise. Second, it allows determining the
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DI on each node of the mesh since the transmembrane potential is computed.

Third, the adaptation of the CV and the re-excitability criterion allow taking

into account of slowing in the propagation and of functional blocks: when the

electrical wave fails to propagate in the tissue especially in the refractory period.

Following Wallman et al. (2012), we denote by n0 the set of points belonging

to Γ, by Q the priority queue where a set of trial points are ordered with

respect to their candidate activation time and by Pvisited the container of points

with a definitely determined activation time. These variables are initialized as

described in Algorithm 1.

Algorithm 1 Initialization of the multi-frontal eikonal
Q→ Q ∪ n0, n0 ∈ Γ

Tact(n0) = 0

Tact(n /∈ Γ) =∞

Pvisited (n0) = true

tcur = 0

In order to compute the time that takes the electrical wave to propagate from

a node ni characterised by its position ~xi to a neighbour node nj characterised

by its position ~xj , we define the cost function cij
(
DIni , DInj

)
as follows: cij

(
DIni , DInj

)
=
√
~vᵀijD

−1~vij/
(
F
(
DIni , DInj

)
/δ
)
,

~vij = ~v(ni, nj) = ~xj − ~xi,
(7)

where δ is a corrective coefficient Wallman et al. (2012); Kim & Hespanha

(2003) that compensates the error introduced by the graph representation of

the domain. The characteristic velocity F
(
DIni , DInj

)
along a segment ~vij

depends on the values of the diastolic interval at both vertices of the edge,

through the parameter α
(
DIni , DInj

)
. In this work, we choose the following

relation:

α
(
DIni , DInj

)
= max

(
0,max(α (DIni) , α

(
DInj

)
)
)
. (8)

Introducing a time step dt, it is possible to evaluate the set of points that are

activated until the time tn = ndt and their corresponding activation time by
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applying Algorithm 2, where the function TIME (ni, nj) is defined as follows:

TIME (nj , ni) = min
(
Tact(ni), Tact(nj) + cij

(
DIni , DInj

))
. (9)

For each node n in the graph, we denote by NEIGH (n) the set of points that

are connected to n; these points correspond to the mesh points sharing an edge

with n.

Algorithm 2 Eikonal Algorithm with time stepping
while Q 6= φ or tcur ≤ t do

n = argminn∈QTact(n)

tcur = Tact(n)

if tcur ≤ t then

Q = Q\n

Pvisited (n) = true

for all ni ∈ NEIGH (n) do

if Pvisited (ni) = false then

Tact(ni) = TIME (n, ni)

Q = Q ∪ ni
end if

end for

end if

end while

Remark. The solution of the eikonal problem with the time stepping described

in Algorithm 2 allows taking into account multiple wave fronts by removing

the points that became re-excitable from the container Pvisited. The same time

stepping also allows to take into account the dependency of the CV on the local

electrophysiological state of the tissue. These variations are introduced into the

model by modifying the characteristic propagation velocity F that determines the

cost defined in (7).
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2.3. The eikonal Mitchell and Schaeffer model

In this section, we present two algorithms that would be used to simulate the

propagation of the electrical wave using the eikonal model: The first algorithm

evaluates the state variables by solving the Mitchell and Schaeffer model at

each node of the graph. This algorithm could be used in clinical applications

that require the transmembrane potential, which could be the case, for instance,

when electrocardiograms (ECGs) or electrograms (EGMs) need to be computed.

The second algorithm adopts the leading order analytical expression of the APD

restitution in order to correct the CV and compute the activation times using

the eikonal model, it also allows to compute pseudo-potentials as in described

in Pernod et al. (2011). This algorithm could be used in clinical applications

that require narrow time constraints, such as the evaluation of the outcome of

a radio-frequency ablation procedure.

2.4. Algorithm with state variables computation

The eikonal model introduced in section 2.2 is used to mimic the conductivity

of the Monodomain MS model described in section 2.1. First, we initialize the

eikonal algorithm as described in Algorithm 1. We denote by Nx the number of

nodes in the considered graph (or mesh). For i = 1, . . . ,Nx, the couple (v0
m,i
,h0

i )

is the initial state at the i−th node. We denote by Iapp,i
(
T i

act, tstim
)
an external

electrical stimulus applied to the i − th node at time T i
act and with duration

tstim. The couple (vnm,i
,hni ) is the electrophysiological state at time tn and at

i− th node. The eikonal MS model is computed as described in Algorithm 3.
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Algorithm 3 MS-eikonal algorithm
Initialize state variables (vnm,i

,hni ).

The time each node will be activated is determined by solving the Algorithm 2.

for n = 0, . . . ,Nt − 1 do

for i = 1, . . . ,Nx do

• solve the MS model between tn and tn+1

Cm∂tvm,i + Iion(vm,i ,hi) = Iapp
(
T iact, tstim

)
∂thi + g(vm,i ,hi) = 0

Iion(vm,i ,hi) = − hi

τin
v2

m,i
(1− vm,i) + 1

τout
vm,i

g(vm,i ,hi) =

 hi−1
τopen

if vm,i ≤ vgate

hi
τclose

if vm,i > vgate

(10)

• update the local APD according to the solution vm,i .

• If vm,i ≤ vgate and hi ≥ hmin the node is marked as re-excitable and

removed from the list of known points (the values Pvisited (ni) = false),

the candidate activation time is set to ∞.

• On points that are marked as excitable, for each time the value of the

DI is updated as follows:

DIi = tn+1 −
(
T i

act +APDi
)

and the value of CV is updated.

end for on space

Update the activation times between tn and tn+1 following Algorithm 2.

end for on time

On each node, the local value APDi of the action potential duration is up-

dated as follows. On the i-th node when tn+1 ≥ T i
act, the flag fdep,i is activated,

the flag frep,i is deactivated, the value of DIi is set to 0 (DIi = 0) and the eval-

uation of the repolarisation event begins for the following time iterations. In
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this paper, the repolarisation is considered occurring when the transmembrane

potential crosses the threshold vm = vgate with a negative time derivative.

If repolarisation occurs at the i-th node, the flag frep,i is activated, the repolar-

isation time is evaluated as follows:

trep,i = tn + tn+1 − tn

vn+1
m,i − vnm,i

(
vgate − vnm,i

)
(11)

and the local APDi is updated:

APDi = trep,i − T
i
act (12)

The flags fdep,i and frep,i are then deactivated and the algorithm updates DIi

at each time iteration and until a new depolarisation occurs.

Remark. In this paper, we trigger the action potential with an applied current

characterised by a constant predefined intensity Iapp and duration tstim. This

choice allows to trigger the action potential in the full range of excitability of

the ionic model Mitchell & Schaeffer (2003), provided that the intensity and the

duration of the stimulus are large enough. A more complex expression of the

intensity and duration of the applied stimulus can be found in the recent work

of Neic et al. (2017), where the authors include a current that mimics the shape

of the diffusion current.

2.5. Algorithm with analytical restitution

An alternative and faster formulation to Algorithm 3 is presented in Algo-

rithm 4. This algorithm adopts pseudo-potentials and a leading order analytical

approximation for the APD. The duration of the refractory period is denoted

by RP and evaluated as follows:

RP = τout log
(

0.5
vgate

)
This expression was obtained by considering that during RP , h < hmin � 1

and thus ∂tvm ' − vm
τout

. The value of transmembrane potential at the beginning

of the RP here was approximated with the value v+
m (hmin) = v−m (hmin) = 0.5,
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on the null-clines, Mitchell & Schaeffer (2003). At the end of RP , vm = vgate,

while h can be evaluated as follows:

hend,RP = hmin exp
(
− RP

τclose

)
The time lapse TRR required to h to increase from hend,RP to hmin is evaluated

from equation (1) as follows:

TRR = τopen log
(

1− hend,RP

1− hmin

)
(13)

This value will be used as threshold for the diastolic interval to determine the

tissue re-excitability.
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Algorithm 4 Restitution-eikonal algorithm
Initialize h = 1, vm = 0 and DI =∞

The time each node will be activated is determined by solving the Algorithm 2.

for n = 0, . . . ,Nt − 1 do

for i = 1, . . . ,Nx do

• Determine APD and trep on nodes that become activated:

APD = τclose log
(
h (DI)
hmin

)
trep = Tact +APD +RP

(14)

• Update vn+1
m and DI:

DI =

 0.0 if Tact ≤ tn+1 ≤ Tact +APD +RP

tn+1 − (Tact +APD +RP ) if tn+1 ≥ Tact +APD +RP

vn+1
m =


1.0 if Tact ≤ tn+1 ≤ Tact +APD

0.5 if Tact +APD ≤ tn+1 ≤ Tact +APD +RP

0.0 if tn+1 ≥ Tact +APD +RP

• If DI ≥ TRR with TRR defined in (13), the node is marked as re-

excitable and is removed from the list of known points (the values

Pvisited (ni) = false), the candidate activation time is set to ∞.

• On points that are marked as excitable, the value of CV is updated

end for on space

Update the activation times between tn and tn+1 following Algorithm 2.

end for on time

3. Numerical Results

In this section, we compare the solutions obtained solving the eikonal MS

model and the monodomain model. We use two different geometries:

• a homogeneous anisotropic tissue slab
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Table 1: Tissue properties for the MS model

τin τout τopen τclose vgate

0.3 ms 6 ms 120 ms 150 ms 0.13

• a heart geometry obtained from CT-scan segmentation

The solution of the eikonal model, obtained either with the adaptation of the

CV to the local electrical state or without adaptation, is compared with the

solution obtained from the monodomain model. For a generic quantity u, the

following l2 relative error norm (l2,r) is defined:

l2,r(ueiko − umono) =

√
1

Nx

∑Nx
i=1
(
ueiko
i − umono

i

)2√
1

Nx

∑Nx
i=1 (umono

i )2

where ueiko
i and umono

i are the quantities that will be compared, evaluated on

the i − th computational node and obtained by solving the monodomain and

the eikonal model respectively. On both examples, the monodomain problem is

discretized in space with linear finite elements and in time with a first order semi-

implicit scheme; the source term characterising the ionic current is treated with

an ionic current interpolation, Ethier & Bourgault (2008); Pathmanathan et al.

(2012); no mass lumping is applied. On both examples, the ionic parameters

characterising the MS ionic model are summarised in Table 1.

3.1. Tissue slab

In this section, we show the simulation results obtained on the homogeneous

tissue slab depicted in Fig. 1. This simple geometry yields an easier way to

compare the algorithm introduced in this paper with respect to the actual state

of the art. We deal with the following 3 cases:

• A tissue slab discretised with Delaunay triangulation and fibres oriented

along the x axis (~a = (1, 0, 0)). In this example, we show the performances

of the algorithm in terms of accuracy and computational cost.
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• A tissue slab discretised with Delaunay triangulation and fibres oriented

along the diagonal (~a = ( 1√
2 ,

1√
2 , 0)) In this example, we adopt a ratio

between longitudinal and transversal bulk conductivities of the order of

5 which is typical for cardiac physiology, considering the experimental

conductivity values in Roberts et al. (1979). We compare the algorithm

accuracy and we compare the repolarisation fronts.

• A tissue slab discretised with regular triangulation and fibres oriented

along the x axis (~a = (1, 0, 0)). In this example, we compare algorithm 4

with algorithm 3 when the ionic parameters significantly affect the leading

order approximation of the APD.

3.1.1. Horizontal fibre direction

The homogeneous tissue slab depicted in Fig. 1 is characterised by a lon-

gitudinal conductivity σlm = 1.5 cm2/s and a transversal conductivity σtm =

0.5 cm2/s; the fibres ~a are directed along the x direction. The external stimulus

is applied on the yellow region in Fig. 1 and with the intensity Iapp = 10 ms−1.

The tissue is periodically stimulated by 10 stimuli at a basic cycle length of 400

ms. The monodomain problem is discretized in space with a Delaunay triangu-

lation with a characteristic mesh size h = 215µm. The number of vertices in

the mesh is 325,022 and the number of tetrahedra is 1,539,099. We use a time

step dt = 0.01 ms. The eikonal model is solved on the same mesh and with the

same time step, with a value δ = 1, so no graph related correction is introduced

to the Dijkstra algorithm.

In Figure 2, two snapshots of the distribution of the transmembrane po-

tential for both monodomain (shadowed) and eikonal model are depicted. The

first snapshot is at time 20 ms and the second at time 52 ms. We superimpose

both solutions in order to see qualitatively how the wavefronts of both solutions

behave. In Figure 3-A, we show the time course of the l2,r error on the trans-

membrane potential and with respect to the monodomain solution for both the

standard eikonal model (red line) and the eikonal model with the CV adap-

tation. When the first stimulus is applied, the tissue is initially at rest, thus
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t

l++r
~a

Domain size

l r t

5 cm 0.25 cm 0.1 cm

Figure 1: The 5 × 5 × 1 cm3 tissue slab used in example 1. The yellow region corresponds to

the location where the external stimulus is applied. Fibres are oriented along the x direction.

DI → ∞, the value of the CV is equal to its maximum and both the models

produce the same error. When the subsequent stimuli are applied, h < 1, theDI

has a finite value and the CV adapts according to (6); the eikonal model with

the CV adaptation produces a significantly smaller error compared to the error

obtained by solving the standard eikonal model. Moreover, Figure 3-A shows

that the l2,r error decreases during the propagation of the wavefront, reaching

its minimum when the slab is fully depolarised. We suppose that the error in-

creasing during the repolarization is due to the absence of the conductivity term

since the eikonal model does not play any role after the depolarization; only the

ionic model is solved locally at each point of the graph. Whereas, for the mon-

odomain model we still have the influence of the electronic current represented

by the diffusion term. The difference between the standard eikonal model and

the eikonal model with CV adaptation is much clearer when looking at the error

on the activation times. Figure 3-B shows the l2,r error on the activation times

for each of the 10 cycles. Along the 10 cycles, the mean of the l2,r error on the

activation times is 3% when using the eikonal model with CV adaptation, while

it is 15.5% when using the standard eikonal model: the velocity the wavefront

propagates is indeed much more accurate when using a CV adaptation on the

eikonal model.
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Figure 2: Plot of the eikonal and of the monodomain (shadowed) solutions for t = 20 ms and

t = 52 ms. The grey contour coincides with the activation front of the monodomain solution.

Blue: non activated cells. Red: activated cells.

;

Figure 3: A: Semi-logarithmic plot of the time course of the l2,r error on the transmembrane

potential for the standard eikonal model (red line) and for the eikonal model with CV adap-

tation (blue line). B: Semi-logarithmic plot of the relative l2,r error on the activation times

at each stimulation for the standard eikonal model (red line) and for the eikonal model with

CV adaptation (blue dashed line).
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In Figure 4, the depolarization fronts are plotted for the monodomain model

(green dots), the standard eikonal model (red dots) and the eikonal model with

CV adaptation (blue dots). The depolarization fronts are plotted at times t=50,

450, 2050 and 3650 ms. At the first cycle (t=50 ms), the depolarization fronts

of the eikonal models coincide since the tissue is initially at rest and DI →∞.

From the second applied stimulus (t=450 ms), the depolarization front of the

standard eikonal model propagates faster than the monodomain depolarization

front; conversely, the depolarization front of the eikonal model with CV adap-

tation propagates at the same velocity of the monodomain depolarization front.

A video showing the comparison of the depolarization fronts is available in the

online supplement.

;

Figure 4: Comparison of wave fronts: Plot of the depolarization front of the monodomain

solution (green dots), the standard eikonal solution (red dots) and the eikonal solution with

CV adaptation (blue dots). The depolarization fronts are plotted at times t=50, 450, 2050

and 3650 ms.
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3.1.2. Oblique fibre direction

In this paragraph, we characterise the homogeneous tissue slab depicted

in Fig. 1 with the fibre direction ~a = ( 1√
2 ,

1√
2 , 0), a longitudinal conductivity

σlm = 5 cm2/s and a transversal conductivity σtm = 1 cm2/s. This choice leads

to a typical cardiac ratio between longitudinal and transversal conductivities as

measured in Roberts et al. (1979). The other parameters and the space and time

discretization are the same adopted in the example described in section 3.1.

The activation times following the application of the first stimulus do not differ

between the eikonal model with and without CV adaptation. However, when

the second stimulus is applied at t = 400 ms the depolarisation front of the

classical eikonal model propagates faster than the depolarisation front of the

monodomain, while CV-adapted algorithm presents the same CV . This differ-

ence in the propagation is present also in the subsequent stimulations of the

tissue.

We also remark that the eikonal solution wave front is less accurate in the re-

gions where the curvature is high. This behaviour is also seen in figure 4 where

the fibre orientation is given by the X-direction. This is mainly due to the ac-

curacy of the Dijkstra algorithm in the regions where the curvature of the wave

front is high and the fact that the Dijkstra solution follows the graph edges.

3.1.3. Error on the repolarisation time

In this section, we compare the error on the repolarisation times computed

using the eikonal model with and without considering the CV adaptation. We

use the test case introduced in section 3.1.2 and we characterise the repolari-

sation time as the instant when the transmembrane potential crosses the value

vm = vgate with a negative time derivative. In figure 7 - A, we plot the l2,r
norm of the error on the repolarisation time, for both solutions, while in fig-

ure 7 - B we plot the APD duration for the monodomain model (black line),

for the standard eikonal model (red line) and for the eikonal model with CV

adaptation (blue line). The improved accuracy of the eikonal model with CV

adaptation depends on the improved accuracy in reproducing the DI to a given
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;

Figure 5: Oblique fibre direction Plot of the depolarization front of the monodomain solution

(green dots), the standard eikonal solution (red dots) and the eikonal solution with CV adap-

tation (blue dots). The depolarization fronts are plotted at times t=50, 450, 2050 and 2450

ms.
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;

Figure 6: A: Semi-logarithmic plot of the time course of the l2,r error on the transmembrane

potential for the standard eikonal model (red line) and for the eikonal model with CV adap-

tation (blue line). B: Semi-logarithmic plot of the relative l2,r error on the activation times

at each stimulation for the standard eikonal model (red line) and for the eikonal model with

CV adaptation (blue line).

pacing rate.

3.1.4. CPU cost

In this paragraph, we compare the CPU times required by algorithm 3 and

algorithm 4 with respect to the CPU time required by the computation of the

monodomain problem. The CPU time is evaluated on the example described

in section 3.1.1 for a single stimulus and until T = 400 ms. We recall that the

number of vertices in the mesh is 325,022, the number of tetrahedra is 1,539,099

and the used time step is dt = 0.01 ms. To better compare the computational

performances, we do not consider the writing time. Simulations were conducted

using an Intel Core i5 2.9 GHz processor. Monodomain simulations required

≈ 6 hours (of which ≈ 5 hours and 15 minutes for solving the linear system) to

evaluate the the solution, while algorithm 3 required 7 minutes and 36 seconds

(of which 7 minutes and 26 seconds required for the computing) and algorithm 4

spent 7 minutes (of which 6 minutes and 50 seconds required for the computing).

Both eikonal algorithms revealed to be ≈ 50 times faster compared to solving

the monodomain problem. Algorithm 4 is ≈ 9% faster than algorithm 3. The
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Figure 7: A: Semi-logarithmic plot of the relative l2,r error on the repolarisation times at

each stimulation for the standard eikonal model (red line) and for the eikonal model with CV

adaptation (blue line). B: Plot of the relative APD at each stimulation for the monodomain

solution (black line), the standard eikonal model (red line) and for the eikonal model with

CV adaptation (blue line).

MS ionic model is described by a system of 2 differential equations; as far as the

gate variable is concerned, we update its value at a new time step as follows:

hn+1 =

1 + (hn − 1)e−
dt

τopen vm ≤ vgate,

hne−
dt

τclose vm > vgate,

where the exponentials can be evaluated once and offline. The update thus

involves operations that are not expensive in terms of CPU time. The cho-

sen time step allows updating the transmembrane potential with an explicit

scheme that does not require sub-iterations. This factors yield a reduction of the

computational overhead related to the solution of the ionic model in algorithm 3.

3.1.5. A failure to propagate case

The accuracy of the leading order approximation (2) for APD depends on the

quantity τout
τclose

, as described in Mitchell & Schaeffer (2003); when this quantity

is not sufficiently small, the analytical expression underestimates the value of

APD. As depicted in Figure 5 in the original paper Mitchell & Schaeffer (2003),

when τout
τclose

≥ 0.08 the analytical expression evaluates an APD that is 20%
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shorter than its real value.

In this paragraph, we present an example obtained on the geometry presented

in Figure 1, discretised with a regular mesh with size h = 500µm and fibres

~a directed along the x direction. The tissue is stimulated on the left edge of

the slab, in the region x ≤ 0.25 cm. We stimulate the tissue periodically with

a basic cycle length of 200 ms. The duration of the stimulus is 0.4 ms and its

intensity is Iapp = 5 ms−1. In this simulation, we choose the following values

for the ionic model parameters: τin = 0.6 ms, τout = 12 ms, τopen = 130 ms,

τclose = 80 ms and for the conductivities σlm = 2.0 cm2/s and σtm = 0.4 cm2/s.

Since τout
τclose

= 0.15, this choice of parameters introduces an underestimation on

APD, when evaluated with the expression (2) and thus an overestimation of

the DI, which affects the CV .

In the first row of Figure 8, we show snapshots of the numerical solution obtained

by solving the monodomain problem at times 201, 240, 360, 401, 500 ms. In

the second row of the same figure, we show the numerical solution obtained

with algorithm 3 for the same time values. Both solutions show a propagation

failure when a stimulus is applied at t = 200 ms. On the contrary, the stimulus

applied at time t = 200 ms provides an electrical wave propagation if we use

Algorithm 4 (Figure 8, third row). The reason is that the diastolic interval is

overestimated using the analytical formula.

When a stimulus is applied at t = 400 ms, all the three algorithms provide a new

propagating electrical wave. However, the conduction velocity is underestimated

using algorithm 4 compared to the monodomain solution and to algorithm 3.

The failure to propagate occurred at t = 200 ms produced a DI that ranges on

two basic cycle lengths for the monodomain and for algorithm 3 and thus a CV

faster than that evaluated by algorithm 4.

3.2. Heart geometry

The geometrical model used in this work was derived from Computerized To-

mography (CT) scan data Cardone-Noott et al. (2016) of the human heart. The

initial ventricular mesh, generated with an edge length h ≈ 400µm and contain-
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Figure 8: Action potential obtained solving the monodomain model (first row), Algorithm 3

(second row) and Algorithm 4 (third row). Snapshots are given at times t= 201, 240, 360,

401, 500 ms.

ing 2.51 million nodes and 14.2 million tetrahedral elements, was re-sampled to

≈ 50, 000 nodes and ≈ 238, 000 tetrahedral elements. The computational mesh

is depicted in Figure 9 - A. The fibres and the sheet orientations in the left and

Figure 9: A: Heart geometry discretized using a tetrahedral finite element mesh. B: Plot of

the L2 (0,T, l2), T = 400 ms norm of the error on the transmembrane potential with respect

to the monodomain solution for several values of δ.
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right ventricles are depicted in Figure 10 and were generated with the Streeter

method Streeter et al. (1979); this method takes into account of the continuous

change of the fibre angle across the ventricular wall. The myocardial tissue is

characterised by a longitudinal conductivity σlm = 1.5 cm2/s and a transversal

conductivity σtm = 0.15 cm2/s.

Figure 10: Streeter model generated (A) fibre and (B) sheet direction vectors, mapped on the

ventricular geometry.

In this example, an external stimulus is applied at the apex of the left and the

right ventricles and with an intensity Iapp = 10 ms−1; the tissue is periodically

stimulated by 5 stimuli at a basic cycle length of 400 ms. The problem is

discretized in time with a time step dt = 0.01 ms. The eikonal model is solved on

the same mesh and with the same time step, and with a corrective coefficient δ =

0.75. This value was determined by first running the eikonal model within the

time interval [0, 400] ms for several values of δ, then evaluating the L2 (0,T, l2)

norm of the absolute error on the transmembrane potential for each value of δ

and finally choosing the value yielding the minimum L2 (0,T, l2) norm of the

error. In Figure 9 - B, we plot the L2 (0,T, l2) norm for several values of δ; in

the same figure, the optimal value δ = 0.75 is marked in red. In Figure 11 - A,

we plot the time course of the l2,r error on the transmembrane potential for the

standard eikonal model (red line) and the eikonal model with CV adaptation

(blue line). When the first stimulus is applied, the tissue is initially at rest, thus
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Figure 11: A: Semi-logarithmic plot of the time course of the l2,r error on the transmembrane

potential for the standard eikonal model (red line) and for the eikonal model with CV adap-

tation (blue line). B: Semi-logarithmic plot of the relative l2,r error on the activation times

at each stimulation for the standard eikonal model (red line) and for the eikonal model with

CV adaptation (blue line).

DI →∞, the value of CV is equal to its maximum and both the models produce

the same error. When the subsequent stimuli are applied, h < 1, the DI has a

finite value and the CV adapts according to (6); thus, the eikonal model with

the CV adaptation produces a significantly smaller error compared to the error

obtained by solving the standard eikonal model. Figure 11 -B shows the l2,r
error on the activation times for each of the 5 cycles. Along the 5 cycles, the

mean of the l2,r error on the activation times is 7% when using the eikonal model

with CV adaptation, while it is 18% when using the standard eikonal model.

In Figure 12, the depolarization fronts are plotted for the monodomain model

(green dots), the standard eikonal model (red dots) and the eikonal model with

CV adaptation (blue dots). The depolarization front is tracked by extracting

the surfaces where vm = vgate. The figure highlights the improvements on the

accuracy of the eikonal model when the CV is adapted to the heart rate. A

video showing the comparison of the depolarization fronts is available in the

online supplement.
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Figure 12: Depolarization fronts at t=120,520,920,1720 ms for the monodomain model (green

dots), the standard eikonal model (red dots) and the eikonal model with CV adaptation (blue

dots). The depolarization fronts are tracked as the surfaces where vm = vgate.

4. Discussion

The algorithm proposed in this paper allows generating a locally person-

alised computational model during the clinical procedure and thus guiding the

radiofrequency ablation, when coupled with an efficient algorithm for the local

characterisation of tissue properties, like the one described in Corrado et al.

(2016).

Unlike the algorithm introduced in Pernod et al. (2011); Wallman et al.

(2013), the eikonal model presented in this paper also takes into account of the

local changes in the characteristic propagation velocity and thus is suitable for
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the simulations of the multi-front propagation and multi-stimuli applications,

in particular for the description of the activation pattern characteristic of heart

tachyarrhythmias. In this paper, we adopted the leading order approximations

presented in Mitchell & Schaeffer (2003); Cain et al. (2004) for the APD and

the CV; notwithstanding that, the approach here presented can be extended

to any characterisation of the CV as a function of the history of the DI, the

APD, or any other quantity related to the computed solution. For instance, the

current model can be adopted in the applications presented in Pernod et al.

(2011); Wallman et al. (2013), producing a solution significantly closer to the

monodomain model. The effects of the CV adaptation become significant when

the DI decreases. Thus, the improvement is significant especially at high

heart rate conditions or in presence of frequently activated regions in the heart

tissue.

The solution of the ionic model is used to determine if a node in the graph is

re-excitable and thus allows to reproduce the absolute refractory period (ARP).

The solution of the eikonal model provides only the time the activation front

reaches a node in the graph, while the intensity of the activation current is kept

constant and homogeneous within the domain. Since the intensity of the de-

polarization front affects the propagation of the electrical stimulus during the

effective and the relative refractory periods (ERP, RRP), this approximation

may impact the ability and the accuracy of the model to capture propagation

failures during refractoriness. A possible solution to overcome this limitation is

the matter of a future work. The leading order estimate of the CV restitution,

obtained in Cain et al. (2004) and here used to characterise the front propa-

gation velocity, refers to a steady state equilibrium reached when the tissue is

stimulated at a constant rate and for a sufficiently long time. Since the MS

model does not take into account any memory effect, the CV adapts instanta-

neously to the new pacing condition. However, since we lose the diffusion term

in the eikonal model with or without CV adaptation, it is more difficult to ac-

curately simulate re-entry waves. The main issue is that the curvature of the

wavefront is not well estimated with this model. Hence, we don’t recommend
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using this model to study re-entry and in particular spiral waves. Due to the

absence of a diffusive term, the eikonal model may compromise the accuracy of

the repolarisation wave when a high APD gradient is present in the tissue. A

possible solution that may overcome this issue is recently proposed in Neic et al.

(2017) where the authors adopt an eikonal solver to compensate the error on

the conduction velocity when a coarse mesh is used to solve the monodomain

equation. This approach, however, does not take into account of the dependency

of CV on the pacing rate and its variations. The Dijkstra algorithm is lighter in

terms of computational cost and less complex in terms of implementation com-

pared to a fast-marching scheme, Pernod et al. (2011). However, the Dijkstra

algorithm computes the activation times following the shortest pathway in the

graph built using the edges of the mesh; this leads to an accuracy loss when

following the graph edges. This source of inaccuracy in the Dijkstra solution

produces an irregular propagation front, delayed in the regions where the curva-

ture is highest as shown in Figures 2, 4 and 5. This is not the case of some fast

marching schemes, that allow taking into account of anisotropy, Pernod et al.

(2011); Sermesant et al. (2007).

5. Conclusions

We presented a computational model combining the eikonal equation and

the Mitchell and Schaeffer ionic model for solving the propagation of the elec-

trical wave in the heart. This algorithm adapts the conduction velocity of

the eikonal model to the electrophysiological state and the heart rate through

the analytical CV restitution expression and a locally computed DI allowing

an accurate simulation of multi-front activations. This algorithm provides

a reasonable trade-off between computational time and accuracy. Like the

monodomain equations, the model here developed allows computing the trans-

membrane potential and the state variables of the ionic model. Using 3D

numerical simulations, we have shown that this model improves the accuracy of

tracking the position of the wavefront compared to the standard eikonal method.
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We think that this new formulation of the eikonal model is suitable for clinical

applications since it requires fewer computational time and resources than the

monodomain and the bidomain models and shows a better accuracy than the

standard eikonal model.
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