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Abstract

Despite the benefits introduced by robotic systems in abdominal Minimally Invasive Surgery (MIS), major complications
can still affect the outcome of the procedure, such as intra-operative bleeding. One of the causes is attributed to accidental
damages to arteries or veins by the surgical tools, and some of the possible risk factors are related to the lack of sub-
surface visibilty. Assistive tools guiding the surgical gestures to prevent these kind of injuries would represent a relevant
step towards safer clinical procedures. However, it is still challenging to develop computer vision systems able to fulfill
the main requirements: (i) long term robustness, (ii) adaptation to environment/object variation and (iii) real time
processing.

The purpose of this paper is to develop computer vision algorithms to robustly track soft tissue areas (Safety Area,
SA), defined intra-operatively by the surgeon based on the real-time endoscopic images, or registered from a pre-operative
surgical plan. We propose a framework to combine an optical flow algorithm with a tracking-by-detection approach in
order to be robust against failures caused by: (i) partial occlusion, (ii) total occlusion, and (iii) SA out of the field of view.
A Bayesian inference-based approach is used to detect the failure of the tracker, based on online context information.
A Model Update Strategy (MUpS) is also proposed to improve the SA re-detection after failures, taking into account
the changes of appearance of the SA model due to contact with instruments or image noise. The performance of the
algorithm was assessed on two datasets, representing ex-vivo organs and in-vivo surgical scenarios. Results show that
the proposed framework, enhanced with MUpS, is capable of maintain high tracking performance for extended periods
of time (' 5min - containing the aforementioned events) with high precision (0.85) and recall (0.6) values, and with a
recovery time after a failure between 1 and 8 frames in the worst case.

Keywords: long-term tissue tracking, tracking failure detection, model update strategy, robotic minimally invasive
surgery.

1. Introduction

The introduction of Robotics in Minimally Invasive Surgery
(RMIS) allows overcoming many of the obstacles intro-
duced by traditional laparoscopic techniques, by improv-
ing the surgeon dexterity and the ergonomics during the5

surgical procedure, and restoring the surgeon hand-eye co-
ordination (Bravo et al., 2016; Forgione, 2009; Lanfranco
et al., 2004). Despite these benefits, the outcome of the
surgical procedure can still be compromised by adverse
events occurring during the surgery. In robotic abdomi-10

nal surgery, for example, one of the major complications
is intra-operative bleeding due to injuries to vessels (Trinh
et al., 2012; Kaouk et al., 2012; Sotelo et al., 2014). Main
arteries or veins close to the surgical site can be acciden-
tally damaged during the execution of a surgical proce-15

dure, being a major risk factor associated to the surgeon’s

skill or robotic system reliability (Lorenzo et al., 2011).
Vessel damage may also activate a chain of secondary ef-
fects, such as the switch to open-surgery approach, a longer
anaesthesia time and post-operative bleeding, thus nega-20

tively affecting the surgical performance and leading, in
the worst case scenario, to patient death (Opitz et al.,
2005).

Computer-assisted technologies coupled with robotic
surgical systems can enhance the surgeon capabilities and25

the control of the surgical tools by providing guidance to
the surgical gestures. Specifically, these technologies could
be used in abdominal robotic surgery to prevent vessel in-
jury, by intra-operatively identifying and tracking a Re-
gion of Interest (ROI) bounding these delicate structures,30

which would work as active constraints to automatically
prevent the robotic arms from touching this area. Intra-
operative identification of structures of interest has been
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Figure 1: An overview of the proposed framework for long term tracking of safety area identified on endoscopic images

explored using pre-operative information by means of Aug-
mented Reality (AR) systems (Nicolau et al., 2011; Onda35

et al., 2014; Penza et al., 2014). However, this approach
has to deal with dynamic changes of the anatomy between
the data acquisition phase (pre-operative) and the surgi-
cal procedure (intra-operative) (Penza et al., 2016; Puerto-
Souza et al., 2014). In fact, these changes can frequently40

occur due to (i) different pose of the patient with respect to
the one in which the pre-operative information was stored,
(ii) CO2 abdominal insufflation that presses and changes
the shape of the organs, (iii) instrument tissue interaction,
and (iv) heart beat and breathing that affect the registra-45

tion on a smaller scale.
In order to measure the intra-operative tissue move-

ments, computer vision and image processing algorithms
have been exploited to track soft tissue areas relying only
on the image characteristics (Stoyanov, 2012b). Early50

works on soft tissue tracking algorithms applied to en-
doscopic images have been done exploiting optical flow
techniques. Stoyanov (2012a) used scene flow estimation
techniques for the recovery of 3D structure and motion of
the operating field from stereoscopic images, propagating55

this information to obtain a denser surface deformation
identification. The main advantages of such methods are
the sub-pixel accuracy and low execution time. However,
for long-term endoscopic videos, the tissue area appear-
ance may change or can be partially or totally occluded60

by instruments or camera movements. For these reasons,
such algorithms typically accumulate errors resulting in
tracking drift, or fail in case of occlusion.

Recently, different attempts have been implemented in
order to build a long-term tracking system with enough65

robustness and reliability for long video sequences (in the
order of minutes), which would be suitable for real surgical
scenarios. This issue has been addressed using feature-
based approaches, since they are invariant to rotation,
scale changes of the area to track, and they are able to70

find feature matches between non consecutive frames, yet
affecting accuracy and computational time. Yip et al.
(2012) described a history preserving strategy to achieve
long term tracking, without handling the effects of instru-
ment occlusion and shading. A probabilistic framework to75

track affine-invariant anisotropic regions has been devel-
oped by Giannarou et al. (2013), where a recover strategy
from potential tracking failure has been approached us-

ing spatial context and region similarity information to
update an Extended Kalman Filter tracking framework.80

Puerto-Souza and Mariottini (2013) introduced a Hierar-
chical Multi-Affine (HMA) algorithm to map features be-
tween two endoscopic images, allowing to recover features
that were lost after a complete occlusion or sudden cam-
era motions. Mountney and Yang (2012) exploited online85

learning and classification using a context specific feature
descriptor, in order to increase the robustness against drift
and occlusion. Du et al. (2015) used a triangular geometric
mesh model to combine features and intensity information
to robustly track soft tissue surface deformation. Affine90

deformation modelling is used by Schoob et al. (2016) to
provide motion compensation in dynamic surgical scenes,
and an occlusion detection scheme was proposed to in-
crease robustness against tracking failures. A framework
for online tracking and retargeting is proposed by Ye et al.95

(2016), based on the concept of tracking-by-detection.
Despite the progresses made, it is still challenging to de-
velop a framework able to fulfill the main system require-
ments, as proposed by Yang et al. (2011):

• long-term robustness of the tracking even under com-100

plicated conditions recurring into the surgical field
of view, such as: (i) tissue motion and deformation,
(ii) occlusion by instruments, (iii) area out of field
of view, (iv) large camera movements, (v) scale and
orientation changes, (vi) blood and smoke changing105

the scene and (v) tissue specular highlights;

• adaptation to environment variations and changes in
the tissue surface itself;

• real-time processing to allow the application in real
surgical scenarios (from 15 fps to higher value de-110

pending on the application).

In this work, we propose a framework for Long-Term
Safety Area Tracking (LT-SAT) that is robust and reliable
under the aforementioned adverse events in long surgical
endoscopic sequences. In particular, considering the clini-115

cal issues previously described, we decided to focus the at-
tention on tracking areas of interest to be preserved from
injury during RMIS, such as main arteries or veins (por-
tal vein, hepatic artery, splenic artery and vein, mesenteric
artery and vein) in intervention of liver, pancreas, prostate120

and colon resection. However, the proposed framework
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Figure 2: Graphical representation of the proposed framework for soft tissue Safety Area (SA) tracking. On the timeline are highlighted the
main steps: Tracking, SA features redetection, failure detection and Tracking Re-initialization. The keyframes represent the reference frame,
with respect to whom M is computed.

can be applied to any other applications aiming at track-
ing structures of interest in the surgical field of view. The
framework combines the advantages of an optical flow al-
gorithm (Sec. 2.1) with a tracking-by-detection approach125

(Sec. 2.3), which exploits a novel Model Update Strat-
egy (MUpS) for improving the identification of the Safety
Area (SA). Since the optical flow methods are prone to fail-
ure, a bayesian network is built to detect possible failures,
considering online context information (Sec. 2.2). An ex-130

tensive quantitative analysis on ex-vivo and in-vivo video
sequences is presented to demonstrate long-term achieve-
ment (Sec. 3). The results and discussion of this analysis
are presented in Sec. 4 and conclusion in Sec. 5

2. Methods135

The workflow of the proposed framework for long-term soft
tissue tracking on endoscopic images is shown in Fig. 1. We
assumed that the Safety Area Definition, i.e the identifi-
cation of the structure to be preserved from injury during
surgery on the endoscopic image, is done manually or reg-140

istering a pre-operative model intra-operatively (Puerto-
Souza et al., 2014). The basic steps for the Tracking of the
SA along the video sequence consist in (i) detecting salient
features inside the SA (ii) finding corresponding features
in the successive frames, and exploiting the matched fea-145

tures to (iii) find the perspective transformation between
them (M) and used it to (iv) update the new position
of the SA. Due to the presence of image noise, errors in
the perspective transformation computation, or total oc-
clusion of the SA, a tracking failure can occur. Failure De-150

tection scheme is thus proposed, together with a Tracking
Re-initialization strategy to re-detect the SA in the image
when visible. The keyframe represent the reference frame,
that is re-initilized every time a Tracking Re-initialization
is performed. Fig. 2 shows more in detail the workflow of155

the proposed method, described in the following sections.

2.1. Tracking

The tracking of the SA is performed using a feature-based
approach. In the first frame, a set of features (fGFTT )
are detected inside the SA contour (SAk), using GFTT160

detector (Shi and Tomasi, 1994). Kanade-Lucas-Tomasi
Tracker (KLT) is then used for feature tracking since, as
stated by Tomasi and Kanade (1991), it is fast and reliable
in case of (i) small movements, (ii) constant brightness and
(iii) constant flow in the local neighbourhood. The feature165

tracking is computed estimating a frame-by-frame feature
translation. Since this approximation can lead to errors
in tracking due to (i) image noise, (ii) intensity changes
caused by illumination or camera exposure changes, (iii)
artefacts of the image sensor and (iv) specular reflections,170

the following strategies were implemented to remove out-
liers:

1. In order to check the matching correctness, an affine
consistency check is also performed between the fea-
tures belonging to the keyframe and the features in175

frame i, as stated by Shi and Tomasi (1994); The
estimation of the affine motion between local win-
dow around the feature is considered as a measure
of dissimilarity to reject wrong matches;

2. Endoscopic images are usually affected by specular180

reflections due to the tissue characteristics and the
proximity of the light source to the tissue. The spec-
ular reflections appear as bright regions in the im-
ages and are identified applying a thresholding op-
eration on S and V channels and dilatation opera-185

tions (Lehmann and Palm, 2001). The features lo-
cated close to specular highlights are discarded.

If fGFTTk
is the set of features describing the SAk in the

keyframe and fGFTT i
is the corresponding set of tracked

features in the frame i, the tracking of the SA is performed190

as follows:

SAi = M · SAk (1)

where SA is the SA contour for the keyframe and for the
frame i and M is the perspective transformation com-
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puted between fGFTTk
and fGFTT i . M is computed and

applied with respect to the keyframe and not with re-195

spect to the previous frame i− 1 in order to avoid drifting
and accumulating errors during tracking, as it is shown in
Fig. 2. The perspective transform M was computed using
the RANSAC strategy (Fischler and Bolles, 1981), which
is robust in populations with an high number of outliers.200

Using these strategies in long video sequences, the number
of matched features decreases in time, compromising the
reliability of M and thus, the tracking. In the proposed
workflow, the re-detection of the features is performed each
time the features number decreases below the 70% with re-205

spect to the features detected in the frame keyframe. The
frame in which a re-detection is computed is considered
as the new keyframe, i.e. the successive M transforma-
tions will be computed with respect to the set of features
detected in this frame.210

2.1.1. Foreground-Background Segmentation

A global Bayesian probabilistic model based on color
histogram is implemented in order to constantly discrim-
inate features describing the SA from the ones describ-
ing background or any other object occluding it, inspired215

by the work of Duffner and Garcia (2013) and Du et al.
(2016). A Probability Segmentation Map (PSM) is com-
puted, representing for each pixel of the SA the proba-
bility of belonging to the background p(c = 0) or to the
foreground p(c = 1). This map is used to keep only the220

features laying in a pixel with a foreground probability
p(ci = 1|y1:i) > τforeground.

The initialization of the probabilistic model is done by
computing the HSV histogram of the rectangular area fit-
ting the SA. Assuming that the area of interest is com-225

pletely visible in the SA, the foreground histogram is ini-
tialized considering the area of the image inside the con-
vex hull of the features detected, as proposed by Du et al.
(2016), while the background is initialized using the pixel
values outside the convex hull, as shown in Fig. 3b.230

In the successive frames, in order to deal with appear-
ance changes of the tissue, the probabilistic model is up-
dated as described by Eq. 2. The update is based on the
segmentation of the previous frame i−1 and on transition
probabilities for foreground and background p(ci|ci−1), em-235

pirically chosen.

p(ci|y1:i) =
p(yi|ci = 1)

Z∑
ci−1

p(ci = 1|ci−1)p(ci−1|y1:i−1)
(2)

where ci is the class of the pixel at frame i (where
c ∈ {0, 1}), y1:i is the pixel color from frame 1 to i, and Z
is a normalization constant to keep the probabilities sum
to 1.240

For not compromising the update of the model in case
of partial occlusion of the SA, a clustering of the features

(a) (b)

(c) (d)

Figure 3: On the top, the SA definition (left) and the correspondent
Probability Segmentation Map (right) are shown. In the left image,
it is also possible to see, drawn with a green line, the convex hull
defined on the entire set of features and used for the initialization
of the foreground probability. On the bottom, a frame with partial
occlusion is shown on the left. Here again, the green lines represent
the convex hulls defined on the feature clusters. The correspondent
probability segmentation map is shown on the right, where it is possi-
ble to see how the instrument occluding the SA has a low probability
of belonging to the foreground (in blue).

inside the SA is computed using the kmeans OpenCV func-
tion, and only the pixels belonging to the convex hulls of
the clustered features (ncluster) are considered during the245

update of the foreground histogram (see Fig. 3c). An ex-
ample of how the features are discarded depending on the
computed PSM is illustrated in Fig. 3.

2.2. Failure Detection

A Bayesian network is used to estimate the joint failure250

probability of the tracker, defined as P (F |A,B,C,D), and
caused by a combination of the multi clues A, B, C and
D.

A is the number of tracked features (nfeat) inside the SA,
necessary for the computation of M . If nfeat is less255

than 4, M cannot be computed;

B is the percentage of features lost in frame i with respect
to the number of features in the keyframe (plost). A
high percentage of lost features could indicate the
presence of a partial occlusion or sudden changes in260

the scene;

C is the validity of the perspective transform M com-
puted between fGFTTk

and fGFTT i
(vM ), consid-

ered valid if: (i) the z coordinate of the transformed
points is positive, and (ii) the ninth element of the265

homography transformation is non-zero, which means
a non-valid perspective matrix;

D is the standard deviation of the optical flow distribu-
tion (stdof ) in terms of image velocity directions.
A wide distribution indicates errors in the matching270

stage due to a sudden change of the scene.
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Figure 4: Graphical representation of the bayesian network used
to estimate the tracking failure (F). The probability distributions
associated to the clues (A, B, C, D) are shown.

The conditional probability table was defined by assigning
to each of the clues a probability distribution, as shown in
Fig. 4. For the clues A, B and D, that are continuos vari-
ables, a Gaussian distribution was chosen, and for the clue275

C a probability cross table was used, since vM can assume
only two values (0 or 1). If P(F| A,B,C,D) > pth, the
framework switch to the Tracking Re-initialization (See
Sec. 2.3).

In order to train the network and chose the best pa-280

rameter set (made of the sigma values for each distribution
and the probability values for C), a Monte Carlo sam-
pling method was used. The parameters were sampled
within pre-defined ranges, selected from experimental ob-
servations, and the cost function, used to determine the285

best parameter set, was defined as the weighted accuracy
of the failure classification, as described by the following
Equation:

accuracy =
k1TP + k2TN

k1TP + FP + k2TN + FN
(3)

where TP, TN, FP and FN are respectively the number of
true positive, true negative, false positive and false nega-290

tive classification, and k1 = 0.8, k2 = 0.2 are the weights
assigned to favour an high rate of TP.

The network was iteratively run, varying the randomly
sampled parameters, on a subset of video sequences (train-
ing set), where the evidence values (nfeat, plost, vM , stdof )295

were used as input, together with the ground truth infor-
mation (manually defined when the failure of the tracking
really occurred). The parameter set giving an accuracy
higher than 0.9 was chosen after 1000 iterations.

2.3. Tracking Re-initialization300

If a failure during the tracking is detected, a tracking-by-
detection approach based on the generalized Hough trans-
form (Ballard, 1981) is used to find the SA model in the
current frame i, inspired by Seib et al. (2012). The re-
detection of the SA is performed in three phases, as de-305

scribed in the following subsections.

2.3.1. Model Initialization

In the first keyframe, in which the SA is defined, a model
of the SA is stored. SURF features (fSURFk

) and descrip-
tors (Bay et al., 2006) are computed inside the SA, since its310

scale and rotation invariant characteristics are necessary to
match features between non-consecutive frames, as in the
case of Tracking Re-initialization. KLT initialized with
GFTT would not be useful in this case, since it searches
feature matches locally, without taking into account pos-315

sible large displacements of the SA and being invariant to
rotation and scale. The model is characterized by the fea-
ture position (x, y), scale (σ) and orientation (θ), and the
centroid (c0) of the area. These feature descriptors, con-
sidered with respect to the centroid, uniquely characterise320

the SA, enabling the SA recognition at any frame.

2.3.2. Model Update

The model defined in the first frame is not always enough
to re-detect the SA in long video sequences, since changes
in the tissue appearance may occur. For this reason, we325

used multiple models chosen following a novel Model Up-
date Strategy (MUpS). These models, stored in a buffer,
should be different enough from the first model to repre-
sent small variations. However, in order to avoid the collec-
tion of erroneous models, a similarity with the first model330

should be ensured. As a measure of similarity we choose
the Bhattacharyya distance (BD) between the color his-
togram of the model in the keyframe and in the current
frame i, inspired by (Giannarou et al., 2013). It is defined
as:335

BD(Hfirst, Hcurr) =
√

1− ρ(HfirstHcurr) (4)

where H is the normalized histogram density defined as
H = {hbin}bin=1...m, with

∑m
bin=1 hbin = 1.

ρ is the Bhattacharyya coefficient computed from the fol-
lowing Eq.:

ρ(Hfirst, Hcurr) =

m∑
bin=1

√
hfirstbin hcurrbin (5)

In order to make the similarity measure robust against340

illumination variations, we opted for using the combina-
tion of H and S channel from the HSV image instead of
the RGB channels used by Giannarou et al. (2013). Thus,
the strategy to update the model, also described in Alg. 1,
can be explained in two steps:345

• The model stored in the first frame is always kept
fixed in order to always have a valid reference. The
new models (nmodel) are collected only if the BD
is inside the range δBA = {δmin, δmax}, where δmin,
and δmax were chosen as the 10th and 90th percentile350

of the BD distribution extracted from a training
dataset;

5



Algorithm 1 Model Update Strategy

1: procedure updateWeight(model, β1, β2)
2: model.weight = β1 ·model.BD+β2

model.nTimesused
model.nTimesnotUsed

3: end procedure
4: procedure updateModel(modelBuffer, modelNew, BD-

max, BDmin, m, β1, β2)
5: if modelNew.BD > BDmin and modelNew.BD < BD-

max then
6: if sizeof(modelBuffer) < nmodels then
7: add modelNew to modelBuffer
8: updateWeight(modelNew, β1, β2)
9: else

10: modelWeakest = model with lowest weight in
modelBuffer

11: if modelWeakest.nT imesnotUsed > m then
12: replace modelWeakest with modelNew in

modelBuffer
13: updateWeight(modelNew, β1, β2)
14: end if
15: end if
16: end if
17: return modelBuffer
18: end procedure

• A weight is assigned to each model belonging to the
buffer, as:

wj = β1 ·BDj + β2
nTimesused

nTimesnotUsed
(6)

where nTimesused is the number of times the model
was previously used for the SA recognition, the num-
ber of times the model was not used is nTimesnotUsed,355

and j is the index of the model in the buffer. β1 and
β2 are the weights assigned to the two parameters
determining the goodness of the model (wj).

• The model j with the minimum weight wj will be
replaced by a new model i only if:

nTimesnotUsed > m (7)

where m was empirically chosen.

2.3.3. Model Recognition360

SURF features are detected on the entire frame i and
then are matched with the features belonging to the set of
nmodels using a nearest-neighbor matching. As a first out-
lier rejection stage, the wrong matches are rejected if the
ratio between the closest and the second-closest descrip-
tor distances is lower than a threshold τl (Lowe, 2004).
The possible SA poses, represented by the position (x,
y), scale (σ) and orientation (θ), are clustered in a multi-
dimensional Hough-space accumulator, as shown in Fig. 5.
The coarse grid represents translation in x and y direction,
while in each of these cells, the bins along x axis represent
σ and the ones along the y axis represent θ. Each feature
match independently votes for a possible SA position, ori-
entation and scale, increasing the corresponding bin in the

𝐒𝐀	
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Figure 5: On the left, the process for the recognition of the SA
in the new frame. The features detected in the current frame are
matched with the ones belonging to the models (colored and black
lines indicate respectively right and wrong matches). On the right,
the Hough accumulator is shown: the two axes indicate the feature
position, and, inside each cell, the horizontal and vertical translation
encode the scale and rotation, respectively. Each feature match votes
for a possible SA position, increasing the Hough space accumulator,
represented on the right. Right matches increment the same Hough
accumulator cells, leading to a maximum (white squares), while the
wrong matches votes are scattered (gray squares).

accumulator. The new centroid position ci is estimated as:

ci = (cxi, cyi) = v + pi (8)

where pi is the feature position in frame i and v:

v =

(
cos(α) −sin(α))
sin(α) cos(α)

)
(c0 − p0)

σs
σ0

(9)

v is the translation vector from the centroid of the model
c0 to the position of a feature p0 in the model, normalized
with the scale ratio of the feature in frame i (σi) and of
the feature of the model (σ0), and rotated depending on
α = |θ0 − θi|, i.e. the rotation angle between respectively365

the feature rotation of the model and of the frame i.
The maximum in the Hough-space returns the set of

features fSURF i
of the model that best match the SA, a

shown in Fig. 5.
Every time a SA is recognised, the Tracking algorithm370

is re-initalized with the same workflow described in Sec. 2.1,
establishing a new keyframe. In this phase, the probabil-
ity segmentation map has a fundamental role, since the SA
can still be partially occluded. Keeping only the features
belonging to the object prevents from failure. If the SA is375

not recognised, the algorithm waits until it is visible again.

3. Experimental Evaluation

The evaluation is focused at demonstrating the robustness
of the algorithm against: (i) partial occlusion, (ii) total
occlusion and (iii) SA out of field of view, which are the380

main events, often happening during surgeries, that can
affect the reliability of a tracker. In order to assess the
performance of the algorithm against these events, we used
ex-vivo and in-vivo datasets.
The ex-vivo dataset is made of endoscopic images of ex-385

vivo organs (goat kidney, pig liver). It was developed sim-
ulating surgical scenarios in a controlled way, recreating
typical events happening during surgery. The videos were

6



recorded using a da Vinci® stereo camera and the robotic
system (Intuitive Surgical Inc., CA) at the Surgical Robot390

Vision group (University College London, London, UK).
All the videos were recorded at 25fps with an image res-
olution of 720× 576.
The in-vivo dataset consist of videos of real surgical oper-
ations performed at Ospedale Niguarda Ca’ Granda (Mi-395

lan, Italy). The videos were captured with a monocu-
lar STORZ endoscope. All the data were appropriately
anonymized.
Details of each video sequences in terms of duration, num-
ber of frames, and a brief description are presented in400

Fig. 6
For each sequence, we created a Ground Truth (GT), in
the form of a 2D polygon around the area of interest, with
a interframe step of 10. This was performed manually
by an operator with the supervision of an expert surgeon.405

For a more accurate evaluation, the same frames were also
labeled with one of the following attributes: (i) SA visi-
ble (SAV), (ii) partial occlusion (PO), (iii) total occlusion
(TO), (iii) out of field of view (OFV). These datasets are
available online for the benefit of the community 1. Tab. 1410

shows the percentage of frames with SAV, PO, TO, OFV
for each video of the two datasets.

in-vivo dataset ex-vivo dataset
EV1 EV2 EV3 IV1

SAV 67.71% 64.66% 69.45% 15.66%
PO 7.43% 7.07% 12.55% 48.40%
TO 7.86% 10.86% 14.18% 11.03%

OFV 13.29% 9.83% 3.82% 24.91%

Table 1: Percentage of frames with Safety Area Visible (SAV), Par-
tial Occlusion (PO), Total Occlusion (TO) , Out Of Field of View
(OFV) for each video of the two datasets.

The performance was assessed using precision and re-
call curves, and the F-measure (Wu et al., 2013). For each
video, the precision value α was computed as:

α =
TP

TP + FP

where TP is the number of true positives of the SA tracked
and FP is the number of false positives of the SA tracked.
The recall value β is defined as:

β =
TP

TP + FN

where FN is the number of false negatives of the SA tracked.415

The F-measure γ is the harmonic mean of precision and
recall:

γ = 2 · α · β
α+ β

1http://nearlab.polimi.it/medical/dataset/

The metrics used to for the definition of true positives of
the SA is the overlap ratio, measured in pixels, and defined
as:

ø =
|T ∩G|
|T ∪G|

where T is the set of SA tracking results, and G is the set
of GT.

Parameters definition values

Tracking

thsegmentation

threshold over which the
features are considered as

belonging to the SA
0.7

ncluster number of feature clusters 8
τforeground foreground threshold 0.7

Failure Detection

maxfeat
maximum feature number

for distribution A
nfeatSA · 2

σnfeat(F = 0)
sigma value of the

non-failure probability
distribution of A

maxfeat

3

σnfeat(F = 1)
sigma value of the failure
probability distribution of

A
6

σplostF = 0
sigma value of the

non-failure probability
distribution of B

19

σplost(F = 1)
sigma value of the failure

probability distribution of B
53

¯pvMF = 0 non-failure probability for C 0.1
pvM (F = 1) failure probability for C 0.47

σstdofF = 0
sigma value of the

non-failure probability
distribution of D

43

σstdof (F = 1)
sigma value of the failure
probability distribution of

D
165

pth failure threshold 0.4

Tracking Re-initialization

nmodels
number of models used by

the MUpS
10

m
minimum number of times
a model can be used before

being replaced
5

δmin
10th percentile of BD

distribution
0.1

δmax
90th percentile of BD

distribution
0.5

β1 model weight parameter 0.5
β2 model weight parameter 0.5

Table 2: Summary of the algorithm parameters used or the evalua-
tion of the framework

The precision and recall curves were computed vary-
ing the overlap ratio threshold used to identify the TP
values. The F-measure was computed considering ø >420

(0.2, 0.5, 0.8).
In case of partial occlusion, the SA also included the oc-

cluding object. So, to take into consideration only the area
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in-vivo dataset
ex-vivo
dataset

EV1 EV2 EV3 IV1

γlow 0.93/0.95 0.44/0.96 0.97/0.97 0.34/0.60

γmedium
0.93/0.95 0.44/0.96 0.90/0.93 0.34/0.60

γhigh 0.80/0.71 0.30/0.45 0.20/0.38 0.22/0.32

rtime 0.84/0.50 37.50/0.88 7.00/2.00 16.00/8.04

Table 3: F-measure values (without/with MUpS) for three different
overall threshold (low = 0.2, medium = 0.5, high =0.8) and Recovery
Time [# frames] (without/with MUpS)

of interest, the probability segmentation map was used to
discard the pixels belonging to the background (and thus425

the occluding object) and the overlap ratio was computed
considering the foreground area.

The evaluation was performed with and without the
MUpS, in order to assess its contribution. Precision and
recall curves where computed for both cases. In order to430

verify the behaviour of the framework against PO, these
curves were also computed considering only the frames la-
belled with PO.

The recovery time after the failure was computed as
the mean number of frames between the lost of the SA435

tracking and the correct re-detection (ø > 0.5) for each
video sequence, with and without MUpS.

The code was implement in C++, using the OpenCV li-
brary for the management of the images and KLT library2

for KLT algorithm implementation, since the OpenCV ver-440

sion of the KLT tracker does not include the affine con-
sistency check. The code released by Seib et al. (2012)
was used for the tracking by detection approach. The pro-
gram was running on a system with GNU/Linux operating
system, and a CPU Intel Core i5-3230M with four cores.445

The parameters used for this evaluation are summarized
in Tab.2.

4. Results and Discussion

In Fig. 6 example images from each video sequences of
the in-vivo and ex-vivo dataset are shown. In the first450

column, the SA, as defined in the first frame, is shown. The
second and third column show, respectively, an example of
partial and total occlusion. It is worthy to point out that,
in the analyzed videos, the SAs represent different tissue
surfaces, and there is a high percentage of frames with455

partial or total occlusion, where the target is not visible, as
shown in Tab.1, allowing the assessment of the algorithm
under different conditions.
Fig. 7 shows an example of the trend of the variables rep-
resenting the clues (A, B, C, D) used by the Bayesian460

network to estimate the joint failure probability P. The

2https://cecas.clemson.edu/stb/klt/

last row of the figure represents when the Tracking Re-
initilzation is active. From these data, we can observe dif-
ferent events (highlighted in Fig. 7 with numbered orange
boxes) that trigger the tracking re-initialization:465

1. The percentage of lost features drastically increases
since the area is moving out of the camera field of
view;

2. The number of features inside the SA decreases dras-
tically due to an instrument occlusion. This event470

combined with an increase of the optical flow stan-
dard distribution (caused by wrong matches) leads
to a failure of the KLT tracker;

3. The standard distribution of the optical flow increases
due to a sudden movement of the camera; KLT tracker475

alone would fail since it is not robust to sudden move-
ment of the scene;

4. The homography is invalid due to wrong feature mat-
ches caused by partial instrument occlusion. In this
case, KLT would continue to work, however track-480

ing wrong features (i.e. not belonging to the area of
interest) and compromising the SA tracking.

The Bayesian network was adjusted to be very sensible
to possible failures, because a false negative is not criti-
cal for our application. All the events aforementioned are485

examples of cases in which KLT fails, demonstrating the
need of a failure detection and SA re-detection strategies.
Moreover, if a failure is not detected at the first frame, the
tracking shows a degradation and the Bayesian network
will estimate the failure most probably after a few frames,490

re-initializing correctly the SA.
The precision and recall curves are shown in Fig. 8. These
curves demonstrate the performance of the tracking and
the effect of the MUpS. Considering all frames, the preci-
sion and recall values are strong, as it is confirmed by the495

F-measure (Tab. 3). In case of partial occlusion, even if
the values are lower, the algorithm still performs well. Re-
garding the effect of the MUpS, in most of the videos this
strategy improves both the precision and the recall con-
sidering all frames. The same behaviour can be observed500

considering only the partially occluded frames.
Tab. 3 reports the recovery time used to re-detect the
safety area after a failure. As we can observe, the MUpS
improves significantly the recovery time.

The computational time of the framework does not ful-505

fil the requirement needed for real time application, since
its reached only ' 1.60fps. Nevertheless, since the current
implementation of the code was more focused on the de-
velopment and testing of the algorithm performance, the
computational performance can be optimized by improv-510

ing the software architecture and memory management.

5. Conclusion

In this paper, we proposed a framework for Long-term
Safety Area Tracking (LT-SAT), which aims to be used to

8



SA PO TO res duration n frames description

EV1
720x576 04m:40s 7000

The video shows an exposed
goat kidney and the SA is
defined on the main vessel

entering in the kidney.

EV2
720x576 03m:52s 5800

The video shows a similar
surgical field of view as in

EV1 with a different kidney.

EV3
720x576 03m:40s 5500

The video shows a pig liver
and the SA is defined on a

vessel.

IV1
1280x720

04m:03s 6080
This sequence was

extracted from a video of a
pancreatectomy procedure.

Figure 6: Image samples from the ex-vivo (1st-3rd rows) and in-vivo (4th) dataset. From left to right, SA definition, Partial Occlusion (PO),
and Total Occlusion (TO) are shown, and details regarding the image resolution, the duration and number of frames and a brief description
is reported.

2

3

1

4

2 3 4
𝑛"#$%

𝑝'()%

𝑠𝑡𝑑("

𝑣.

Re-­initilization

1

Figure 7: Example of evidenced used by the Bayesian network to estimate the joint failure probability. The last row shows the frames in
which the Tracking Re-initialization is active.

preserve SA from injury during RMIS. We decided to focus515

on tracking vessels in the field of abdominal surgery, moved
by the need for preventing bleeding during different kinds
of surgical procedures. Despite this, we believe that our
algorithm is applicable and useful for other applications
where it is required the tracking of visible structures in520

the surgical field of view.

The overall results show that the framework fulfills
the main requirements stated in Sec. 1, such as (i) the
long-term robustness under complicated conditions (par-
tial or total occlusion), thanks to the combination and525

improvement of state-of-the-art tracking strategies with
a Bayesian-based failure detection scheme; and (ii) the
adaptation to environment/object changes, thanks to the
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Figure 8: Precision and Recall curves for all the video sequences
of the ex-vivo and in-vivo datasets. The first row was computed
using all the frames. The second row was computed using only the
frames with Partial Occlusion (PO). The dashed and continuous lines
represent the results without and with the Model Update Strategy
(MUpS), respectively.

novel strategy of updating the models used for the SA
re-initialization. The hybrid combination of KLT tracker,530

based on GFTT, with tracking-by-detection approach, based
on SURF features, aims at exploiting the strengths of the
two approaches. The KLT tracker is robust, accurate and
computationally cheap in case of small movements, while
tracking-by-detection approach would be more computa-535

tionally expensive and less accurate than KLT if used to
track the SA frame-by-frame. Its strength, however, is
the invariance to rotation and scale changes that allows
to recover the SA, even if it disappear for many frames
and reappears in a totally different pose, strengthened by540

a generalized Hough Transform approach to discard out-
liers.
The analysis of the ex-vivo and in-vivo videos show that
the framework is capable of maintaining good tracking per-
formance for extended periods of time (' 5min), covering545

in some cases the entire video sequences in which the ves-
sel had to be tracked. The high precision values confirm
that the performance of the framework is within the spec-
ifications required by the surgeons.

In terms of precision, the performance of the proposed550

framework is comparable with state-of-the-art algorithms
(Ye et al., 2016). However, the real improvement given
by the proposed framework with respect to state-of-the-
art algorithms consists in the robustness, represented by
recall values. Particularly, in contrast with the literature,555

we tested the algorithm on long video sequences (between
5000 and 7000 frame), simulating and considering many
of the events happening in surgery and that can affect the
performance of the tracking. This extensive evaluation on
long video sequences allows to state that the algorithm560

is able to work properly and robustly in a real surgical
scenario.

The weaknesses are (i) the difficulties in recovering the
SA after a large deformation, due to the fact that the
Model Re-initialization take into account only small de-565

formation, and (ii) the computational time.
Future work will aim at addressing the issue of robust

tracking under big deformations, exploiting deformation
modelling techniques. Also since the current implementa-
tion of the algorithm is not able to run in real time, next570

steps will include software architecture improvements and
code optimization, which should reduce considerably the
computational time. At this point, authors aim at in-
tegrating this framework with a dense 3D reconstruction
algorithm, already developed by Penza et al. (2016), in or-575

der to obtain a 3D area tracking, and integrate the overall
system in a robotic platform.
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