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Abstract

During embryogenesis, a mammalian heart develops from a simple tubular
shape into a complex 4-chamber organ, going through four distinct phases:
early primitive tubular heart, emergence of trabeculations, trabecular remod-
eling and development of the compact myocardium. In this paper we propose
a framework for standardized and subject-independent 3D regional myocar-
dial complexity analysis, applied to analysis of the developmentevelution
of the mouse left ventricle. We propose a standardized subdivision of the
myocardium into 3D overlapping regions (in our case 361) and a novel vi-
sualization of myocardial complexity, whereupon we: 1) extend the fractal
dimension, commonly applied to image slices, to 3D and 2) use volume oc-
cupied by the trabeculations in each region together with their surface area,
in order to quantify myocardial complexity. The latter provides an intuitive
characterization of the complexity, given that compact myocardium will tend
to occupy a larger volume with little surface area while high surface area with
low volume will correspond to highly trabeculated areas.

Using 50 mouse embryo images at 5 different gestational ages (10 sub-
jects per gestational age), we demonstrate how the proposed representation
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and complexity measures describe the developmentevelution of LV myocar-
dial complexity. The mouse embryo data was acquired using high resolution
episcopic microscopy. The complexity analysis per region was carried out us-
ing: 3D fractal dimension, myocardial volume, myocardial surface area and
ratio between the two. The analysis of gestational ages was performed on
embryos of 14.5, 15.5, 16.5, 17.5 and 18.5 embryonic days, and demonstrated
that the regional complexity of the trabeculations increases longitudinally
from the base to the apex, with a maximum around the middle. The overall
complexity decreases with gestational age, being most complex at 14.5. Cir-
cumferentially, at ages 14.5, 15.5 and 16.5, the trabeculations show similar
complexity everywhere except for the anteroseptal and inferolateral area of
the wall, where it is smaller. At 17.5 days, the regions of high complexity
become more localized towards the inferoseptal and anterolateral parts of the
wall. At 18.5 days, the high complexity area exhibits further localization at
the inferoseptal and anterior part of the wall.

Keywords: 3D fractal analysis, cardiac trabeculations, high resolution
episcopic microscopy, cardiac embryology, cardiac morphogenesis

1. Introduction

The development of the myocardium appears to be similar in many verte-
brates. In particular, before the intramural cardiac vessels appear, the ven-
tricular walls consist mainly of trabeculations. Those early trabeculations in-
crease myocardial surface area and serve to increase myocardial oxygenation
and nutrient delivery by diffusion, while sufficient tissue volume builds up for
myocardium development at the later stages. However, the decrease in tra-
becular complexity does not lead to a disappearance of the trabeculations. A
number of animal studies suggest that smooth ventricles lead to severe heart
failure and elevated embryonic lethality (Captur et al., 2015). On the other
hand, it was observed that excessive trabeculations can lead to heart fail-
ure, atrial and ventricular arrhythmias and thromboembolic events (stroke)
(Ritter et al., 1997; Oechslin et al., 2000; Kovacevic-Preradovic et al., 2008;
Penela et al., 2013; Oechslin and Jenni, 2011). Trabeculated myocardium
can be seen in normal hearts and can be frequently seen at younger ages,
diminishing with age, with some gender differences (Dawson et al., 2010).
A high proportion of young athletes, especially of African/Afro-Caribbean
origin, also exhibit an increased amount of trabeculations (Gati et al., 2013).



One of the animal models to investigate the developing heart and related
pathologies is the mouse embryo, where genetic alteration have been found to
affect normal cardiac development, leading to either decreased or increased
trabeculations. The trabeculae first appear at gestational age (GA) of about
9.0 - 9.5 embryonic days, at the end of cardiac looping. By GA14.5 ventricu-
lar septation is complete and a dense trabecular meshwork is established. At
this moment, trabecular meshwork starts to become less complex and inter-
trabecular spaces seem to transform into the vessels (Captur et al., 2016). At
the same time, papillary muscles, the moderator band, and effective arterial
valves are starting to form.

Recently, a quantification of myocardial complexity of mice embryos was
presented (Captur et al., 2016). The authors proposed to use fractal di-
mension (FD), measured on the myocardial contours in 2D short axis and
2-chamber MRI image stacks. The authors demonstrated that trabecular
profiles increase from base towards the mid/apical region and decrease to-
wards the apex. They also demonstrated that during later development, from
the establishment of the interventricular septum at GA14.5 to GA18.5, tra-
becular complexity reduces and its decline is not proportional to the increase
in compact wall volume. Even though the 2D FD measurement correlates
with the visual perception of complexity, it has several drawbacks when ap-
plied to non-linear fractal structures such as natural fractals. The first and
the largest problem in FD calculation is a lack of consensus with respect to
the choice of its parameters. For example, in the typically used box counting,
one has to decide on the minimum and maximum block size, the step for the
block shift, how to perform the block shifts as well as how many to do, and
finally, how to fit a line to the box counts (Foroutan-Pour et al., 1999; Jelinek
et al., 2006; Karperien and Jelinek, 2016). Any variation in these parameters
can significantly affect the FD. Another problem with 2D FD for analysis of
myocardium is that the calculated values do not represent the 3D structure,
and 2D slice-by-slice analysis inherently restricts the applicability of a larger
range of methods.

In this paper, we propose a framework for 3D myocardial complexity
assessment in terms of 3D FD and myocardial surface area to volume ra-
tio. Such ratio represents an important parameter in diffusion processes and
is widely used in chemistry, physics, biology and physiology (Latour et al.,
1993; Yuan et al., 2010). To asses the myocardial complexity in each re-
gion, we propose to use a moving window (encompassing the neighboring
regions), calculating the volume of the myocardium within the window and
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the area of the myocardial surface in contact with the blood. The surface
area is expected to increase with the amount of blood cavities within the
myocardium, while the volume increases with the amount of tissue filling
the region. Therefore, highly trabeculated areas will have high area and low
volume measures, while compact tissue will have low area and high volume.
In our experiments, we demonstrate that the regional ratio of myocardial
surface area to volume increases with myocardial complexity.

The proposed methodology was used to study the developmentevelution
of cardiac trabeculations in the left ventricle (LV) of mouse embryos across
different gestational ages. The framework is based on the recently intro-
duced myocardium reparameterization (Paun et al., 2017), where an individ-
ual shape-independent method for establishing point-to-point correspondence
between the cardiac ventricles is proposed. Consequently, that method pro-
vides a way of subdividing the ventricles into 3D regions in a standardized
way for inter-individual comparison of structural and shape properties as well
as studying temporal developmentevelation. The myocardial complexity can
then be estimated on a per region basis with regions of any desired size. The
study was performed on the set of 50 mouse embryos, acquired at different
gestational ages: from GA14.5 embryonic days, when the ventricular septa-
tion is complete and a dense trabecular meshwork is established within the
ventricular cavities, through GA15.5, GA16.5, GA17.5, to GA18.5 embryonic
days, during the simultaneous processes of decrease in trabecular complexity
and continued growth of the compact myocardial layer. The myocardium
was subdivided into 361 regions (98 slices in longitudinal direction (apex-
base) and 40 in circumferential direction (septal-inferior-lateral-anterior) plus
apex). In each of these regions we calculated the 3D FD, myocardial vol-
ume, myocardial surface area, and surface to volume ratio. We show how
these measures represent the myocardial complexity for each gestational age
and how they do evolve from one age to another, emphasizing the differences.
Finally we discuss the advantages and disadvantages of each of the measures.

2. Data

All specimens were handled in compliance with the Guide for the Care and
Use of Laboratory Animals published by the US National Institutes of Health
and with the approval of the MRC National Institute of Medical Research
Ethical Review Panel. Mouse (Mus musculus) embryos were obtained from
NIMR:Parkes (a robust outbred strain maintained at the MRC National
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Table of abbreviations
FD fractal dimension
HREM high resolution episcopic microscopy
GA gestational age

LV left ventricle
LAX long axis

SR surface ratio
VR volume ratio

Table 1: List of abbreviations used in the manuscript.

Institute of Medical Research). For approximate embryo staging, detection
of a vaginal plug was taken as gestation day 0.5 (GAO0.5).

In order to minimize retention of blood in embryo hearts, harvested em-
bryos were first agitated in phosphate buffered saline (PBS) solution at 37 °C
containing heparin for approximately 15 minutes (min), while all umbilical
vessels being repeatedly clipped to allow blood to be pumped out. Potas-
sium chloride was then added (final 50 mM) to ensure that hearts arrested in
diastole. Hearts (including attached lungs and thymus) were then isolated,
washed briefly in fresh PBS and after removal of at least one lung lobe, sam-
ples were fixed for 30 min in fresh 4 % paraformaldehyde at 4 °C. To remove
remaining blood within the heart chambers, samples were then washed in re-
peated changes of distilled water over 30 — 60 min at room temperature with
constant agitation (roller). The resulting osmotic shock lysed any remaining
blood within the heart chambers without any alteration to heart structure
as assessed by histology. After overnight fixation in 4 % paraformaldehyde
(4 °C), hearts were dissected away from associated lung, thymus and pericar-
dial tissue prior to dehydration and embedding in methacrylate resin (Mohun
and Weninger, 2012). Samples were similarly positioned during embedding
to ensure relatively reproducible base-to-apex sectioning during the high res-
olution episcopic microscopy (HREM) imaging process.

The prepared samples were then used for the HREM analysis as described
in Weninger et al. (2006). Briefly, HREM uses block-face imaging to produce
perfectly registered digital image stacks capturing the 3D architecture of the
embryonic heart at high resolution. Resulting datasets comprise 1000-2000
digital, short-axis images, produced by repeated removal of 2 um (GA14.5 -
GA16.5) or 3 um (GA17.5, GA18.5) sections (base-to-apex direction). The
volumetric visualizations of the datasets from each GA can be seen in Fig. 1.



Figure 1: Volumetric visualization of the datasets for each GA.
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Figure 2: Pipeline for 3D quantification of myocardial complexity. The colors of the
unfolded mesh under geometry independent representation represent the labels of 361
regions, while the dots depicted in all three figures represent three defined landmarks. The
colors of the figure under visualization step represent myocardial volume values for each
of 361 regions of an arbitrary dataset. The colors in these figures are used for illustrative
purposes and are not representative of the final analysis results.

3. Methods

3.1. Owverview

In Fig. 2, we depict an overview of the proposed framework. The input
HREM datasets are first preprocessed, aligning them to have approximately
the same orientation, and to segment the LV myocardium. We manually
removed the valves and the tendinous chords, and from the cleaned seg-
mentation, extracted the interface between the blood pool and the tissue.
The cleaned segmentation and the interface images are then mapped to the
standardized representation and subdivided into regions.

The tissue complexity analysis was performed on 50 subjects, 10 subjects
per GA, ranging from 14.5 to 18.5 embryonic days. For each GA, mean
and standard deviation of the region complexity values were calculated and
plotted on continuous bulls-eye plots. Two metrics were used:

e Fractal dimension, performed on the interface between the trabecula-
tions and the blood pool.

e Regional myocardial volume and surface area, performed on the my-
ocardial image masks.




Figure 3: Visualization of one of the datatset’s region and its neighborhood used in
the analysis. a) Unfolded dataset divided into 361 regions. The black shaded element
represents the region for which we calculate the corresponding metrics, while the green
elements represent its 5 x 5 neighborhood region used in calculations. b) The same element
and its neighborhood region displayed on the original non-flattened dataset on which
corresponding metrics are calculated. c) Extracted region and its 5 x 5 neighborhood
region viewed from the inside of the cavity. The three dots depicted in figures a) and
b) represent anterior septal, posterior septal and apical landmarks, defined to remove
orientation ambiguity in the normalized domain. The process of obtaining those landmarks
is explained in detail in Paun et al. (2017).

To produce the plots of complexity, the analysis was performed on the
neighborhood of each region by employing a 5 x 5 moving window (Fig. 3).
The values on the boundaries were calculated by zero padding. The neigh-
borhood of the apical region was defined as the apex and the adjacent apical
ring regions. All complexity metrics were calculated on the original datasets.

3.2. Data preprocessing

The proposed framework for 3D assessment of myocardial complexity
takes as an input aligned volumetric image segmentations of LV myocardium
with all its detailed anatomy present within the blood pool (excluding valve
and tendinous chords). The alignment was corrected by matching the heart’s
LV long axis (LAX) (defined by the centroid of the mitral annulus and the
LV apex) with the positive z direction of the image.



The whole heart segmentations of aligned datasets were first obtained
in Fiji (an image analysis software (Schindelin et al., 2012)) by using auto-
matic global thresholding based on Renyi’s entropy algorithm, as it has been
shown that it outperforms other entropy based thresholding methods (Sahoo
et al., 1997). Subsequently, the whole hearts segmentations were imported
to the Seg3D image processing software (CIBC, 2015) where their LVs were
segmented similarly to the procedure described in (Paun et al., 2017). The
imported whole heart segmentations were first clipped at the level of the Mi-
tral valve annulus to remove the atria and great vessels. From those images,
we extracted the LV blood pool mask and manually delineated and extracted
the LV epicardial mask. The mitral valve and tendinous cords were manu-
ally delineated and removed from the blood pool masks. The myocardial
mask, with all the detailed anatomy, was obtained as the difference of the
epicardial and the cleaned blood pool mask. These are used to subdivide the
myocardium into regions and perform assessment of myocardial complexity.

The proposed 3D fractal analysis is performed on a one voxel thick 3D
contour, representing the interface between the myocardium and the blood
pool, obtained using the binary contour filter (ITK (Yoo et al., 2002)) on the
cleaned blood pool mask.

3.8. Geometry independent representation of a ventricle

The method of Paun et al. (2017) allows establishing correspondence be-
tween different objects having an overall shape of a thick hemispherical shell.
To do so, apart from the object itself (represented by either a surface or
volumetric mesh), we also require an enclosing surface (represented by a
triangulated mesh), that contains the whole object in its interior. The map-
ping is then calculated in 2 steps. First, we map the enclosing surface to
a suitable planar domain. To impose a consistent orientation, we specify
3 landmarks on the enclosing surface and perform the conformal or quasi-
conformal flattening to the planar domain. Secondly, we map our object to
the volumetric domain defined by the planar domain (usually a cylinder or a
prism). The planar domain is transformed as explained in Paun et al. (2017)
to compensate for increasing triangle density towards the disk’s center. In
this volumetric domain, we subdivide the base (the disk) into 361 regions by
introducing 98 rings of equal thickness (corresponding to the apex-to-base
slices in the LV), each split equally into 40 circumferential (septal-lateral-
septal) regions. The apical region is not subdivided. The subdivision can be
seen in Fig. 3. The detailed sensitivity analysis of our representation to the
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variations in the landmark placement, as the analysis of distortion caused by
mapping, can be found in Paun et al. (2017).

3.4. Fractal analysis

The 3D fractal analysis presented in this study was performed using an
in-house implementation of the cube-counting method (3D equivalent of the
box-counting method) similarly to Goni et al. (2013), where the estimated
fractal measures were obtained by the box counting method of Russell et al.
(1980), suitable for objects with and without self-similarity.

The cube(box) counting method is performed by superimposing the 3D
image of the object under study with isotropic grids made of regular cubes of
size €. In the image, the object is represented by nonzero voxel values (with
zero being the background).

We first find the smallest region enclosing the object (its bounding box)
and randomly select the grid origin from all possible voxel locations within
the region. For each grid of cube size €, the number of cubes necessary to
fully cover the object, N(e), is recorded. Let N;(€) represent the number
of non-zero voxels contained in the i-th non-empty cube of size €, where
i € [1, N(e)]. The total number of non-zero voxels (voxels of the object) can
be obtained from:

N(e)
Nai = Ni(e), (1)
=1

and the probability of finding a non-zero voxel (voxel of the object) within
the i-th non-empty cube of size € is equal to:

N;(e)

= . 9
Pi= (2)

Those measurements were then used to calculate the generalized dimen-
sion spectrum (Hentschel and Procaccia, 1983), where generalized (Reényi)
dimensions D, of order ¢ are defined by:

1 log SN0

D, =1 =0,1,2,... 3
q El_r)% 1 q IOg% » q y Ly 4y ( )

where D, is a non-increasing function of ¢,
Dy > Dy, if ¢ <qo. (4)
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D, for ¢ > 0 will tend to be more accurate, as the higher order correlations
are taken into account as ¢ increases. As can be seen from equation 3, for
qg = 0, the Dy dimension does not distinguish boxes with high density of
voxels from those containing just a single voxel. More precise dimension
measurements can be obtained from D; and D,, which take into account
inhomogeneities or correlations of elements of the object.

We calculated the generalized dimensions for ¢ = 0,1 and 2 which corre-
sponds to the box counting dimension (Dy), the information dimension (D;)
and the correlation dimension (Dy) respectively, where:

log N
Dy = lim 289 (5)
e—0 log—
N ] ,
D, — lim 2=l Pi1o8Pi (6)
e—0 log €
log STV 2
Dy — lim 108 2i=1 Pi (7)

e—0 log €

As the limit lim._, is not feasible in practical applications, N(¢) and
N;(e) are measured for a certain range of € values (Hentschel and Procaccia,
1983).

In our implementation, the grid cube size € was linearly increasing by
1 voxel. The number of non-empty cubes decreases exponentially with the
increase of the grid resolution €, where the exponent represents the corre-
sponding fractal dimension depending on the order of correlations between
image voxels taken into account. Dy is estimated from the slope obtained by
linear regression from the log-log plot of log N(€) versus log1/e. Similarly,
Dy and D, are obtained from the log-log plots of Zf\;(f) p; log p; versus log e
and log Zfi(f) p? respectively.

Due to inter-object difference in geometry, grids of cube size € do not
represent the same spatial resolution between objects (Goni et al., 2013).
Moreover, it is known that using grids of too small and too big cube sizes will
lead to erroneous fractal dimension estimates (Foroutan-Pour et al., 1999).
To take into account the varying geometry size and possible variation in
image resolution, the range of € values was taken from 2% to 25% of the
smallest dimension of the object bounding-box. The maximum grid cube
size value of 25% was chosen as in the work of Foroutan-Pour et al. (1999)
and Zhao et al. (2016), while the minimum cube size value was chosen as in
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Captur et al. (2016) and Zhao et al. (2016). An example of the calculations
can be seen in Fig. 4, 3rd column.

In all our experiments, the values of Dy, D¢, and Dy were similar, how-
ever the values corresponding to lower ¢ tended to be noisier and sometimes
underestimating the real complexity. Since the higher ¢ tends to be more
accurate, in all the following sections, as a fractal dimension (FD), we report
only the value of Ds.

3.5. Volume and surface area calculations

Another type of complexity analysis is performed by utilizing volume
and surface area measures of the object regions and their ratios. Given the
regions defined on each dataset, we calculate the volume, occupied by the
cardiac tissue for each region of the object, and the volume of the region itself
(containing cardiac tissue and blood pool). The ratio of these two volumes
provides a percentage of how much volume does the cardiac tissue occupy
within the region. This ratio increases with the increase of wall thickness
and compactness of the myocardium.

In a similar way, we calculate the surface areas of the cardiac tissue
and the enclosing region. Surface areas are calculated from triangular sur-
face meshes obtained form the corresponding volumetric images. To mini-
mize computational time, data processing and influence of meshing parame-
ters, the surfaces were obtained by applying the Marching Cubes algorithm
(Lorensen and Cline, 1987). The ratio of cardiac tissue surface area and re-
gion surface area increases as the myocardial surface becomes more complex
and convoluted within the region. Examples of the calculations can be seen
in Fig. 4, 4th and 5th columns.

4. Results

4.1. Complexity analysis using regional fractal measures

The mean and standard deviation of the regional FD was calculated for
each GA. In the cube-counting method, we used 50 grid offsets and the size
of the grid boxes was ranging from 2 % to 25 % of the region’s bounding
box. The increment of the grid cube size was 1 voxel. Fig. 5 shows the mean
regional correlation dimensions (Ds) and their corresponding coefficients of
variation per GA, expressed as the percentage of the mean.

From Fig. 5, 2nd column, we can see that myocardial complexity globally
increases as we move from the base towards mid/apical part of the heart and
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Figure 4: Sample datasets from each gestational age (GA) with the unfolding, FD (Ds),
surface ratio (SR) and volume ratio (VR). The datasets were clipped at the middle to give
a better view at the interior of the chamber.
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then decreases towards the apex. That is especially pronounced at GA14.5,
GA15.5 and GA16.5, where all mid and apical parts (except the anterosep-
tal, lateral and inferolateral wall) have similar trabecular complexity. The
circumferential extent of the lower complexity regions increases from GA14.5
to GA16.5, while the lateral low complexity region, present at GA14.5, grad-
ually shifts towards the inferolateral part of the wall. By GA17.5, the higher
complexity is present in the mid and apical parts of the septal, inferior, and
inferoseptal wall and the basal and mid parts of the anterior and anterolat-
eral wall. The overall complexity globally decreases, which could be related
to the simultaneous processes of decrease in trabecular complexity and the
increase of the volume of the compact myocardial layer (Fig. 5, 3rd row, 1st
column). At GA18.5, the most complex regions are narrowed to the mid and
apical parts of the anterior, septal, inferior and inferoseptal wall. The regions
of low complexity in the first and second basal ring, throughout all the GAs,
are due to a smoother wall close to the outflow tract and the manually re-
moved valve. As expected, myocardial complexity decreases with gestational
age, which coincide with the visual inspection of the 3D data visualizations
and is in agreement with results obtained by Captur et al. (2016).

The values of the coefficient of variation are more or less similar between
the cases, while the areas of high variability are present in the apex of GA14.5
and apical, anterolateral regions of GA18.5.

Fig. 6 depicts plots of mean FD per GA. Nine different graphs in each plot
represent FD values as we move circularly counterclockwise from the lateral
wall towards the septum and back to the lateral wall. Each line represent a
different radial location (ring) in the bull’s eye plot, or longitudinal location
in the apex-base direction. There are 10 graphs, with the apex being a
straight black line, and 9 graphs representing 9 rings from the 1st apical ring
(dark blue) to the 9th basal ring (dark red). The gray bands represent the
average 95 % confidence intervals over the population.

To show overall change of the mean FD in longitudinal direction, we
averaged mean FD values per longitudinal regions and displayed how those
values change with the GA. Fig. 7 shows ten different graphs representing
mean FD values at different location along LAX for all GAs. The gray bands
represent the average 95 % confidence intervals over the population.

4.2. Complexity analysis using regional occupied volume and surface area

The overall occupied volume increases with gestational age, mainly due
to myocardial wall thickening, which can be seen from Fig. 8 in the 2nd
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Figure 5: Continuous bull’s eye plots representing the average regional fractal dimension
(D32) per GA (2nd column) and the coefficient of variation of the regional fractal dimensions
per GA (3rd column). The first column shows a sample dataset for each GA sliced at the
middle.
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Figure 7: Plots of mean FD (D5) per longitudinal regions across different GAs. Mean FD
values are reported for 9 longitudinal regions in LAX direction. The gray bands represent
average 95 % confidence intervals over the population.

column, representing the mean regional occupied volume. At GA14.5, the
occupied volume is the highest in the apex, the basal, mid and apical parts
of the inferior and inferolateral wall, the apical and mid parts of the lateral,
anterolateral and anterior wall. At GA15.5, it increases everywhere, having
the highest values at the mid and apical parts of the inferoseptal wall. By
GA16.5 we see a significant decrease in the apex, the basal and mid ante-
rior, anteroseptal and septal wall. A further overall increase can be seen
by GA17.5, with highest values in the basal, mid and apical parts of the
inferior, inferolateral and lateral wall and the basal parts of the anterolat-
eral wall. At GA18.5, the overall occupied volume still increases, with the
most pronounced increase in the basal, mid and apical parts of the inferior,
inferolateral, lateral and anterolateral wall.

Fig. 8, 3rd column, represents the coefficient of variation of the regional
occupied volumes within the population, expressed as the percentage of the
mean. At GA14.5, the occupied volume between subjects varies the most in
the apex, the apical regions of the inferior and anterolateral wall and the basal
parts of inferoseptal wall. By GA15.5, the variation increases in the apical
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and mid parts of the anterior, anterolateral and lateral wall. At GA16.5 we
observe an overall increase, where regions with the highest variability are
located at the apex, the apical and mid parts of the anterolateral, lateral,
inferior and inferoseptal wall, and the base and mid parts of the inferoseptal,
septal and anteroseptal wall. At GA17.5, we observe an overall decrease
with regions of low variability at the apical, mid and basal parts of the
inferolateral wall. At GA18.5, a significant decrease of variation is observed
in the whole inferior, inferolateral and lateral wall and the mid and basal
part of the anterolateral wall. The regions of high variability in the basal
parts throughout the GAs represent a segmentation artifact of the manual
valve removal.

In Fig. 9, we show the mean and coefficient of variation of the regional
surface area ratios. Higher values mean that the surface is more convoluted
within the region. At GA14.5, the highest mean regional surface area ratios
are present at the mid and apical parts of the inferior and inferolateral wall
and the mid part of the lateral and anterolateral wall. At GA15.5, it also
increases in the mid part of the anterior, septal, inferoseptal wall, while it
decreases in the apex, the apical and mid parts of the inferior and infero-
lateral wall and the mid part of the lateral wall. At GA16.5 and GA17.5,
we observe a further overall decrease, with the highest decrease in the apex
and apical parts of the whole wall. Overall low surface ratio values, uni-
formly distributed over whole wall, are the results of decrease in trabecular
complexity, making the endocardial surface less convoluted. By GA18.5, the
value increases at the apex and is the highest at the apical and mid parts
of the septal, inferoseptal and inferior wall, and the apical and mid parts of
anterior wall.

The coefficient of variation of the regional surface area ratios at GA14.5
has uniformly low values everywhere. At GA15.5, it increases at the apical,
mid and basal parts of the inferoseptal, anterolateral and anterior wall and
at the apical and mid parts of septal and anteroseptal wall. By GA16.5, the
variation in surface area ratios concentrates at the apex, the basal and mid
parts of the inferolateral, lateral and anterolateral wall, the apical, mid and
basal parts of the septal wall and the basal parts of the anteroseptal wall. At
GA17.5, there is a propeller-like pattern, where the higher values are located
in the mid and apical parts of the inferoseptal, lateral and anteroseptal wall.
The peak values are located at the apical and mid part of the anteroseptal
and lateral wall. Finally, at GA18.5, the pattern of moderate values is located
at the apical and mid parts of the septal wall, the basal parts of anteroseptal
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Figure 9: Continuous bull’s-eye plots representing average regional surface area ratios per
GA (2nd column) and coefficient of variation of regional surface area ratios per GA (3rd
column).
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wall and the apical and mid parts of the anterior and anterolateral wall.

In Fig. 10, we show the mean and coefficient of variation of the normalized
regional surface to volume ratios. The tissue surface areas and volumes were
normalized by surface areas and volumes of the corresponding whole regions
including tissue and cavity. Higher values indicate that the tissue surface is
more convoluted within the region and occupy smaller volume. At GA14.5,
the highest mean regional values are present at the mid and apical parts of the
inferior and inferolateral wall and the mid part of the lateral and anterolateral
wall. At GA15.5, its value increases in the mid part of the anterior, septal,
inferoseptal wall, while it decreases in the apex, and all parts of the inferior,
inferolateral and lateral wall. At GA16.5 and GA17.5, we observe a further
overall decrease, with the highest decrease in the apex and the inferolateral
and lateral wall. Overall low values are the results of decrease in endocardial
surface complexity and increase of occupied volume. By GA18.5, the value
increases at the apex and is the highest at the mid parts of the septal and
inferoseptal wall, and the apical parts of anterior wall.

Fig. 11 shows a scatter plot of the myocardial volume versus surface area
(not normalized by the region volume and area) for all 361 regions of the 5
GAs. For each GA, we fit a line passing through the origin. The correla-
tion coefficients with 95% confidence intervals for each GA are the following:
GA14.5: 0.956 [0.949,0.966], GA15.5: 0.956 [0.947,0.964], GA16.5: 0.967
[0.960,0.973], GA17.5: 0.9173 [0.899,0.932], GA18.5: 0.862 [0.833,0.886].
We can observe that the slope of the line increases with gestational age,
correlating with the apparent increase of the volume of the compact myocar-
dial layer and decrease in trabecular complexity with GA. Thus, if we look
at surface to volume ratio, myocardial complexity is the highest at GA14.5
and decreases towards GA18.5. The highest increase in the slope of GA17.5
with respect to GA16.5 could be explained due to growth of the compact
myocardial layer and likely nonlinear progression of complexity evolution,
which we can observe in the bull’s eye plots. In particular, we can see that
at GA17.5, the overall occupied volume increased, while the overall surface
area decreased considerably, thus leading to a higher jump in the slope of
the GA17.5 regression line.

For all calculated values, namely fractal dimension (FD), surface to vol-
ume ratio (S2V) and normalized surface to volume ratio (SR2VR) we per-
formed statistical test between GAs. Fig. 12 depicts box plots of calculated
values for all the regions of the datasets grouped by GA. We calculated two
sided Wilcoxon rank sum test between GAs and obtained statistical signif-
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Figure 10: Continuous bull’s-eye plots representing average regional normalized surface
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variations per GA (3rd column).
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icance (p < 0.001) for all tests except test between GA15.5 and GA16.5 in
normalized surface to volume ratio (p > 0.05). Fig. 13, depicts the bull’s eye
plots of the results of the statistical test between GAs for each region. In the
first column, corresponding to the test results between GA14.5 and GA15.5
values, FD measurements suggest that the development concentrates in the
septal wall, while S2R and SR2VR measurements suggest that the changes
are located in the lateral wall. The GA15.5-16.5 column seems more or less
consistent across measurements without any reliably identifiable differences.
All the measurements, especially FD and SR2VR, agree that the largest
change happens from GA16.5 to GA17.5 in the area of papillary muscles.
The GA17.5-18.5 column is again consistent across measurements with no
reliable differences.

The aforementioned results can be observed in the fig. 14. The figure de-
picts the visualizations of the original data with one dataset per GA. The first
column depicts the whole datasets in the same scale with their septoinferior
part removed to be able to see their detailed cardiac anatomy. Consecutive
columns represent anterior, inferior, lateral and septal cut of the correspond-
ing datasets.

Fig. 15 represents a scatter plot of FD versus the myocardial volume to
surface area ratio for all 361 regions of the 5 GAs. The correlation coeffi-
cients with 95% confidence intervals between FD and the volume to surface
area ratio for each GA are the following: GA14.5: —0.633[—0.691, —0.567],
GA15.5: —0.275 [—0.368, —0.177], GA16.5: 0.082 [0.022,0.183], GA17.5:
—0.353 [—0.440, —0.259], GA18.5: —0.489 [—0.564, —0.407]. From the plot
we can observe that myocardial volume to surface area ratio separates data
better than FD. If we look at the regional values of the FD for each GA
separately we can observe that they all fall within the same range: 2 — 2.6.
On the other hand regional volume to surface area values occupy different
ranges for different GAs, thus providing means to cluster data into regions
corresponding to different GAs.

5. Conclusions

In this paper, we presented a framework for regional cardiac ventricular
myocardial complexity analysis and visualization using a standardized rep-
resentation of the LV to ensure inter-individual as well as longitudinal com-
parison. We also extended the current state of the art method for FD-based
evaluation of trabecular complexity analysis to 3D, where we perform the 3D
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Figure 14: Visualization of one dataset from all gestational ages (GA). First column shows
the whole datasets on the same scale with their septoinferior part removed to show their
detailed cardiac anatomy. The other columns represent anterior, inferior, lateral and septal
cut of the datasets.
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fractal analysis locally on LV regions. The fractal analysis was extended with
new proposed complexity measures such as surface ratios, occupied volume
and surface-volume ratios. The obtained results are in agreement with the
results obtained by Captur et al. (2016), where we get comparable results in
trabecular complexity trends within the same gestational ages.

However, the Captur et al. method, performs 2D per-slice analysis and
we have found no other reported results on regional trabecular complexity,
defined either by the 17 American Heart Association (AHA) regions or any
other variant. Therefore, to the best of our knowledge, this is the first paper
to perform a 3D regional myocardial complexity analysis, both spatially and
longitudinally. Our results confirm the known decrease in trabecular com-
plexity with GA in normal (mouse) embryos, where the most complex regions
at 18.5 embryonic day coincide with the regions where papillary muscles are
established.

The proposed 3D fractal analysis, as compared to the 2D, allows for a
more accurate quantification of the 3D myocardial wall and the proposed
analysis framework allows to apply previously inaccessible methods of quan-
tification. The 3D FD still inherits some of the drawbacks of the 2D approach.
When applied to natural fractals, FD calculation has a lack of consensus with
respect to the choice of parameters, which most of the times are chosen using
visual inspection and based on a trial and error basis and the computational
cost. The proposed area and volume measures provide a more clearly de-
fined and more interpretable complexity measure: the increase in myocardial
volume is related to the growth of the compact myocardial layer or density
increase, while surface area is simply the area of the interface between the
blood and the tissue, directly proportional to the apparent complexity. The
proposed approach allows for the quantification and comparison of normal,
as well as abnormal, trabecular development and provides a way for the more
objective quantification of alterations induced by genetic mutations.

Although results of our fractal analysis provided a similar finding as in
Captur et al. (2016), in this study we provide a more comprehensive analysis
of left ventricular myocardial complexity. We do a 3D extension as well as
mapping to a reference, which allows us to study regional changes, in similar
locations, in much more detail. The performed analysis might not reveal a
lot of novel insight in normal heart development, as the study was performed
on normal mice where the overall heart geometry is fairly constant, but
offers novel possibilities to study abnormal development, as in for example
congenital heart disease, wherewere using 2D slices would not easily provide
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comparable information in individuals with complex geometrical changes.
Additionally, we provided previously unused complexity measures in cardiac
development, related to volumes and areas, that could be more easily linked
with for example future computational studies to investigate the relation
between trabeculations, wall stress and perfusion by diffusion.
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