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and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain

cCenter for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
dICREA, Barcelona, Spain

Abstract

Recent advances in fetal magnetic resonance imaging (MRI) open the door to

improved detection and characterization of fetal and placental abnormalities.

Since interpreting MRI data can be complex and ambiguous, there is a need for

robust computational methods able to quantify placental anatomy (including

its vasculature) and function. In this work, we propose a novel fully-automated

method to segment the placenta and its peripheral blood vessels from fetal MRI.

First, a super-resolution reconstruction of the uterus is generated by combining

axial, sagittal and coronal views. The placenta is then segmented using 3D Ga-

bor filters, texture features and Support Vector Machines. A uterus edge-based

instance selection is proposed to identify the support vectors defining the pla-

centa boundary. Subsequently, peripheral blood vessels are extracted through

a curvature-based corner detector. Our approach is validated on a rich set of

44 control and pathological cases: singleton and (normal / monochorionic) twin

pregnancies between 25 - 37 weeks of gestation. Dice coefficients of 0.82 ± 0.02

and 0.81 ± 0.08 are achieved for placenta and its vasculature segmentation,

respectively. A comparative analysis with state of the art convolutional neu-
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ral networks (CNN), namely, 3D U-Net, V-Net, DeepMedic, Holistic3D Net,

HighRes3D Net and Dense V-Net is also conducted for placenta localization,

with our method outperforming all CNN approaches. Results suggest that our

methodology can aid the diagnosis and surgical planning of severe fetal disor-

ders.

Keywords: Fetal Surgery, MRI, 3D Super-resolution, Placenta and Blood

Vessels Segmentation, Gabor Filter, Support Vector Machine, Corner Detector.

1. Introduction

The placenta is an organ that maintains the fetus and is connected to the

uterine wall to allow nutrient uptake, thermo-regulation, gas (oxygen) exchange

via the mother’s blood, and transfer of waste products. Exchange of oxygen

and nutrients take place as the maternal blood flows around terminal villi in5

the intervillous space. At the junction of umbilical cord and placenta, the umbil-

ical arteries branch to form chorionic arteries and traverse the placenta surface

in the chorionic plate and branch further before they enter into the villi. The

fetal-placental circulation allows the umbilical arteries to carry deoxygenated

and nutrient-depleted fetal blood from the fetus to the villous core fetal vessels.10

After the exchange of oxygen and nutrients, the umbilical vein carries fresh oxy-

genated and nutrient-rich blood circulating back to the fetal systemic circula-

tion (Wang and Zhao (2010)). The detection of such vasculature tree, especially

the vessels located on the placenta surface (periphery) which directly emanate

from the umbilical cord, is crucial to diagnose abnormal fetal-placental circula-15

tion or insufficiency. This has only been done manually by clinicians through

a costly and time-consuming process. Hence, placenta examination may yield

information about serious fetal disorders (see Figure 1) such as Twin-to-Twin

Transfusion Syndrome (TTTS), placenta previa or vasa previa (Hubinont et al.

(2015)).20

TTTS affects around 10 - 15% of monochorionic twins before 24 Gestational

Weeks (GW). It originates from the blood vessels located inside and on the
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surface of the shared placenta connecting both babies. In TTTS, blood is not

evenly distributed (Fraser (2010)), but part of it is diverted from one of the

twins to the other. Laser ablation therapy is the most effective treatment and25

it consists in closing blood vessels connecting the twins. Placenta previa affects

approximately 0.4 - 0.5% of all deliveries around 32 GW (Weiner et al. (2016))

and is the leading cause of antepartum hemorrhage (Fan et al. (2017)). If

the placenta is inserted partially or wholly in the lower uterine segment, a

small section may bleed. Lastly, vasa previa develops, if unprotected umbilical30

cord vessels traverse the fetal membranes over the internal cervical os. If they

rupture, an exsanguination will rapidly occur causing the fetus death (Sinkey

et al. (2015)). This disorder appears in about 0.6 h and it could arise from an

early placenta previa.
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Figure 1: Serious fetal disorders that could be found on placental examination: twin-to-twin

transfusion syndrome (left), placenta previa (middle) and vasa previa (right).

T2-weighted Magnetic Resonance Imaging (MRI) is widely used in general35

diagnosis and surgical planning as it offers several advantages such as large field

of view, good soft tissue contrast (extremely useful for segmentation), and it

does not involve ionizing radiation. However, high-quality fetal MRI is still

challenging due to the free movement of the fetus in the uterus (see Figure 2)

and the maternal respiration, which give rise to severe motion artifacts (Kainz40

et al. (2014)). Single Shot Fast Spin Echo (SSFSE) MRI techniques allow ac-

quiring single 2D slices of the moving uterus fast enough so that motion artifacts
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are expected to be attenuated. In placenta acquisitions it is hoped that slow

intra-slice motion does not affect the majority of SSFSE slices. However, inter-

slice motion (i.e., displacement of the overall anatomy) still compromises the45

volumetric data. Other MRI sequences can be also used to identify vascular

structures such as time of flight (TOF) angiography or arterial spin labelling,

but both of them are sensitive to movement and to high speed vessels, which is

not the case in placental vasculature. The latter has a mean velocity of 15 cm/s

for vein (Flo et al. (2010)) and 30 cm/s for arteries (Acharya et al. (2005)). Upon50

branching, these values decrease. BOLD sequences can be utilized for assessing

differences in blood oxygenation and flow, that indeed can improve identifica-

tion of different irrigated regions, but they are not convenient to reconstruct

vascular structures.

Slice-to-volume registration combined with super-resolution image recon-55

struction techniques are employed to compensate motion between single MRI

slices by reconstructing a high-resolution image from multiple, overlapping low-

resolution images. Rousseau et al. (2005) corrected 2D fetal brain slice misalign-

ments, intensity inhomogeneity distortions, and motion noise through global

rigid alignment. Later, they extended the reconstruction method using a total60

variation regularization to better preserve edges. In this line, Tourbier et al.

(2015) introduced an adaptive regularization via fast convex optimization for

the super-resolution using as well an edge-preserving total variation. Jiang

et al. (2007) used cross correlation as a cost function with multilevel B-splines

for the volumetric reconstruction. Kim et al. (2010) proposed a slice-to-slice65

registration using spatially weighted mean square intensity differences for mo-

tion correction. Next, Gholipour et al. (2010) presented maximum likelihood,

robust M-estimation minimization, and Tikhonov regularization to enforce a

solution when the acquired samples are not enough for solving the reconstruc-

tion problem. Interestingly, Kuklisova-Murgasova et al. (2012) reconstructed70

the fetal brain using intensity matching, bias correction and complete outlier

removal. A posterior probability and edge-preserving regularization reduced the

blurring, motion-corrupted artifacts and misaligned data. Kainz et al. (2015)
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developed an accelerated multi-GPU implementation of Kuklisova-Murgasova

et al. (2012) that automatically selected the least corrupted stack as reference.75

Recently, Alansary et al. (2017) presented a patch-to-volume approach to recon-

struct a large field-of-view of non-rigidly deforming structures. Specific redun-

dant information was introduced to relax rigid motion assumptions. Although

super-resolution of the fetal brain can be achieved using the aforementioned

techniques from sparsely acquired slices, their utility for placenta imaging still80

needs to be demonstrated to its full extent.

Figure 2: Fetal MRI data (top: axial, middle: sagittal and bottom: coronal views). From left

to right : 1) singleton pregnancy + anterior placenta (37 gestational weeks (GW)), 2) singleton

pregnancy + posterior placenta (25 GW), 3) twin pregnancy + anterior placenta (28 GW) and

4) monochorionic pregnancy + posterior placenta (31 GW). Placenta and peripheral blood

vessels ground truth segmentations are highlighted in brown and red, respectively.

Quantitative assessment of the human placenta and its peripheral vascula-

ture in T2-weighted MRI requires a precise segmentation, which is also chal-

lenging due to the high variability of placenta position, orientation, thickness,

shape and appearance. To gain better accuracy and robustness during the local-85

ization process, multiple MRI views (axial, sagittal and coronal) can be utilized

simultaneously to support placenta co-segmentation. Computational methods

applied to fetal imaging are emerging in order to create powerful and compact

simulation models capable to reveal intrauterine information. The segmenta-

5



tion and modeling of placenta anatomy during preoperative surgical planning90

can thus help to visualize the fetal anatomical structures from different perspec-

tives and to understand their intricate relationships (Pratt et al. (2015)). As

a result, doctors can build up a map of the intrauterine environment in their

minds before starting any complex surgery (e.g., TTTS).

The first semi-automated approach for placenta segmentation in MRI was95

designed by Wang et al. (2015, 2016a,b). Multiple axial and sagittal motion-

corrupted volumes were segmented by combining high-level features, online Ran-

dom Forests, Conditional Random Fields (CRF) and a probability-based 4D

Graph Cut. Interestingly, few user interactions in a single slice were needed to

obtain satisfactory performance (Dice Coefficient = 0.79± 0.07). However, this100

approach had important limitations: 1) propagation and alignment errors were

high in terminal slices, 2) high-level features were insufficient to obtain a good

tissue discrimination, and 3) user-feedback refinement was needed. Alansary

et al. (2016) proposed a fully automatic framework for placenta segmentation

based on a convolutional neural network (CNN) followed by a CRF refinement.105

The employed CNN architecture was previously used by Kamnitsas et al. (2017)

for brain lesion segmentation. The resulting placenta detection was utilized as

initialization for slice-to-volume registration to compensate motion artifacts. A

standardized view into the placental structures was also provided by applying

shape skeleton extraction and curved planar reformation. The results achieved110

Dice values of 0.72 and 0.67 for healthy and intrauterine fetal growth restriction

fetuses, respectively. Likewise, Miao et al. (2017) used the Alansary et al. (2016)

methodology to introduce an interior and exterior visual representation of the

fetal and maternal side of the placenta using a structure-aware slicing approach.

Recently, a multiple-CNN approach called DeepIGeoS was designed by Wang115

et al. (2018). The initial CNN segmentation required some user interactions

that were encoded via geodesic distance maps and used as extra input channels

of the CNNs. A resolution-preserving network was also employed to provide

a better dense prediction (refinement) by capturing high-level features from a

large receptive field without loss of resolution. The final Dice Coefficient was120
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0.89 ± 0.05. To the best of our knowledge, no works have been reported on

placenta peripheral blood vessels segmentation.

In this paper, we go beyond the state of the art in placenta segmentation

by providing a 3D fully-automatic method that (i) no longer requires user-

interaction, (ii) improves the anatomical characterization of the placenta using125

all MRI views, being the first work in processing the coronal stack, (iii) outper-

forms recent CNN architectures and published methods for placenta segmen-

tation, and (iv) detects the placental vasculature map. This is also the first

contribution toward segmentation of the placenta and its peripheral vascula-

ture from a 3D super-resolution reconstruction of the whole uterus. We tested130

our method on a wide range of 44 anterior and posterior placentas in singleton

and (normal / monochorionic) twin fetuses between 25 - 37 GW, thus assessing

the potential of this technique in real clinical scenarios. As aforementioned, we

also compare the performance of our approach with six different state-of-the-art

CNN architectures.135

2. Method

The pipeline of the proposed method is shown in Figure 3. The entire uterus

was firstly masked in all MRI views (axial, coronal and sagittal) and the noise

was reduced using the Non-Local Means (NLM) method proposed by Coupé

et al. (2008) (cf. Section 2.1.1). A 3D super-resolution reconstruction of the140

uterus was then obtained from a tailored version of the Kuklisova-Murgasova

et al. (2012) algorithm (cf. Section 2.1.2). We employed Gabor filters to improve

the discriminative power of the statistical and Gray-Level Co-Occurrence Matrix

(GLCM) features extracted from the previous reconstructed images (cf. Section

2.2.1). Finally, a Support Vector Machine (SVM) was applied to classify both145

placenta and non-placenta voxels (cf. Section 2.2.3). Peripheral blood vessels

were segmented through an adaptive histogram equalization (cf. Section 2.3.1)

and a curvature-based corner detector (cf. Section 2.3.2) due to their specific

localization. Detected salient points were used as seeds of a region growing
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method to extract the whole vessel (cf. Section 2.3.3).150

Reconstruction and Motion correction
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Figure 3: Pipeline of the proposed methodology including the reconstruction and motion

correction phase of the uterus (top), placenta localization stage (middle), and peripheral

blood vessels segmentation (bottom). The resulting 3D isosurface is depicted on the bottom

right corner.

2.1. Reconstruction and Motion correction

2.1.1. Pre-processing

A uterus binary mask was created automatically using bounding boxes and

active contours, taking advantage that this anatomical structure is usually lo-

cated at the centre of each MRI slice. Prior to this automatic process, clinicians155

approximated the uterus shape on each 2D MRI slice through a bounding box on

axial, sagittal and coronal views separately. From the mean coordinates of these

boxes (e.g., left-bottom and right-top), an average bounding box was then con-

structed to represent the region of interest that contains the uterus. A masking

procedure using the averagedbox was performed on subsequent slices to elimi-160

nate some external tissue of the mother. Once the uterus box was extracted, an

ellipsoidal seed was used to initialize the Chan and Vese (2001) active contour

method. This algorithm utilized the previous segmentation result as an initial

contour for the next slice, and sequentially applied this process to the whole
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stack of 2D images. The uterus structure was approximated on each slice after165

500 iterations roughly. The resulting cropped MRI was linearly resampled from

1.4 × 1.4 × 3.5 mm3 to 0.75 × 0.75 × 0.75 mm3 in a 2D slice-by-slice basis and

stacked again to make a 3D volume, and normalized within the range [-1, 1].

Since the magnitude of the MRI signal is the square root of the sum of the

squares of two independent Gaussian variables, the noise present in fetal MRI170

follows a Rician distribution. In low (dark) and high (bright) intensity regions

of the magnitude image, the Rician distribution tends to Rayleigh and Gaussian

distributions, respectively. An optimized blockwise implementation of the Non-

Local Means (NLM) filter (Coupé et al. (2008)) was thus employed to remove

the Rician noise. The patch size and the smoothing parameters were set to 1,175

and the spatial bandwidth was made equal to 5. The blockwise strategy reduced

the computational time since the complexity is divided by 23 = 8. The lower

thresholds involved in the voxel selection were 0.95 and 0.5, respectively.

2.1.2. 3D Super-Resolution

In conventional fetal MRI scanning sequences, image resolution is limited by180

several factors such as hardware, time constraints or patient’s comfort. Their

low resolution can limit accuracy of post-processing tasks such as placenta seg-

mentation. High-resolution MRI provides detailed anatomical information of

the fetus important for quantitative image analysis and clinical diagnosis. In

order to efficiently reconstruct high-resolution MRI from fetal low-resolution185

MRI stacks, we assessed and fine-tuned the performance of three brain super-

resolution reconstruction algorithms (the Kuklisova-Murgasova et al. (2012), the

BTK and PVR/SVR-IRTK toolkits presented by Rousseau et al. (2005) and

Alansary et al. (2017); Kainz et al. (2015), respectively). Based on the experi-

ments reported in Section 3.3.1, we finally used the Kuklisova-Murgasova et al.190

(2012) since it delivered the best performing super-resolution reconstruction of

the uterus. At this point it should be mentioned that this method was devel-

oped for brain, which is a rigid organ, whereas placenta motion is not rigid. We

utilize a uterus mask before the reconstruction to remove mother tissue which,
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on the one hand, could hinder the initial registration between slices and, on the195

other hand, would increase the total execution time because of a bigger image

size. If the runtime increases, the method becomes less suitable to be integrated

in a real application. Furthermore, maternal respiration will have similar effects

and constraints on uterus and the surrounding maternal tissue. Nevertheless,

we deemed convenient to include the super-resolution step within the proposed200

pipeline, to serve as a feasibility study for a challenging, motion-affected organ

different from brain.

First, extra maternal tissue was removed using our previous uterus mask,

thus the alignment error was also reduced. The axial view was clinically selected

as the least corrupted stack based on the presence of motion and artifacts. This205

stack was automatically aligned with the others using the Kuklisova-Murgasova

et al. (2012) volumetric rigid registration. After that, the algorithm iterates be-

tween reconstruction and slice-to-volume registration using a smoothing scheme.

The motion recovery stage consists of positioning and orienting Gaussian ker-

nels according to the transformation between each slice and the sampling grid of210

the volume. Some Expectation Maximization (EM) steps were then performed,

in which voxel and slice-dependent weights as well as robust statistics, scaling

factors and bias fields were calculated to update the super-resolution volume.

The following parameters were experimentally adjusted. Our fine-tuned ver-

sion of Kuklisova-Murgasova et al. (2012) performed 9 iterations between re-215

construction and slice-to-volume registration since the gestational age (25 - 37

weeks) was advanced and the fetuses motion was thus more restricted. To min-

imize the probability of the algorithm from getting trapped in a sub-optimal

solution, the smoothness degree was gradually diminished from 0.16 to 0.02.

The standard deviation for smoothness of the bias field was experimentally set220

to 25 mm. The number of levels in the multi-resolution edge-preserving smooth-

ing and the delta parameter to define an edge were set to the default values:

3 and 150, respectively. In the work proposed by Kuklisova-Murgasova et al.

(2012), this value corresponded to the average between the intensity means of

brain gray and white matter. In our case, it corresponds to the mean value225
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between two intensity subsets that approximately contain, on the one hand, the

placenta, the cord, the lungs of the fetus, the legs and arms, and on the other

hand, the amniotic fluid and part of the fetal brain. Ten iterations of EM were

launched during each motion correction iteration, and 30 for the final recon-

struction (see Figure 6 in Section 3.3.1). Finally, we activated the parameter230

that corrects the bias in reconstructed images against previous estimation.

2.2. Placenta Localization

Placenta localization was performed in three stages: feature extraction using

Gabor filtering and GLCM, edge-based detection and classification.

2.2.1. 3D Gabor kernels and GLCM for Feature Extraction235

We extracted texture features for the detection of the placenta using 3D

Gabor filtering followed by GLCM (Haralick et al. (1973)). This combination

improved the discriminative power of the resulting texture features. Its impulse

response h(x′, y′, z′) is a 3D Gaussian function multiplied by a complex sinusoid

(Manjuntah and Ma (1996)):240

h(x′

, y
′

, z
′) =

1

(2π)
3
2 σ3

e
−

1
2
(( x′

σ
)2+(

y′

σ
)2+( z′

σ
)2)

· e
−j2π(Ux+V y+Wz) (1)

where (x′, y′, z′)T = R · (x, y, z)T with R a rotation matrix and (U, V,W )

the 3D frequencies of the complex sinusoid that determine the Gabor filter’s

orientation and spacing in the spatial domain. Our Gabor filter bank was con-

figured with four down-sampling scales (1, 0.75, 0.5, 0.25) and six orientations

(23◦, 45◦, 68◦, 113◦, 135◦, and 158◦), and a frequency U = V = W = 0.25. The245

3D kernel size was 643 with a Gaussian scale σ = 5. The filtering was done in

the Fourier domain to speed up the process.

From the Gabor-filtered image, we extracted GLCM texture features. Using

a sliding window approach with a window size of 1513, we computed the mean,

the standard deviation, the energy, the correlation and the inertia for each MRI250

gray voxel value. The GLCM features were computed for all 13 directions in the
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3D space across the MRI image, and averaged, totaling 120 features: 6 (Gabor

filter orientations) × 4 (Gabor filter scales) × 5 (mean, standard deviation,

inertia, correlation and energy). To reduce the dimensionality of our feature

vectors a whitening Principal Component Analysis was utilized.255

2.2.2. Uterus Edge-based Instance Selection

To speed up and improve the performance of the segmentation, we utilize an

instance selection technique that we call Uterus Edge-based Instance Selection

(UEIS). It is similar to boundary detection in Support Vector Machines (SVM)

classification (Akinyelu and Adewumi (2017)), where the instances closer to a260

decision boundary (i.e. support vectors) are selected.

In our case, the placenta boundary can be interpreted as a large and constant

edge along all slices of the reconstructed MRI (see Figure 4), especially in the

axial and sagittal views. The placenta tissue (low contrast) and the amniotic

fluid (high contrast) can be easily distinguished thanks to a marked intensity265

change that helps to localize the placenta, and consequently, to improve its

automatic segmentation through an optimal edge detection.

Given a set of training instances (feature vectors), our UEIS (see Algorithm

1) identifies edge instances and selects the best instances close to them (Akinyelu

and Adewumi (2017)). For each instance, UEIS computes the squared Euclidean270

distances to all others instances, and votes for the one that is farthest. The

edge instance with the highest vote is then selected. A total of 125 K-nearest

neighbors of the voted edge instance are computed and used to train a SVM

classifier. TheK value was determined experimentally by applying a grid-search

algorithm until the optimum (K = 125) was reached.275

2.2.3. Supervised Classification

We employed a SVM classifier (Cortes and Vapnik (1995)) to predict the

target label (a mask of the placenta) from the test data features. The Radial

Basis Function (RBF) kernel was also used, for which the parameters to be

optimized are the penalty C associated to misclassified instances (0.0312) and280
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Algorithm 1 Uterus Edge-based Instance Selection (UEIS) algorithm.

1: I = Instances

2: K = Nearest Neighbors

3: EI = Array of Edge Instances

4: W = Array of Weights (for each instance)

5: procedure EI = UterusEdge InstanceSelection(I, K )

6: Initialize W = length(I)

7: @Loop parallelization

8: for i = 1 to length(I) do

9: for j = 1 to length(I) do

10: Compute squared Euclidean distance: Ii and Ij, i 6= j

11: end for

12: Select instance Ij with max. Euclidean distance

13: Increment W for Ij

14: end for

15: EI = Select instances Ii with max. weights

16: @Loop parallelization

17: for z = 1 to K do

18: Select and store 125 K-nearest neighbors ∀ EI

19: end for

20: end procedure

the spread of the kernel γ (64). Such optimization was carried out through a

grid search algorithm and a 10-fold cross-validation approach (see Figure 9 in

Section 3.3.2).

2.3. Peripheral Blood Vessels Segmentation

2.3.1. Power Law Adaptive Histogram Equalization285

We dilated the boundaries of the previous segmentation to capture the pe-

ripheral blood vessels (see Figure 4). We applied the Adaptive Histogram Equal-

ization (AHE) (Stark (2000)) to highlight the edges and their intersections (cor-

ners), transforming each voxel based on the histogram calculated through a

neighborhood area. Instead of applying a regular histogram equalization in a290

voxel window, the AHE applies a signed power-law adaptive contrast enhance-

ment by defining a cumulation function fc(u, v) = q(u−v, α)−βq(u−v, 1)+βu,

where u, v are gray level values in the range of the input intensities and q(u −

v, α) = 1
2sign(u − v) | 2(u − v) |α. In our case, the window size was set to 53
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and α = β = 0.3, since α controls to what extent the filter acts as the classical295

histogram equalization (α = 0) or as an unsharp mask (α = 1).

2.3.2. Curvature-based Corner Detector

We apply the mathematical formulation of a corner (i.e., significant change

in intensity in all directions) to efficiently recognize placental peripheral blood

vessels. Classical vessel segmentation algorithms such as the multi-scale vessel300

enhancement filter proposed by Frangi et al. (1998) usually rely on the tubular

structure of the vessel. However, placental vasculature in fetal MRI appears as

(dark and) non-tubular areas attached to the placenta surface (see Figure 4). In

addition, these vessels are difficult to track through a stack of slices. The high

intensity variations in all directions due to the amniotic fluid and the placenta305

texture allow detecting the vessels as salient points.

Placenta boundary (edge)

Corner

Significant change 
in all directions

Flat

No change in any 
directionsAdaptive Histogram 

Equalization

..
Region 
growing

FALSE POSITIVE 

Morphological 
operations

Edge

No change along 
the edge direction

Corner

Significant change 
in all directions

Corners after placenta 

boundary expansion

.

Figure 4: Axial view of a fetal MRI (uterus): peripheral blood vessels are observed as dark and

non-tubular areas attached to the placenta surface. The AHE volume (on the left bottom) is

computed after the super-resolution reconstruction of the uterus. Different ROIs are selected

to show all corners detected as blood vessels. Morphological operations are subsequently

employed to reduce some false positives.

To detect corners, our approach finds the extrema of the Gaussian curvature,

which is the product of both principal curvatures (the minimum and maximum

values of the local curvature of a surface). A positive Gaussian curvature value
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means the surface is locally either a peak or a valley. On the contrary, a negative310

value means the surface is locally a saddle point. A zero value means the

surface is flat in at least one direction. By considering the surface locally defined

by an isointensity contour, local curvature can be estimated from the partial

derivatives of the volumetric image (Monga and Benayoun (1995)):

K =
I2x(IyyIzz − I2yz) + 2IxIxz(IyIyz − IzIyy) + cycl.(x, y, z)

I2x + I2y + I2z
, (2)

where Iu and Iuv denote the first and second partial derivative w.r.t u and315

u, v ∈ {x, y, z}, respectively, of image I(x, y, z), and cycl. (x, y, z) stands for a

cyclic permutation of the coordinates. Subsequently, the local extrema of the

curvature were selected as points of interest. We thus rescaled the intensity of

the placenta super-resolution image between 0 and 10 for computational rea-

sons. All derivatives were computed by convolving the placenta segmentation320

with a Gaussian derivative, in which the variance was set to 1.0. The mean

and maximum radius of the neighborhood to search for the local maxima were

modified to 1 and 3, respectively. The Gaussian curvature was then computed

according to Equation 2. Local maxima was calculated by choosing points that

were larger than all neighbors in a window of 33 voxels. A threshold equal to325

0.05 was then selected experimentally based on the rescaled intensity to reduce

the number of points with low responses to the operator (see Figure 4).

2.3.3. Region Growing and Morphological Operations

We used the corners automatically selected in the previous step as seed

points. These seed points are the initial regions, which are further grown330

(expanded) to adjacent points according to the inclusion criterion I(x, y, z) ∈

[m − γσ,m + γσ], where m and σ are the mean and standard deviation of the

region intensities, γ is a user-dependent factor, I is the image and (x, y, z) is

the position of the particular neighbor voxel defined by a radius of 1.5. The

confidence interval width was controlled by a multiplier variable to capture at335

least 99% of neighbors in the presence of intensity variations. The segmentation
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was recalculated using a refined estimation of m and σ.

We applied an opening operation (Serra (1983)) to eliminate regions or iso-

lated pixels smaller than a 3D sphere with radius = 1 (see Figure 4). These

regions, although being detected as corners, either they lack continuity or they340

are not surrounded by neighboring pixels forming a vessel (false positives).

3. Experiments and results

3.1. Fetal MRI Database

A new image database was created at Fetal i+D 1. In accordance with the

Ethical Research Committee of the Hospital Cĺınic de Barcelona (CEIC) and345

the current legislation (Organic Law 15/1999), surgeons have collected mothers’

consent forms to use their clinical information.

MRI scannings of 44 singleton and (normal / monochorionic) twin preg-

nancies between 25 - 37 GW were collected (see Table 1) using a Siemens

MAGNETOM Aera 1.5T (Fat Saturated (FS): 1.5, Echo Time (TE): 98 ms350

and Repetition Time (TR): 1200 ms). A slice thickness of 3.5 mm was selected,

as 3 - 4 mm usually provides a good contrast-to-noise ratio. Each fetus had

three volumetric data sets in different views (axial, sagittal and coronal) with

slice dimension 256 × 208 and voxel spacing 1.40625 mm × 1.40625 mm. All

MRIs were exported from raw to NIfTI-1 (data) or MHA (masks and labels).355

Axial, sagittal and coronal views which had not been correctly acquired were

discarded for subsequent analysis. Two experienced fetal surgeons and obstetri-

cians generated the anatomical ground truths. The ground truth segmentation

of the mother uterus was performed on the axial, sagittal and coronal views

acquired from the 2D original SSFSE sequence (considering that one mask per360

slice was needed, this means ca. 300 masks per view). The ground truths of

the placenta and its vasculature were done directly on 3D reconstructed images.

Nevertheless, surgeons took into account the information and details provided

1Fetal Medicine Barcelona: http://medicinafetalbarcelona.org
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by the 2D original SSFSE acquisition during the manual segmentation process.

For each patient, surgeons jointly discussed the localization of each structure365

so that the final result was a consensus decision per volume. The intra-rater

agreement (considering that both doctors acted as a single clinician) when the

same MRI was segmented in two months was 0.94 (0.88, 0.97).

Table 1: Used in-house database composed of 44 control and pathological cases: singleton and

(normal / monochorionic) twin pregnancies between 25 - 37 GW. Note that the monochorionic

twins are TTTS-affected cases.

MRI (ID number) Weeks of gestation Pregnancy Placenta Visible Vessels

50 25 Singleton Posterior X

51 25 Twin Posterior X

7 27 Singleton Posterior X

14 27 Singleton Anterior X

18, 19, 21, 46, 59 28 Singleton Anterior ×, X, X, X, X

56, 64 28 Singleton Posterior X, X

42 28 Twin Anterior X

8 29 Singleton Anterior ×

53, 66 29 Singleton Posterior X, X

28 29 Monochorionic Posterior X

3, 32 30 Singleton Posterior X, X

36, 54 30 Twin Posterior X, X

62 31 Singleton Posterior X

58 31 Monochorionic Posterior X

9, 35, 37, 39 32 Singleton Anterior X, X, X, X

40, 45 32 Singleton Posterior X, X

60 32 Monochorionic Anterior X

5, 43, 55, 65 33 Singleton Anterior X, ×, X, X

27 33 Singleton Posterior X

13 34 Singleton Anterior X

52 35 Singleton Anterior X

33, 48 35 Singleton Posterior X, X

49 36 Singleton Posterior ×

11, 22, 26, 29 37 Singleton Posterior X, X, ×, X

31 37 Singleton Anterior ×
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3.2. Programming Environment

We implemented the proposed pipeline using the Medical Imaging Interac-370

tion Toolkit (MITK) 2, as well as several programming languages like C++,

Python and Bash Shell scripting. Experiments were run on an Intel Core i7

3.60GHz, 16GB of RAM with Fedora 27 3, and a NVIDIA GeForce Titan Xp.

However, to calculate the first part of our pipeline (MRI-utero super-resolution)

the SNOW Linux Cluster 4 was utilized.375

3.3. Results and Discussion

3.3.1. Reconstruction and Motion correction

We firstly assessed our pre-processing methodology used to detect the uterus

region in all MRI views, since the super-resolution step requires its output mask.

Although satisfactory scores were obtained, its precise delineation was challeng-380

ing due to similar fat tissues surrounding the mother’s womb. The proposed

approach correctly locates a bounding box containing the uterus, but boundary

refinement is still needed. A mean Dice (DICE) and Jaccard (JAC) coefficients

of 0.67 ± 0.13 and 0.49 ± 0.07 were achieved, respectively.

Given the lack of ground truth, the super-resolution reconstructions were385

visually inspected. We achieved high-quality results for all MRI (see Figure

6 and 7) with a sharp tissue delineation. Nevertheless, (monochorionic) twin

pregnancies were difficult to reconstruct due to: 1) higher fetus movement inside

the uterus, 2) more anatomical structures to deal with, 3) less amniotic fluid,

and 4) higher placenta deformation because of the reduced intrauterine space390

(two fetuses are sharing the same environment). Consequently, the corrupted

number of slices were always higher. This figure also illustrates the robustness of

the EM-based reconstruction algorithm to these corrupted or misaligned slices.

The correct optimization of the parameters allow further image analysis, in

our case to segment both vessels and placenta. In particular, vessels, which395

2Medical Imaging Interaction Toolkit (MITK): http://mitk.org/wiki/MITK
3Fedora: https://getfedora.org
4SNOW Linux Cluster (UPF): http://hpc.dtic.upf.edu/cluster/system-overview
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Twin pregnancy

Posterior placenta

Singleton pregnancy

Anterior placenta

Sagittal viewAxial view Coronal view

Figure 5: Ground truth (orange) and uterus segmentation (green) obtained using our pre-

processing methodology. The axial, sagittal and coronal views are reported for twin and

singleton pregnancies with posterior and anterior placentas, respectively.

are smaller and whose localization is much more challenging, are distinguished

satisfactorily. We found that the replacement of misaligned or very noisy slices

for the most similar non-corrupted (anterior or posterior) slice favorably impacts

the final result. To find the most similar non-corrupted slice, we have calculated

the scaled mean squared difference and the correlation coefficient.400

For comparison, the reconstructions and segmentations obtained using both

BTK (Rousseau et al. (2005)) and IRTK (Alansary et al. (2017); Kainz et al.

(2015)) are presented in Figure 8 and 13, respectively. The former uses a com-

bination of 2D to 3D registration, relative inhomogeneity correction and high

resolution reconstruction from sparse data. The reconstructions derived from405

BTK are of lower quality, partly because the inter-slice registration seems to be

less consistent, giving rise to gaps in the images, and also because the method

applies an exceedingly large smoothing which causes a loss of both texture and

small elements. The latter presents a multi-GPU accelerated implementation

of Kuklisova-Murgasova et al. (2012) (with no parameter optimization), which410

automatically selects the image stack with least motion as an initial registra-

tion target. Although in the reconstructions the fetal structures and the brain

are well-defined, the motion still persists. Indeed, the Kuklisova-Murgasova
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Posterior placenta

Singleton pregnancy

Anterior placenta
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Posterior placenta
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Twin pregnancy

Posterior placenta
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Figure 6: Reconstructed fetal MRI using our fine-tuned Kuklisova-Murgasova et al. (2012).

Axial, sagittal and coronal views are shown in rows 1 and 4, 2 and 5, and 3 and 6, respectively.

Note that each column depicts two cases. Therefore, ten different cases are shown in total.

et al. (2012) algorithm was developed for the reconstruction of a rigid organ,

which is not the case here. Nevertheless, we deemed convenient to include the415

super-resolution step within the proposed pipeline. So far, the results shown

in this work demonstrate that the approach can also be applied to non-rigid

organs such as placenta, although it entails some disadvantages, as mentioned

in Section 2.1.2. Organs characterized by a great variability in position and

orientation can be segmented in spite of the fact that the super-resolution re-420

construction is not fully optimal and contains different sort of artifacts. Also,

small structures such as the vasculature can be localized with satisfactory preci-

sion. Since this is a relatively new but very vivid field or research, improvements

in the reconstruction phase are expected to come out in the near future.
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Sagittal viewAxial view Coronal view

Our fine-tuned

Kuklisova-

Murgasova et al.

Our fine-tuned

Kuklisova-

Murgasova et al.

Our fine-tuned
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Murgasova et al.

Original

Original

Original

Figure 7: Original (rows 1, 3 and 5) and reconstructed (rows 2, 4 and 6) fetal MRI images for

three different cases. Columns 1-3 are the axial, sagittal and coronal views, respectively. The

first case (rows 1-2) corresponds to a singleton with anterior placenta, second case (rows 3-4)

corresponds to twins with posterior placenta, and third case (rows 5-6) stands for singleton

with posterior placenta.
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BTK

IRTK

IRTK

Our fine-tuned

Kuklisova-

Murgasova et al.

Our fine-tuned
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Figure 8: Our fine-tuned super-resolution reconstruction (rows 1 and 4) for two different

singleton pregnancies with posterior and anterior placentas. Columns 1-3 are the axial, sagittal

and coronal views, respectively. In addition, both BTK (rows 2 and 5) and IRTK (rows 3 and

6) reconstructions are also included.

Two experienced fetal surgeons, blinded to the reconstruction methods, in-425

dividually evaluated the super-resolution reconstructions of the mother uterus

with respect to the original MRI HASTE sequences. The final performance was

computed by averaging both doctors’ evaluations. An approach similar to that
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in Ebner et al. (2016) was followed:

1. Clinical usefulness: how well placenta blood vessels (PBV), and the um-430

bilical cord insertion (UCI) are distinguished (0: structures not seen, 1:

poor depiction, 2: suboptimal visualization; not for diagnosis, 3: clear

visualization of structures but reduced tissue contrast; feasible for diagno-

sis, 4: excellent depiction; optimal for diagnosis) and the effect of visible

motion artifacts (from 0: complete motion to 3: no motion).435

2. Super-resolution quality : how well the original information of the uterus

structures is preserved (0: structures not identified, 1: poor visualization

of structures, 2: clear visualization but not as good as original, 3: as good

as original) and the amount of extra artifacts (from 0: lots of new artifacts

to 2: no new artifacts).440

3. Doctors’ preference: rating for clinical practice (from 1: least preferred to

6: most preferred).

The doctors’ assessment, shown in Table 2, indicates that the blind radi-

ologists had a clear preference for the proposed parametrization of Kuklisova-

Murgasova et al. (2012). Furthermore, our super-resolution reconstructions pro-445

vided an improved clarity of PBV and UCI over the rest (see Figure 6 - rows 1

and 4). The visible motion of all MRI views was also reduced in comparison with

the original HASTE sequences and the BTK and IRTK reconstructions, which

were less robust (see red arrows in Figure 8). Although all super-resolution

methods demonstrated their ability to deal with the fetus motion, artifacts were450

introduced even if they cannot be appreciated in the original HASTE sequences.

3.3.2. Placenta localization

To evaluate the placenta detection, we employed a stratified 4-fold cross-

validation strategy, taking randomly 25% of the images as test data in each

fold and used the rest for training the binary SVM. Although the training was455

done without considering the placenta position and the pregnancy type in or-

der to mimic a real-world clinical environment, results are presented for each of
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Table 2: Clinical assessment averaged over all subjects: original HASTE MRI data (axial,

sagittal and coronal views), our adapted Kuklisova-Murgasova et al. (2012) approach and

other well-known toolkits such as BTK and IRTK.

Clinical usefulness

Clarity of

anatomical

structures

Super-resolution

quality

PBV UCI

Visible

motion Preserved

uterus

structures

Extra

artifacts

Doctors’

preference

Haste MRI (all views) 2.2 ± 0.69 2.7 ± 0.75 1.7 ± 0.75 — — —

Kuklisova-Murgasova 2.7 ± 0.47 3.0 ± 0.58 2.3 ± 0.47 3.0 ± 0.0 1.3 ± 0.47 4.5 ± 0.2

BTK 2.0 ± 1.0 2.3 ± 0.75 0.2 ± 0.37 1.2 ± 0.37 0.7 ± 0.47 1.5 ± 0.2

IRTK 2.0 ± 0.63 3.0 ± 0.63 1.4 ± 0.49 2.4 ± 0.49 0.4 ± 0.49 3.0 ± 0.3

the following configurations: singleton pregnancy + posterior (SP) or anterior

(SA) placenta, twin or monochorionic pregnancy + posterior (TMP) or anterior

(TMA) placenta, all pregnancies using the proposed method (All), all pregnan-460

cies without the instance selection algorithm (no UEIS) - to assess its importance

in this particular scenario -, and all pregnancies using different deep learning

architectures (Alansary et al. (2016); Çiçek et al. (2016); Fidon et al. (2017);

Gibson et al. (2018); Li et al. (2017); Milletari et al. (2016)). These networks

were adopted to quantitatively compare the performance between our method465

and several widely used 3D CNN-based architectures. The models were trained

for approximately 17.5 hours (10K iterations) using Adam with a momentum of

0.99. The aforementioned CNNs were optimized in terms of learning rate, loss

function, input image size, decay, activation function, batch size, regularization,

padding, normalization, and whitening (see Table 3). A 4-fold cross-validation470

was also applied. Data augmentation was employed in every training iteration

using a dense deformation field obtained through a 2×2×2 grid of control-points

and B-spline interpolation. The randomly deformed versions of the images were

also rotated within the range [-10.0, 10.0]. The CNNs employed in this compar-

ative study were not specifically designed for placenta segmentation. Therefore,475

it might well be that novel CNN architectures targeted to placenta would show a

better performance. Note that the focus of this work was to tackle placenta seg-
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mentation using a SVM-based methodology and provide a baseline comparison

with current state-of-the-art CNN approaches.

Table 3: Optimized parameters for each CNN architecture. Note that GWDL stands for

Generalised Wasserstein Dice Loss function.

CNN architecture Learning rate Loss Input image size Decay Activation Batch Regularization Whitening

3D U-Net (Çiçek et al. (2016)) 0.0001 Dice 72 × 72 × 72 1e-5 PReLU 2 L2 X

V-Net (Milletari et al. (2016)) 0.001 Dice 128 × 128 × 64 0.1 PReLU 1 L2 X

DeepMedic (Alansary et al. (2016)) 0.01 Dice 129 × 129 × 63 1e-5 PReLU 2 L2 X

Holistic3D Net (Fidon et al. (2017)) 0.01 GWDL 64 × 64 × 64 1e-4 eLU 2 L2 X

HighRes3D Net (Li et al. (2017)) 0.0001 Dice 96 × 96 × 64 1e-5 ReLU 2 L2 X

Dense V-Net (Gibson et al. (2018)) 0.001 Dice 128 × 128 × 64 0.1 ReLU 1 L2 X

We assessed the performance of placenta segmentations by computing: the480

Dice coefficient (DICE), Cohen Kappa Coefficient (KAP), Jaccard index (JAC),

Interclass Correlation (ICC), Volumetric Similarity (VS), sensitivity (SEN),

specificity (SPE), precision (PRCS), accuracy (ACC), area under the ROC curve

(AUC), Hausdorff distance (HD), Average distance (AVD), and Mahalanobis

distance (MHD).485

Results obtained from the placenta segmentation are displayed in Figure 9.

The aforementioned performance measures are reported in Table 4 and Figure

10. Segmentations are rather accurate, although some regions of the tissues

inside the uterus present a similar texture to that of the placenta (in particu-

lar, fetal tissues), and for this reason non-placenta voxels are misclassified as490

placenta.

There is a performance difference between MRI views, since both axial and

sagittal are more amenable to segmentation than the coronal. The latter con-

tains isolated regions of the placenta overlapping some fetal tissues, which makes

the segmentation difficult in the first slices of the coronal stack where the fetus495

occupies a larger region of the uterus. The more advance the gestational age

(higher fetal weight and less amniotic fluid), the more challenging the segmen-

tation of the entire placenta in all views becomes. In addition, the presence of

fetal lungs in many axial slices increases false positive detections due to their

similarity with placenta tissue (see Figure 9 - image 2)).500
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Figure 9: First block: Ground truth (columns 1, 3 and 5) and placenta segmentation with our

method (columns 2, 4 and 6) (red arrow - false positive errors). From left to right : 1) twin

pregnancy + posterior placenta, 2) singleton pregnancy + anterior placenta, and 3) singleton

pregnancy + posterior placenta. Second block: Obtained segmentations from different state-

of-the-art CNN architectures.

When analyzing the overlapping between the ground truth and our segmen-

tations, we obtained a mean Dice of 0.82 ± 0.02 (see Figure 10). This was due

to the occurrence of false positives in regions outside the placenta. The Jac-

card overlap ratio was lower in all cases. Although the Dice similarity index is

currently more popular than the Jaccard overlap ratio, the latter is numerically505

more sensitive to mismatch when there is a reasonably strong overlap. The

UEIS instance selection method improved the Dice and Jaccard coefficients by

0.03 and 0.06 (see Table 4), respectively.
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Figure 10: Bar graphs of the Dice and Jaccard coefficients (with mean ± standard deviation)

obtained. Results of our proposed method on different patient groups are shown in columns

1 to 4. Results calculated from all patients are also displayed for our proposed method with

(column 5 ) and without UEIS (column 6 ), and some state of the art CNN architectures such

as 3D-U-Net (column 7 ), V-Net (column 8 ), DeepMedic (column 9 ), Holistic3DNet (column

10 ), HighRes3DNet (column 11 ) and Dense V-Net (column 12 ).

The Hausdorff distance was the largest because of its sensitivity to outliers

and, as mentioned above, some pixels with similar texture rather far away from510

the placenta were misclassified (false positives). A precision of 0.93 ± 0.02

was obtained (see Table 4). Although this value is acceptable, notice that the

specificity is much higher than the sensitivity. Specificity values (also termed

true negative rate) are high, which means that almost all the negatives (i.e.,

non-placenta regions) have been identified as such. On the contrary, sensitivity515

(also referred to as true positive rate or recall) could be improved to identify

most of the placenta pixels as such. In any case, there is a trade-off between

these measures, which is quantified by the area under the ROC curve, whose

final value is 0.86 ± 0.05 (see Table 4).

Figure 11 also shows that the Dice coefficient (vertical axis) gradually in-520

creases from 0.79 to 0.82 for K edge voted instances (horizontal axis) ranging

instances from 0 to 125, it keeps constant for K edge voted instances between
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125 and 175 (plateau), and then progressively decreases almost back to the

initial value (0.80) at 300 K edge voted instances.

0,79 0,79 0,8 0,81 0,81 0,82 0,82 0,82 0,81 0,81 0,81 0,8 0,8
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Figure 11: Dice performance with mean ± standard deviation (vertical axis) for different

number of K edge voted instances (horizontal axis).

In general, the proposed approach performs well in a wide range of pregnan-525

cies and placenta positions, even when fetuses have advanced gestational age.

However, several tests revealed that anterior placentas were harder to segment

in both singleton and twin pregnancies cases. In this line, the most complicated

intrauterine environments were SA and TMA (with a Dice of 0.80 ± 0.03 and

0.81 ± 0.02, respectively), although a larger database is required to validate this530

finding.

Previous studies have also proposed efficient methods for placenta detection

in MRI (see Section 1). Table 5 shows the mean Dice scores reported in those

studies for placenta segmentation. Note, however, that qualitative and quan-

titative performance metrics are not directly comparable due to differences in535

database sizes, imaging acquisition protocols and quality of the clinical ground

truth. Thus, it is unlikely that these differences are statistically or meaningfully

different, given the data variability. Many works required user interactions to

initialize and refine the segmentation (Wang et al. (2018, 2015, 2016a,b)). Al-

though these methods achieved the best Dice performance, they still required540

support from clinical experts to guide placenta localization. Note that the max-
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Table 4: Results of our placenta segmentation (similarity and distance metrics) and other

state of the art CNN architectures. All performance measures are averaged.

Placenta Segmentation performance (I)

Type KAP ICC VS HD AVD MHD

SP 0.82 ± 0.08 0.82 ± 0.08 0.87 ± 0.08 32.94 ± 9.81 0.91 ± 0.22 0.09 ± 0.02

SA 0.80 ± 0.06 0.80 ± 0.06 0.85 ± 0.07 35.27 ± 10.65 0.96 ± 0.16 0.10 ± 0.03

TMP 0.84 ± 0.03 0.84 ± 0.03 0.90 ± 0.02 28.53 ± 7.56 0.54 ± 0.11 0.07 ± 0.02

TMA 0.81 ± 0.05 0.81 ± 0.05 0.87 ± 0.06 26.14 ± 5.98 0.41 ± 0.12 0.06 ± 0.02

All 0.82 ± 0.06 0.82 ± 0.06 0.87 ± 0.06 30.72 ± 8.50 0.71 ± 0.15 0.08 ± 0.02

no UEIS 0.79 ± 0.13 0.79 ± 0.13 0.83 ± 0.11 33.56 ± 8.34 1.03 ± 0.45 0.15 ± 0.11

3D U-Net (Çiçek et al. (2016)) 0.54 ± 0.22 0.59 ± 0.19 0.73 ± 0.21 140.15 ± 43.60 12.21 ± 10.01 0.69 ± 0.36

V-Net (Milletari et al. (2016)) 0.64 ± 0.22 0.65 ± 0.22 0.81 ± 0.15 21.29 ± 8.59 2.7 ± 0.58 0.9 ± 0.56

DeepMedic (Alansary et al. (2016)) 0.50 ± 0.23 0.56 ± 0.21 0.69 ± 0.22 132.11 ± 38.74 12.05 ± 9.66 0.72 ± 0.39

Holistic3D Net (Fidon et al. (2017)) 0.25 ± 0.09 0.37 ± 0.09 0.42 ± 0.13 145.43 ± 31.75 19.75 ± 6.46 1.27 ± 0.22

HighRes3D Net (Li et al. (2017)) 0.57 ± 0.23 0.61 ± 0.20 0.80 ± 0.20 134.02 ± 42.38 11.33 ± 10.93 0.64 ± 0.35

Dense V-Net (Gibson et al. (2018)) 0.61 ± 0.15 0.65 ± 0.14 0.85 ± 0.10 142.19 ± 32.68 9.19 ± 6.29 0.65 ± 0.31

Placenta Segmentation performance (II)

Type AUC SEN SPE PRCS ACC

SP 0.87 ± 0.07 0.76 ± 0.08 1.0 0.93 ± 0.02 1.0

SA 0.83 ± 0.04 0.73 ± 0.05 1.0 0.91 ± 0.03 1.0

TMP 0.89 ± 0.05 0.77 ± 0.04 1.0 0.95 ± 0.01 1.0

TMA 0.85 ± 0.04 0.74 ± 0.03 1.0 0.92 ± 0.02 1.0

All 0.86 ± 0.05 0.75 ± 0.05 1.0 0.93 ± 0.02 1.0

no UEIS 0.85 ± 0.01 0.73 ± 0.07 0.99 0.89 ± 0.08 1.0

3D U-Net (Çiçek et al. (2016)) 0.81 ± 0.10 0.71 ± 0.21 0.91 ± 0.11 0.59 ± 0.26 0.89 ± 0.10

V-Net (Milletari et al. (2016)) 0.85 ± 0.12 0.72 ± 0.25 0.99 ± 0.01 0.63 ± 0.24 0.99 ± 0.01

DeepMedic (Alansary et al. (2016)) 0.78 ± 0.12 0.66 ± 0.24 0.91 ± 0.12 0.60 ± 0.26 0.88 ± 0.10

Holistic3D Net (Fidon et al. (2017)) 0.78 ± 0.05 0.91 ± 0.14 0.66 ± 0.10 0.24 ± 0.08 0.68 ± 0.09

HighRes3D Net (Li et al. (2017)) 0.80 ± 0.12 0.68 ± 0.19 0.92 ± 0.15 0.62 ± 0.25 0.89 ± 0.14

Dense V-Net (Gibson et al. (2018)) 0.83 ± 0.09 0.71 ± 0.18 0.95 ± 0.03 0.63 ± 0.16 0.93 ± 0.03

imum amount of tested cases was 25 and only in (normal) singleton pregnancies,

whereas in our study we had 44 cases, including twin pregnancies.

Only one other study (Alansary et al. (2016)) provided a fully-automatic lo-

calization of the placenta using deep learning techniques, but with lower scores.545

Although CNNs show remarkable performances in various fields, universal lim-

itations arise, such as the expensive training, the complex modelization of the

parameters, the redundancy of filters in the first CNN layers (Zeiler and Fer-

gus (2014)), and the data augmentation procedures employed to enhance the

CNN capabilities when the training data is not sufficient (Zhou et al. (2017)).550

In the medical area, the estimation of millions of weighted parameters is the

main bottleneck, since the network requires a lot of data samples for model
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training and parameter tuning, which are difficult to collect in human-related

tests. Generally, the minimum amount of data depends on both the radiological

application and the image modality, but 1,000 cases per class are approximately555

needed to train a deep learning architecture from scratch. In addition, the black

box nature of these architectures precludes full understanding of the reasons be-

hind excellent results. In our case, the GLCM and low-order statistical features

increase their discriminative power due to the convolution performed with the

3D Gabor filters, which follow a similar feature extraction approach to the one560

performed in the shallow layers of a CNN. In fact, the steerable properties of

the 3D Gabor filters improved the generalization ability to rotation and scale

variations, which are not fully-covered in CNN convolutional filters (Luan et al.

(2017)). Moreover, our SVM-based method offers several advantages for this

problem. First, the proposed instance selection reduced the theoretical SVM565

training time (O(n2), where n is the number of training instances) by improv-

ing the speed and model complexity. The SVM training time is minimized by

previously extracting relevant instances from the dataset. The selected ones

(i.e., also called support vectors) are instances close to the decision boundary.

Eliminating redundant or irrelevant instances that are non-support vectors does570

not have negative impact on SVM training result. In CNN architectures, the

redundancy of filters (extracted features) in the first layers is still commonly

present. Second, SVM perform relatively well for small datasets. As aforemen-

tioned, in medical image analysis, the number of images one can deal with is

typically small. Thus, taking CNNs to solve this problem seems a bit risky in this575

case. We do use a well-known deformable data augmentation approach which

tends to improve learning scale and rotation invariant features. However, data

augmentation depends on the size of the dataset, which means that the smaller

the number of images is, the less robust and variable the data augmentation.

More importantly, current CNNs are constructed with pooling layers which are580

supposed to introduce positional, orientational, and proportional invariances.

But in reality, these pooling layers add all sorts of positional invariance. The

problem is that equivariance is required instead of invariance. Invariance makes
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CNNs tolerant to small changes in the viewpoint. Equivariance makes CNNs

understand the rotation of proportion change and adapt themselves accordingly585

so that the spatial positioning inside an image is not lost. Considering the high

variability in placenta position, orientation, thickness, shape and appearance,

CNNs might not be sufficiently accurate in all instances.

For comparison, we trained different CNN architectures with our database

(see Tables 4 and 5). Although these models did not outperform the proposed590

methodology (with and without the UEIS instance selection), they can achieve a

similar performance as proposed in Alansary et al. (2016) using a post-processing

approach (e.g., dense conditional random field). Note that the CNNs were tested

on non-trivial cases, as our dataset includes a wide range of uterine environ-

ments, increasing the complexity of the segmentation. As presented by Wang595

et al. (2018), interactive CNNs were able to locate the placenta successfully, so

there is certainly room for further improvement in the design of a fully automatic

deep learning architecture.

Table 5: Mean Dice scores for previous placenta MRI segmentation methods. Different datasets (Data) and

automation (Auto) make comparisons difficult.

Article Method Auto DICE Data

Wang et al. (2015) RF + CRF + High-level features Semi 0.79 ± 0.07 6

Wang et al. (2016a) ORF + DyBa + Tree Growing + Shrinking + Gray-level features Semi 0.89 ± 0.04 16

Wang et al. (2016b) Wang et al. (2015) + 4D Graph Cut + Fast Free-Form Deformation Semi 0.82 ± 0.02 16

Alansary et al. (2016) CNN + Dense CRF + PVR + Mean-curvature flow skeleton Auto 0.72 ± 0.11 66

Miao et al. (2017) Alansary et al. (2016) + Morphological operations Auto ”” 4

Wang et al. (2018) Interactive CNNs + Geodesic distance maps + CRF Semi 0.89 ± 0.05 25

Çiçek et al. (2016) 3D U-Net Auto 0.59 ± 0.19 44

Milletari et al. (2016) V-Net Auto 0.64 ± 0.22 44

Alansary et al. (2016) DeepMedic Auto 0.56 ± 0.21 44

Fidon et al. (2017) Holistic3D Net Auto 0.37 ± 0.09 44

Li et al. (2017) HighRes3D Net Auto 0.61 ± 0.20 44

Gibson et al. (2018) Dense V-Net Auto 0.65 ± 0.14 44

Ours (2018)* Super-resolution + GF + Statistical features + GLCM + SVM Auto 0.82 ± 0.02 44

Nomenclature: Random Forest (RF), Conditional Random Field (CRF), Online Random Forest (ORF), Dynamically Balanced Online

Bagging (DyBa), Convolutional Neural Network (CNN), Patch-to-Volume Registration (PVR), Support Vector Machine (SVM), Gray-Level

Co-occurrence Matrix (GLCM), Gabor Filter (GF).
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3.3.3. Peripheral Blood Vessels Segmentation

To evaluate the segmentation of the vasculature, we selected 38 (out of 44)600

images that provided acceptable visualization of the placenta vessels. The same

performance measures computed for placenta segmentation apply to vessels seg-

mentation. In the case of the distance metrics the values are slightly higher due

to the presence of more outliers (see Table 6, Figures 10 and 12). Interclass Cor-

relation and Volumetric Similarity show a high consistence in correlation and605

similarity (> 80%), respectively, between the ground truth and our segmenta-

tion. Although the precision is rather high, the sensitivity should be improved.

This is however a difficult task considering the small size of the vessels. More-

over, both specificity and accuracy were fully optimized. In all configurations,

high Dice coefficients were obtained, even for fetuses at advanced GW for which610

peripheral vessels become partly hidden due to more abundant fetal tissue and

increased placenta size. The values of the area under the ROC curve, which

correlates the actual segmentation with the ground truth, indicate that our

methodology is reliable. The intra-rater variability of the surgeons was also

determined one month later, showing a difference of ± 1.5% compared to the615

performance metrics listed in Table 5.

Table 6: Results of our peripheral blood vessels segmentation (similarity and distance metrics).

All performance measures are averaged.

Blood V essels Segmentation performance (I)

Type KAP ICC VS HD AVD MHD

SP 0.75 ± 0.09 0.75 ± 0.09 0.81 ± 0.09 46.12 ± 22.33 1.9 ± 1.07 0.37 ± 0.18

SA 0.81 ± 0.07 0.81 ± 0.07 0.88 ± 0.07 51.7 ± 16.73 1.63 ± 1.36 0.32 ± 0.2

TMP 0.83 ± 0.08 0.84 ± 0.08 0.86 ± 0.08 43.29 ± 14.31 1.25 ± 0.53 0.23 ± 0.08

TMA 0.85 ± 0.05 0.85 ± 0.05 0.92 ± 0.06 35.13 ± 10.65 0.88 ± 0.21 0.20 ± 0.05

All 0.81 ± 0.07 0.81 ± 0.07 0.87 ± 0.08 44.06 ± 16.01 1.42 ± 0.79 0.28 ± 0.13

Blood V essels Segmentation performance (II)

Type AUC SEN SPE PRCS ACC

SP 0.84 ± 0.08 0.67 ± 0.15 1.0 0.89 ± 0.16 1.0

SA 0.87 ± 0.06 0.75 ± 0.11 1.0 0.91 ± 0.1 1.0

TMP 0.87 ± 0.05 0.74 ± 0.11 1.0 0.97 ± 0.04 1.0

TMA 0.89 ± 0.06 0.79 ± 0.1 1.0 0.93 ± 0.07 1.0

All 0.87 ± 0.06 0.74 ± 0.12 1.0 0.93 ± 0.09 1.0
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To reinforce our evaluation strategy of the placenta vasculature, a new clin-

ical assessment of vessels oriented toward salient points detection was designed

and validated by two fetal surgeons. To this end, some corner detection mea-

sures such as distinctiveness, robustness and repeatability appear to be rather620

convenient. Moreover, other clinical references employed in fetal diagnosis such

as the preservation of the vascular structures and the localization of the umbil-

ical cord insertions were also taken into account. According to the differences

observed in MRI slice- (2D) and/or stack-based (3D) modes, we categorized the

clinical factors as follows (1: low, 2: medium and 3: high probability):625

1. Slice-based mode: it focuses on the corner point detection (i.e., a portion

of a vessel) slice by slice without considering the 3D volume.

• Vessel neighborhood distinctiveness : it evaluates whether the ele-

ments surrounding the corner jointly enable the identification of such

corner point as a peripheral blood vessel.630

• Vascular tissue-specific robustness : it verifies whether the detected

corner point corresponds to vasculature or non-vasculature tissue.

• Vessel corner repeatability : it distinguishes whether a vessel is de-

tected on the slice once or, on the contrary, various salient points

belonging to the same vessel are detected.635

2. Stack-based mode: it focuses on the vessel detection along the 3D stack.

• Preservation of the vessel structure: it evaluates whether the vessel

is continuously preserved along the 3D stack and whether it has the

structure of a vessel.

• Localization of the umbilical cord insertion: it considers the extent to640

which the umbilical cord insertion/s is/are easily localized through

the previously segmented vascular tree.

• Isolated artifacts : it weighs the amount of isolated artifacts unrelated

or not connected with the vascular tree.
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The clinical assessment, shown in Table 7, indicates that doctors agree with645

our quantitative evaluation. In all cases, the intrauterine elements surrounding

the corner point jointly enabled the identification of such corner as a peripheral

blood vessel. For the detection of each vessel, only a single corner was found

(i.e., no repeteability). Surgeons visually analyzed the segmented vessels in each

2D slice and verified that, approximately, 87.6% of detections corresponded to650

vasculature tissue. Moreover, the segmented vessels were continuously preserved

along the 3D stack and they had the tubular structure of a traditional vessel.

However, some isolated artifacts were still present in the final 3D model and the

umbilical cord insertion was weakly localized.

Table 7: Clinical assessment of 38 women subjects, in which placenta blood vessels are shown and well-defined in

the acquired MRI image.

Type of Pregnancy

(placenta position)

Slice-based vessel evaluation Stack-based vessel evaluation

Vessel

neighbourhood

distinctiveness

Vascular

tissue

robustness

Vessel

corner

repeatability

Preserved

vessel

structure

Umbilical

cord

insertion

Isolated

artifacts

Singleton (posterior) 2.6 ± 0.5 2.4 ± 0.8 2.8 ± 0.4 2.8 ± 0.4 1.6 ± 0.8 1.6 ± 0.8

Singleton (anterior) 3.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0 2.8 ± 0.4 2.0 ± 0.0 1.8 ± 0.4

Twin / Monochorionic (posterior) 3.0 ± 0.0 2.5 ± 0.5 3.0 ± 0.0 3.0 ± 0.0 2.0 ± 0.0 1.0 ± 0.0

Twin / Monochorionic (anterior) 2.0 ± 0.5 2.5 ± 0.3 2.2 ± 0.7 2.5 ± 0.1 1.2 ± 0.2 2.2 ± 0.3

All 2.8 ± 0.4 2.6 ± 0.5 2.9 ± 0.3 2.5 ± 0.5 1.7 ± 0.5 1.6 ± 0.6

34



Figure 12: Blood vessels segmentation. Axial, sagittal and coronal views of the same patient

are shown in columns 1, 2 and 3, respectively. From top to bottom: 1) twin pregnancy

+ posterior placenta, 2) and 3) singleton pregnancy + anterior placenta), and 4) singleton

pregnancy + posterior placenta. The smaller box squares shown on the right side of the main

views are zoomed details of regions of interest.

Figure 13: Comparison of placenta (red) and vessel (orange) segmentations using our fine-

tuned method (column 1), BTK (column 2) and IRTK (column 3) approaches. The axial view

has been selected since it best shows the placenta and the vessels. The ground truth of the

vessels are encircled in red.

Having a precise ground truth is essential. Although manual reference seg-655

mentations drawn by experts approximate ground truth, they are not accurate

enough. Doctors encircle vessels on a visual basis, rather than on a voxel basis,
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which is by far less accurate. This is not an important issue when dealing with

large objects like the placenta, but it is in the case of vessels. Therefore, a

relevant question arises: should the ground truth be done by the experts prior660

to the vessels segmentation or after this is ready? In the second case, doctors

could likely be more precise in their detections and boundary placements which,

in turn, would save time.

To extract true vessels from all detected corners, we deliberately neglected

all corners located both outside and inside the placenta. Hence, only peripheral665

vessels were considered. The vessels appearing at the first and end slices were

discarded since the corresponding reconstructions contained less information

and were ill-defined. Nevertheless, most of the vessels were observed jointly with

the placenta, which occurs for intermediate slices. Furthermore, the interface

between the fetus brain (which looks whitish) and the placenta (which looks670

grayish) has a sharp contrast in the images. This interface, which many times is

detected as a corner, was excluded from the analysis. Even if it is occasionally

masking one or two vessels, it is indeed larger than a vessel and thus can be

regarded as a false positive. Finally, we also tested the proposed methodology

directly on the original raw data to demonstrate the robustness of the pipeline,675

since it can effectively deal with different MRI data formats.

A 3D model of the placenta and its vasculature was created using the March-

ing cubes algorithm (Lorensen and Cline (1987)) and compared with the ground

truth (see Figure 14). The boundary between the hemispheres was particularly

well defined when the segmentation was done in placentas containing twins. In680

such cases, the vessels belonging to each fetus can be clearly localized as they

are grouped in the respective hemisphere. The umbilical cord insertion often

coincides with the regions where the vessels pile up. Although false positives

were present in the 3D reconstructions, the tubular shape of the vessels and the

vascular tree were well detected. Many vessels describe a winding path as shown685

in Figure 14. However, for fetuses with high gestational age, their detection be-

comes complicated since the fetus tissue squeezes the placenta and, therefore,

the vessels become masked by many fetal structures. The MRI alone does not
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provide sufficient information to extract the whole placenta vasculature. Even

in the ground truth, some vessels appear either incomplete or cut. Hence, it is690

necessary to take advantage of another image modality, such as 3D US, capable

to furnish the complete vasculature.

Figure 14: Isosurfaces of our placenta and blood vessels segmentation. The ground truth

is shown on the first and third rows. Second row (from left to right): 1) and 5) singleton

pregnancy + anterior placenta, 2) monochorionic pregnancy + posterior placenta, 3) and

6) singleton pregnancy + posterior placenta, and 4) twin pregnancy + posterior placenta.

Fourth row (from left to right): 1), 4) and 6) singleton pregnancy + anterior placenta, 2)

and 3) singleton pregnancy + posterior placenta, and 5) monochorionic pregnancy + anterior

placenta.

4. Conclusion and future work

This work presented a novel fully-automated method to enable the accurate

segmentation of the placenta and its peripheral blood vessels from motion cor-695

rupted fetal MRI in multiple views. A 3D super-resolution reconstruction of the
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uterus was attained by fine-tuning the parameters of the Kuklisova-Murgasova

et al. (2012) algorithm. The placenta was segmented using 3D Gabor filters,

Gray-Level Co-Occurrence Matrix and low-order statistical features, a specific

uterus instance selection and Support Vector Machines. From the resulting700

placenta volume, peripheral blood vessels were extracted through an adaptive

histogram equalization, a curvature-based corner detector and a region growing

method. Validation showed a Dice coefficient of 0.82 ± 0.02 and 0.81 ± 0.08

for placenta and its vasculature, respectively. Our approach can deal with both

typical image-related MRI flaws, such as sparse image acquisition and inter-slice705

motion, and the large variation of placenta position and orientation.

The here-presented methodology could be used in a real clinical environment

to train the fetoscope movements of doctors before the surgery, to foresee the

localization of the umbilical cord insertion and, consequently, to successfully

improve the preoperative planning of different fetal surgeries such as the laser710

ablation procedure applied in TTTS. In addition, it could also be employed

to identify severe abnormalities associated with placenta and its vasculature in

fetal disorders such as placenta or vasa previa.

Further investigation will be focused on advanced pregnancies, where there

is less amniotic fluid due to the larger size of the fetus. In its absence, the715

placenta contour is difficult to locate, as it becomes less differentiated (no bright

contrast) from the rest of uterus components. In addition, to obtain an entire

3D representation of the placenta vasculature, the automatic registration of

preoperative MRI and 3D US will be investigated to complete the portions of

the vessels that are not captured by MRI.720
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