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Abstract

Accurate and robust segmentation of abdominal organs on CT is essential for many clinical applications
such as computer-aided diagnosis and computer-aided surgery. But this task is challenging due to the
weak boundaries of organs, the complexity of the background, and the variable sizes of different organs.
To address these challenges, we introduce a novel framework for multi-organ segmentation of abdominal
regions by using organ-attention networks with reverse connections (OAN-RCs) which are applied to 2D
views, of the 3D CT volume, and output estimates which are combined by statistical fusion exploiting
structural similarity. More specifically, OAN is a two-stage deep convolutional network, where deep
network features from the first stage are combined with the original image, in a second stage, to reduce
the complex background and enhance the discriminative information for the target organs. Intuitively,
OAN reduces the effect of the complex background by focusing attention so that each organ only needs
to be discriminated from its local background. RCs are added to the first stage to give the lower layers
more semantic information thereby enabling them to adapt to the sizes of different organs. Our networks
are trained on 2D views (slices) enabling us to use holistic information and allowing efficient computation
(compared to using 3D patches). To compensate for the limited cross-sectional information of the original
3D volumetric CT, e.g., the connectivity between neighbor slices, multi-sectional images are reconstructed
from the three different 2D view directions. Then we combine the segmentation results from the different
views using statistical fusion, with a novel term relating the structural similarity of the 2D views to the
original 3D structure. To train the network and evaluate results, 13 structures were manually annotated
by four human raters and confirmed by a senior expert on 236 normal cases. We tested our algorithm by
4-fold cross-validation and computed Dice-Sørensen similarity coefficients (DSC) and surface distances
for evaluating our estimates of the 13 structures. Our experiments show that the proposed approach
gives strong results and outperforms 2D- and 3D-patch based state-of-the-art methods in terms of DSC
and mean surface distances.

1 Introduction

Segmentation of the internal structures, like body organs, in medical images is an essential task for many
clinical applications such as computer-aided diagnosis (CAD), computer-aided surgery (CAS) and radiation
therapy (RT). However, despite intensive studies of automatic or semi-automatic segmentation methods,
there remain challenges which need to be overcome before these methods can be applied to clinical
environments. In particular, detailed abdominal organ segmentation on CT is a challenging task both for

1The first two authors equally contributed to the work.
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manual human annotation and for automatic segmentation algorithms for various reasons including the
morphological complexity of the structures, the large variations between inter- and intra-subjects, and
image characteristics such as low contrast of soft tissues.

Early studies of abdominal organ segmentation focused on specific single organs, for example relatively
large isolated structures such as the liver [12,20,23] or critical structures such as blood vessels [17,19].
However, most of the algorithms were based on specific features of the target organ, and so extensibility
to the simultaneous segmentation of multiple organs was limited. For multi-organ segmentation, atlas-
based approaches were adopted for many applications [2, 7, 13,15,16,37,40]. The general framework of
atlas-based segmentations is to deformably register selected atlas images with segmented structures to
the target image. Critical issues for this approach, which affect performance accuracy, include proper
atlas selection, accurate deformable image registration, and label fusion. In particular, for the abdominal
region, inter-subject variations are relatively large compared with other parts of the body (e.g., the
brain) so the segmentation results are dependent on deformable registration between inter-subjects from
the limited set of atlases, which is a challenging problem that critically affects the final accuracies. In
addition, computational time is strongly dependent on the number of atlases. Therefore, selection of the
proper number and types of atlases is a critical factor for both of the accuracy and efficiency.

Recently, learning-based approaches exploiting large datasets have been applied to the segmentation
of medical images [4, 8, 9, 11,14,24–26,33,41]. In particular, deep convolutional neural networks (CNN)
have been very successful [4, 8, 9, 11,14,24,26,28,29,33]. Targets include regions in the brain [4, 11,14],
chest [33], and abdomen [9,28,29]. The performance results of CNNs for organs (and even tumors) reach,
or outperform, alternative state-of-the-art methods. Unlike multi-atlas-based approaches, deep networks
do not require selecting a specific atlas or require deformable registration from training sets to a target
image. In this study, we apply deep network approaches to abdominal organ segmentation.

Most studies based on deep networks, however, focused on a single structure segmentation, particularly
for abdominal regions, and there are few studies of multi-organ segmentation partly due to technical
challenges discussed later. We note that fully convolutional networks (FCNs) [21] have been generally
accepted for organ segmentations on CT scans [8, 30, 39] partly because they give state-of-the-art perfor-
mance for semantic segmentation of natural images [5, 21]. But there are three major characteristics of
abdominal CT which we must address in order to obtain strong performance on multi-organ segmentation.

Firstly, many abdominal organs have weak boundaries between spatially adjacent structures on CT, e.g.
between the head of the pancreas and the duodenum. In addition, the entire CT volume includes a large
variety of different complex structures. Morphological and topological complexity includes anatomically
connected structures such as the gastrointestinal (GI) track (stomach, duodenum, small bowel and colon)
and vascular structures. The correct anatomical borders between connected structures may not be
always visible in CT, especially in sectional images (i.e., 2D slices), and may be indicated only by subtle
texture and shape change, which causes uncertainty even for human experts. This makes it hard for deep
networks to distinguish the target organs from the complex background.

Secondly, there are large variations in the relative sizes of different target organs, e.g. the liver
compared to the gallbladder. This causes problems when applying deep networks to multi-organ
segmentation because lower layers typically lack semantic information when segmenting small structures.
The same problem has been observed in semantic segmentation of natural images where the segmentation
performance on small regions is typically much worse than on large regions, motivating the need to
introduce mechanisms which attend to the scale [6].

Thirdly, although CT scans are high-resolution three-dimensional volumes, most current deep network
methods were designed for 2D images. To overcome the limitations of using 2D CNNs for 3D images,
Setio et al. [33] used multiple 2D patches reconstructed from 9 different directions around the target
region for the task of pulmonary nodule detection. Zhuang et al. [40] used 2D axial, coronal, and sagittal
slices for pancreas detection at the coarse level and also for segmentation at the finer level. More recently,
there are studies which use 3D deep networks [8,14,24,27,30]. These, however, are not networks that act
on the entire 3D CT volume but instead are local patch-based approaches (due to complex challenges of
3D deep networks discussed later in this paragraph). To address the problems caused by restricting to
image patches, [14, 30] used a hierarchical approach with multi-resolutions, which reduces the dimension
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Figure 1. The overall framework.

of the whole volume for initial detection and focuses on smaller regions at the finer resolution. But this
strategy is best suited to a single target structure. Roth et al. [27] applied a bigger patch size to deal
with the whole dense pancreatic volume, but this was also for single pancreas segmentation and hard to
extend to the whole abdominal region. In general, 3D deep networks face far greater complex challenges
than 2D deep networks. Both approaches rely heavily on graphics processing units (GPUs) but these
GPUs have limited memory size which makes it difficult when dealing with full 3D CT volumes compared
to 2D CT slices (which require much less memory). In addition, 3D deep networks typically require many
more parameters than 2D deep networks and hence require much more training data, unless they are
restricted to patches. But there is limited training data for abdominal CT images, because annotating
them is challenging and requires expert human radiologists, which makes it particularly difficult to apply
3D deep networks to abdominal multi-organ segmentation. We have, however, implemented a 3D patch
based approach for comparison.

To deal with the technical difficulties for abdominal multi-organ segmentation on CT, we introduce a
novel framework of an organ-attention 2D deep networks with reverse connections (OAN-RC) followed by
statistical fusion to combine the information from the three different views exploiting structural similarity
using local isotropic 3D patches. OAN is a two-stage deep network, which computes an organ-attention
map (OAM) from typical probability map of labels for input images in the first stage and combines
OAM to the original input image for the second stage. This two-stage strategy effectively reduces the
complexity of the background while enhancing the discriminative information of target structures (by
concentrating attention close to the target structures). By training OAM with additional deep network,
uncertainties and errors from the first stage are adjusted and the fidelity of the final probability map is
improved. In this procedure, we apply reverse connections [18] to the first stage so that we can localize
organ information at different scales by assisting the lower layers with semantic information.

More specifically, we apply OAN-RC to each sectional slice, which is an extreme form of anisotropic
local patches but include the whole semantic (i.e. volume) information from one viewing direction. This
yields segmentation information from separate sets of multi-sectional images (axial, coronal, and sagittal
planes in this study similarly to most of medical image platforms for 2D visualization). We statistically
fuse the three sources of information using local isotropic 3D patches based on direction-dependent local
structural similarity. The basic fusion framework uses expectation-maximization (EM) similar to [2, 36].
But, unlike typical statistical fusion methods used for atlas-based segmentation, the input volumes and
the target volumes for segmentation in our problem are the same. But different structures and texture
patterns, from different viewing directions, will often generate nonidentical segmentations in 3D. Our
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strategy is to exploit structural similarity by computing a direction-dependent local property at each
voxel. This models the structural similarity from the 2D images to the original 3D structure (in the
3D volume) by local weights. This structural statistical fusion improves our overall performance by
combining the information from the three different views in a principled manner and also imposing local
structure.

Figure 1 describes the graphical concept of our framework. Our proposed algorithm was tested on
236 abdominal CT scans of normal cases collected as a part of FELIX project for pancreatic cancer
research [22]. By experiments, our method showed robust and high fidelities to the ground-truth for all
target structures with smooth boundaries. It outperformed 3D patch-based algorithms as well as 2D-based
in terms of DICE-similarity coefficient and average surface distance with memory and computational
efficiency.

2 Organ-Attention Networks with Reverse Connections

Given a 3D volume of interest (VOI) of a scanned CT image V ⊂ R3, our goal is to find the label of
each voxel v ∈ V . The target structures (i.e., the labeled structures) are restricted to be organs which
do not overlap with each other, so every voxel v should be assigned to a label in a finite set L. In this
section we introduce our proposed organ-attention networks with Reverse connections (annotated as
OAN-RC) which is run separately on three different views, and then in the next section we describe our
novel structural similarity statistical fusion method which combines the segmentation results obtained
from the OAN-RCs on the three different views.

2.1 Two-stage Organ Attention Network

We first introduce the OAN, which is composed of two jointly optimized stages. The first stage (stage-I)
transforms the organ segmentation probability map to provide spatial attention to the second stage
(stage-II), so that the segmentation network trained in stage-II is more discriminative for segmenting
organs (because it only has to deal with local context). To assist the lower layers in stage-I with more
semantic information, we employ reverse connections (Sec. 2.2), which pass semantic information down
from high layers to low layers. The OAN is trained in an end-to-end fashion to enhance the learning
ability of all stages.

The input images to our OAN are reconstructed 2D slices from axial, sagittal and coronal directions.
Based on the normal vector directions of the sagittal (X), coronal (Y ) and axial (Z) planes, we denote the
2D images by IXi , IYj and IZk respectively, where i = 1, . . . , nx, j = 1, . . . , ny, k = 1, . . . , nz and nx, ny, nz
are the numbers of slices for the three directions, respectively, and

⋃
i I
X
i =

⋃
j IYj =

⋃
k IZk = V . Following

the work of [39], we train an individual OAN for each direction.
Fig. 2 illustrated our organ-attention-network architecture. The network consists of two stages,

where each stage is a segmentation network. For notational simplicity, we denote an input 2D slice
by I ⊂ RH×W and its corresponding label map by T = {ti}i=1,...,H×W . Stage-I outputs a probability
map P(1) = f(I; Θ(1)) ⊂ RH×W×|L| for each label at every pixel, where the probability density function
f(·; Θ(1)) is a segmentation network parameterized by Θ(1). We use FCN [21] with reverse connections,
which is explained in Sec. 2.2, as Θ(1). FCN is the backbone network throughout the paper. Each element

p
(1)
i,l ∈ P(1) is the probability that the i-th pixel in the input slice belongs to label l, where l = 0 is the

background, and l = 1, ..., |L| are target organs. We define p
(1)
i,l = σ(a

(1)
i,l ) =

exp(a
(1)
i,l )∑|L|

t=0 exp(a
(1)
i,t )

, where a
(1)
i,l is

the activation value of the i-th pixel on the l-th channel dimension. Let A(1) = {a(1)i,l }i=1,...,H×W,l=0,...,|L|

be the activation map. The objective function to minimize for Θ(1) is given by

J (1)(Θ(1)) = − 1

H ×W

H×W∑
i=1

|L|∑
j=0

1 (ti = l) log p
(1)
i,l

 , (1)
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Stage-I

…

Stage-II

Output of convolutional layer

Probability map
Ground truthInput image

Organ-attention map

𝐈𝐈

𝐓𝐓 𝐓𝐓

𝐏𝐏(1) 𝐐𝐐 𝐈𝐈(2) 𝐏𝐏(2)

Organ-attention module

Reverse connection

Figure 2. The architecture of our two-stage organ-attention network with reverse connections. The
organ-attention network (OAN) is composed of two jointly optimized stages, where the first stage (stage-I)
transforms the organ segmentation probability map by spatial attention to the second stage (stage-II).
Hence the organ segmentation map generated in the organ-attention module guides the latter computation.
The reverse connections, described in Sec. 2.2, modify the first stage of OAN as shown by dashed lines.

where 1(·) is an indicator function.
Using a preliminary organ segmentation map to guide the computation of a better organ segmentation

can be thought as employing an attentional mechanism. Towards this end, we propose an organ-attention
module by

Q = W ∗P(1) + b, (2)

where ∗ denotes the convolution operator, W indicates the convolutional filters, and b is the bias. (2)
embeds cross-organ information into a single organ-attention map, Q, which learns discriminative spatial
attention for different organs automatically. By combining Q with the original input I, we get an image
which emphasizes each organ by

I(2) = I ?Q, (3)

where ? is the element-wise product operator. We apply I(2) to the input of stage-II, and the probability
of stage-II then becomes P(2) = f(I(2); Θ(2)).

In order to drive stage-II to focus on organ regions without needing to deal with complicated non-local

background, we define a selection function, 1(P
(1)
0 6 ρ) where P

(1)
0 = {p(1)i,0 }i=1,...,H×W is the probability

map provided by stage-I. In stage-II, we only accept the region if p
(1)
i,0 > ρ and do not back-propagate it

to stage-I. The loss function for stage-II is formulated as

J (2)(Θ(2),W,b) = − 1

H ×W

H×W∑
i=1

|L|∑
j=0

1
(
p
(1)
i,0 6 ρ

)
· 1 (ti = l) log p

(2)
i,l

 . (4)

To jointly optimize stage-I and stage-II, we define a loss function aiming at estimating parameters
Θ(1), Θ(2), W, and b by optimizing

J = h(1)J (1)(Θ(1)) + h(2)J (2)(Θ(2),W,b), (5)

where h(1) and h(2) are the fusion weights.

2.2 Reverse Connections

FCNs [21] have shown good segmentation results in recent studies, especially for single organ segmentation.
However, for multi-organ segmentation, lower layers typically lack semantic information, which may
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Figure 3. The reverse connections architecture of OAN stage-I. The network has reverse connections to
the output of convolutional layers. In the training step, both backbone network and reverse connection
side-outputs are supervised by the ground-truth. Finally, all reverse connection side-outputs and the
output of backbone network are fused and made to approach ground-truth.

lead to inaccurate segmentation particularly for smaller structures. Therefore, we propose reverse
connections which feed coarse-scale (high) layer information backward to fine-scale (low) layer for
semantic segmentation of multi-scale structures, inspired by [18]. This enables us to connect abstract
high-level semantic information to the more detailed lower layers so that all the target organs have similar
levels of details and abstract information at the same layer. The reverse connections framework for stage-I
is shown in Fig. 3. Fig. 4 illustrates a reverse connection block. Let Rn denote the reverse connection
map of the n-th convolutional layer in the backbone network, i.e. FCN in this study, where Cn is the
output of the n-th convolutional layer. A convolutional layer (with 512 channels by 3×3 kernels) is added
after Cn, and a deconvolutional layer (with 512 channels by 4× 4 kernels) is applied after Rn+1. Rn is
then obtained via an element-wise summation of these two maps. R7 is the output of a convolutional
layer (with 512 channels by 2× 2 kernels) grafted onto C7. Let wn denote the corresponding weights for
obtaining Rn. Following [18], we add reverse connections from C4 to C7.

With these learnable reverse connections, the semantic information of the lower layers can be enriched.
In order to drive learned reverse connection maps to produce segmentation results approaching the
ground-truth, we make each reverse connection map associate with a classifier. As the side-output layers
proposed in [18] are designed for detection purposes, they are not suitable for our task. Instead we follow
the side-outputs used in [38]. More specifically, a convolutional layer (with |L| channels by 1× 1 kernels)
is added on top of Rn, whose output is denoted as Vn, and followed by a deconvolutional layer (with |L|
channels). We denote the weights of the n-th side-output layer by θn. The loss function for side-output
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Figure 4. A reverse connection block.

layers J (s,1) is defined as

J (s,1)(Θ(1),w,θ) =

7∑
n=4

h(s,1)n `(s,1)n

(
Θ(1),wn,θn

)
, (6)

where `
(s,1)
n = − 1

H×W

[∑H×W
i=1

∑|L|
j=0 1 (ti = l) log p

(s,1)
i,l

]
and p

(s,1)
i,l is the probability output of the n-th

side-output layer.

.	
  .	
  .

.	
  .	
  .

.	
  .	
  .

.	
  .	
  .

⊕
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⊕
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𝑽* 𝑽+ 𝑽, 𝑽-

𝐀(.,&)

𝑪* 𝑪+ 𝑪, 𝑪-

Figure 5. Feature fusion strategy. A deep-to-shallow refinement is adopted for multi-scale side-output
features. The final activation map (A(f,1)) for stage-I is an element-wise addition of the side-output
activation map (A(r,1)) and the backbone network activation map (A(b,1)).

In order to combine the learned reverse connection maps of fine layers and coarse layers, we add
up the predictions (i.e., Vn) of the reverse connection maps from high layer to low layer gradually.
First, V6 is fused with a 2× upsampling of V7 by an element-wisely addition. Then we follow the
same strategy and gradually merge V5 and V4, as shown in Fig. 5. To obtain a fused activation

map A(f,1) = {a(f,1)i,l }i=1,...,H×W,l=0,...,|L| from the activation map of both side-outputs (i.e., A(r,1)) and

convolutional layers in the backbone network (i.e., A(b,1)), a scale function is adopted followed by an
element-wise addition by

A
(f,1)
l = h

(r,1)
l A

(r,1)
l + h

(b,1)
l A

(b,1)
l , l = 0, ..., |L| (7)
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where Al indicates the l-th channel of the activation map. h
(r,1)
l and h

(b,1)
l are fusion weights. Then the

fused probability map, P(f,1) = {p(f,1)i,l }i=1,...,H×W,l=0,...,|L|, can be obtained by p
(f,1)
i,l = σ(a

(f,1)
i,l ). The

final objective function for stage-I is defined by

J (1)(Θ(1),w,θ) = h(b,1)J (b,1)(Θ(1))

+ h(s,1)J (s,1)(Θ(1),w,θ) + h(f,1)J (f,1)(Θ(1),w,θ),
(8)

where h(b,1), h(s,1) and h(f,1) are fusion weights, and

J (f,1)(Θ(1),w,θ) = − 1

H ×W

H×W∑
i=1

|L|∑
j=0

1 (ti = l) log p
(f,1)
i,l

 . (9)

Note that in our full system with the two-stage organ-attention network and reverse connections, all
the parameters are optimized simultaneously by standard back-propagation

(Θ̂(1), ŵ, θ̂, Θ̂(2),Ŵ, b̂)

= arg min{J (1)(Θ(1),w,θ) + h(2)J (2)(Θ(2),W,b)}.
(10)

2.3 Testing Phase

In the testing stage, given a slice I, we obtain the stage-I and stage-II probability map by

P(1) = f(I; Θ̂(1), ŵ, θ̂)

P(2) = f(I; Θ̂(2),Ŵ, b̂),
(11)

where f(·, ·) is the network functions defined in Sec. 2.1. A fused probability map of P(1) and P(2) is
then given by

P = P(1) ◦ 1(P
(1)
0 > ρ) + P(2) ◦ 1(P

(1)
0 6 ρ). (12)

The final label map S = {si}i=1,...,H×W is determined by si = arg minl∈L pi,l.

3 Statistical Label Fusion Based on Local Structural Similarity

As described in Sec. 1, our OAN-RC is based on 2D images which is an extreme case of 3D anisotropic
patches. In this section, we propose to fuse anisotropic information obtained from different viewing
directions using isotropic 3D local patches to estimate the final segmentation. Let us denote the
segmentation results by Sj , (j = 1, . . . ,M = 3), which are obtained as described in Sec. 2.3 from the
axial (Z), sagittal (X), and coronal (Y) OAN-RCs. Depending on the viewing directions, sectional
images contain different structures and may have different texture patterns in the same organs. These
differences can cause nonidentical segmentations by the deep network as shown in Fig. 6 in 3D. In
addition, there is no guarantee of connectivity between neighbor slices by independent use of slices for
training and testing. Possible näıve approaches for determining the final segmentation in 3D from the
OAN-RC results can be boolean operations such as union or intersection. Majority voting (MV) is
another candidate for efficient fusion, however, theses approaches assume the same global weights of
OAN-RC results. From the observations that the performance level of segmentation, e.g. sensitivity,
can be different from viewing directions for each organ, we set the performance level to be an unknown
variable when computing the probability of labeling. This concept is similar to the label fusion algorithms
using expectation-maximization (EM) framework such as STAPLE (simultaneous truth and performance
level estimation) and its extensions [1, 2, 36].

Let us denote the true label of the V by T, which is unknown, and the unknown performance level
parameter of segmentation by θ. The segmentations from the deep networks S =

{
Sj |j = 1, ...,M

}
are
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Figure 6. An example of multi-planar reconstruction view of OAN-RC estimations

observed values. Under this condition, the basic EM framework is performed by following two steps in
an iterative manner: 1) to compute Q0(θ|θ(k)) = ET

[
lnL(θ|S,T)|S, θ(k)

]
which is the expected value of

the log likelihood, lnL(θ|S,T) = lnP (S,T|θ), under the current estimate of the parameters θ(k) at kth

iteration, and 2) to find the parameter θ(k+1) which maximizes Q0(θ|θ(k)).
The maximization step can be written as

θ(k+1) = arg max
θ
ET

[
lnP (S,T|θ)|S, θ(k)

]
= arg max

θ
ET

[
lnP (S|T, θ)P (T)|S, θ(k)

]
= arg max

θ

∑
T

ln {P (S|T, θ)P (T)}P (T|S, θ(k))

= arg max
θ

∑
T

{lnP (S|T, θ) + lnP (T)}P (T|S, θ(k)).

(13)

By assuming independence between T and θ in our problem, the second term
∑

T lnP (T)P (T|S, θ(k))
in (13) becomes free of θ and the maximization step can be written as

θ(k+1) = arg max
θ

∑
T

lnP (S|T, θ)P (T|S, θ(k))

= arg max
θ
ET

[
lnP (S|T, θ)|S, θ(k)

]
.

(14)

Therefore, we redefine Q0(θ|θ(k)) as Q(θ|θ(k)) = ET

[
lnP (S|T, θ)|S, θ(k)

]
.

The performance level parameter in this framework is a global property representing the overall
confidence of deep network segmentation for the whole volume. However, it can also vary according to the
voxel spatial locations via the local and neighbor structures as we use 2D slices for the initial segmentation.
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Therefore, we propose to combine local structural similarity shown from a specific viewing direction to the
original 3D volume and the global performance level, conceptually similar to local weighted voting [31].
We compute the probability of correspondence between 2D images and the 3D volume by structural
similarity (SSIM) [35] by

αji = P
(
`2(Iji )|`3(Vi)

)
≡ SSIM

(
`2(Iji ), `3(Vi)

)
=

(
2µ`2(Iji )

µ`3(Vi) + c1

)(
2σ`2(Iji )`3(Vi)

+ c2

)
(
µ2
`2(I

j
i )

+ µ2
`3(Vi)

+ c1

)(
σ2
`2(I

j
i )

+ σ2
`3(Vi)

+ c2

) , (15)

where αji is the SSIM from the jth viewing direction at the ith voxel. c1 and c2 are user-defined constants,
and `2(Ii) and `3(Vi) represent local 2D and 3D patches centered at the ith voxel, respectively. µ` and
σ` are the average and standard deviation of the patch `, respectively, and σ`2(Ii)`3(Vi) is the covariance
of `2(Ii) and `3(Vi). Fig. 7 shows an example of the structural similarity computed on different viewing
directions as a color map.

Considering the local image properties, the expectation of log likelihood function in our problem
becomes

Q
(
θ|θ(k)

)
= E

[
lnP (S, I|T, V, θ) |S, I, V, θ(k)

]
=
∑
T

lnP (S, I|T, V, θ)P
(
T|S, I, V, θ(k)

)
.

(16)

The global underlying performance level parameters of the deep network segmentations is defined as

θjs′s ≡ P
(
Sji = s′|Ti = s, θ

(k)
js′s

)
, (17)

where θjs′s is the probability of the voxel labeled as s′ from the jth deep network with the current

estimated performance value θ
(k)
js′s, when the true label is s.

To make the problem simple, we assume conditional independence between labeling and the original
volume intensities. The labeling probability with the target image intensity then becomes

P
(
Sji = s′, `2(Iji )|Ti = s, `3(Vi), θ

(k)
js′s

)
= P

(
Sji = s′|Ti = s, θ

(k)
js′s

)
P
(
`2(Iji )|`3(Vi)

)
= θjs′sα

j
i .

(18)

3.1 E-step

In the expectation step (E-step), we estimate the probability of voxelwise labels. Let us denote the

probability that the true label of ith voxel is s ∈ L at the kth iteration by ω
(k)
si . When the deep network

segmentations S and performance level parameters at the kth iteration θ(k) are given, ω
(k)
si can be then

described as
P
(
Ti = s|S, I, V, θ(k)

)
≡ ω(k)

si , (19)

where θ ∈ RN×|L|×|L| is the vector of all (θjs′s)
T . From the independence between SX , SY , and SZ , we

apply Bayesian theorem to (19).

ω
(k)
si =

P (Ti = s)
∏
j P
(
Sji = s′, `2(Iji )|Ti = s, `3(Vi), θ

(k)
j

)
∑
n P (Ti = n)

∏
j P
(
Sji = s′, `2(Iji )|Ti = n, `3(Vi), θ

(k)
j

) , (20)
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where P (Ti = s) is a priori of the ith voxel. By applying (18) to (20), we then obtain the probability of
voxelwise labeling as

ω
(k)
si =

P (Ti = s)
∏
j θ

(k)
js′sα

j
i∑

n P (Ti = n)
∏
j θ

(k)
js′nα

j
i

. (21)

3.2 M-step

In the maximization step (M-step), the goal is to find the performance parameters, θ, which maximize
(16) with the current given parameters. Considering each Sj and θj independently, the expectation of log
likelihood function in (16) can be expressed with the estimated voxelwise probability in E-step. Then the
performance parameter of each segmentation can be formulated to find the solution which maximizes the
summation of voxelwise probability as

θ
(k+1)
j = arg max

θj
Q
(
θj |θ(k)j

)
= arg max

θj

∑
i

Qi

(
θj |θ(k)j

)
, (22)

where Qi = E[lnP (Si, `2(Ii)|Ti, `3(Vi), θ
(k))|S, I, V, θ(k)] at ith voxel. By applying (19) and (18), (22)

becomes

θ
(k+1)
j = arg max

θj

∑
i

∑
s

P (Ti = s|S, I, V, θ(k))× lnP
(
Sji , `2(Iji )|Ti = s, `3(Vi), θ

(k)
j

)
= arg max

θj

∑
i

∑
s

ω
(k)
si lnP

(
Sji , `2(Iji )|Ti = s, `3(Vi), θ

(k)
j

)
= arg max

θj

∑
s′

∑
i:Sj

i=s
′

∑
s

ω
(k)
si × lnP

(
Sji = s′, `2(Iji )|Ti = s, `3(Vi), θ

(k)
j

)
= arg max

θj

∑
s′

∑
i:Sj

i=s
′

∑
s

ω
(k)
si ln θjs′sα

j
i .

(23)

From the definition of θ in (17), the summation of probability mass function,
∑
s′ θ

(k)
js′s, must be 1,

and (22) becomes a constrained optimization problem which can be solved by introducing a Lagrange
multiplier, λ. We then obtain the optimal solution by making the first gradient zero as

0 =
∂

∂θjs′s

[
Q
(
θj |θ(k)j

)
+ λ

∑
s′

θjs′s

]
. (24)

By applying the derivation of Q in (16), (22) and (23), (24) becomes

0 =

∑
i:Sj

i=s
′ ω

(k)
si α

j
i

θjs′s
+ λ

θ
(k+1)
js′s =

∑
i:Sj

i=s
′ ω

(k)
si α

j
i

−λ
.

(25)

By substituting the constraint of
∑
s′ θ

(k)
js′s = 1, we can obtain the final optimal solution as

θ
(k+1)
js′s =

∑
i:Sj

i=s
′ α

j
iω

(k)
si∑

i ω
(k)
si

. (26)

The two steps, (21) and (26), are then computed alternatively in the EM iterations until they converge.
From the final values of (21), the final segmentation can be computed by graph-based approaches such
as [3].
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Figure 7. The local structural similarity map between 2D slices and the 3D volume. Each row is
captured from the same similarity map computed on one viewing direction. Each column shows the
captures images at the same location computed from different viewing directions.
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3.3 Parallel computing using GPUs

The fusion step can be efficiently computed in a parallel way on a GPU. The local structural similarity
αji of i-th voxel in jth deep network and priori P (Ti) can be computed for each voxel and saved as
a pre-processing step. In the EM iterations, as shown in (21), the probability can be computed and
updated for each structure at each voxel. In our implementation, a GPU thread is logically allocated for
each voxel. However, to reduce the used memory and computation cost, the target volume of interest
(VOI) for each structure s is computed in an extended region as δ = 4 voxels for each direction from
V (
⋃
j Sj = s) in our implementation. For parallel computing, one CPU thread is allocated to a structure

and launches a kernel of one GPU to compute EM iteration for each structure.

4 Experimental Results

We evaluated our methods on 236 abdominal CT images of normal cases under an IRB (Institutional
Review Board) approved protocol in Johns Hopkins Hospital as a part of the FELIX project for pancreatic
cancer research [22]. CT images were obtained by Siemens Healthineers (Erlangen,Germany) SOMATOM
Sensation and Definition CT scanners. CT scans are composed of (319 − 1051) slices of (512 × 512)
images, and have voxel spatial resolution of ([0.523− 0.977]× [0.523− 0.977]× 0.5)mm3. All CT scans
are contrast enhanced images and obtained in the portal venous phase.

A total of 13 structures for each case were segmented by four human annotators/raters, one case by
one person, and confirmed by an independent senior expert. The structures include the aorta, colon,
duodenum, gallbladder, interior vena cava (IVC), kidney (left, right), liver, pancreas, small bowel, spleen,
stomach, and large veins. Vascular structures were segmented only outside of the organs in order to make
the structures exclusive to each other (i.e. no overlaps).

As explained in Sec. 2, we used OAN-RCs for multi-organ segmentation whose backbone FCNs
had been pre-trained by PascalV OC dataset [10]. From the possible variants of FCNs (e.g., FCN-32s,
FCN-16s, and FCN-8s), which depend on how they combine the fine detailed predictions [34], we selected
FCN-8s in this study because it captures very fine details in the 3rd and 4th pooling layer, and keeps
high-level semantic contextual information from the final layer. Our algorithm was implemented and
tested on a workstation with Intel i7-6850K CPU, NVidia TITAN X (PASCAL) GPU. With 236 cases, the
initial segmentations using OAN-RCs were tested by four-fold cross-validation. All the input images of
OAN-RCs are 1.5 times enlarged by upsampling, which lead to improved performance in our experiments.

In the fusion step, the average probability of SX ,SY ,SZ are taken as a priors in (21) and the initial

performance levels θ
(0)
js′s were computed by randomly selecting 5 cases and by comparing them to the

ground-truth. To compute the local patch-based structural similarity in (15), patches of (4.5 × 4.5 ×
4.5)mm3 size cubes were used for 3D volume. Since CT voxels are not always isotropic and spatial
resolutions can be different between scan volumes, we re-sampled the 3D patch with 0.5mm length cubic
voxels so that the same size of (9× 9× 9) 3D patches and (9× 9) 2D patches from all directions can be
used for all cases in our experiments.

The final segmentation results using OAN-RC with local structural similarity-based statistical fusion
(LSSF) were compared with the 3D-patch based state-of-the-art approaches, 3D Unet [8] and hierarchical
3D FCN (HFCN) [30] as well as 2D-based FCN, OAN and OAN-RC with majority voting (MV). For a
quantitative comparison, we computed the well-known Dice-Sørensen similarity coefficient (DSC) and the
surface distances based on the manual annotations as ground-truth. For a structure s, DSC is computed as
2V (S=s

⋂
T=s)

V (S=s)+V (T=s) where S is the estimated segmentation and T is the ground-truth, i.e. manual annotations

in this study. The surface distance was computed from each vertex of the ground-truth and to the
estimates of our algorithms. Fig. 8 shows comparison results by box plots, while Tables 1 and 2 represent
the mean and standard deviations for all the 236 cases.

As shown in Fig. 8, the basic OAN-RC outperforms other state-of-the-art approaches and our local
structural similarity-based fusion improves the results even more. We note that although DSC shows the
relative overall volume similarity, it does not quantify the boundary smoothness or the boundary noise of
the results. But evaluating the surface distances, see below, shows that our method works effectively for
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Figure 8. Box plots of the Dice-Sørensen similarity coefficients of 13 structures to compare performance.
As in typical box plots, the box represents the first quartile, median, and the third quartile from the
lower border, middle and the upper boarder, respectively, and the lower and the upper whiskers show the
minimum and the maximum values. (LSSF: Local Similarity-based Statistical Fusion.)
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Table 1. DICE-Sørensen similarity coefficient (DSC, %) of thirteen segmented organs. (mean ± standard
deviation of 236 cases)

Structure 3D U-net HFCN FCN MV OAN MV OAN-RC MV OAN-RC LSSF
Aorta 87.0±12.3 88.3± 8.8 85.0±4.2 85.5± 4.2 85.3± 4.1 91.8± 3.5
Colon 77.0±11.0 79.3± 9.2 80.3± 9.1 81.5± 9.4 82.0± 8.8 83.0± 7.4

Duodenum 66.8±12.8 70.3± 10.4 70.2±11.3 72.6±11.4 73.4±11.1 75.4± 9.1
Gallbladder 85.4±10.3 87.9± 7.5 87.8± 8.3 88.9± 6.2 89.4± 6.1 90.5± 5.3

IVC 80.8±10.2 84.7± 5.9 84.0± 6.0 85.6± 5.8 86.0± 5.5 87.0± 4.2
Kidney(L) 83.9±22.4 95.2± 2.6 96.1± 2.0 96.2± 2.2 95.9± 2.3 96.8± 1.9
Kidney(R) 88.0±14.4 95.6± 4.5 95.8± 4.9 95.9± 4.9 96.0± 2.5 98.4± 2.1

Liver 91.4± 9.9 95.7± 1.8 96.8± 0.8 97.0± 0.9 97.0± 0.8 98.0± 0.7
Pancreas 79.3±11.7 81.4±10.8 84.3± 4.9 86.2± 4.5 86.6± 4.3 87.8± 3.1

Small bowel 69.9±17.3 71.1±15.0 76.9±14.0 78.0±13.8 79.0±13.4 80.1±10.2
Spleen 89.6±9.5 93.1± 2.1 96.3± 1.9 96.4± 1.9 96.4± 1.7 97.1± 1.5
Stomach 90.1± 7.2 93.2± 5.4 93.9± 3.2 94.2± 2.9 94.2± 3.0 95.2± 2.6
Veins 60.7±23.7 74.5±10.5 74.8±10.7 76.8±11.2 77.4±12.1 80.7± 9.3

Table 2. Average surface distances of thirteen segmented organs for all 236 cases. (mean ± standard
deviation of average surface distances in mm)

Structure 3D U-net HFCN FCN MV OAN MV OAN-RC MV OAN-RC LSSF
Aorta 0.44 ±1.01 0.42±0.58 0.56±0.47 0.47±0.42 0.44±0.28 0.39±0.21
Colon 6.75±9.01 6,35±8.12 6.27±7.44 5.65±7.25 4.07±5.72 3.59±4.17

Duodenum 2.01±2.46 1.70±2.18 1.71±2.25 1.49±1.87 1.54±1.43 1.36±1.31
Gallbladder 1.31±0.76 1.21±0.50 1.22±0.52 1.12±0.50 1.05±0.41 0.95±0.37

IVC 1.57±1.53 1.15±1.05 1.26±1.08 1.16±1.38 1.12±1.24 1.08±1.03
Kidney(L) 0.77±1.04 0.41±0.42 0.36±0.47 0.34±0.47 0.30±0.33 0.30±0.30
Kidney(R) 1.39±2.01 1.03±1.68 1.05±1.74 0.74±1.32 0.54±1.09 0.45±0.89

Liver 1.89±3.21 1.60± 0 1.61±2.98 1.39±2.64 1.32±1.74 1.23±1.52
Pancreas 1.78±1.05 1.51±0.80 1.41±0.88 1.19±0.82 1.17±0.72 1.05±0.65

Small bowel 4.21±5.78 4.01±6.01 3.91±6.05 3.20±4.05 3.37±5.48 3.01±3.35
Spleen 0.98±0.56 0.59±0.37 0.60±0.36 0.56±0.40 0.47 ±0.27 0.42±0.25
Stomach 2.78±5.89 2.50±5.02 2.51±5.13 2.36±5.65 1.88±1.64 1.68±1.55
Veins 2.31±4.51 1.75±3.51 1.69±3.61 1.92±6.48 1.40±3.61 1.21±3.05

both the whole volumes and the boundaries of the organs.
Tables 1 and 2 represent the mean and standard deviations of performance measures for 13 critical

organs. Similar to the box plots, they show that our OAN-RCs with statistical fusion improves the overall
mean performance and also reduces the standard deviations significantly.

The OAN-RC training and testing can be computed in parallel for each view direction. In our
experiments, the training took 40 hours for 120, 000 iterations for 177 training cases and the average
testing time for each volume was 76.73 seconds. The fusion time depended on the volume of the target
structure, and the average computation time for 13 organs was 6.87 seconds.

5 Discussion

Multi-organ segmentation using OAN-RCs alone, without the statistical fusion, gave similar or better
performance compared with the state-of-the-art approaches summarized in [16]. In the specific case of
the pancreas, state-of-the-art methods showed (mean ± standard deviations) segmentation accuracies as
74.4± 20.2(%) on 140 cases [32], 78.5± 14.0(%) on 150 cases [16], 78.0± 8.2(%) on 82 cases [29] and
75.74± 10.47(%) (on the whole slice) versus 82.4± 5.7(%) (reduced region of interest) on 82 cases [39] in
terms of DSC. We cannot make a direct comparison because in these datasets CT images and manual
segmentations (i.e. annotation) for the ground-truth are different from each other. But our OAN-RCs
segmentations on our larger dataset shows similar or better performances in terms of DSC. Among target
organs, our performance on structures such as gallbladder and pancreas, whose sizes are relatively small
and have particularly weak boundaries improves significantly from using basic FCNs or using OANs
without reverse connections.
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Figure 9. 3D photo-realistic rendering of the ground-truth (left) and the results from OAN-RC with
statistical fusion (right). The aorta, duodenum, IVC, liver, kidneys, pancreas, duodenum, spleen, and
stomach are rendered. The difference between our results and the ground-truth are almost visually
indistinguishable. To differentiate adjacent organs and from manual segmentation, different color setting
were applied to the our methods results.

Moreover, as shown in Sec. 4, our statistical fusion based on local structural similarity improves
the overall segmentation accuracies in terms of both DSC and average surface distances. In particular,
there are significant performance improvements for the minimum values as shown in Fig. 8, which helps
explain the robustness of the algorithm. The differences can be depicted more clearly by visualizing the
3D surfaces as shown in Figs 10 - 11. The noise of the deep network segmentations is distributed over
large regions, without much connectivity, and occasionally they show significantly different patterns. But
our fusion step exploits structural similarity which outputs clean and smooth boundaries by effectively
combining different information based on the local structure of the original 3D volume.

When applying our proposed method and interpreting the evaluation results, we must address several
considerations.

As shown in our experiments, our proposed algorithm also outperforms 3D patch based approaches.
But 3D (isotropic) patch-based approaches have several issues which make it hard to apply to this problem.
To make bigger patch size, they require more parameters and hence require more training data or, if
this is not available, significant data augmentation (.e.g, by scaling, rotation, and elastic deformation).
In addition, there can be practical memory limitation on GPUs which restricts the expandable patch
size. The limited patch size means that the deep networks receptive field sizes contains only limited
local information which is problematic for multi-organ segmentation and the discontinuities between the
patches also raises problems. It is possible that solutions to these three problems may make 3D patch
based methods work better in the future. Unlike 3D approaches, the local structure-similarity used in our
fusion method effectively combine the information from anisotropic patches to 3D at each voxel. Fig. 9
shows an example generated by our proposed algorithm, which is visually indistinguishable from manual
segmentation for almost all target structures.

The ground-truth used in this study for training and evaluation was specified using manual annotations
by human observers. It is well known that there can be significant inter-/intra-observer variations in
manual segmentation. But, as explained before, the ground-truth was created by four human observers
and checked by experts in a visual way, and we randomly divided testing groups in our 4-fold cross-
validation to avoid biased comparison. However, it is still possible that inaccuracies due to human
variability may affect the evaluation as well as the training. This can be further intensively explored as
separate experiments.

Another possible consideration when applying the proposed approach is the image quality which
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(a) Liver (upper) and Pancreas (lower)

(b) Pancreas (Upper) and Duodenum (lower)

Figure 10. Effects of local structural similarity-based statistical fusion (LSSF) for estimating 3D surfaces.
From left to right, the manual segmentation (ground-truth), initial segmentations from OAN-RCs with
X, Y, Z slices, and the results of our proposed algorithm with statistical fusion. (a) When SX , SY ,
and SZ show similar result, statistical fusion produces smoother and less-noisy boundaries. (b) Surface
estimation examples when initial OAN-RCs give differing results. But our approach effectively fuses the
information, exploiting the local structural similarity.
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(a)

(b)

Figure 11. Examples of FCN, OAN, OAN-RC, and OAN-RC. The manual segmentation (ground-truth),
FCN MV, OAN MV, OAN-RC MV, OAN-RC LSFF (from left to right). (a) Pancreas: DSC(%) and
surface distances (mean± standard deviation in mm) to the ground-truth are 72.5 and 2.13± 1.74 (FCN
MV), 77.2 and 1.90± 1.77 (OAN MV), 82.4 and 1.33± 1.31 (OAN-RC MV), and 85.5 and 0.71± 0.81
(OAN-RC LSSF), respectively. (b) Stomach: DSC(%) and surface distances (mean± standard deviation
in mm) to the ground-truth are 92.5 and 2.44± 1.27 (FCN MV), 93.6 and 1.63± 1.14 (OAN MV), 94.9
and 2.25± 1.30 (OAN-RC MV), and 97.1 and 1.26± 0.88 (OAN-RC LSSF), respectively.

can affect both of manual annotations and deep network segmentation results. Various factors such
as spatial resolution, level of artifacts and reconstruction kernels should be considered. The dataset
used in this study has been collected between 2005 to 2009 in the same institute with control over the
scanning parameters. As explained in Sec. 4, the CT protocol is the portal venous phase and the spatial
resolution is almost isotropic. But different scanning parameters and artifacts may affect our algorithms
performance when applied to other datasets.

The same issues about manual segmentations and image qualities can be raised in general segmentation
and evaluations. Specifically for our proposed approach, especially in the fusion step, the way of computing
priori, P (T ), used in (21) can in practice affect the final segmentation. But considering that the deep
network segmentation results from different viewing-directions are independently obtained, the mean
can be accepted in general. However, if the deep network segmentations show clear tendencies towards
over-estimation or under-estimation, then different types of models for priors may need to be used in
order to improve the final result for practical applications.

One of the main advantages of our algorithm is the efficient computation time. The segmentation of 13
organs of the whole volume takes similar to or less than 1 minute with better performance reported than
the state-of-the-art methods [16]. Hence our approach can be practically useful in clinical environments.

6 Conclusion

In this paper, we proposed a novel framework for multi-organ segmentation using OAN-RCs with statistical
fusion exploiting structural similarity. Our two-stage organ-attention network reduces uncertainties
at weak boundaries, focuses attention on organ regions with simple context, and adjusts FCN error
by training the combination of original images and OAMs. Reverse connections deliver abstract level
semantic information to lower layers so that hidden layers can be assisted to contain more semantic
information and give good results even for small organs. The results are improved by the statistical fusion,
based on local structural similarity, which smooths our noise and removes biases leading to better overall
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segmentation performance in terms of DSC and surface distances. We showed that our performance is
better than previous state of the art algorithms. Our framework is not specific to any particular body
region, but gives high quality and robust results for abdominal CTs, which are typically challenging
regions due to their low contrast, large intra-/inter-variations, and different scales. In addition, the
efficient computational time of our algorithm makes our approach practical for clinical environments
such as CAD, CAS or RT.
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