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Abstract

The accurate quantification of left ventricular (LV) deformation/strain shows significant promise 

for quantitatively assessing cardiac function for use in diagnosis and therapy planning (Jasaityte et 

al., 2013). However, accurate estimation of the displacement of myocardial tissue and hence LV 

strain has been challenging due to a variety of issues, including those related to deriving tracking 

tokens from images and following tissue locations over the entire cardiac cycle. In this work, we 

propose a point matching scheme where correspondences are modeled as flow through a graphical 

network. Myocardial surface points are set up as nodes in the network and edges define 

neighborhood relationships temporally. The novelty lies in the constraints that are imposed on the 

matching scheme, which render the correspondences one-to-one through the entire cardiac cycle, 

and not just two consecutive frames. The constraints also encourage motion to be cyclic, which an 

important characteristic of LV motion. We validate our method by applying it to the estimation of 

quantitative LV displacement and strain estimation using 8 synthetic and 8 open-chested canine 

4D echocardiographic image sequences, the latter with sonomicrometric crystals implanted on the 

LV wall. We were able to achieve excellent tracking accuracy on the synthetic dataset and 

observed a good correlation with crystal-based strains on the in-vivo data.
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1. Introduction

Cardiovascular diseases (CVDs) were the leading cause of death in the world in 2013 

according to the AHA (as stated in the heart disease and stroke statistics - 2017 update 

(Benjamin et al., 2017)). Among CVDs, ischemic heart diseases are the most common, 

which occur as a result of the formation of atherosclerotic plaques in the coronary arteries. 

This results in the narrowing of the arteries that can lead to under-supply of blood to the left 

ventricle (myocardial ischemia). A sudden blockage of the arteries, for instance, due to 

plaque ruptures, can lead to irreversible tissue damage (myocardial infarction) and 

ultimately heart failure, which can be fatal.

Analysis of the left ventricle (LV), which is the main pumping chamber of the heart, can 

provide invaluable insights into cardiac health. An ischemic event in the ventricle is manifest 

as a reduction of the contractility of the LV wall muscle (myocardium). However, these wall 

motion abnormalities can be localized to a specific area of the LV and therefore, hard to 

detect. Global measures of wall motion abnormalities, such as ejection fraction (EF), cannot 

account for such local changes. The 2013 ACC/AHA guideline on heart failure states that 

approximately 50% of heart failure cases present themselves with preserved ejection fraction 

(Yancy et al., 2013). Therefore, it is crucial that a more local and informative measure be 

developed and adopted.

Visual wall motion scoring is a popular clinical technique for assessing such local 

deformation behavior and has been shown to be more predictive of clinical outcomes than 

EF (Galasko et al., 2001; Eek et al., 2010). Stress imaging based wall motion scoring is also 

of interest and is shown to be of great utility in identifying risk factors associated with 

mortality and stratifying them (Yao et al., 2003). However, visual wall motion scoring is 

prone to a high level of uncertainty because it is a qualitative metric, and hence the 

interobserver variability has been shown to be high in a study involving multiple imaging 

modalities (Hoffmann et al., 2006). In this context, Lagrangian strain analysis has emerged 

as a viable method for wall motion quantification and can assist detection and diagnosis of 

disease, as well as track the therapy, recovery, and management process (Pellerin et al., 

2003; Götte et al., 2006).

Among the popular imaging modalities that could be useful for assessing myocardial strain 

such as magnetic resonance imaging (MRI, e.g., (Le Folgoc et al., 2017; Papademetris et al., 

2002)), computed tomography (CT, e.g., (Cury et al., 2008; Sugeng et al., 2006)) and 

echocardiography (echo, e.g., (Compas et al., 2014; Heyde et al., 2013)), echo is of special 

interest because of its affordability, higher frame rates compared to MR and CT, and 

portability. However, the trade-off is that ultrasound imaging is prone to artifacts such as 

bone shadows, attenuation, signal dropouts, incomplete geometry due to wrong imaging 

angle and location. These issues call for robust image analysis algorithms and processing 

pipeline.

While previous efforts have focused on establishing the efficacy of strains and other locally 

sensitive measures quantifying LV motion (Ledesma-Carbayo et al., 2005; De Craene et al., 

2012; Compas et al., 2014), in this work we focus on a novel method aimed at improving 
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this by capturing the myocardial dynamics with a fully spatiotemporal model. A 

spatiotemporal viewpoint is consistent with the manner in which clinical readings of echo is 

done - as a movie as opposed to viewing still frames. Most cardiac motion analysis methods 

perform frame-to-frame displacement estimation and combine the series of deformations to 

obtain Lagrangian displacements. Uncertainties and ambiguities, that arise at each step in 

time, get compounded and propagated as frame-to-frame estimations are aggregated. 

Therefore, significant drift can occur while tracking voxels through the cardiac cycle, 

particularly past the systolic phase. Another aspect of cardiac motion that is ignored by most 

methods is the periodicity of the deformation estimates over the cardiac cycle.

Therefore, in this work, we propose a method where the motion model accounts for global 

spatiotemporal consistency and correspondence as well as periodicity. We build a graphical 

network where myocardial surface points are set up as nodes and each node is connected to a 

few other nodes that are its candidate matches in the next time frame, via edges. The edges 

are associated with weights that capture the likelihood of a particular match. The flow f 
through the network - a binary-valued variable that captures whether or not a particular 

match amongst the candidates was chosen - is then solved via optimization and subject to a 

variety of constraints.

We reported a preliminary version of the flow network tracking (FNT) method in (Parajuli et 

al., 2017). In that work, we introduced the graphical network model for motion analysis. 

Here, we expand that model further to get binary-valued flow solution in order to obtain 

non-overlapping and complete motion trajectories through the entire cardiac cycle. Instead 

of defining edge relationships by a nearest neighbor search using spatial distance, we do this 

by feature distance. Furthermore, by introducing additional constraints in the optimization, 

we are now able to encourage trajectories to be closed-looped and thereby model the 

periodic aspect of cardiac motion. Also in our previous effort, we used a supervised learning 

based Siamese network for feature learning. While that performed well with synthetic data, 

it was not easy to use a similar strategy with in vivo data due to a lack of training samples. 

Therefore, in this work, we use an unsupervised method involving convolutional 

autoencoders to derive features.

We validate the application of our FNT shape tracking method on 8 synthetic 3D+t 

ultrasound image sequences developed by ((Alessandrini et al., 2015)) and on 8 open-

chested canines imaged at baseline, ischemic and under dobutamine stress (24 studies in 

total). Validation is done by comparing with strains obtained from implanted 

sonomicrometric crystals in the LV. Sonomicrometry derived strains were available for 7 

baseline canines and 5 ischemic and stressed canines. We perform correlation analysis to 

compare echocardiography based strains and crystal based strains.

2. Related Work

2.1. Speckle/Image-based Tracking Methods

2.1.1. Non-rigid Registration—Non-rigid registration methods typically consist of a 

model where the motion (displacement) field is parametrized by smooth functions such as 

B-splines. Ledesma-Carbayo et al. applied it to 3D ultrasound sequences in a frame-to-frame 
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manner (Ledesma-Carbayo et al., 2005). Heyde et al. proposed a 3D deformation model 

where the LV image is transformed from Cartesian coordinate to an anatomical LV shaped 

coordinate system (Heyde et al., 2012). However, most methods of this class do not use a 

fully spatiotemporal motion model. The optimizations are highly non-convex and are prone 

to get stuck in local minimums that can yield non-optimal solutions.

Some work has been done towards addressing the spatiotemporal alignment issue. Ledesma-

Carbayo et al. proposed a 3d+t B-spline spatiotemporal model which parameterized the 

Lagrangian motion of a point at end diastole (ED) through the cardiac cycle (Ledesma-

Carbayo et al., 2005). However, their model does not explicitly capture any notion of global 

spatiotemporal correspondence and consistency. This is because their cost function accounts 

for the dissimilarity with the ED frame but not with any other frames, including the 

neighboring frames. Also, this method does not capture large deformations effectively. De 

Craene et al. proposed a 3D+t diffeomorphic map based registration method, where a B-

spline parameterization over the velocity field is used (De Craene et al., 2012). While this 

explicitly models the notion of spatiotemporal correspondence, the concern with 

velocitybased parametrization, in general, is that it is prone to error accumulation as 

Lagrangian displacements are calculated by integrating the velocities.

2.1.2. Block Matching—Block matching involves taking a patch of image in a frame 

and searching for the best match in a spatial window in the next time frame. Langeland et al. 

implemented this on 2D echo RF (radio frequency) images (Langeland et al., 2005). 

Lubinski et al. also implemented this on RF images and further refined displacement 

estimation in the beam direction using zero-crossings of the phase of the complex 

correlation function (Lubinski et al., 1999). Boukerroui et al. implemented block-matching 

on 2D B-Mode images for velocity estimation (Boukerroui et al., 2003). A maximum 

likelihood based similarity function was used as distance metric and smoothing was 

implicitly applied by encouraging velocity vectors of neighboring pixels to be similar. These 

methods can be time-consuming due to a large search space and also lack a regularization 

term in general.

2.1.3. Optical Flow—Optical flow methods assume that the intensity of a point in a 

moving image is consistent across time and that motion is responsible for temporal intensity 

variation. Song and Leahy applied this to model cardiac motion in 3D CT images (Song and 

Leahy, 1991). Optical flow methods suffer from the fact that cardiac ultrasound speckle 

patterns do not display such consistency in intensity across frames and also that they are 

significantly more noisy than CT or MR images.

2.2. Shape Matching/Tracking Methods

Shape-based methods try to match shape/image descriptors derived from a point set. Pre-

processing is necessary to generate the points either by simple edge/feature detection 

algorithms or by a more sophisticated segmentation algorithm. Post-processing is also 

generally required for smoothing and dense field generation as the solutions are sparse 

(Papademetris et al., 2002).
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2.2.1. Frame-to-frame Matching—Chui et al. proposed a point matching algorithm 

that modeled deformation using non-rigid thin plate spline parameterization and used it to 

align point sets derived from brain imaging in (Chui and Rangarajan, 2003). The 

correspondences that map point sets are fuzzy (non-binary) initially and are refined 

iteratively to obtain one-to-one binary correspondences. Belongie et al. introduced the shape 

context feature, which is more global than the local curvature, and used it to match point sets 

(Belongie et al., 2000). They solve a weighted bipartite graph matching problem using the 

Hungarian algorithm to obtain one-to-one correspondences (Belongie et al., 2000).

2.2.2. Temporal Tracking—We previously proposed a method that tracks individual 

points located at myocardial surfaces through time in (Parajuli et al., 2016). Points on the 

myocardial surfaces form nodes in a graph and edges exist between points and their spatial 

neighbors in the next time frame. The motion of an individual point is then posed as the 

shortest path through this graph. Our current work improves this by modeling the motion of 

all points on the surface together as opposed to individually. Berclaz et al. (Berclaz et al., 

2011) used a flow network structure to build a fully spatiotemporal model for an object 

tracking problem. We expand upon their work, as will be seen below, by providing a 

probabilistic mechanism of outlier handling and accounting for periodic motion. 

Furthermore, while their work handles the uncertainty in the nodes of the graph, we handle 

uncertainty in the edges to solve for correspondences.

2.3. Post hoc Regularization Models

Methods lacking in inherent regularization, or producing a sparse set of displacements as our 

method does, rely on post hoc regularization of the initial tracking results to produce smooth 

displacement fields. Papademetris et al first estimated initial correspondences between 

myocardial surfaces using a shape matching approach (Papademetris et al., 2002). The initial 

estimation was then regularized by using a biomechanically inspired finite element method 

approach.

Compas et al. proposed the use of radial basis functions to generate smooth and dense 

displacements from the integration of sparse sets of shape and speckle tracking 

displacements in (Compas et al., 2014). We expanded this strategy to impose further 

smoothness and biomechanical constraints on the displacement fields in (Parajuli et al., 

2015). Lu et al. learned how to regularize noisy motion by training a neural network to filter 

noisy 4D Lagrangian displacement vector fields (Lu et al., 2017).

3. Methods

Many point matching methods that model rigid or non-rigid deformations try to achieve one-

to-one or symmetric matches (Belongie et al., 2000), (Chui and Rangarajan, 2003). Even 

within the free-form deformation framework, diffeomorphic transformations are a popular 

choice, which captures a similar notion. The resulting displacement fields from such 

mappings are more realistic and robust to noise and artifacts. However, matching algorithms 

leading to one-to-one correspondence at the frame level cannot guarantee that the 

composition of those frame level one-to-one correspondences leads to globally optimal one-

to-one correspondence across all frames. Thus, in the work presented in this paper below, we 
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develop an approach that i.) incorporates global one-to-one correspondence for all points 

being tracked and ii.) accounts for the cyclical nature of cardiac motion.

3.1. Constrained Flow Optimization

First, point clouds are obtained by uniformly sampling the endocardial and epicardial 

surfaces (see figure 2). The sequence of point clouds, through the cardiac cycle, is then set 

up as nodes in a graph with directed edges between points and their match candidates in the 

next time frame. Each node is endowed with a feature vector representing local appearance 

characteristic and the match candidates are chosen based on feature distances between nodes 

and their spatial neighbors. This is illustrated in Figure 3.

The edges capture particle (tissue) motion possibilities, and their weights capture the 

likelihood of the motion. We have T time frames in total with N(t) (t ∈ [1 : T]) points per 

frame. Each node is defined as xi
t(i ∈ [1: N(t)]), where an edge ei j

t  exists between xi
t at time t 

and its neighbor x j
t + 1 (based on feature distances) at time t + 1 (i ∈ [1 : N(t)] and j ∈ [1 : N(t 

+ 1)]). The flow through an edge ei j
t  in this network is captured by the binary-valued variable 

f i j
t , and the corresponding edge weight is wi j

t . f i j
t =1 implies that the point xi

t and x j
t + 1 are a 

match.

We would like to solve for flow f that is proportional to the edge weights w. This amounts to 

maximizing the inner product w′f, subject to the following constraints at each node xi
t

indexes neighbors of xi
t in frame t + 1):

1. Flow is either 0 or 1:

∀t, i f ∈ 0, 1 . (1)

2. Sum of outgoing flows is less than or equal to one (Cout, see Figure 4a).

∀t, i ∑
j ∈ η(t, i)

f i j
t ⩽ 1 (2)

3. Sum of outgoing and incoming flows is equal (Cbal, see Figure 4b).

∀t, i ∑
h: i ∈ η(t − 1, h)

f hi
t − 1 = ∑

j ∈ η(t, i)
f i j

t
(3)

Cout and Cbal are constraint matrices that are later explicitly used in solving an optimization 

(see eqn. 4). Cout ensures that total flow is preserved from one frame to another. By itself, it 

would result in complete trajectories that traverse through the best possible path but without 

any consideration for spatial consistency with other trajectories. Cbal is enforced so that 

incoming and outgoing flows through nodes are equal. This is helpful in preventing many-

to-one correspondences, which can create uncharacteristic stretching and shrinking in the 

displacement fields. One-to-many correspondences are also avoided for the same reason.
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Even though we would like to solve an integer programming (IP) optimization to get a 

binary-valued solution for f, we start with a linear programming (LP) relaxation. The 

constraint that f ∈ {0,1} is dropped for a looser constraint that f ⩾ 0. We solve the following 

optimization instead (all variables are considered in their vectorized forms here for 

simplicity):

Maximize  w′ f
subject to   f ⩾ 0, Cout  f ⩽ 1, Cbal  f ⩽ 0 (4)

Despite the relaxation of an IP into an LP, we still obtain a binary-valued solution. This is of 

great consequence because solving IPs directly is an NP-hard problem. Due to the special 

nature of the constraint matrices that define our LP, our solutions remain integer-valued. 

This builds upon work that proves that inequalities in LP with constraint matrices that satisfy 

the total unimodularity property, and that have an integral right-hand side, lead to an integral 

solution (Hoffman and Kruskal, 2010). A unimodular matrix is a square integer matrix with 

determinant +1 or −1. This results in the inverse of these matrices also being an integer 

matrix. Berclaz et al. show that such flow balance constraint matrices satisfy total 

unimodularity in (Berclaz et al., 2011). This allows us to obtain fully connected non-

intersecting trajectories throughout the cardiac cycle.

It is instructive to think of the effects of the constraints in terms of an equivalent graph-based 

matching/tracking methods. For instance, only imposing Cout results in shortest path 

tracking for each point. In addition to Cout, if we also impose Cin, such that the sum of 

incoming flows at a node is also constrained (Cinf ≤ 1), we achieve a maximum bipartite 

match, with one-to-one correspondence, between point sets in consecutive time frames. 

Finally, if Cout and Cbal are both enforced, we obtain a complete maximum bipartite match, 

which results in one-to-one correspondence that extends through the entire cardiac cycle (Cin 

gets implicitly imposed in this case). The effects of these constraints on the resulting 

trajectories are illustrated in figure 5(a)–5(c).

Since our constraint matrices are very sparse, the LP can be solved very efficiently. We used 

the CVX package (in MATLAB), for specifying the LP and other optimizations in this work 

(CVX Research, 2012), (Grant and Boyd, 2008). CVX was used in conjunction with the 

MOSEK solver for solving the LP, which uses the interior-point method (ApS, 2014).

3.1.1. Constraint Matrices—At a node associated with xi
t, let e1, e2, e3 be the incoming 

edges and let e11, e12, e13 be the outgoing edges (in vectorized form). Fig 6 illustrates this 

relationship and the form of the equation corresponding to a row of the Cbal matrix appears 

as follows:
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−1 − 1 − 1 … 1 1 1

f 1
f 2
f 3
⋮

f 12
f 12
f 13

≤ 0. (5)

Similarly, Cout has 1’s where Cbal also has 1 and zeros elsewhere. Conversely, Cin has 1’s 

where Cbal has −1.

Fig 5 displays how imposing Cout, Cout and Cin, Cout and Cbal affects tracking outcomes in a 

toy 1D + t problem. The points are stacked vertically for each time step (total of 5). We can 

clearly see how just imposing Cout leads to the qualitatively worst result in Fig 5(a). This is 

because there is nothing preventing two trajectories from merging and occupying the same 

nodes.

We can also notice, in figure 5(c), as Cbal is imposed strictly, one-to-one point 

correspondence leads to non-overlapping complete trajectories. However, nodes on the top 

areas in figure 5(c) have no trajectories passing through. In an earlier implementation of this 

algorithm, we attempted to remedy situations like this by relaxing this strict balance 

constraint (Parajuli et al., 2017). In addition to that, we also added spatiotemporal 

smoothness constraints. However, in this work, we impose Cbal strictly and develop a 

different strategy of regularization suitable to cardiac motion. We discuss this strategy next.

3.1.2. Imposing Loop Constraints—A simple extension to the algorithm described so 

far encourages trajectories to end up in close proximity to their start location. This is done 

by adding one more set of edges (and constraints) between the points in the last frame and 

the first frame (see figure 7.). First, we impose the following constraint between the flow 

from source node xsrc (let the flow be f i
xsrc) and the flow from the first frame to second ( f i j

1 ):

∀i, i ∈ [1: N(1)], f i
xsrc = ∑

j ∈ η(1, i)
f i j

1 . (6)

Here, since each node in frame 1 is connected directly to xsrc, we are saying that if there is a 

flow into that node from the source, there has to be a flow out of the node going into frame 2 

as well. Next, we impose a balance between flow from the last frame to the first frame ( f hi
T

via the loop edges) and flow from first to second ( f i j
1 ):

∀i, i ∈ [1: N(1)], ∑
h: i ∈ η(T , h)

f hi
T = ∑

j ∈ η(1, i)
f i j

1 . (7)
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This is the key flow balance constraint that encourages trajectories to be closed-looped. 

Since edges always exist between nodes that are close spatially, and we already have a 

mechanism for obtaining non-overlapping complete trajectories, this helps us ensure that our 

trajectories are roughly closed-looped. Finally, to make sure that the total flow leaving the 

source node is also equal to the total flow leaving the last frame (and going to the first 

implicitly), we also impose the following constraint:

∑
i = 1

N(1)
f i

xsrc = ∑
i = 1

N(1)
∑

h: i ∈ η(T , h)
f hi

T . (8)

We shall call these constraints Cloop, which is applied in the same way as Cbal and is 

incorporated within it during the optimization (see equation 4). In figure 5(d), we can see 

how the loop constraint helps us recover trajectories that lead to the end points of the 

trajectories being in close proximity of their start points, which is what we expect due to the 

periodicity of the LV motion/displacement.

3.1.3. Outlier Handling—Because we are maximizing the flow through the network, 

our algorithm always solves for the maximum number of possible trajectories, even if they 

are of very low quality. Figure 8 displays such an example. The ideal match would have 

been if point 1 was matched to point 4 and point 3 to 6, but instead, the opposite has 

happened. We tackle this by probabilistic thresholding. All edges with weights below a 

certain threshold Pth are omitted. An example is shown in figure 9 with randomly generated 

points for illustration.

3.1.4. Edge weight calculation.—Each edge ei j
t  has the following weight:

wi j
t = exp

− xi
t − x j

t + 1 2

2σx
2(t)

exp
− F xi

t − F x j
t + 1 2

2σ f
2(t)

(9)

The first component of the weight (eqn 9) captures the likelihood that an edge gets selected 

based on spatial distance. The second component captures the same likelihood, but based on 

feature similarity. The two effects are assumed to impact the likelihood independently, hence 

the two components are simply multiplied. F can be any shape or appearance-based feature 

associated with xi
t and x j

t + 1. σx(t) and σf(t) act as normalization constants and are the 

standard deviations of Euclidean and feature distances, respectively, for each image frame. 

For every point in a frame, once the NK best neighbors have been established, Euclidean 

distances between the neighbors are calculated along with the feature distances. All these 

N(t) × NK values are aggregated and their standard deviations calculated to obtain σx(t) and 

σf(t).

3.2. Neural Network Based Appearance Features

Since we do not have ground truth trajectories for in vivo data, we simply use a 

convolutional autoencoder to learn appearance features here, unlike our previous work in 
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(Parajuli et al., 2017). Convolutional autoencoders are known to produce a state-of-the-art 

solution in unsupervised learning problems. The structure of the network is shown in figure 

10 and has the standard encoder-decoder format. We use Euclidean distance to quantify the 

similarity between two learned embeddings. The learned embedding F is used to calculate 

edge weights in equation 9.

3.3. Dense Field Generation and Strains

We use radial basis functions (RBFs) as interpolants and calculate dense displacement fields, 

which is necessary for generating dense motion trajectories and Lagrangian strain which 

helps us assess myocardial function. This is based on our previous work and that of Compas 

et. al. (Compas et al., 2014), (Parajuli et al., 2015).

The most important parameter of the interpolation process was the placement resolution of 

the RBFs. This was set at 10mm for level 1 and 5mm at level 2 for our 2-step coarse-to-fine 

interpolation process. The decrease in spacing by a factor of 2 was held constant but 

different starting values - 10mm, 8mm, 12mm - were experimented with. Also, all the data 

points per frame (N(t)) were not used for computation, since that would be computationally 

very intensive. A finer grid of resolution 1.75mm was used to sample the original 

displacement values into representative datapoints. Resolution of 1.00mm, 1.50mm, 1.75mm 
and 2.00mm were experimented with.

These parameters, and the regularization constant described below, were chosen by 

conducting a parameter sweep on the Normal data and then the ideal set of parameters were 

used for all data.

We regularize our motion field (U) by imposing sparsity on the weights associated with the 

basis functions representing our motion field that account for tissue incompressibility. We do 

so under the assumption that the cardiac tissue is roughly incompressible and therefore, the 

motion vector field should be roughly divergence-free (i.e., ∇·U = 0) (Song and Leahy, 

1991). Finally, we also mildly penalize the norm of the spatial derivatives (∇U) to 

discourage jumps and discontinuities in the motion fields. We use a compactly supported 

basis function, which results in a sparse basis matrix unlike other popular choices such as 

Gaussian and thin plate spline based RBFs. Sparse matrices are more conducive to 

numerical optimization (Compas et al., 2014), (Wendland, 1995).

Once dense displacements are obtained, Lagrangian strains were calculated. For the 

synthetic data, the ground truth mesh data also contained information on each mesh point, 

regarding which neighbor of it was oriented in which cardiac coordinate (e.g., endocardial-

epicardial pairs defined the radial direction). The ratio of distances between these 

directionally oriented neighboring pairs, as they were propagated across time using the 

dense displacement fields, were used to directly calculate Lagrangian radial, circumferential 

and longitudinal strains (Alessandrini et al., 2015).

For, in vivo data, first, dense displacements were composed through the cardiac cycle to 

obtain dense Lagrangian displacements. Then derivatives of the (U, V, W) components of 

the displacements were calculated across the regular (x, y, z) Cartesian axes. Then a 3 × 3 
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matrix consisting of the strain components in exx, eyy, ezz, exy, eyz, ezx directions are 

calculated using formulas given in (Yan et al., 2007). These are projected to the local cardiac 

geometry, obtained from the segmentation mask, to obtain radial, circumferential and 

longitudinal strains.

Excluding image segmentation, which takes about 2 hours including manual first frame 

initialization, but is not the focus of this work, the overall method takes about 20 minutes. 

The time consuming portions are the dense displacement field generation where large matrix 

multiplications are being done by breaking them into chunks, as opposed to at once, and the 

neural network based feature generation, which were run on the CPU and not the GPU due 

to memory restrictions. All of this was run on a 8-core, 32gb RAM machine. Most of the 

code was in MATLAB and the neural network portion in Python.

4. Experiments and Results

We explored how changes in key parameters affect performance via a synthetic dataset 

where ground truth was available. Although the synthetic data do not fully capture all the 

variation present in vivo echocardiographic images, it helped us establish best practices. The 

autoencoder-derived features are generated using models trained in a leave-one-out fashion 

where, for every synthetic data sequence, a different model was trained without using that 

sequence. For the in-vivo data, we obtained endocardial and epicardial surfaces using an 

automated (except the first frame) level-set segmentation method (Huang et al., 2014). In the 

synthetic case, segmentation masks were generated from the ground truth mesh masks, 

hence a segmentation step was not required during pre-processing. Other than that, the steps 

are the same for the in-vivo data as well. As a reminder, the overall method is depicted in 

figure 1.

4.1. Synthetic Data

4.1.1. Data Description—We used 8 synthetic 3D+t ultrasound image sequences 

developed by Alessandrini et al. (Alessandrini et al., 2015). The dataset consisted of 3 

categories of image sequences. First consisted of just one normal sequence (normal). Second 

consisted of ischemic sequences with ischemia in the distal and proximal left anterior 

descending artery (LADDIST and LADPROX), right circumflex artery (RCA) and left 

circumflex artery (LCX). The third consisted of dilated myocardium sequences - one 

synchronous (SYNC) and two dyssynchronous, induced by left bundle branch block (LBBB 

and LBBBSMALL). Examples of the synthetic data - 2D slices from one image sequence at 

end diastole and corresponding contours - are given in figure 11. Image volumes were of 

size 224 × 176 × 208 voxels with a resolution of 0.67mm × 0.85mm × 0.58mm. Sequences 

were of length 34 except for LBBB and LBBBSMALL, which were of length 40, and 

captured 1 cardiac cycle. During computation, volumes were sampled such that voxels were 

of 1mm × 1mm × 1mm for computational efficiency.

We report tracking errors on 2250 myocardial mesh points, for which the positions through 

the sequence were provided as ground truth. These points were evenly distributed in the 

endocardium, epicardium and in the mid-wall. We calculated distances between ground truth 

mesh points and mesh points from our tracking algorithm by propagating the known first 
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frame mesh points through time. The errors are summarized using median and interquartile 

range (IQR). Overall errors, aggregated over all time frames, are displayed separately from 

end diastolic (last frame) and ES errors because the number of data points is different. 

Analyzing errors at ES and ED is important as many clinical readings are made at these time 

points.

4.1.2. Parameter Selection for FNT—We vary Zfr, θfr and NK, which control the 

level of sampling of our surface masks and graph neighbor assignment (see table 2 for 

description). We adopted a cylindrical sampling strategy where we sample uniformly along 

the z axis and along the circumference (see figure 12). We present the median tracking errors 

(MTE) under different combination of these parameters on the normal data in table 3. The 

combination of Zfr = 40, θfr = 30 and NK = 3 provided the lowest overall MTE on the 

normal data.

A special case of our algorithm is when NK = 1. In this scenario, the algorithm essentially 

becomes a simple nearest neighbor assignment problem without any optimization. We also 

check the performance for this condition in table 4. For normal data, even though the overall 

error, in the best case, when Zfr = 50, θfr = 15, is not significantly higher than for when NK 
= 3 or NK = 5 (0.94 ± 0.77 compared to 0.86 ± 0.65), the same does not apply to the entire 

dataset. The overall error for all dataset aggregated is 1.25 ± 1.45, magnitude of which is 

about 50% higher than obtained with NK = 3. Performance is significantly worse for end 

diastole with the overall error magnitude about 100% higher than with NK = 3. All of this 

makes sense since motion is particularly hard to track post end systole and in pathology 

cases, this is even more pronounced.

We examined how performance changed as we changed Pth (see table 2 for description). 

Each edge in our flow network is associated with a probabilistic weight that represents how 

likely that edge transition is. Dropping edges whose weights are below Pth from 

consideration is a method of handling outliers. The results are shown in table 5. MTE values 

were typically the lowest for Pth = .5. With high Pth, low-quality edges get removed and the 

resulting trajectories are better probabilistically.

4.1.3. Effect of Different Constraints—Next, we see how the algorithm performs 

under different constraints. We start by applying Cout only, then Cin, Cbal and Cloop in an 

incremental fashion. Cout does not enforce any one-to-one correspondence constraint. It is 

equivalent to tracking all points independently using a shortest path formulation. Cout and 

Cin together enforce one-to-one correspondence at a frame-to-frame level. Cout and Cbal 

together enforce one-to-one correspondence throughout the cardiac cycle. Finally, applying 

Cloop in addition to Cout and Cbal also enforces a balance between first and last frames, 

thereby encouraging trajectories to start and end at nearby positions. The findings are 

summarized in Table 6 and figure 13.

Not surprisingly, there is an improvement with each additional constraint. The jump from 

having no loop constraint to the loop constraint is especially significant. This validates our 

intuition that accounting for the cyclical nature of cardiac motion is necessary.
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4.1.4. Comparing Features—We also compared the performance of the learned 

(unsupervised) feature against other features (and/or metric). A comparison to the shape 

context (Belongie et al., 2000) feature, gradient histogram feature and intensity cross-

correlation metric-based approaches is shown in table 7 and figure 14.

The learned feature using an Autoencoder provides better tracking results in comparison to 

other features generated using shape and image information. It was fascinating to find that 

the cross-correlation of intensity patches also performed relatively well. This is likely 

because speckle de-correlation is probably not substantial across time in this synthetic 

dataset.

4.1.5. Comparing Methods—We compared the FNT method against other point 

tracking methods. Table 8 and figure 15 summarize the findings. For shape context matching 

(Belongie et al., 2000), we had to use a lower sampling rate (Zfr = 20, θfr = 10) because the 

algorithm took over an hour to run per frame and therefore was not tractable at a higher 

sampling rate. The Dynamic Shape Tracking (DST) algorithm is run with the same setting as 

the FNT algorithm (Zfr = 40, θfr = 30 and NK = 3). A free-form deformation (FFD, 

(Rueckert et al., 1999)) implementation available from the Bioimagesuite package 

(Papademetris et al.) was also applied to our data for reference. FFD was applied by 

registering all frames to the next frame in the sequence (FFD fr-to-fr) and also by registering 

all frames to the first frame (FFD fr-to-ED). Control point spacing of 13mm × 13mm × 

11mm was used for FFD. Affine registration was applied before the non-rigid part.

We first note that the shape context matching and FFD applied frame-to-frame seem to 

provide the worst results overall. Since these methods did not have any temporal aspect to 

them, their tracking suffers a lot post systole, which is evident from the high ED errors. The 

DST method performs only slightly better as it does not track all points together but 

provides improved tracking post systole and therefore results in lower ED errors. The frame-

to-ED FFD, where images are registered directly to the first frame and FNT seem to provide 

similar results overall. But FNT is better at ES. This is because the deformation from ED to 

ES is large and the FFD algorithm was most likely not able to account for that. Good 

performance at ES is crucial since peak strains typically occur around ES and are widely 

evaluated and reported clinically as a measure of function.

4.1.6. Regional Strain Analysis—Since we are ultimately interested detecting regional 

(within the LV) changes in strain values in order to isolate areas with injury, we also test 

whether or not the strain values we calculate can help us do this. Radial strain curves, 

obtained using the FNT method and ground truth positions, for the normal dataset are shown 

for basal, mid and apical areas of the LV in figure 16. Basal and mid areas are divided into 6 

sectors - anterior (Ant), antero-septal (Ant-Sept), infero-septal (Inf-Sept), inferior (Inf), 

infero-lateral (Inf-Lat) and antero-lateral (Ant-Lat) sectors. Apical area is divided into 4 

sectors - anterior (Ant), septal (Sept), inferior (Inf) and lateral (Lat) sectors. For the normal 

data, we can see that strain values do not differ significantly across different sectors. 

Compared to the ground truth, our method seems to underestimate peak radial strain values 

as evident from figure 16. However, the broader trends seem to be consistent with the 

ground truth strain values.
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We show circumferential and longitudinal strains for the Normal data in figures 17 and 18 

respectively. Similar trends are observed here as well. There is no underestimation or 

overestimation apparent in these curves, consistent with the values reported in table 10.

In figure 19, radial strain curves for the LADPROX data are shown (FNT and ground truth 

position based). There appears to be a significant reduction of strain values around the 

infero-septal and infero-lateral sectors in the basal and mid regions. In the apical region, the 

anterior and lateral region strains are also lower. Figure 20 shows radial strain curves for the 

RCA data (FNT and ground truth position based). Infero-lateral and inferior strain values are 

reduced in basal and mid regions. There appears to be no significant changes in the apical 

region. Similar to the normal data, there also appears to be an underestimation of strains for 

both the ischemic data. However, there is also a broad agreement on the strain trends.

It should be clear from figures 16, 19 and 20 that, we are able to discern changes in strains 

across different regions of the LV. For instance, from normal to RCA, there is barely any 

change in the strain values in the apical area, whereas there is a significant reduction in 

inferior and infero-lateral strain values in both the basal and mid regions. From normal to 

LADPROX, there is a significant change in the apical strains. The observation that different 

injury profiles lead to different regional strain patterns, as demonstrated here, is of great 

value.

To quantify this more stringently, we directly compared strains obtained from FNT and the 

ground truth positions by analyzing the differences in strain values and cross-correlations. 

Table 9 summarizes absolute difference in radial, circumferential and longitudinal strain 

values for normal, Ischemic (LADPROX, LADDIST and RCA) and Dilated (LBBB, 

LBBBSMALL and SYNC) data groups. While the median absolute difference in strain 

values are within reasonable range for the normal and ischemic data, it is rather large for the 

dilated data group. This is perhaps indicative of the fact that we are not able to account for 

their complex motion patterns, which are different than that of the normal and ischemic 

group.

To understand whether these differences in strains were random or systematic, we also 

summarized median differences (not absolute) in table 10. This helps us identify the 

direction in which the algorithm is biased. First thing of note is that, overall, there is no 

substantial bias in the circumferential and longitudinal strains. There is bias in all strain 

types for the dilated data group. Radial strains seem to be underestimated for all data groups, 

which is consistent with our findings from earlier as we observed the strain curves.

A reason behind this systematic bias in the radial strains is our use of segmented surfaces. 

Since points were constrained to move between surfaces, the maximum radial displacement 

was constrained. At a very small spatial scale, if we assume surfaces are flat (planes in 3D) 

and consecutive surfaces are parallel, the maximum possible radial motion is fixed - the 

projection of the normal vector between the two surfaces along the radial direction. 

However, because point correspondences are not perfect during optimization, there is noise 

in the displacement vectors. As these noisy vectors are regularized and smoothed, the final 
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radial displacements are lower on aggregate than the ground truth. Such constraints do not 

exist circumferentially or longitudinally as long as points are sampled densely and regularly.

Finally, we compare how well the trends agree with ground truth for the three strain types in 

table 11 by looking at the summary of correlation values of individual sector strain curves. 

Again, the dilated data seem to have the worst correlations, which is consistent with the 

findings so far. Longitudinal strains are slightly worse and noisier overall. This is partly due 

to the fact that we use a sparse set of displacements located on the myocardial surfaces. 

Longitudinal motion is hard to quantify towards the basal and apical regions in this setting. 

Overall, the results with synthetic data were good both in terms of point tracking and strain 

analysis.

In figure 21 we also display radial strain maps at ES calculated using our method and the 

ground truth for 3 ischemic datasets. Areas with injuries have low strains and this can be 

seen in the strain maps. Again, this is to illustrate that we could reliably localize injuries 

since the maps from our method and ground truth appear fairly similar.

4.2. In vivo Data

4.2.1. Echocardiography Data—We applied our method and explored physiological 

variations in the heart by analyzing in vivo canine 4D (3D+t) echocardiography (4DE) data 

from 8 canine studies. The imaging was done on anesthetized open chested animals with a 

transducer suspended in a water bath. The animals were imaged in baseline condition (BL), 

an ischemic condition (HO), induced by occluding the left anterior descending artery 

(LAD), and stress condition (HODOB), induced by injecting dobutamine in low dosage: 5μg
\kg\min. These conditions were tested due to our interest in ultimately developing a 4DE 

strategy for rest-stress imaging/analysis. Echocardiographic images were available for all 8 

studies in all conditions but sonomicrometry data was available for 7 studies in BL and 5 

studies in HO and HODOB.

Philips iE33 ultrasound system (Philips Medical Systems, Andover, MA), with the X7–2 

phase array transducer and a hardware attachment that provided RF data, were used for 

acquisition. Imaging frequency ranged from 50–60 fps, which typically gave us 20–30 

volumes per 4D image sequence. Typical volume dimensions were 400 × 120 × 110 voxels 

of resolution 0.26mm × 1.10mm × 1.10mm. Images were captured along with ECG gating 

and capture a single cardiac cycle. All experiments were conducted in compliance with the 

Institutional Animal Care and Use Committee policies.

Once these images were acquired, they were segmented using a semi-automated scheme. 

Endocardial and Epicardial surfaces were manually traced for the first frame of all images 

(see figure 22). Then we used a dictionary learning based level set algorithm to propagate 

these surfaces through the cardiac cycle (Huang et al., 2014). The FNT algorithm was then 

applied to these data with some adjustments. Since the extent of LV captured by imaging is 

different for different sequence in the long axis, Zfr is set as Zfr = max(25, total z slices 

available). θfr is then set as θfr = Zfr/1.3 since 1.3 was the ratio of the best (Zfr, θfr) 

combination for the synthetic data - (40, 30). We used the unsupervised learning derived 

feature here as well, by training an autoencoder with in vivo data. Other parameters were the 
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same - NK = 3, Pth = .5. Radial basis function based interpolation method was used post 

FNT tracking and Lagrangian strains were calculated based on the techniques outlined in 

(Yan et al., 2007).

We compared these strains with the ones obtained from sonomicrometric crystals implanted 

close to the mid-anterior LV wall during the same imaging studies as described above. Even 

though the strain values calculated from the sonomicrometric crystals cannot be considered 

to be ground truth since the crystal-based strain calculation method itself is prone to noise 

and uncertainties, they do provide a helpful validation benchmark. We focused on analyzing 

if the trends were consistent using correlation analysis. We describe the sonomicrometric 

crystal processing and calculations next.

4.2.2. Sonomicrometer Data—We used sonomicrometric transducer crystals 

(crystals), recording instrument and processing software SonoSoft and SonoView 
(Sonometrics Corporation, London, Ontario, Canada) to acquire signal from crystals and 

process them. We implanted 19 crystals in the heart, 16 in the targeted areas and 3 in the 

basal and apical areas for reference. 3 more were placed in the transducer to align the 

crystals in Echocardiography’s LV coordinate.

The 16 crystals were arranged in such a way that they formed three adjacent cuboidal 

structures. The three cubes were roughly located in: (i) the ischemic region of LV (ISC), 

which was caused by the aforementioned LAD occlusion (ii) the remote region (away from 

the ischemic area) and (iii) the border region between the two, as shown in figure 23 (also 

table 13).

We adapted the 2D sonomicrometry-based strain calculation method outlined in (Waldman 

et al., 1985) for 3D. We considered a tetrahedral element to be the elementary 3D unit to 

obtain strain information from. Each cube was composed of over 50 different possible 

tetrahedrons. We calculated strain tensors for each cube separately and averaged them to 

obtain a strain tensor for the overall cube. Fig. 24(a) shows a single tetrahedral unit and Fig. 

24(b) shows representations of initial and post deformation widths of an edge of the 

tetrahedron. We calculated radial, circumferential and longitudinal strains by projecting onto 

the cardiac geometry defined using the apical and basal crystals. We could then compare 

these strains with echocardiography (echo) based strains after aligning them in the LV 

coordinate system using rigid registration.

4.3. Comparing FNT and FFD

We compared the strains obtained from the FNT and FFD (the FFD fr-to-ED version 

specifically), since they were the best performing methods amongst the ones we tested, with 

the strains obtained from sonomicrometry analysis, across a few categories - imaging 

conditions (BL, HO, HODOB), ischemic regions (ISC, BOR, REM) and strain types. BL 

data was available for 8 volumes and HO and HODOB data were available for 5 volumes.

The median correlations (with IQR), of FNT and FFD with the crystal strains across BL, HO 

and HODOB, are given in table 14. BL data was available for 8 volumes, hence there were 

72 total correlation data points for this - radial, circumferential and longitudinal strains for 
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each cube giving 9 correlations per data. There were 45 data points for the other two 

conditions as there were 5 sequences each (with 9 correlations per data similarly).

The correlations were the best for the BL condition and somewhat lower for HO and 

HODOB, with HO being the worst. Since the magnitude of deformation is typically the 

smallest in HO, perhaps the signal-to-noise ratio of the displacement data pertaining to HO 

was lower, thereby resulting in lower median correlation.

FFD and FNT strain correlations with the crystal strains, in the 3 cubic regions of interest, 

are given in table 15. 5 data with BL, HO and HODOB sequences, and 3 more with only BL 

resulted in 18 sequences in total for consideration, giving us 54 correlation data points. Table 

15 suggests that there was very little difference in performance, between FFD and FNT, 

across the 3 cubic regions. The ISC area correlations were slightly lower.

Finally, comparison of FFD and FNT strain correlations, in 3 cardiac axes - radial, 

circumferential and longitudinal, is given in table 16. 54 data points were available for each 

strain type (3 - ISC, BOR and REM for each image sequence). The FFD and FNT 

correlations appeared to be roughly the same for all three categories. Longitudinal strain 

correlations were the lowest for both methods. As images were acquired such that the beams 

are parallel to the short axis, full volume images were created by stitching smaller slices in 

the long axis. This can lead to stronger speckle decorrelation in the long axis and therefore 

low quality longitudinal strains.

Overall, the two methods provided similar trends and similar strain correlation values were 

observed as a result.

4.3.1. Changes across Physiological Conditions—We continued rest of our 

analysis by just using the FNT method. First, we explored how strains change from BL to 

HO and then to HODOB. In BL condition, we expected normal heart function and strain 

values. During HO, which induces ischemia, we expected an overall decrease in the heart 

function and strain magnitudes. From HO to HODOB, we expected to be a recovery of 

function in non-ischemic areas, whereas the outcome in ischemic area was uncertain. The 

ischemic (ISC) and non-ischemic areas were defined by the location of the crystals that 

defined the 3 cubic regions ISC, BOR and REM (see 23). Figures 25, 26 and 27 show strains 

for BL, HO and HODOB conditions respectively for 1 dataset.

There was a decrease in overall strains, across all regions, going from BL (figure 25) to HO 

(figure 26). There was also recovery in all regions going from HO (figure 26) to HODOB 

(figure 26). Although we expected to find a discernible difference between the level of strain 

changes across ISC, BOR and REM, particularly between ISC and REM, these strain curves 

do not suggest any obvious differences.

Figure 28 shows the changes in peak radial, circumferential and longitudinal strains from BL 

to HO to HODOB (for 8 BL data and 5 HO and HODOB data). Median values across 

different groups are shown, along with the IQR. The trend of decrease in peak strains from 

BL to HO and then the subsequent increase from HO to HODOB was strongly shown by 

radial strains. The corresponding radial strains can be found in table 17 as well. The change 
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in HO to HODOB is more substantial for both crystal and FNT-based strains. There is a 

subtle difference in the magnitude of increase, from BL to HO, and decrease, from HO to 

HODOB, of radial strains across ISC, BOR and REM regions for the crystal-based strains. 

Such a difference was not found for the echo-based strains.

Circumferential strain values across the regions are reported in table 18. Both crystal-based 

and echo-based (FNT) circumferential strains did not display changes in increase/decrease 

magnitudes across ISC, BOR and REM (see figure 28 and table 18). Changes in longitudinal 

strains are also shown in figure 28 and values reported in table 19. The crystal-based strains 

display strong increase, from BL to HO, and decrease, from HO to HODOB, in strain 

magnitudes respectively. The echo strain magnitudes seemed very small and therefore not 

very informative since the IQRs were fairly high. Just like radial strains, the crystal-based 

longitudinal strains also point to the existence of a subtle difference in the magnitude of 

increase from BL to HO, and decrease from HO to HODOB, across ISC, BOR and REM 

regions.

A source of uncertainty in the crystal-based analysis was the challenge involved in 

registering crystals with LV. While the positions of the transducer were available (from the 

reference crystals in the transducer), there still remained the task of rotational alignment that 

required some manual intervention. Furthermore, the transducer position crystals, which 

served as references, were themselves subject to noise and uncertainties. The ischemia that 

we induced was also possibly not severe enough to cause highly localized functional 

difference. Therefore, we also conducted analysis by regions defined by the local cardiac 

geometry (as defined by the AHA standard (Cerqueira et al., 2002)). For Lagrangian strain 

calculation, the axes were defined based on the segmentation mask of the first frame of the 

echo sequences. Figure 29 displays radial, circumferential and longitudinal strains across 

BL, HO and HODOB conditions across anterior (Ant), antero-lateral (Ant-Lat), infero-

lateral (Inf-Lat), inferior (Inf), infero-septal (Inf-Sept) and antero-septal (Ant-Sept) sectors. 

These plots are for the same data as in the earlier plots comparing echo and crystal strains 

across cubic regions through BL, HO and HODOB.

Similar to the crystal-based analysis, we were able to detect global changes from BL to HO 

and HO to HODOB. However, local variations were difficult to detect. If we look at radial 

strains in figure 29, the anterior and antero-septal regions seem to have the highest strains in 

HO and HODOB, while we expected the opposite. Since the ischemic region was close to 

the mid-anterior sector, we expected lower strains along this area. Summary of peak redial 

strains across different sectors at BL, HO and HODOB can be found in table 20.

Overall, the results of in vivo testing were also highly encouraging with room to expand and 

improve for enhanced local sensitivity.

5. Conclusion

While spatiotemporal methods do exist for full volume tracking in 4DE (Ledesma-Carbayo 

et al., 2005; De Craene et al., 2012), we have developed, to the best of our knowledge, one 

of the first fully spatiotemporal 4D cardiac surface tracking method. This was then used to 
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generate dense displacements using a regularized radial basis function framework. Our 

method was also able to account for the cyclical nature of the cardiac motion. Strains 

calculated from these displacements were then used to analyze the changes in global and 

local deformation pattern of the LV. We also proposed an unsupervised neural network-based 

feature generation method for motion tracking.

We obtained very good tracking accuracy with our method and features on the Leuven 

synthetic dataset. Even though we only tracked endocardial and epicardial surfaces, we 

obtained comparable results to the FFD method, which accounts for motion throughout the 

myocardium. We were also able to detect local regional changes in strain patterns and obtain 

different strain profiles for different infarct locations and extent.

In the future, the tracking method can be expanded to model dense myocardial 

displacements as well. This would have the advantage of not requiring perfect 

segmentations. A rough region-of-interest would suffice as long as it contains the LV. Since 

doing this would make the problem more ill-posed, the motion model would also have to be 

expanded to incorporate more constraints. The neural network-based feature generation 

strategy can be expanded further to develop supervised or transfer learning based methods 

applicable to in vivo data as well. For instance, the Siamese neural network based approach 

we explored in our previous work can be extensively leveraged with more training data 

(Parajuli et al., 2017).
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Highlights

• We present a spatio-temporal (3D+t) correspondence solving algorithm and 

apply it to estimate cardiac deformation using echocardiographic images.

• We use convolutional neural networks to encode feature information and 

facilitate the correspondence algorithm.

• We validate our method using 8 synthetic 4D echocardiographic sequences 

and compare our method against other methods applied to similar problems.

• We also validate our method using 8 open-chested canine echocardiographic 

4D sequences with sonomicrometric crystal implantation that provided 

reference strain values.
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Figure 1: 
Overall method outline.
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Figure 2: 
Preprocessing steps for in vivo data to get endocardial and epicardial surface points.
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Figure 3: 
Nodes, edges and other relationships in the network. The point sets are sampled from the 

myocardial surface sequence at each frame.
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Figure 4: 
A node and different edges/flows visualized
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Figure 5: 
Outcomes of applying different constraints on 1D+t point sets, with points stacked vertically 

in space and horizontally in time.
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Figure 6: 
Incoming and outgoing edges at a node.

Parajuli et al. Page 29

Med Image Anal. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
A simple flow network displaying the additional loop edges between the last frame and the 

first (not all shown) which helps us obtain closed-looped trajectories. The source node and 

edges are also shown.

Parajuli et al. Page 30

Med Image Anal. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
An unlikely, but a valid scenario where balance and closed loop constraints are satisfied but 

the result is poor qualitatively.
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Figure 9: 
Outcome of applying thresholding (of Pth = .3) on the edge weights.
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Figure 10: 
Autoencoder network: A low dimensional embedding of image patches that captures images 

statistics is learned.
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Figure 11: 
Synthetic data image example with endocardial and epicardial contours (normal data).
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Figure 12: 
Sampling scheme.
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Figure 13: 
MTE for all data, for different constraint setting. Cin, Cbal and Cloop were added 

incrementally.
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Figure 14: 
MTE for all data, comparing different features. The same tracking method (FNT) was used 

for all of these.
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Figure 15: 
MTE for all data, comparing different methods.

Parajuli et al. Page 38

Med Image Anal. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 16: 
Radial strain curves in the basal, mid and apical area of the LV for the normal Leuven data 

(our method and ground truth). Curves indicating mean strains for anterior (Ant) antero-

septal (Ant-Sept), infero-septal (Inf-Sept), inferior (Inf), infero-lateral (Inf-Lat) and antero-

lateral (Ant-Lat) regions are shown.
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Figure 17: 
Circumferential strain curves in the basal, mid and apical area of the LV for the normal 

Leuven data (our method and ground truth). Curves indicating mean strains for anterior 

(Ant) antero-septal (Ant-Sept), infero-septal (Inf-Sept), inferior (Inf), infero-lateral (Inf-Lat) 

and antero-lateral (Ant-Lat) regions are shown.
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Figure 18: 
Longitudinal strain curves in the basal, mid and apical area of the LV for the normal Leuven 

data (our method and ground truth). Curves indicating mean strains for anterior (Ant) antero-

septal (Ant-Sept), infero-septal (Inf-Sept), inferior (Inf), infero-lateral (Inf-Lat) and antero-

lateral (Ant-Lat) regions are shown.
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Figure 19: 
Radial strain curves in the basal, mid and apical area of the LV for the LADPROX Leuven 

data (our method and ground truth). Curves indicating mean strains for anterior (Ant) antero-

septal (Ant-Sept), infero-septal (Inf-Sept), inferior (Inf), infero-lateral (Inf-Lat) and antero-

lateral (Ant-Lat) regions are shown.
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Figure 20: 
Radial strain curves in the basal, mid and apical area of the LV for the RCA Leuven data 

(our method and ground truth). Curves indicating mean strains for anterior (Ant) antero-

septal (Ant-Sept), infero-septal (Inf-Sept), inferior (Inf), infero-lateral (Inf-Lat) and antero-

lateral (Ant-Lat) regions are shown.
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Figure 21: 
Epicardial surfaces displaying radial strains for three different types of ischemia, induced by 

occlusion at left anterior descending artery (LADPR0X), right coronary artery (RCA) and 

left circumflex artery (LCX).
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Figure 22: 
Example of in vivo images and segmentation contours in one image sequence. I1, I2 and I3 

are three images in the systolic cycle.
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Figure 23: 
Crystals and their relative position in the LV
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Figure 24: 
Components of the elementary tetrahedron.
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Figure 25: 
FNT and crystal strains in BL condition for a data across the 3 cubic regions (ISC, BOR and 

REM top to bottom) for 1 dataset. Radial (red), circumferential (cyan) and longitudinal 

(green) strains from left to right.
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Figure 26: 
FNT and crystal strains in HO condition for a data across the 3 cubic regions (ISC, BOR and 

REM top to bottom) for 1 dataset. Radial (red), circumferential (cyan) and longitudinal 

(green) strains from left to right.
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Figure 27: 
FNT and crystal strains in HODOB condition for a data across the 3 cubic regions (ISC, 

BOR and REM top to bottom) for 1 dataset. Radial (red), circumferential (cyan) and 

longitudinal (green) strains from left to right.
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Figure 28: 
Peak strain bar graphs (with median and IQR) for radial (top), circumferential (middle) and 

longitudinal (bottom) strains at BL, HO and HODOB - shown across ISC, BOR and REM 

regions for echo and crystal-based strains.
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Figure 29: 
Radial, circumferential and longitudinal strains across 6 sectors along the mid-LV slice. BL, 

HO and HODOB conditions show expected behavior. The sectors are - anterior (Ant), 

antero-lateral (Ant-Lat), infero-lateral (Inf-Lat), inferior (Inf), infero-septal (Inf-Sept) and 

antero-septal (Ant-Sept).

Parajuli et al. Page 52

Med Image Anal. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Parajuli et al. Page 53

Table 1:

Notations

T Number of frames

N(t) Number of points per frame,

   t ∈ [1 : T]

xi
t

ith point of frame t,

   i ∈ [1 : N(t)]

ei j
t

Edge from point i in frame t to point j in frame t +1

   i ∈ [1 : N(t)]

   j ∈ [1: N(t + 1)]

wi j
t

Weight associated with ei j
t

f i j
t

Flow through ei j
t

η(t, i) Indices of points in the neighborhood of xi
t
 in frame t +1
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Table 2:

Parameters that were tuned for the FNT algorithm.

Name Description

NK Number of nearest neighbors (by feature distance) in consideration for next frame.

Zfr Number of slices sampled in the long (z) axis per frame.

θfr Angular sampling along the circumference. (roughly along the short axis.)

Pth Probabilistic threshold for outlier edges removal.
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Table 3:

Result of changing Zfr, θfr and NK on the normal data and median tracking errors (MTE).

Zfr θfr NK Overall/mm ES/mm ED/mm

30 15 3 0.96 ± 0.74 1.13 ± 0.75 1.01 ± 0.82

30 30 3 0.94 ± 0.71 1.25 ± 0.87 0.77 ± 0.56

30 40 3 0.95 ± 0.73 1.30 ± 0.87 0.82 ± 0.53

30 15 5 0.90 ± 0.71 1.09 ± 0.68 0.90 ± 0.79

30 30 5 0.97 ± 0.73 1.24 ± 0.83 0.98 ± 0.77

30 40 5 0.93 ± 0.70 1.20 ± 0.80 0.90 ± 0.65

40 15 3 0.90 ± 0.68 1.17 ± 0.76 0.78 ± 0.66

40 30 3 0.86 ± 0.65 1.09 ± 0.73 0.82 ± 0.58

40 40 3 0.90 ± 0.66 1.21 ± 0.73 0.77 ± 0.53

40 15 5 0.91 ± 0.66 1.11 ± 0.71 0.87 ± 0.64

40 30 5 0.95 ± 0.74 1.24 ± 0.75 0.87 ± 0.75

40 40 5 0.95 ± 0.71 1.16 ± 0.73 0.92 ± 0.79

50 15 3 0.96 ± 0.75 1.15 ± 0.72 1.02 ± 0.84

50 30 3 0.93 ± 0.74 1.21 ± 0.79 0.86 ± 0.78

50 40 3 0.91 ± 0.72 1.09 ± 0.72 0.80 ± 0.72

50 15 5 0.90 ± 0.67 1.13 ± 0.82 0.86 ± 0.59

50 30 5 0.88 ± 0.73 1.31 ± 0.75 0.75 ± 0.67

50 40 5 0.91 ± 0.75 1.34 ± 0.80 0.83 ± 0.66
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Table 4:

Result of changing Zfr, θfr for the special case NK = 1 on the normal data and median tracking errors (MTE).

Zfr θfr NK Overall/mm ES/mm ED/mm

40 10 1 1.21 ± 1.03 1.21 ± 0.99 1.62 ± 1.43

40 15 1 1.11 ± 0.91 1.01 ± 0.94 1.60 ± 1.38

40 30 1 1.08 ± 0.88 0.94 ± 0.76 1.61 ± 1.36

40 40 1 1.06 ± 0.87 0.94 ± 0.83 1.58 ± 1.39

50 10 1 1.05 ± 0.85 1.04 ± 0.97 1.49 ± 1.25

50 15 1 0.94 ± 0.77 0.86 ± 0.70 1.39 ± 1.18

50 30 1 1.00 ± 0.86 0.93 ± 0.78 1.51 ± 1.40

50 40 1 0.97 ± 0.81 0.91 ± 0.73 1.47 ± 1.29

60 10 1 1.09 ± 0.90 1.08 ± 0.97 1.47 ± 1.19

60 15 1 0.96 ± 0.79 0.91 ± 0.84 1.32 ± 1.16

60 30 1 1.03 ± 0.82 0.97 ± 0.88 1.49 ± 1.22

60 40 1 1.03 ± 0.85 0.94 ± 0.85 1.48 ± 1.23
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Table 5:

Outcome of changing Pth on the normal data and MTE.

Pth Overall/mm ES/mm ED/mm

0.1 0.92 ± 0.75 1.27 ± 0.79 0.83 ± 0.55

0.3 0.90 ± 0.70 1.24 ± 0.74 0.80 ± 0.49

0.5 0.87 ± 0.63 1.23 ± 0.74 0.81 ± 0.51
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Table 6:

Result of changing constraints applied to the optimization and MTE.

Constraint configuration Overall/mm ES/mm ED/mm

Cout only 1.22 ± 1.15 1.50 ± 1.19 1.24 ± 1.25

Cout and Cin 1.17 ± 1.04 1.39 ± 1.16 1.19 ± 1.02

Cout and Cbal 1.09 ± 0.92 1.24 ± 0.93 1.23 ± 1.03

Cout, Cbal and Cloop 0.84 ± 0.68 1.13 ± 0.73 0.72 ± 0.56
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Table 7:

Average MTE for different feature generation methods.

Feature Overall/mm ES/mm ED/mm

Shape context (Belongie et al., 2000) 1.19 ± 0.99 1.41 ± 1.15 1.19 ± 0.91

Gradient histograms 1.20 ± 1.03 1.47 ± 1.16 1.18 ± 1.00

Intensity Cross-correlation 0.98 ± 0.81 1.24 ± 0.91 0.86 ± 0.72

Learned feature (Autoencoder) 0.84 ± 0.68 1.13 ± 0.73 0.72 ± 0.56

Med Image Anal. Author manuscript; available in PMC 2020 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Parajuli et al. Page 60

Table 8:

MTE for different tracking methods.

Method Overall/mm ES/mm ED/mm

Shape Context Matching 1.60 ± 1.22 2.03 ± 1.35 1.52 ± 1.01

DST 1.22 ± 1.11 1.54 ± 1.27 1.21 ± 1.12

FFD fr-to-fr 1.30 ± 1.05 1.41 ± 0.94 1.64 ± 1.28

FNT 0.84 ± 0.68 1.13 ± 0.73 0.72 ± 0.56

FFD fr-to-ED 0.83 ± 0.80 1.37 ± 1.08 0.56 ± 0.50
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Table 9:

Median absolute difference of Lagrangian strains: Comparing FNT and ground truth.

Data group Radial (%) Circumferential (%) Longitudinal (%)

Normal 2.19 ± 2.94 1.37 ± 2.02 0.16 ± 0.21

Ischemic 2.39 ± 3.58 1.55 ± 2.24 0.18 ± 0.27

Dilated 6.93 ± 9.69 3.79 ± 6.83 0.65 ± 1.12

Overall 3.42 ± 5.85 2.12 ± 3.43 0.27 ± 0.53
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Table 10:

Median difference in Lagrangian strains: Comparing FNT and ground truth.

Data group Radial (%) Circumferential (%) Longitudinal (%)

Normal 2.13 ± 3.56 0.00 ± 2.75 0.06 ± 0.33

Ischemic 1.99 ± 4.19 0.00 ± 3.10 0.04 ± 0.36

Dilated 5.18 ± 10.79 −1.33 ± 7.69 −0.03 ± 1.29

Overall 2.79 ± 6.13 −0.20 ± 4.54 0.02 ± 0.54
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Table 11:

Median correlations of Lagrangian strains: Comparing FNT and ground truth.

Data group Radial Circumferential Longitudinal

Normal 0.99 ± 0.02 0.96 ± 0.05 0.98 ± 0.04

Ischemic 0.98 ± 0.04 0.96 ± 0.07 0.96 ± 0.15

Dilated 0.87 ± 0.16 0.74 ± 0.35 0.42 ± 0.43

Overall 0.96 ± 0.10 0.93 ± 0.17 0.90 ± 0.56
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Table 12:

Different physiological conditions of imaging (in vivo data).

Condition Description

BL Baseline.

HO High LAD occlusion.

HODOB High LAD occlusion with low dobutamine stress.
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Table 13:

Cubical areas of crystal placement.

Area Description

ISC Ischemic area.

BOR Borderline area between ischemic and remote.

REM Remote area.
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Table 14:

Comparing FNT and FFD strain correlations with sonomicrometric crystal strains (median and IQR) by 

physiological conditions.

Method BL HO HODOB

FNT 0.91 ± 0.19 0.80 ± 0.51 0.85 ± 0.28

FFD 0.90 ± 0.30 0.76 ± 0.37 0.82 ± 0.60
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Table 15:

Comparing FNT and FFD strain correlations with sonomicrometric crystal strains (median and IQR) by cubic 

regions.

Method ISC BOR REM

FNT 0.83 ± 0.38 0.87 ± 0.26 0.86 ± 0.22

FFD 0.84 ± 0.35 0.83 ± 0.33 0.84 ± 0.69
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Table 16:

Comparing FNT and FFD strain correlations with sonomicrometric crystal strains (median and IQR) by strain 

type.

Method Radial Circumferential Longitudinal

FNT 0.93 ± 0.08 0.90 ± 0.14 0.54 ± 0.90

FFD 0.91 ± 0.11 0.88 ± 0.30 0.51 ± 0.77
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Table 17:

Median of peak radial strains for data across BL, HO and HODOB, also broken down by regions - ISC, BOR 

and REM. See figure 28 for pictorial representation.

Method BL (%) HO (%) HODOB (%)

Crys 12.3 ± 9.7 11.6 ± 7.1 30.2 ± 15.0

Echo 13.7 ± 7.3 11.5 ± 4.4 22.0 ± 16.1

ISC BOR REM ISC BOR REM ISC BOR REM

Crys 12.3 11.8 20.6 8.9 11.6 16.2 29.5 23.8 34.6

Echo 16.0 15.7 13.0 12.0 11.3 12.0 22.0 25.0 19.5
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Table 18:

Median of peak circumferential strains for data across BL, HO and HODOB, also broken down by regions - 

ISC, BOR and REM. See figure 28 for pictorial representation.

Method BL (%) HO (%) HODOB (%)

Crys −11.2 ± 2.3 −10.2 ± 7.1 −16.4 ± 3.7

Echo −7.0 ± 2.8 −8.3 ± 3.4 −10.8 ± 3.1

ISC BOR REM ISC BOR REM ISC BOR REM

Crys −12.8 −10.0 −10.7 −12.1 −12.1 −10.4 −19.3 −14.5 −16.4

Echo −7.4 −6.8 −7.0 −8.3 −8.7 −7.4 −10.8 −9.6 −12.1
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Table 19:

Median of peak longitudinal strains for data across BL, HO and HODOB, also broken down by regions - ISC, 

BOR and REM. See figure 28 for pictorial representation.

Method BL (%) HO (%) HODOB (%)

Crys −9.1 ± 2.93 −3.2 ± 2.9 −11.6 ± 6.9

Echo −5.1 ± 3.2 −3.0 ± 5.2 −4.2 ± 3.0

ISC REM BOR ISC REM BOR ISC REM BOR

Crys −8.1 −9.8 −9.4 −2.6 −5.4 −4.9 −11.3 −14.1 −13.3

Echo −5.1 −4.9 −5.7 −3.0 −2.6 −5.8 −3.9 −4.7 −3.3
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Table 20:

Median of peak radial strain percentages using echo across the 6 standard cardiac sectors (at the mid-LV area) 

at BL, HO and HODOB.

Condition Ant Ant-lat Inf-lat Inf Inf-sept Ant-Sept Overall

BL 26.7 15.9 14.3 13.4 18.0 18.7 17.9 ± 12.4

HO 22.7 16.4 11.3 9.8 14.9 21.1 15.4 ± 11.5

HODOB 37.4 17.4 18.6 31.3 34.9 39.4 28.0 ± 25.9
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