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Abstract

In this paper, we present three deformable registration algorithms designed within a paradigm that 

uses 3D statistical shape models to accomplish two tasks simultaneously:

1) register point features from previously unseen data to a statistically derived shape (e.g., mean 

shape), and

2) deform the statistically derived shape to estimate the shape represented by the point features.

This paradigm, called the deformable most-likely-point paradigm, is motivated by the idea that 

generative shape models built from available data can be used to estimate previously unseen data. 

We developed three deformable registration algorithms within this paradigm using statistical shape 

models built from reliably segmented objects with correspondences. Results from several 

experiments show that our algorithms produce accurate registrations and reconstructions in a 

variety of applications with errors up to CT resolution on medical datasets.
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1. Introduction

Ease of access to many digital imaging technologies like cameras that capture images and 

videos, depth cameras and laser rangefinders that can digitize physical objects as 3D objects 

(Koller et al., 2004), trackers that can capture motion, and medical imaging techniques that 

noninvasively image internal anatomy in 2D and 3D, has created a vast repository of 

imaging data. Several techniques have been developed toward solving the problem of 

segmenting objects in different types of images (Ferrante and Paragios, 2017; Zhu et al., 

2016), and establishing correspondences between segmented objects (Van Kaick et al., 

2011). Object segmentations and correspondences enable the computation of object statistics 

via statistical shape models (SSMs) (Cootes et al., 1995). SSMs not only allow us to better 

understand the variation in a given population, but are also useful in several applications like 

improving segmentations (Heimann and Meinzer, 2009) and correspondences (Seshamani et 

al., 2011; Sinha et al., 2017).

Generative shape models further allow new instances of objects to be estimated, making 

them extremely powerful tools in many applications. One area that can benefit tremendously 

from generative models is the field of medicine. As mentioned before, the ease of access to 

medical imaging technologies has created an abundance of medical image data in many 

different modalities, like x-ray scans, computed tomography (CT) scans, magnetic resonance 

(MR) images, etc. This begs the question of whether we can use these existing images to 

build a framework that can estimate the anatomy of new patients.

In this paper, we present a deformable registration paradigm that can register a point cloud to 

a statistically derived target shape while deforming the target shape using statistical modes 

to reflect the shape represented by the point cloud. We build upon the most-likely-point 

paradigm (Billings et al., 2015), and extend this paradigm to include deformations based on 

statistics in the optimization. Our framework enables the development of several deformable 

registration algorithms using different features, noise models, and statistical shape models. 

We present three deformable registration algorithms built upon this paradigm that can be 
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used in several applications including surgical procedures like orthopedic interventions and 

minimally invasive surgeries.

Orthopedic procedures involving the hip or femoral head generally require a full pelvic CT 

scan to be acquired preoperatively, since CT images exhibit high contrast between bone and 

soft tissue. This allows for easy pelvic surface extraction from the preoperative image, which 

can be used for preoperative planning as well as for navigation during surgery. Minimally 

invasive procedures such as functional endoscopic sinus surgery (FESS) also require high 

resolution preoperative CT scans not only because the nasal airway and sinuses are thin and 

complex structures, but also because the bones surrounding the sinuses are extremely thin 

(Berger et al., 2013). For instance, the ethmoid bone is on average less than 1 mm thick and 

also has a pseudo stochastic growth pattern (Kainz and Stammberger, 1989). This makes the 

anatomy too complex to memorize or guess, and can cause difficulty for surgeons to 

maintain orientation during surgery. Since critical structures, like the brain, carotid arteries, 

eyes and optic nerves, lie immediately adjacent to the ethmoid bone (Tao et al., 1999), 

violating them can cause serious injury. These complexities, along with the restricted field of 

view of endoscopes, make imaging and navigation vital tools in minimally invasive 

procedures. These tools allow surgeons to maintain orientation by providing a registered 

reference to preoperative anatomy.

CT image acquisition, however, exposes patients to high doses of ionizing radiation and can 

have adverse effects. Both the pelvic region and the head contain important organs, and 

minimizing radiation exposure to these organs is vital. For patients, especially women, of 

reproductive age, reducing radiation exposure to reproductive organs is an extremely 

important objective (Ogilvy-Stuart and Shalet, 1993). Our aim, therefore, is to reduce or 

eliminate the use of CT images, and instead use SSMs of target anatomical structures along 

with points extracted from these structures intraoperatively using optical trackers, 

endoscopic video, etc. to accurately estimate patient anatomy via deformable registration.

In the following sections, we review the prior work in the field of registration, describe the 

deformable most-likely-point paradigm, and develop three algorithms using PCA based 

SSMs. Finally, we demonstrate the registration and reconstruction accuracy achieved by our 

methods via simulated experiments, and also show preliminary results on in vivo clinical 

data.

2. Previous work

Several point-to-point and point-to-surface registration algorithms have been explored in the 

past. Iterative closest point (ICP) is a standard algorithm that has been used extensively for 

such registrations (Besl and McKay, 1992; Chen and Medioni, 1992). ICP is a two step 

algorithm that iterates between finding the closest point correspondences between point sets 

and finding the rigid registration that best aligns the matched points until convergence (Fig. 

1). ICP is a simple and elegant method, but it suffers from some disadvantages, like 

sensitivity to noise and outliers.
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In order to improve upon these, several variants of ICP (Rusinkiewicz and Levoy, 2001) 

have been presented to handle sparse and noisy point sets with outlier rejection (Chetverikov 

et al., 2002; Phillips et al., 2007; Bouaziz et al., 2013). ICP has also been presented in 

probabilistic frameworks. Rangarajan et al. (1997) compute a probabilistic soft-match 

between each data point in the moving point set and every point in the target set based on 

Mahalanobis distance. EM-ICP computes multiple matches weighted by normalized 

Gaussian weights for each moving point and solves for both matches and transformation 

parameters using expectation maximization (EM). (Granger et al., 2001; Granger and 

Pennec, 2002) Generalized-ICP uses a probabilistic framework to compute the 

transformation that minimizes Euclidian distance between point-to-point correspondences 

computed in the same way as in ICP (Segal et al., 2009). Ideas from several of these 

probabilistic methods were combined in the iterative most likely point algorithm to find a 

single most probable match for each data point and compute the transformation that 

minimizes the Mahalanobis distance between these point-to-point correspondences (Billings 

et al., 2015).

Point-based matching has also been extended to include additional information such as 

orientations associated with the points and surfaces allowing disambiguation between points 

facing opposite directions. Initial methods used orientations to prune invalid point matches 

(Zhang, 1994; Pulli, 1999) before incorporating orientations within the cost function to be 

minimized. Assuming small normal differences, Granger et al. (2001) used the Mahalanobis 

distance between oriented points to formulate a closed form solution for their minimization 

problem. Orientation noise modeled using the analogues of Gaussian distributions on a unit 

sphere have also been incorporated into registration problems (Billings and Taylor, 2014, 

2015). Deformable versions of ICP have also been presented that determine the 

displacement field between correspondences constrained by a stiffness term (Amberg et al., 

2007). Coherent point drift (Myronenko and Song, 2010) solves for a displacement field that 

optimizes soft matches in an EM-ICP setting. Hufnagel et al. (2009) incorporated SSMs in 

an EM-ICP approach that alternates between optimizing transformation parameters and 

deformation parameters.

We present algorithms that extend the ideas of Hufnagel et al. (2009) by building upon the 

most-likely-point paradigm presented in Billings et al. (2015) to register data points to a 

model shape. Registration algorithms within the most-likely-point paradigm also iterate 

between finding correspondences between point sets and finding the rigid alignment 

between the correspondences, except that the correspondences are probabilistically most 
likely matches (Billings et al., 2015), not closest point matches as in ICP, computed using a 

maximum likelihood setup. We extend this paradigm by incorporating information about the 

probability that the model shape will deform by a particular amount. Therefore, we find, for 

each sample point, the most likely match on a shape that is also being deformed to fit the 

sample points. The information about how a shape will deform is obtained from SSMs, as in 

Hufnagel et al. (2009), that can be built for a particular structure or region of interest (ROI) 

using a set of homologous shapes representing this structure or ROI (Chintalapani et al., 

2007).
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Our shape models are built using principal component analysis (PCA) on a set of shapes 

obtained by deformably registering (Avants et al., 2011) ns patient head CTs to a template 

CT (Avants et al., 2010), and using the resulting deformation fields to deform a mesh in 

template space to the respective patient CTs (Sinha et al., 2016). Each of these shapes then 

has nv corresponding vertices, and can be zero-centered to compute the mean shape:

V = 1
ns j = 1

ns
Vj,

where Vj denotes the stacked vector of vertices, V = [v1v2 … vnv
]T, for the jth mesh. The 

principal modes of variation, m, and the mode weights, λ, which represent the amount of 

shape variation along the corresponding m, are computed by performing an eigen 

decomposition of the shape covariance matrix, ΣSSM:

ΣSSM = 1
ns j = 1

ns
(V j − V)(V j − V)T

= [m1 … mns
]

λ1
⋱

λns

[m1…mns
]T .

The mean shape and the modes of variation define an SSM. Since this is a generative model, 

any homologous shape V* can be estimated as

V* = V +
j = 1

nm
b jmj, (1)

where nm < ns is a user selected number of modes, and bj are the mode weights or shape 

parameters that define how much V* varies from the mean shape along each mode. These 

can be computed by projecting the mean subtracted V* onto the modes:

b j = m j
T(V* − V) .

In order to convert the shape parameters to units of standard deviation (SD) relative to the 

SSM covariance, we can rewrite Eq. 1 as

V* = V +
j = 1

nm
s jwj, (2)
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where w j = λ jm j are the weighted modes of variation, and sj are the shape parameters in 

units of standard deviation. These can be obtained by projecting the mean subtracted V* 

onto the modes and dividing by the standard deviation.

We extend the most-likely-point paradigm to incorporate SSMs and estimate the patient 

shape by transforming three rigid registration algorithms to deformable registration 

algorithms. We briefly introduce these three rigid algorithms here for ease of reference and 

to establish notation.

The first, iterative most likely point (IMLP) algorithm, incorporates a generalized Gaussian 

noise model that accounts for anisotropic positional noise (Billings et al., 2015). Assuming 

measurement errors to be independent, zero-mean, multivariate Gaussian with anisotropic 

covariance, the match likelihood function for each data point, x, transformed by a current 

rigid registration estimate, [R, t], is defined as

f match(x; y, Σx, Σy, R, t) =

1
(2π)3 Σ

⋅ e
− 1

2(y − Rx − t)TΣ−1(y − Rx − t)
,

(3)

where Σ = RΣxRT + Σy, and Σx and Σy are measurement error covariances for data points, x 

ϵ X, and corresponding points, y, on the model shape, Ψ, respectively (Billings et al., 2015).

The second algorithm is the iterative most likely oriented point (IMLOP) algorithm which, 

in addition to a generalized Gaussian noise model that accounts for anisotropic positional 

measurement errors, also incorporates an isotropic Fischer noise model to account for 

orientation measurement errors (Billings and Taylor, 2014), since the Fischer distribution is 

the analog of the Gaussian distribution on a unit sphere (Mardia and Jupp, 2008). For 

simplicity, we introduce u = yp – Rxp – t, where x = (xp, xn) is an oriented data point with 

position component xp and orientation component xn, and y = (yp, yn) is the oriented point 

on the model shape,Ψ, that is assumed to be in correspondence with x. Assuming both 

position and orientation errors are zero-mean, independent and identically distributed, the 

match likelihood function for each oriented data point, x, transformed by a current rigid 

registration estimate, [R, t], is defined as

f match(x; y, Σx, Σy, κ, R, t) =

1
(2π)3 Σ ⋅ 2π(eκ − e−κ)

⋅ e
κynRxn − 1

2uTΣ−1u
,

(4)
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where κ is the concentration parameter of the orientation noise model. The oriented model 

point, y ϵ Ψ, is also a parameter of the joint distribution from which the orientation noise is 

drawn, where yn is the central direction and yp is the mean position.

The final algorithm is the generalized iterative most likely oriented point (G-IMLOP) 

algorithm, which incorporates both an anisotropic Gaussian noise model and an anisotropic 

Kent noise model to account for measurement errors in position and orientation, respectively 

(Billings and Taylor, 2015). The anisotropic Kent distribution is the analog of the anisotropic 

Gaussian distribution on a unit sphere (Mardia and Jupp, 2008). Again, we introduce 

α = κynRxn and ϵ = 1
2uTΣ−1u, for simplicity, along with some new parameters. The 

ellipticity pa rameter, β, controls the amount of anisotropy in the orientation noise model. 

The larger the value of β, the greater the anisotropy, while β = 0 reduces the orientation 

noise model to an isotropic Fisher model as formulated in Eq. 4. Major and minor axes, γ1
and γ2, define the directions of the elliptical level sets of the Kent distribution on the unit 

sphere. The major and minor axes and the central direction, yn, are all orthogonal to each 

other.

With these terms defined, again assuming both position and orientation errors are zero-

mean, independent and identically distributed, the match likelihood function for each 

oriented data point x, transformed by a current registration estimate, [R, t], is defined as

f match(x; y, Σx, Σy, κ, β, γ1, γ2, R, t) =

1
(2π)3 Σ ⋅ c(κ, β)

⋅ e
α + β γ1

TRxn
2 − γ2

TRxn
2 − ϵ

,

(5)

where 0 ≤ 2β < κ and c(κ, β) is the normalizing constant of the Kent distribution consisting 

of complex modified Bessel functions (Mardia and Jupp, 2008).

3. Material and methods

3.1. The deformable most-likely-point paradigm

We extend the aforementioned rigid registration formulations (Sec. 2) to include a 

probabilistic model for shape likelihood and present deformable registration algorithms 

based on the most-likely-point paradigm (Billings et al., 2015). Assuming independence 

between the matches found between data points and model shape and the deformation of the 

model shape, we can formulate the following deformable match likelihood function 
(Billings, 2015):

f match deformable(x, y; θ, s, V, W)
= f match(x; Tssm(y), θ) ⋅ f shape(Tssm(y); s),
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where fmatch can be any point to point or point to shape match likelihood function, such as 

those defined in Eqs. 3, 4, and 5, with θ representing the distribution parameters of the 

match likelihood function. The definition of fshape depends on the type of model used to 

compute the shape statistics. For PCA-based SSMs, fshape depends on the shape parameters, 

s, defined in Eq. 2:

f shape(V; s) =
i = 1

nv
f vertex(vi; s),

where f vertex(v; s) =
j = 1

nm 1
(2π)3/2 ⋅ e

s j 2
2

2 .

Similarly, the definition of Tssm(y) also depends on the type of statistical model being used. 

Our statistical models are computed on shapes represented by triangular meshes. Since we 

compute point-to-triangle matches between each x and Ψ during the correspondence phase, 

we know that each matched point, y, on ψ resides within the convex hull of the triangle face 

it is matched to. Therefore, it can be represented as the weighted sum of the triangle vertices,

y =
j = 1

3
μ( j)v( j) subject to

j = 1

3
μ( j) = 1 .

Every time the model shape is deformed using the current shape parameters during 

optimization, the deformed matched point can be estimated using these vertex weights, µ(j), 

along with the current vertex locations:

Tssm(yi) =
j = 1

3
μi

( j)Tssm(vi
( j)) . (6)

How the vertices are deformed is dependent on the shape model being used to estimate the 

deformation. Using a generative PCA model, the deformed vertex positions are computed as 

Tssm(vi) = vi + ∑ j = 1
nm s jw j

(i), where w j
(i) is the component of the weighted mode, 

w j = [w j
(1) … w j

(nv)
]
T

, that corresponds to the ith vertex, vi.

3.1.1. Correspondence Phase—The matched points are computed during the 

correspondence phase of our deformable registration algorithms. The deformable version of 

the correspondence phase is similar to the correspondence phase in the corresponding rigid 

registration algorithms. The rigid algorithms use principal direction (PD) trees (Billings et 

al., 2015) to efficiently search for the most likely match, and the PD-tree search techniques 

remain the same for the deformable algorithms. However, since the positions of the vertices 

that define the model shape change at every iteration, the PD-tree also must be updated at 

every iteration.
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Since the topology of the model shape does not change with deformation, the PD-tree does 

not need to be reconstructed at every iteration. Instead, only the positions of the vertices 

representing the model shape within the PD-tree need to be updated as the model shape 

changes based on the current model-shape parameters, s, as well as the oriented bounding 

boxes that bound these vertices within each PD-tree node.

3.1.2. Registration Phase—Once matched points are found, a transformation to align 

corresponding points can be computed during the registration phase by maximizing the total 
deformable mat-ch likelihood function over all corresponding points with respect to both the 

data transformation parameters and the deformable shape parameters:

f match deformable(X, Y; θ, s, V, W)

=
i = 1

ndata
f match(xi; Tssm(yi), θi) ⋅ f shape(Tssm(Y); s)

(7)

Maximizing the total deformable match likelihood function (Eq. 7) is equivalent to 

minimizing its negative log, or the total deformable match error function:

Ematch deformable(X, Y; θ, s)

=
i = 1

ndata
Ematch(T(xi); Tssm(yi), θi, s) + 1

2 j = 1

nm
s j 2

2,

(8)

where Ematch( ) is the negative log likelihood of the corresponding match likelihood 

function, such as those defined in Eqs. 3, 4, and 5, and T(xi) is the standard transformation 

applied to the data points, again as defined in Eqs. 3, 4, and 5. Tssm(yi) is the SSM-based 

deformable transformation applied to the matched point, yi, as defined in Eq. 6, and si are 

the deformable shape parameters. For PCA-based SSMs, we assume that the data has a 

Gaussian distribution, and therefore, the shape parameters, s, for each mode may be 

constrained between ±3 SDs from the mean shape since this interval covers 99.7% of 

variations. In our implementation, s is initialized to 0, meaning the registration starts with 

the mean shape. However, s may be initialized differently.

3.2. Deformable iterative most likely point (D-IMLP) algorithm

The match likelihood function for IMLP (Eq. 3) yields a match error function of

EIMLP(x, y, Σx, Σy, R, t) = log Σ
+ (y − Rx − t)TΣ−1(y − Rx − t),

(9)
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which, after dropping the constant terms, leads to the simplified registration cost function of

T = argmin
[R, t] i = 1

ndata
(yi − Rxi − t)TΣi

−1(yi − Rxi − t),

where Σi = RΣxiR
T + Σyi

 (Billings et al., 2015). Substituting EIMLP from Eq. 9 into the 

Ematch term (Eq. 8) to derive the deformable registration cost function for the deformable 

iterative most likely point (D-IMLP) algorithm (Fig. 2) results in

T = argmin
[R, t], s

1
2 i = 1

ndata
(Tssm(yi) − Rxi − t)T

(RΣxiRT)−1(Tssm(yi) − Rxi − t)

+ 1
2 j = 1

nm
s j 2

2 ,

(10)

where a factor of 1
2 , which was excluded from EIMLP (Eq. 9) for simplification, has been 

added back, and the shape covariances, Σyi
, are all assumed to be zero since our focus during 

optimization. This extends the work of Hufnagel et al. (2009) by allowing for more general 

(or unconstrained) noise models to be associated with point features and simultaneously 

solving for both shape and transformation parameters based on point-to-point 

correspondences.

Eq. 10 can be optimized by computing the gradient with respect to the optimization 

parameters, and applying a nonlinear quasi-Newton based optimizer. In order to apply the 

quasi-Newton solver to minimize Eq. 10, the variables being optimized need to be 

reparametrized to enforce the algebraic constraints of the rotation matrix, that is, RTR = I 
and det(R) = 1. This is accomplished by using Rodrigues’ parametrization, which represents 

a rotation as a 3-vector, r = [rx, ry, rz], whose direction and magnitude signify the axis and 

angular extent of rotation, respectively.

We also re-express the transformation T(xi) in the reference frame of Y as T(yi) in order to 

keep all transformation in the same space. The deformable registration cost function can 

then be re-written as

T = argmin
[r, t], s i = 1

ndata
Cmatchi + Cshape , (11)
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where

Cmatchi = zi
TΣxi

−1zi and Cshape = sTs,

zi = R(r)T(Tssm(yi) − R(r)xi − t)
= R(r)T(Tssm(yi) − t) − xi .

(12)

R(r) is the 3×3 rotation matrix corresponding to the Rodrigues’ vector, r, and is defined as

R(r) = I + sin(θ) skew(α)+(1‐cos(θ)) skew(α)2,

where θ = r 2 is the magnitude of r, representing the angle of rotation, α = r

r
 is the unit 

vector in the direction of r, representing the axis of rotation, and skew(α) is the skew 

symmetric matrix formed using the elements of α.

If the match likelihood function for IMLP was defined for each data point, x, transformed by 

a similarity transformation estimate, [a, R, t], instead of a rigid registration estimate, then 

the match likelihood function can be defined similarly as before:

f match(x; y, Σx, Σy, a, R, t) =

1
(2π)3 Σ

⋅ e
− 1

2(y − aRx − t)TΣ−1(y − aRx − t)
,

where a is the scale factor. This term is very similar to Eq. 3, and produces an slightly 

modified deformable registration cost function for D-IMLP compared to Eq. 10, with an 

extra optimization term, a, for scale:

T = argmin
[a, R, t], s

1
2 i = 1

ndata
(Tssm(yi) − aRxi − t)T

(RΣxiR
T)−1(Tssm(yi) − aRxi − t)

+ 1
2 j = 1

nm
s j 2

2 ,

which can be re-written similarly to Eq. 11,
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T = argmin
[a, r, t], s i = 1

ndata
Cmatchi + Cshape ,

with a slight modification in the Cmatchi term in Eq. 12, so that

zi = R(r)T(Tssm(yi) − t) − axi . (13)

3.3. Deformable iterative most likely oriented point (D-IMLOP) algorithm

The registration cost function for IMLOP can be derived as

T = argmin
[R, t] i = 1

ndata
(ypi

− Rxpi
− t)T

Σi
−1(ypi

− Rxpi
− t) − κ

i = 1

ndata
yni

T Rxni
,

which is similar to the registration cost function for IMLP, with an additional term for 

orientation (Billings and Taylor, 2015). This allows us to derive the deformable registration 

cost function for the deformable iterative most likely oriented point (D-IMLOP) algorithm 

(Fig. 3, left):

T = argmin
[R, t], s

1
2 i = 1

ndata
(Tssm(yi) − Rxi − t)T

(RΣxiRT)−1(Tssm(yi) − Rxi − t)

+ κ
i = 1

ndata
(1 − yni

T Rxni
) + 1

2 j = 1

nm
s j 2

2 ,

(14)

which can be optimized in a similar way as Eq. 10. Using similar reparameterizations, Eq. 

14 can be rewritten as

T = argmin
[r, t], s i = 1

ndata
(Cpi + Cni) + Cshape , (15)

where Cpi is defined as Cmatchi in Eq. 12, and
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Cni = κ(1 − yni
T Rxni

) . (16)

The remaining terms are identical to those in Eq. 12.

Again, if a similarity transform was being solved for in the formulation for IMLOP, then the 

deformable registration cost function for D-IMLOP would change slightly to

T = argmin
[a, R, t], s

1
2 i = 1

ndata
(Tssm(yi) − aRxi − t)T

(RΣxiRT)−1(Tssm(yi) − aRxi − t)

+ κ
i = 1

ndata
(1 − yni

T Rxni
) + 1

2 j = 1

nm
s j 2

2 ,

(17)

which can be rewritten as

T = argmin
[a, r, t], s i = 1

ndata
(Cpi + Cni) + Cshape ,

where Cpi is modified in the same way as Cmatchi in Eq. 13, Cni is defined the same way as 

in Eq. 16, and any other terms are identical to those in Eq. 12.

3.4. Generalized deformable iterative most likely oriented point (GD-IMLOP) algorithm

As before, the registration cost function for G-IMLOP is

T = argmin
[R, t] i = 1

ndata
(ypi

− Rxpi
− t)TΣi

−1(ypi
− Rxpi

− t)

−
i = 1

ndata
(βi γ1i

TRxni
2 − γ2i

TRxni
2

+κyni
T Rxni

,

which is similar to that of IMLOP, with the addition of a term to control the ellipticity of the 

Kent distribution. This produces the following deformable registration cost function for the 

generalized deformable iterative most likely oriented point (GD-IMLOP) algorithm (Fig. 3, 

right):
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T = argmin
[R, t], s

1
2 i = 1

ndata
(Tssm(yi) − Rxi − t)T

(RΣxiRT)−1(Tssm(yi) − Rxi − t)

−
i = 1

ndata
βi γ1i

TRxni
2 − γ2i

TRxni
2

+
i = 1

ndata
κi(1 − yni

T Rxni
) + 1

2 j = 1

nm
s j 2

2 ,

(18)

which can also be optimized as before. Using similar reparameterizations as before, Eq. 18 

can be rewritten in the form of Eq. 15, with all terms remaining unchanged except Cni, 

which is now defined as:

Cni = κ(1 − yni
T Rxni

)

− βi γ1i
TRxni

2 − γ2i
TRxni

2 .

(19)

Again, if the match likelihood function for GD-IMLOP was defined for a similarity 

transform, then the deformable registration cost function for GD-IMLOP would also change 

the same way as that for D-IMLOP (Eq. 17), modifying the Rxi terms to aRxi to reflect the 

similarity transform applied to x. This new cost function can also be rewritten in the form of 

Eq. 15, with Cpi modified in the same way as Cmatchi in Eq. 13, Cni defined as in Eq. 19, and 

any other terms identical to those in Eq. 12.

4. Experiments and results

In order to evaluate the robustness of our algorithms, we ran several different experiments. 

These experiments are performed using different datasets:

1. 53 mesh sinus dataset extracted from 1mm3 head CTs (Beichel et al., 2015; 

Bosch et al., 2015; Clark et al., 2013; Fedorov et al., 2016)

2. 42 mesh pelvis dataset extracted from 1.5 × 1.5 × 1.5 mm3 CTs (Grupp et al., 

2016)

3. in vivo nasal endoscopy data

4. 385 mesh human face dataset (Zhang et al., 2004)

Results from experiments studying the effects of varying sample size, noise models and 

outliers, and additional scale parameter are presented in Appendix A while some of the key 

results from leave-out and clinical experiments are presented here.
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For experiments where ground truth is available, registration results are evaluated based on 

how well the transformation and shape parameters are recovered. Errors in rotation and 

translation are evaluated by comparing the initial offset applied to the final transformation 

produced. The errors in shape parameter recovery can be measured by computing the 

difference between the known shape parameters and those estimated by our algorithms, or 

by computing the Hausdorff distance between the target shape (from which points were 

sampled) and the shape recovered by our algorithms (Fig. 4, left). We call this the total shape 

error (tSE). We also report the total registration error (tRE)1 by computing the Hausdorff 

distance between the target shape (from which sample points are generated) and the shape 

recovered by our algorithms transformed into sample point space (Fig. 4, right).

4.1. Leave-one-out experiment

The leave-one-out experiment was designed by building ns SSMs in a ns mesh dataset, with 

a different shape in the dataset left out for each SSM construction. This results in 53 

different SSMs for the sinus dataset. The left out shape is then estimated in two ways:

1. by projecting the left out shape onto the SSM to obtain mode weights, and using 

different numbers of modes along with the mode weights in Eq. 1, and

2. by using our algorithms with different numbers of modes.

We estimated the left out shapes from the sinus dataset using 11 different numbers of modes, 

starting at 0 and increasing at increments of 5 upto 50 modes, producing a total of 1749 

registrations. At 0 modes, the algorithms used are the corresponding non-deformable 

algorithms. This experiment allows us to evaluate how well our algorithms perform, given 

shapes not seen before by the shape model. We can compare the errors produced by our 

algorithms in estimating the left out shape to ground truth since we know what the left out 

shape looks like and also to the errors produced by the SSM estimate of the left out shape. 

The SSM estimate of the left out shape represents the upper bound for how well our 

algorithms can perform. This experiment allows us to relate the errors produced by our 

algorithms to how representative the SSM used was of the shape being estimated.

1000 sample points were generated for each experiment by uniformly sampling from the left 

out shape (Fig. 5). An isotropic positional noise model with a SD of 1 mm in each direction 

in plane and 1 mm out of plane (1 × 1 × 1 mm3) was used, since the CT volumes used to 

segment the sinus structures had a resolution of 1 × 1 × 1 mm3. An angular noise model with 

an SD of 20° and an eccentricity factor, e, of 0.5 was used. The anisotropy of the angular 

noise model is defined using e, which takes values within [0, 1). The ellipticity parameter, β 
(Eqs. 5, 18), can then be defined using e as β = e κ

2 . The algorithms assume the same noise 

model as was used to generate the sample points.

4.1.1. Experiment 1: Middle turbinates—In this experiment, the middle turbinate 

models from the sinus dataset were used to generate sample points. The left out middle 

turbinates recovered using our algorithms were comparable to both the left-out shapes and 

1please note that our total registration error (tRE) is different from target registration error (TRE) coined by Maurer et al. (1993)
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the estimates produced by the SSM (Fig. 6, top). Of the 1749 runs, 57.06% of the D-IMLP 

runs recovered the left out mesh with mean tRE less than 1 mm compared to 67.92% of D-

IMLOP runs and 90.51% of GD-IMLOP runs. The mean tRE produced by D-IMLP over all 

runs was 1.30 (± 0.94) mm, while that produced by D-IMLOP was 0.94 (± 0.56) mm (p < 
0.0012 compared to D-IMLP). GD-IMLOP produced a mean tRE of 0.65 (± 0.31) mm (p < 
0.001 compared to both D-IMLP and D-IMLOP).

As the number of shape parameters increased, the performance of D-IMLP deteriorated 

quickly since position information from the sample points becomes insufficient information 

as the number of parameters to optimize over increases (Fig. 6). With added normal 

information, the performance improved, although D-IMLOP showed a similar but less 

drastic trend as D-IMLP in recovering the transformation (Fig. 6). Since the noise model 

assumed by D-IMLOP does not as accurately describe the noise in the sample points, errors 

can be introduced in correspondences, especially in the depth direction since the middle 

turbinate is a long structure extending in the depth direction. GD-IMLOP, however, either 

showed improvement or was able to maintain performance with increasing number of shape 

parameters (Fig. 6), showing the effectiveness of adding additional information in the form 

of normals and making appropriate assumptions about noise in the data. Further, small 

translations and rotations can produce an effect of canceling each other out producing 

submillimeter tREs despite translation and rotation errors of 1 mm and 1°, respectively. 

Shape parameters can also drive down tREs despite misalignments in translation and 

rotation.

We also computed registrations for this dataset using deformable coherent point drift (CPD), 

a standard deformable registration algorithm (Myronenko and Song, 2010). Since 

deformable CPD produces a deformation field that moves the vertices from the mean shape 

towards to the sample points to fit the samples, and does not produce a transformation 

matrix, we cannot compute a tRE. However, since we know the original offset 

transformation applied to the sample points, we can transform the final mesh produced by 

the algorithm by the inverse of the original transformation and compute the tSE. In order to 

produce a transformation matrix, rigid or affine CPD can be performed first, followed by 

deformable CPD. However, this is not as time efficient.

Note that since CPD does not use different number of modes to compute its registration, we 

show the results from CPD as a baseline in Fig. 6 (top-right). Although, deformable CPD 

outperforms D-IMLP and D-IMLOP, and performs comparably to GD-IMLOP using more 

than 20 modes, CPD is considerably slower than our algorithms. The average time taken to 

perform the CPD registrations was 40.55s, compared to 28.89s required by GD-IMLOP 

using 50 modes, which is slower than runs using fewer modes (Fig. 7). D-IMLOP and D-

IMLP took 8.96s and 47.69s, respectively, when using 50 modes. Further, the error metrics 

produced by our algorithms show correlation with the tRE (Fig. 8, top and bottom-left), 

allowing our methods to assign confidence to the registration produced (Sinha et al., 2018). 

However, the error produced by CPD does not show correlation with the tSE (Fig. 8, bottom-

2all statistical significance figures reported in this paper are evaluated using the paired-sample Student’s t-test
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right). This error, therefore, cannot be used to assign confidence to or detect the success or 

failure of the registration produced.

4.1.2. Experiment 2: Right nasal airway—Since both turbinates would generally not 

be visible at the same time during an endoscopic procedure, we used the right nasal airway 

models to generate sample points in this experiment. The left-out right nasal cavity meshes 

recovered using our algorithms were again comparable to the estimates produced by the 

SSM, with GD-IMLOP producing mean tSE errors almost equal to those produced by the 

SSM up to about 30 modes (Fig. 9, top). Of the 1749 runs, 61.01% of the D-IMLP runs 

recovered the left out mesh with mean tRE less than 1 mm compared to 86.16% and 98.51% 

of D-IMLOP and GD-IMLOP runs, respectively. The mean tREs produced by D-IMLP, D-

IMLOP, and GD-IMLOP over all runs were 1.15 (± 0.63) mm,0.76 (± 0.40) mm (p < 0.001 

compared to D-IMLP), and 0.60 (± 0.16) mm (p < 0.001 compared to both D-IMLP and D-

IMLOP), respectively. As in the previous experiment, the performance of D-IMLP 

deteriorated quickly as the number of shape parameters increased. With added orientation, 

D-IMLOP either maintained performance or deteriorated slowly with increasing number of 

shape parameters, while GD-IMLOP either showed improvement or was able to maintain 

performance (Fig. 9). As before, these improvements can be attributed to increasing the 

amount of information available by adding orientations and making appropriate noise 

assumptions in the presence of increased number of parameters to estimate.

We were not able to compare results from this experiment to CPD because our machine was 

unable to handle the memory overhead of CPD with larger meshes. CPD computes a nv × nv 

matrix, where nv is the number of vertices in the deformable mesh. This results in extremely 

large memory requirements even for medium sized meshes, a drawback that our methods do 

not suffer from.

4.2. Partial data experiment

This experiment is set up similarly to the leave-one-out experiments, but in order to simulate 

more realistic scenarios, we used the pelvis and right nasal cavity SSMs to generate point 

samples from part of the left out shape, rather than uniformly from the entire mesh, for each 

registration (Fig 10). The part of the meshes that points are generated from depends on the 

procedure being simulated. We design two experiments simulating two different procedures. 

For both experiments, 2000 points are sampled from the candidate regions of the meshes 

with appropriate noise added to the sampled points.

Although we do not have results from CPD due to computational limitations of CPD with 

relatively large meshes, we can assume that it would not perform as well in recovering the 

shape because CPD only deforms the parts of the mesh that sample points are matched to 

and not the overall mesh.

4.2.1. Experiment 1: Pelvis—Using the pelvis dataset, we simulate a situation in which 

only a partial CT scan of the pelvis is obtained to prevent radiation exposure to reproductive 

organs. Points are sampled only from this partial scan containing the ilium and the ischium 

(Fig 10, left), and anisotropic noise with SDs of 1 × 1 × 2 mm3 and 10° (e = 0.5) is added to 

position and orientation data, respectively. An instance of the pelvis is estimated by our 
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algorithms using these sampled points and a generous noise assumption with SDs of 2 × 2 × 

3 mm3 and 30° (e = 0.5) for position and orientation data, respectively. Our algorithms 

adjust these noise assumptions based on inlying matches found in each iteration (Billings et 

al., 2015). Noise assumptions are also restricted from becoming too large in the case of 

partial data availability to avoid instabilities (Billings et al., 2015).

Results show a big improvement in both transformation parameters and tSE going from 0 to 

10 modes (Fig. 11). However, with over 10 modes, the improvement in transformation 

parameters stabilizes, and only a gradual improvement in tSE is observed, although the trend 

followed by the tSE is similar to that followed by the error between the left out shape and 

the SSM instance of the left out shape (Fig. 11, top-right). The resulting tRE falls below 2 

mm, the desired accuracy for pelvis registrations, with only 10 modes (Fig. 11, top-left). The 

mean tREs produced by D-IMLP, D-IMLOP, and GD-IMLOP over all runs were 2.10 

(± 0.54) mm, 1.96 (± 0.51) mm (p < 0.001 compared to D-IMLP), and 1.96 (± 0.56) mm (p 
< 0.001 compared to D-IMLP), respectively. The improvement in these errors is also 

reflected in the residual errors produced by our algorithms (Fig. 13, left).

4.2.2. Experiment 2: Right nasal airway—Using the right nasal cavity models, we 

simulate points that would be generated from nasal endoscopy. Points are sampled only from 

parts of the nasal cavity that would be visible to the endoscope when inserted into the nose 

(Fig 10, right) and anisotropic noise with SDs of 0.5 × 0.5 × 1 mm3 and 10° (e = 0.5) is 

added to position and orientation data, respectively, since this produced point clouds that 

resembled reconstructions obtained from in vivo data using the method described in the 

following section (Sec. 4.3). Positional noise in the generated samples has a larger standard 

deviation in the z-direction because depth is harder to estimate from video. The left out nasal 

cavity is then estimated using these sampled points and a noise model assumption with SDs 

of 1 × 1 × 2 mm3 and 30° (e = 0.5) for position and orientation data, respectively.

This experiment yielded slightly different results due to the increased complexity of this 

data. Although the rotation errors either remained stable or showed improvement with 

increasing number of modes, rotation errors remained stable or degraded, as in the case of 

D-IMLOP (Fig. 12, bottom). The tSE only showed steady improvement in the case of GD-

IMLOP (Fig. 12, top-right). However, the mean tSE for all algorithms remained below 1 

mm. Combined, only GD-IMLOP showed improved tREs as the number of modes increased 

and consistently produced errors below 1 mm (Fig. 12, top-left). Mean tREs produced by D-

IMLP, D-IMLOP, and GD-IMLOP over all runs were 1.29 (± 0.31) mm, 1.00 (± 0.25) mm 

(p < 0.001 compared to D-IMLP), and 0.80 (± 0.18) mm (p < 0.001 compared to both D-

IMLP and D-IMLOP), respectively. Improvement in errors produced by GD-IMLOP is 

reflected in the residual errors produced by the algorithm (Fig. 13, right).

4.3. Clinical data experiment

An anonymized in vivo clinical dataset consisting of endoscopic video of the nasal cavity 

and EM-tracking information was obtained from several patients who were examined at the 

Johns Hopkins Outpatient Center. Permission to collect this dataset, given patient consent, 
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was approved by the Johns Hopkins internal review board (IRB) under application number 

NA 00074677.

A modified version of the learning-based photometric reconstruction technique developed by 

Reiter et al. (2016) was used to reconstruct structures from endoscopic video collected from 

patients who volunteered to enroll in our study. Structure from motion (SfM) points obtained 

from video sequences (Leonard et al., 2016, 2018) were used to train a self-supervised deep 

neural network that enforces depth consistency between frames using relative pose 

information from SfM (Liu et al., 2018). This network was then used to predict the depth 

associated with each pixel in a single video frame. This method computes highly dense 

reconstructions of structures visible in the frame. 2000 points each were sampled from 

reconstructions from two different frames. These samples were manually initialized in the 

mean left nasal cavity mesh, and registered using our algorithms with 10 modes restricted 

within ±1 SD. The scale estimation was restricted within [0.7, 1.3], and anisotropic noise 

models with SDs of 1 × 1 × 2 mm3 and 40° (e = 0.5) were assumed for position and 

orientation, respectively.

For the first set, D-IMLP failed to produce a meaningful registration due to lack of sufficient 

information since it does not use orientation information (Fig 14, top-left), and D-IMLOP 

failed due to incorrect angular noise assumptions (Fig 14, top-middle). GD-IMLOP, 

however, was able to produce submillimeter residual error of 0.92 (±1.44) mm (Fig 14, top-

right). We also compute the tSE between shapes computed by our algorithms and the patient 

shape automatically segmented as described before in Sec. 2. GD-IMLOP was able to 

estimate the patient shape with a mean tSE of 0.98 (±0.8) mm.

Using the second set of samples, GD-IMLOP converged with a residual error of 0.77(±1.18) 

mm (Fig 14, bottom-right), and D-IMLOP and D-IMLP also produced submillimeter 

residual errors of 0.6 (±0.98) mm and 0.5 (±0.82) mm, respectively (Fig 14, bottom-left and 

bottom-middle). All three algorithms also recover the patient shape successfully with tSEs 

of 0.95 (±0.88) mm, 0.95 (±0.83) mm, and 0.96 (±0.83) mm for GD-IMLOP, D-IMLOP, and 

D-IMLP, respectively.

5. Discussion

In summary, our experiments show that our algorithms exhibit improved performance with 

increasing number of modes, and GD-IMLOP outperforms both D-IMLOP and D-IMLP. 

This is expected since GD-IMLOP is the most generalized of the algorithms presented and, 

therefore, is able to best model the noise in the data used for our experiments. The leave-out 

analysis shows that GD-IMLOP can match the SSM instance of the left-out shape for some 

number of modes. However, GD-IMLOP is slower than D-IMLOP since it solves a more 

complex objective function. This trade-off between runtime and accuracy is important to 

keep in mind for difference applications. GD-IMLOP was able to maintain performance in 

increasingly difficult setting such as partial data and unknown noise. Finally, our clinical 

evaluations also result in submillimeter mean residual errors and tSEs.
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6. Conclusions and future work

In this paper, we have presented a deformable registration paradigm that can be used to build 

several different types of registration algorithms that simultaneously solve for both 

transformation and shape parameters. We demonstrate this with three algorithms that use 

different types of features and noise models. Additional algorithms can be developed under 

this paradigm using different or additional features (e.g., occluding contours or non-

geometric features like RGB values associated with points), assuming different noise models 

that better explain certain types of data (e.g., Poisson distribution), or utilizing different 

types of generative SSMs (e.g., those that do not assume Gaussian distribution in the data or 

that the data lie in a single subspace).

Our algorithms are validated through several different experiments that show that our 

methods, especially those that use orientation information in addition to position, can 

estimate transformation and shape parameters with high accuracy. This result is further 

strengthened by the promising performance of our algorithms in preliminary experiments 

with in vivo nasal endoscopy data. Our algorithms also provide an added advantage in that 

the error metrics produced by them correlate with tRE, allowing our algorithms to assign 

confidence to the registrations produced based on the residual errors produced by them.

In the future, we hope to build more extensive shape models of anatomy using many more 

CT images (on the order of thousands) to better explain the variation in different anatomical 

structures, and also to conduct more clinical experiments with reconstructions from multiple 

video frames and spanning a larger extent of the nasal passage. This will allow us to better 

establish how well we are able to infer anatomical structures that we do not see in video or 

have samples from. We also hope to explore other statistical shape models that can better 

explain the variation in more complex regions of the sinuses like the ethmoid cells which 

have a honeycomb-like structure. Additionally, we plan to incorporate more features, like 

occluding contours (Billings et al., 2016), into our framework to further strengthen the 

application of these methods in the medical field.

SSMs can also be used in applications outside the medical field. Initial exploration in 

learning the range of human facial expression has shown promising results (Sec. Appendix 

A.5). While facial expressions may be hard to visualize when represented as point clouds, 

we expect that with enough shapes and the right SSM, we can infer emotion by registering a 

statistically derived shape to the point cloud and reconstructing the expression being 

rendered. We also hope to build models better suited to explain complex data like pose 

variation, and incorporate these models, in addition to PCA models, into our framework to 

enable tasks like pose classification. Our code is available at https://github.com/

AyushiSinha/cisstICP.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A.: Additional experiments and results

We performed several additional experiments to study our algorithms. Results from these 

experiments are presented here.

Appendix A.1. Sample size experiment

For this experiment, we generated a synthetic dataset using the mean shape and SSM from 

the pelvis dataset. We deformed the mean pelvis shape by known shape parameters sampled 

within ±3 SD, sampled oriented points from the deformed shapes, and then applied known 

transformations within realistic intervals to the sampled points. Experiments were run with 

500, 1000, 1500 and 2000 sample points to evaluate the performance of our algorithms with 

increasing number of samples.

For each algorithm, 3 sets of experiments were run with 0, 5, and 10 modes used to deform 

the mean shape. In this experiment, the same number of modes are used by our algorithms to 

estimate the deformed shape as were used to deform the mean shape in order to evaluate our 

algorithms’ performance with different modes without bias. As before, when 0 modes are 

used, the algorithms used are the corresponding non-deformable algorithms performing rigid 

registration between the mean shape and points sampled from it. 10 registrations were 

performed in each set with known transformations sampled from the intervals [0, 15] mm 

and [0, 9]° for translational and rotational offsets, respectively, and applied to points 

sampled from the deformed shapes. Noise was added to both the position and orientation of 

the sampled points, and two experiments were designed based on different noise models.

Appendix A.1.1. Experiment 1: Isotropic position noise

In this experiment, an isotropic noise model with SD of 1 × 1 × 1 mm3 for positional noise 

was used to generate samples. Additionally, an isotropic noise model with SD of 2° for 

angular noise was used for D-IMLOP. For GD-IMLOP, the anisotropic angular noise model 

also had a SD of 2° and e was set to 0.5. The noise model assumed by each of the algorithms 

was the same as the noise model used to generate samples for each of the algorithms.

All three of our algorithms produced small errors in recovering the shape and registering the 

sampled points to the recovered shape with the different number of samples. D-IMLOP and 

GD-IMLOP outperformed D-IMLP due to the added information provided by the normals 

(Fig. A.15). Over all runs, D-IMLP produced a mean tRE of 0.71 (± 0.80) mm, while D-

IMLOP and GD-IMLOP produced mean tREs of 0.30 (± 0.32) mm (p < 0.001 compared to 

D-IMLP) and 0.29 (± 0.35) mm (p < 0.001 compared to D-IMLP), respectively. D-IMLOP 
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slightly outperformed GD-IMLOP in recovering rotation. This is because D-IMLOP solves a 

relatively simpler objective function since it only models isotropic orientation noise. Since 

the orientation noise in the samples used for D-IMLOP is also isotropic, the algorithm is 

able to converge toward the correct rotation quickly. For GD-IMLOP, however, the objective 

function is more complicated since it models anisotropic orientation noise making GD-

IMLOP slower to converge to the correct rotation in some cases.

Further, metrics produced by our algorithms, like the objective function (total match error) 

or the residual error (Mahalanobis distance), show correlation with the tRE and can be used 

to assign confidence to the computed registration. We used empirically chosen thresholds to 

determine which trials succeeded and which did not using the residual error. We do this 

retrospectively in the simulated experiments because we have access to ground truth and can 

use it to learn how to associate residuals errors with success in clinical or other experiments 

where ground truth in not available. Using thresholds such that there were no false positives, 

our algorithms were always able to correctly detect successful registrations and showed an 

increase in successful registrations with increasing number of sample points (Fig. A.15, 

Table A.1), where success is defined as registrations producing tRE less than 1.5 mm for the 

pelvis dataset. In fact, all D-IMLOP and GD-IMLOP trials using greater than 500 sample 

points produced successful registrations.

Appendix A.1.2. Experiment 2: Anisotropic position noise

Second, an anisotropic noise model with 1 mm SD in each direction in plane and 2 mm out 

of plane was used for positional noise (or, 1 × 1 × 2 mm3). For angular noise, the parameters 

were the same as in Exp. 1.

The tREs from this experiment were higher than those in Exp. 1 but by less an 0.1 mm for 

all algorithms. Most D-IMLP trials and all D-IMLOP and GD-IMLOP trials produced 

successful registrations (Table A.1). D-IMLOP performs slightly better than GD-IMLOP in 

recovering rotation due to the same reason as in Exp. 1 (Fig. A.16). However, GD-IMLOP is 

able to achieve smaller tREs than D-IMLOP since it outperforms D-IMLOP in recovering 

translation and shape parameters (Fig. A.17). Again, over all runs, D-IMLP produced a 

mean tRE of 0.76 (± 0.75) mm, while D-IMLOP and GD-IMLOP produced mean tREs of 

0.39 (± 0.33) mm (p < 0.001 compared to D-IMLP) and 0.33 (± 0.28) mm (p < 0.001 

compared to D-IMLP), respectively. An improvement with increasing number of sample 

points was observed in this experiment as well (Fig. A.17). Note that errors show some 

increase with increasing number of modes because, as mentioned in the experiment setup, 

number of modes used by our algorithms to estimate the deformed target shape was the 

same as the number of modes used to generate the target shape. The residual errors from all 

three algorithms were, again, found to be correlated with the tRE (Fig. A.19) and, therefore, 

can be used to assign confidence to registrations. Using empirically found thresholds, we 

used the residual errors produced by our algorithms to automatically classify trials as 

successful or unsuccessful and again found that our algorithms were always able to correctly 

classify successful registrations (Table A.1).

Since D-IMLOP and GD-IMLOP are able to filter out matches where positions align but 

orientations do not, we see faster improvement in the quality of matched points with these 
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two algorithms than with D-IMLP. (Fig. A.18). Here, the error shown is the distance at each 

iteration between the matched points computed by each algorithm and the true location of 

the matched point. This true location is simply the location of the points sampled from the 

deformed model shape before any noise or transformation was applied. This illustrates the 

improvement afforded by orientation information.

Appendix A.2. Noise model experiment

This experiment was designed to evaluate the stability of our algorithms with different noise 

models. A synthetic dataset was generated using the pelvis data in a similar way as described 

in Sec. Appendix A.1. The differences are that experiments in this section are run with a 

fixed sample size of 500, and for each algorithm, 11 sets of 25 experiments each are run with 

increasing number of modes used to deform the mean shape in each set, starting at 0 and 

going up to 10 modes. Again, the same number of modes are used by our algorithms to 

recover the deformed shape as were used to generate the deformed shape. Different noise 

models were used to add noise to both the position and orientation of the sampled points, 

and the same noise models were assumed by our algorithms. Four experiments were 

designed based on how the different noise models were varied.

Appendix A.2.1. Experiment 1: Varying isotropic position noise

For the first experiment, we used 5 isotropic noise models with SDs of 1 × 1 × 1 mm3, 2 × 2 

× 2 mm3, 3 × 3 × 3 mm3, 4 × 4 × 4 mm3, and 5 × 5 × 5 mm3 for positional noise. For D-

IMLOP, an isotropic noise model with SD of 2° for angular noise was used, while an 

anisotropic noise model with SD of 2° and e = 0.5 was used for GD-IMLOP.

We observed that registrations produced by our algorithms degraded as the noise in the 

sample points increased, but tREs also showed improvement going from D-IMLP to D-

IMLOP to GD-IMLOP (Fig. A.20, top row). Over all registrations, D-IMLP produced a 

mean tRE of 1.55 (± 0.96) mm, while D-IMLOP and GD-IMLOP produced mean tREs of 

0.75 (± 0.60) mm (p < 0.001 compared to D-IMLP) and 0.40 (± 0.22) mm (p < 0.001 

compared to both D-IMLP and D-IMLOP), respectively. Further, while noise increased 125× 

(5× along each dimension), tREs only degraded 1.78× at 1 mode and 2.18× at 10 modes for 

D-IMLP, 1.48× at 1 mode and 2.33× at 10 modes for D-IMLOP, and 1.44× at 1 mode and 

1.26× at 10 modes for GD-IMLOP. By compensating for the noise in the samples, our 

algorithms are able to limit the effects of increasing noise on the registration.

The tREs increase slightly as we add more modes because, as described in the experiment 

setup, the number of modes used by our algorithms to estimate the deformed target shape 

was the same as the number of modes used to generate the deformed target shape. That is, 

for 0 modes, points were sampled from the mean shape without any deformation and no 

shape parameters were used in the optimization, resulting in the rigid versions of our 

algorithms. Whereas when 10 modes are used, the mean shape is deformed along 10 mode 

directions and 16 parameters are optimized by our algorithms (10 shape parameters as well 

as 3 rotation and 3 translation parameters). The objective function and the residual errors are 

again found to be strongly correlated with the tRE, which again can be used to distinguish 

between successful and unsuccessful registrations (Fig. A.21).
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Appendix A.2.2. Experiment 2: Varying anisotropic position noise

For the second experiment, anisotropic noise models with SDs of 1×1×2 mm3, 2×2×3 mm3, 

3×3×4 mm3, 3×3×5 mm3, and 4 × 4 × 5 mm3 for positional noise were used. For angular 

noise, the parameters were the same as in Exp. 1.

Results from this experiment show the same trends as those from Exp. Appendix A.2.1 (Fig. 

A.20, middle row). Over all runs, D-IMLP produced a mean tRE of 1.97 (± 1.06) mm, while 

D-IMLOP and GD-IMLOP produced mean tREs of 0.80 (± 0.56) mm (p < 0.001 compared 

to D-IMLP) and 0.38 (± 0.20) mm (p < 0.001 compared to both D-IMLP and D-IMLOP), 

respectively. Additionally, while noise increased 40× (4× along each dimension in plane and 

2.5× out of plane), the tREs only degraded 1.08× at 1 mode and 1.29× at 10 modes for D-

IMLP, 1.54× at 1 mode and 1.78× at 10 modes for D-IMLOP, and 1.12× at 1 mode and 

1.21× at 10 modes for GD-IMLOP.

Appendix A.2.3. Experiment 3: Varying orientation noise

In the third experiment, we used one isotropic noise model and one anisotropic noise model 

with SDs of 1 × 1 × 1 mm3 and 1 × 1 × 2 mm3, respectively, for positional noise, and used 

orientation noise models with SDs of 2°, 4°, 6°, 8° and 10° for each positional noise model. 

e = 0.5 was used for GD-IMLOP.

We observe that all D-IMLP runs with isotropic positional noise produce similar results and 

all runs with anisotropic positional noise also produce similar results. This is expected since 

D-IMLP does not take any orientation information into consideration, so varying the 

orientation noise model has no statistically significant effect on results from D-IMLP. 

Further, as seen in the previous two experiments, mean tREs from trials with isotropic 

positional noise (1.04 ± 0.85 mm) are statistically significantly lower (p < 0.001) than those 

from trials with anisotropic noise (1.74 ± 1.14 mm) (Fig. A.20, bottom-left). The difference 

in tREs between runs with isotropic and anisotropic positional noise was smaller for D-

IMLOP (0.53 ± 0.42 mm and 0.61 ± 0.42 mm, respectively) and GD-IMLOP (0.51 0.42 mm 

and 0.58 ± 0.46 mm, respectively), although still statistically significant (p < 0.001). As with 

D-IMLP, changing angular noise did not affect registration results from D-IMLOP and GD-

IMLOP statistically significantly since the large number of samples overwhelmed the 

relatively small changes in the noise model (Fig. A.20, bottom-middle and bottom-right).

Appendix A.2.4. Experiment 4: Noise parameter sweep

In the final experiment, the sample points are generated with a particular noise model for 

both position and orientation data. However, we assume that this noise model is unknown to 

our algorithms. Sample points are generated with anisotropic positional and angular noise 

with SD 2 × 2 × 4 mm3 and 10° (e = 0.5), respectively. We perform a hyper-parameter sweep 

and run our algorithms with different isotropic and anisotropic positional and angular noise 

assumptions to see how well our algorithms perform with inaccurate noise model 

assumptions.

This experiment was performed to observe the behavior of our algorithms when the noise 

model assumed is different from the noise in the sampled points. Since the noise in the 
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generated sampled points, anisotropic in both position and orientation (2 × 2 × 4 mm3 and 

10° (e = 0.5), respectively), can be best explained by GD-IMLOP, we expect it to outperform 

the other two algorithms. Interestingly, D-IMLOP (red) outperforms GD-IMLOP (green) 

with less conservative noise estimates (Fig. A.23). This is expected since D-IMLOP 

optimizes a simpler cost function. Therefore, when the noise assumption is optimistic, D-

IMLOP converges faster than GD-IMLOP. However, as the noise assumption becomes more 

conservative, GD-IMLOP’s performance improves or stabilizes while D-IMLOP’s 

deteriorates since GD-IMLOP models the noise in the sample points more accurately. Here, 

the tRE values are less important than the trends shown by D-IMLOP and GD-IMLOP. D-

IMLOP performs well with less conservative noise models since the noise in the samples is 

close enough to the least conservative noise model assumed by D-IMLOP. However, with 

larger sample noise, less conservative noise estimates will introduce errors in matches. The 

improving trend with increasingly conservative noise estimates exhibited by GD-IMLOP 

allows us to make very conservative noise estimates when sample noise is unknown and still 

expect reasonable registration results.

Finally, we see that D-IMLP (blue) is unaffected by changing orientation noise, which is 

expected since D-IMLP does not take orientation into account. tREs using D-IMLP are 

either stable or show a gradual trend downward as position noise becomes more 

conservative. The other noticeable trend shows that D-IMLP performs slightly worse as the 

anisotropy in the noise estimates increases. This trend is slightly visible in the curves for D-

IMLOP and GD-IMLOP as well, although they are not as noticeable since the orientation 

information available to these algorithms is able to drive the errors down considerably.

Appendix A.3. Outlier experiment

Using a synthetic dataset generated using the right nasal cavity model from the sinus dataset, 

we study how robust our algorithms are to outliers. This dataset was again generated 

similarly as described before (Sec. Appendix A.1); the difference being that in this setup, 

there are 6 sets of 10 experiments each for all three algorithms. The number of modes used 

to deform the mean shape increases by 2 in each set, starting at 0 and going up to 10 modes. 

Again, the same number of modes are used to estimate the deformed target shape using our 

algorithms as were used to generate the deformed target shape.

All sample points were generated with isotropic noise in position data with 1 × 1 × 1 mm3 

SD, and anisotropic noise in orientation data with 2° SD and e = 0.5. Experiments were 

conducted with 0%, 10%, and 20% outliers in the generated point samples. Outliers are 

generated by perturbing the position and orientation of a particular number of samples 

randomly in the range [2, 5] mm and [2, 5]°, respectively.

Outliers are identified and rejected using the chi-square test, in the same way as in the 

corresponding rigid algorithms described earlier (Billings et al., 2015; Billings and Taylor, 

2015). Under the assumption of correspondences and generalized Gaussian noise, the square 

Mahalanobis distance between the matched points in 3D space can be assumed to distributed 

as the sum of squares of three independent Gaussian distributions, each representing one 

dimension of position data (Danilchenko and Fitzpatrick, 2011). Therefore, a match is 

Sinha et al. Page 25

Med Image Anal. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rejected if the square Mahalanobis distance is greater than the chi-square inverse cumulative 

density function with 3 degrees of freedom at p = 0.95. For orientation data, a match that 

passes the outlier test based on the position component can still be rejected if 

yni
T xni

< cos (θthresh), where θthresh is set according to the circular SD. We set our threshold to 

3 times the circular SD.

Although the performance of our algorithms is worse in the presence of outliers, we are able 

to detect them, as explained above (Sec. Appendix A.3), and limit their effect on errors. The 

degradation in performance as outliers increase 2× from 10% to 20% is, at worst, 1.45× 

(using 4 modes), 1.72× (using 2 modes) and 1.42× (using 4 modes) for D-IMLP, D-IMLOP 

and GD-IMLOP, respectively. At best, the performance is almost identical for all algorithms: 

1.12×, 0.97× and 1.10× for D-IMLP, D-IMLOP and GD-IMLOP, respectively, all using 10 

modes (Fig. A.22). As outliers increase from 0% to 20%, the degradation in performance is, 

at worst, 2.81×, 2.18× and 2.53× for D-IMLP, D-IMLOP and GD-IMLOP, respectively, all 

using 4 modes. At best, the performance degrades 1.79× (using 6 modes), 1.21× (using 8 

modes) and 1.93× (using 6 modes) for D-IMLP, D-IMLOP and GD-IMLOP, respectively. 

However, we cannot compare this to the degradation in the quality of samples points since 

the initial set had 0% outliers (making any increase an ∞ increase).

Although the addition of outliers produced statistically significant increases in tREs for D-

IMLP and GD-IMLOP, the increase in tREs from 0% to 10% outliers and from 10% to 20% 

outliers was not statistically significant for D-IMLOP. However, the increase in tREs from 

0% to 20% outliers was statistically significant for D-IMLOP as well (Table A.2). Further, 

Fig. A.22 (bottom-right) shows that without any outliers in the sampled point set, GD-

IMLOP performs best, followed by D-IMLOP, and then D-IMLP (as seen in previous 

experiments). Fig. A.22 (bottom-right) also shows a very strong result in that although with 

10 modes, GD-IMLOP must optimize over 10 extra parameters, the degradation in the tRE 

is negligible (~ 0.05 mm) with 0% outliers (green).

Appendix A.4. Scale experiment

In this experiment, we evaluate how well our algorithm is able to recover scale in addition to 

rotation, translation, and shape parameters. We use the same dataset that was generated in 

Sec. Appendix A.3 with 0% outliers. However, the sample points are scaled by some known 

amount in the range [0.7, 1.3].

Results show that our methods can successfully estimate scale in addition to rotation, 

translation, and shape parameters. Although our methods perform better when there is one 

fewer parameter to optimize over (Table A.3), with an additional scale parameter, tSEs using 

all three algorithms and tREs using D-IMLOP and GD-IMLOP still remain consistently 

below 1 mm (Fig. A.25, left and middle). Errors in recovering scale also reflect D-IMLOP 

and GD-IMLOP’s performance, with mean errors ~ 0.01 and SD < 0.01 (Fig. A.25, right).
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Appendix A.5. Non-medical data experiment

Our previous experiments test the generalizability of our algorithms within the medical field. 

With the following experiment, we test our algorithms on non-medical data to test their 

generalizability outside the medical field. We use a human expression dataset in a leave-n-

out experiment by dividing the dataset into a training set and a test set. We use the training 

set to build a shape model, and estimate the meshes in the test set using the two methods 

described in Sec. 4.1.

We used 300 meshes in the training set to build an SSM for expressions from a single 

individual, and tested with the remaining 86 meshes in the test set, also from the same 

individual. 1000 points were sampled from meshes in the test set with anisotropic position 

and orientation noise with SDs 1 × 1 × 2 mm3 and 10° (e = 0.5), respectively. This simulates 

a realistic situation in which a scan of a head is obtained using a depth camera, where error 

is large in the depth direction. Our algorithms make slightly more relaxed noise 

assumptions, assuming that the position and orientation noise models to have SDs of 2 × 2 × 

4 mm3 and 20° (e = 0.5), respectively.

Results from this experiment show that our algorithms perform relatively well even with 

challenging datasets. The assumption that facial expressions are Gaussian distributed is 

likely an incorrect assumption depending on the dataset (Buciu et al., 2008). Further, the 

limited number of data points in our dataset was not enough to explain well the complex 

variations that can exist in human expression. However, our algorithms produced promising 

results with tSEs and tREs consistently below 1 mm and 2 mm, respectively (Fig. A.24). 

Over all runs, D-IMLP produced a mean tRE of 1.78 (± 0.63) mm, D-IMLOP produced 

mean tRE of 1.66 (± 0.60) mm (p < 0.001 compared to D-IMLP) and and GD-IMLOP 

produced mean tRE of 1.38 (± 0.48) mm (p < 0.001 compared to both D-IMLP and D-

IMLOP), respectively. With more data and more sample points, we can likely perform well 

enough with our PCA model to attempt to classify the facial expressions (Fig. A.26). The 

residual errors produced by our algorithms also correlate with the tRE, indicating that our 

algorithms have the ability to handle such data (Fig. A.27).
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Fig. A.15. 
Sample size experiment: translation (top) and rotation (bottom) errors produced using (from 

L to R) 1000 and 2000 sample points from the pelvis model in Exp. 1. Bars in the histogram 

are transparent to show all three algorithms.
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Fig. A.16. 
Sample size experiment: translation (top) and rotation (bottom) errors produced using (from 

L to R) 1000 and 2000 sample points from the pelvis model in Exp. 2. Bars in the histogram 

are transparent to show all three algorithms.
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Fig. A.17. 
Sample size experiment: mean tRE with increasing number of samples from Exp. 2 (shown 

with 500 and 2000 sample points for simplicity).
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Fig. A.18. 
Sample size experiment: evolution of the quality of matched points for each algorithm with 

increasing iterations in Exp. 2 with 2000 sample points. The plot shows distances between 

matched points at each iteration and the location of points sampled from the deformed 

model shape. Added orientations drastically improve the quality of matched points.
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Fig. A.19. 
Residual errors compared against tRE using 2000 sample points in Exp. 2 of the sample size 

experiment. The two measures exhibit correlation with correlation coefficients (left to right) 

of 0.85, 0.72 and 0.86. Results from trials using 0 modes are ignored here to focus on the 

deformable algorithms.
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Fig. A.20. 
Noise model experiment: mean tREs produced by our algorithms (L-R) D-IMLP, D-IMLOP 

and GD-IMLOP in Exps. 1 (top), 2 (middle) and 3 (bottom). Note that the errors are 

increasing with increasing modes only because for this experiment the number of modes 

used to estimate the shapes equals the number of modes used to simulate a new shape from 

which points were sampled.

Sinha et al. Page 33

Med Image Anal. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. A.21. 
Residual errors compared against tRE using 500 sample points with 2 × 2 × 2 mm3 SD 

positional noise and 2° SD angular noise in Exp. 1 of the noise model experiment. The two 

measures exhibit correlation with correlation coefficients (L-R) of 0.86, 0.88 and 0.83.
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Fig. A.22. 
Outlier experiment: mean tRE with different number of outliers for D-IMLP (top-left), D-

IMLOP (top-right), and GD-IMLOP (bottom-left), and for all three algorithms using sample 

points with 0% outliers (bottom-right). Note that the errors are increasing with increasing 

modes only because for this experiment the number of modes used to estimate the shapes 

equals the number of modes used to simulate the deformed shape from which points were 

sampled.
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Fig. A.23. 
Noise model experiment: mean tREs produced by our algorithms with different isotropic 

(left) and anisotropic (right) position noise assumptions, labeled on the x-axis, and different 

orientation noise assumptions, with standard deviations of 2° (top), 10° (middle) and 20° 

(bottom) in Exp. 4.
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Fig. A.24. 
Non-medical data experiment: mean tRE (left) and tSE (right) obtained using different 

number of modes to estimate the test shape using facial expression data.
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Fig. A.25. 
Scale experiment: Mean tSE (left) and tRE (middle) using sample points with 0% outliers 

and scale applied to the sampled points, and mean errors in recovering scale with increasing 

number of modes (right). Again, the number of modes used to estimate the shapes equals the 

number of modes used to simulate the deformed shape from which points were sampled.
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Fig. A.26. 
Non-medical data experiment: this particular target shape (right) has a lot of detail which is 

necessary to convey the emotion in this face. 1000 sample points are too few to capture this 

detail resulting in an inaccurate reconstruction (left). However, with 2000 sample points, we 

are able to estimate this expression better (middle) since more sample points are better able 

to capture the detail in the target.
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Fig. A.27. 
Non-medical data exp.: residual errors compared against tRE for GD-IMLOP using facial 

expression data. The two measures show correlation (correlation coefficient = 0.77).

Table A.1.

Sample size experiment: percent successful trials, i.e., trials producing registrations with tRE 

less than 1.5 mm. All successful trials were correctly detected as successful.

samples

Algorithm (success in %)

D-IMLP D-IMLOP GD-IMLOP

Exp. 1 500 83.33 96.67 96.67

1000 86.67 100.00 100.00

1500 83.33 100.00 100.00

2000 86.67 100.00 100.00

Exp. 2 500 76.67 100.00 100.00

1000 76.67 100.00 100.00

1500 76.67 100.00 100.00

2000 76.67 100.00 100.00
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Table A.2.

Outlier experiment: mean tREs produced by each of our algorithms with 0%, 10%, and 20% 

outliers in the samples points.

outliers

Algorithm (tREs in mm)

D-IMLP D-IMLOP GD-IMLOP

0% 0.37 ± 0.25 0.19 ± 0.15 0.08 ± 0.03

10% 0.58 ± 0.36
*

0.26 ± 0.23 0.14 ± 0.05
*

20% 0.75 ± 0.30
†

0.30 ± 0.18
‡

0.18 ± 0.05
†

*
indicates statistically significant increase in tREs between 0% and 10% outliers

†
indicates statistically significant increase in tREs between both 10% and 20% outliers and 0% and 20% outliers

‡
indicates statistically significant increase in tREs between 0% and 20% outliers (p < 0.001).

Table A.3.

Scale experiment: mean tREs produced by each of our algorithms with and without scale.

Algorithm (tREs in mm)

D-IMLP D-IMLOP GD-IMLOP

w/o scale 0.37 ± 0.25 0.19 ± 0.15 0.08 ± 0.03

w scale 1.11 ± 0.45
*

0.68 ± 0.34
*

0.10 ± 0.03
*

*
indicates statistically significant (p < 0.001) increase in tREs when optimizing over an additional scale parameter.
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Highlights

• Presenting a novel deformable registration paradigm using statistical shape 

models

• Developed three algorithms that use different features and noise model 

assumptions

• Experiments with simulated data show submillimeter registrations, 

reconstructions

• Preliminary results on in-vivo clinical data also show promising results

Sinha et al. Page 45

Med Image Anal. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
ICP iterates between finding point correspondences between data points, xi, and model 

shape points, yi, and computing the transformation that best aligns the matches.
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Fig. 2. 
Inputs for D-IMLP: Mean mesh with modes (left), and point samples with positional noise 

model (right).
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Fig. 3. 
Inputs for D-IMLOP (left) and GD-IMLOP (right): Mean mesh with normals and modes, 

and point samples with positional and isotropic (left) or anisotropic (right) orientation noise 

models.
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Fig. 4. 
Registration metrics: tSE (left) measures the Hausdorff distance between the ground truth 

shape (green) and the shape estimated by our algorithm in shape space (blue), not taking the 

final transformation computed by the algorithm into consideration. tRE (right) measures the 

Hausdorff distance between the ground truth shape (green) and the estimated shape (blue) 

transformed to sample point space, therefore also adding the transformation computed by 

our algorithms into the error metric.
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Fig. 5. 
An example of data generated for the leave-one-out experiment: points are sampled 

uniformly from the middle turbinate (left) and right nasal cavity (right) meshes.
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Fig. 6. 
Leave-one-out experiment: mean tRE (top-left), tSE (top-right), translation and rotation 

errors (bottom) obtained using different number of modes to estimate the left-out middle 

turbinates and recover the transformations in Exp. 1.
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Fig. 7. 
Leave-one-out experiment: mean time taken by our algorithms to compute registrations 

using different number of modes.
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Fig. 8. 
Leave-one-out experiment: residual errors compared against tRE produced by D-IMLP (top-

left), D-IMLOP (top-right), and GD-IMLOP (bottom-left), and error produced by CPD 

compared against the tSE (bottom-right) in Exp. 1. The two measures show correlation using 

D-IMLP, D-IMLOP and GD-IMLOP with coefficients 0.91, 0.65 and 0.61, respectively, but 

not using CPD (correlation coefficient = 0.05).
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Fig. 9. 
Leave-one-out experiment: mean tRE (top-left), tSE (top-right), translation and rotation 

errors (bottom) obtained using different number of modes to estimate the left-out right nasal 

cavity meshes and recover the transformations in Exp. 2.
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Fig. 10. 
An example of data generated for the partial data experiment: (left) points are sampled only 

from the ilium and ischium on the pelvis mesh, and (right) points are sampled from the front 

section of the right nostril which include parts of the septum and middle and inferior 

turbinates.
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Fig. 11. 
Partial data experiment: mean tRE (top-left), tSE (top-right), translation and rotation errors 

(bottom) obtained using different number of modes to estimate the left-out pelvis meshes 

and recover the transformations in Exp. 1.
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Fig. 12. 
Partial data experiment: mean tRE (top-left), tSE (top-right), translation and rotation errors 

(bottom) obtained using different number of modes to estimate the left-out right nasal cavity 

meshes and recover the transformation in Exp. 2.
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Fig. 13. 
Partial data experiment: residual errors compared against tRE for GD-IMLOP in (L) Exp. 1 

using pelvis data (correlation coefficient = 0.56) and (R) Exp. 2 using right nasal cavity data 

(correlation coefficient = 0.64).
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Fig. 14. 
Clinical data experiment: With the first point set (top), registration results using D-IMLP 

(left) and D-IMLOP (middle) show failed registrations, while that using GD-IMLOP (right) 

shows good alignment (along with some outliers). The second point set (bottom) yields 

better results, with all three algorithms producing good alignments. However, we can see 

that the number of outliers or bad matches (red points matched to the outside of the nose) 

goes down as we go from D-IMLP (left) to D-IMLOP (middle) to GD-IMLOP (right).
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