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Abstract—Structure-preserved denoising of 3D magnetic resonance imaging (MRI) images is a critical step in med-

ical image analysis. Over the past few years, many algorithms with impressive performances have been proposed. 

In this paper, inspired by the idea of deep learning, we introduce an MRI denoising method based on the residual 

encoder-decoder Wasserstein generative adversarial network (RED-WGAN). Specifically, to explore the structure 

similarity between neighboring slices, a 3D configuration is utilized as the basic processing unit. Residual autoen-

coders combined with deconvolution operations are introduced into the generator network. Furthermore, to allevi-

ate the oversmoothing shortcoming of the traditional mean squared error (MSE) loss function, the perceptual sim-

ilarity, which is implemented by calculating the distances in the feature space extracted by a pretrained VGG-19 

network, is incorporated with the MSE and adversarial losses to form the new loss function. Extensive experiments 

are implemented to assess the performance of the proposed method. The experimental results show that the pro-

posed RED-WGAN achieves performance superior to several state-of-the-art methods in both simulated and real 

clinical data. In particular, our method demonstrates powerful abilities in both noise suppression and structure 

preservation. 
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1 Introduction 

Magnetic resonance imaging (MRI) is a noninvasive high-resolution imaging modality that plays a very important 

role in current clinical diagnostics and scientific research procedures because it can reveal the 3D, internal details and 

structures of tissues and organs in the human body (Manjon et al.,2008;Mohan et al.,2014;Zhang et al.,2015). However, 

the quality of MR images can be easily affected by noise during image acquisition, especially when high speed and high 

resolution are needed. Noise in MR images can not only degrade the imaging quality and the accuracy of clinical diagnoses 

but also has negative influences on the reliability of subsequent analytic tasks such as registration, segmentation and de-

tection. As a result, efficient algorithms for noise reduction are necessary for further MR analysis. 

Over the past few years, a wide variety of postprocessing MRI denoising methods have been developed to improve 

the imaging quality of MR images (Manjon et al.,2008;Mohan et al.,2014;Zhang et al.,2015). These methods fall into three 

categories: (a) filtering-based methods (Krissian and Aja-Fernandez,2009;Manjon et al.,2008;Mcveigh et al.,1985;Perona 

and Malik,1990), (b) domain transform-based methods (Ma and Plonka,2007;Nowak,1999) and (c) statistical methods 

(Rajan et al.,2012;Sijbers et al.,1998). The filtering-based methods are the most direct and denoise the MR images in the 

spatial domain. McVeigh et al. (Mcveigh et al.,1985) investigated the results of denoised MR images with both spatial and 

temporal filters. Most typically, Perona and Malik (Perona and Malik,1990) proposed the classic Perona-Malik (PM) model 

with a multiscale smoothing and edge detection scheme called an anisotropic diffusion filter. It utilizes gradient information 

to extract the image structures while reducing the noise. The PM filter and its variants have been successfully extended to 

2D and 3D MR images (Gerig et al.,1992;Krissian and Aja-Fernandez,2009;Pal et al.,2017;Samsonov and Johnson,2004). 

Reducing noise in a transformed domain is different from reducing noise in a spatial domain but is also widely researched, 

and some typical methods include wavelet and discrete cosine transform (DCT)-based methods (Anand and 

Sahambi,2009;Hu et al.,2012;Ma and Plonka,2007;Nowak,1999;Pizurica et al.,2003;Yaroslavsky et al.,2001). The statisti-

cal approaches first estimate the parameters of Rician noise in noisy MR images. After that, the results are used to yield a 

statistically optimal denoised image (Awate and Whitaker,2007;Bouhrara et al.,2016;Golshan et al.,2013;He and 

Greenshields,2009). 

Recently, methods based on the self-similarity and sparsity of images have attracted much attention in the field of 
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noise reduction for MRI images. Most algorithms originate from the famous nonlocal means (NLM) filter (Buades et 

al.,2005), which estimates the current pixel by weighted averaging its similar patches in a search window. One critical 

drawback of the NLM filter is that it is time consuming. Several variants of NLM filters have been extensively studied to 

improve this issue for MR Rician denoising (Coupé et al.,2008;Hu et al.,2016;Manjon et al.,2008;Manjón et al.,2012;Wiest-

Daesslé et al.,2008). Specifically, in (Coupé et al.,2008), the authors proposed a fast 3D-optimized blockwise version of 

NLM (ONLM) filter to reduce the computational complexity. To simultaneously make full use of the self-similarity and 

sparsity of images, the authors in (Manjón et al.,2012) combined the 3D DCT hard-thresholding method and the 3D rota-

tionally invariant version of the nonlocal means filter, which achieved a competitive result. In addition, another state-of-

the-art denoising method based on patches is the block-matching and 3D (BM3D) filter (Dabov et al.,2007), which com-

bines the ideas of nonlocality and domain transform (Yaroslavsky et al.,2001). It first groups similar patches into a 3D 

array, then transforms the array into a frequency domain using DCT or wavelet transform, and finally arrogates multiple 

estimates at each location. In (Maggioni et al.,2012), the authors developed a filter called BM4D that adapted the BM3D 

filter to process volumetric data and achieved state-of-the-art performance. Another method similar to BM3D is higher-

order singular value decomposition (HOSVD) (Rajwade et al.,2013), which also uses a machine learning technique for 

noise reduction (Zhang et al.,2015). The difference between BM4D and HOSVD is that the bases of HOSVD are learned 

from images, which are more adaptive than analytical transforms. 

 In recent years, the explosive development of deep learning (DL) suggests a kind of new methodology for image 

processing and computer vision (Girshick,2015;He et al.,2017;He et al.,2016). Except for extensive research on high-level 

tasks, such as image analysis (Long et al.,2015;Ronneberger et al.,2015), deep learning has been introduced into low-level 

tasks, including image denoising, deblurring and super-resolution (Dong et al.,2014, 2016;Ledig et al.,2017;Vincent et 

al.,2010;Zhang et al.,2017). Multilayer perception, autoencoders and convolutional neural networks (CNNs) were used for 

image restoration and achieved results that were competitive with state-of-the-art methods, such as BM3D, NLM and 

sparse representation (Zhang et al.,2017). In the field of medical imaging, some pioneering works are given in (Chen et 

al.,2017a;Chen et al.,2017b;Li and Mueller,2017;Li et al.,2014;Liu and Zhang,2018;Shan et al.,2018;Wang et 

al.,2016;Xiang et al.,2017;Xu et al.,2017;Yang et al.,2018;Yang et al.,2017a;Yang et al.,2017b;You et al.,2018). However, 

to the best of our knowledge, the research on MRI denoising is quite limited, and the only work on MRI denoising is 

represented in (Jiang et al.,2018). The authors proposed a simple, plain CNN for MRI denoising. 

Despite extensive research on MRI denoising, current methods suffer from several shortcomings, such as computa-

tional burden, nonconvex optimization and/or parameter selection, which seriously impede the practical applications of 



4 

 

these methods. In this paper, to conquer these problems and fully explore the potential of the latest techniques in deep 

learning, we propose an MRI denoising method based on the residual encoder-decoder Wasserstein generative adversarial 

network (RED-WGAN). The contributions of this paper are fourfold: (a) the proposed model is based on the WGAN 

framework, which has demonstrated a powerful ability to learn the data distribution in a low dimensional manifold; (b) the 

ideas of residual networks and autoencoders are utilized to maintain the structural details and edges, which are clinically 

important; (c) with a proper training procedure, our method yields results that are competitive with several state-of-the-art 

methods; and (d) our method is highly computationally fast and compatible for parallel implementation on graphic pro-

cessing units (GPUs). 

The rest of this paper is organized as follows. The proposed method is described in Section 2. The experiments and 

evaluation are given in Section 3. Finally, the results are discussed and conclusions are drawn in Section 4. 

 

2 Methods 

2.1 Noise Reduction Model 

One difficulty of MRI denoising is that magnitude images, which are constructed by the real and imaginary parts, are 

the common form in MRI (Andersen,1996). The noise in magnitude images follows the Rician distribution, which is much 

more complex than traditional additive noise, such as Gaussian and impulse noise. Many methods were given to statistically 

model the degradation procedure, and the accuracy of the model heavily affects the final denoising results. DL is an effec-

tive way to circumvent this problem, which ignores the physical process and models this procedure corruption by learning 

from the samples. 

The aim of MRI denoising is to recover a high-quality MR image from the corresponding noisy MR image. Let 𝑥 ∈

𝑅𝑚×𝑛 denote a noisy MR image and 𝑦 ∈ 𝑅𝑚×𝑛denote the corresponding noise-free MR image. The relation between them 

can be represented as: 

 𝑥 = 𝜎(𝑦) (1) 

where 𝜎 is a mapping function denoting noise contamination. Because the DL-based method is a black box and is inde-

pendent from the statistical characteristics of the noise, the MR denoising can be simplified to seek the optimal approxi-

mation of the function 𝜎−1, and the denoising procedure can be formulated as: 

 𝑎𝑟𝑔𝑚𝑖𝑛
𝑓
‖𝑦̂ − 𝑦‖2

2  (2) 

where 𝑦̂ = 𝑓(𝑥), which is the estimation of 𝑦, and 𝑓 denotes the optimal approximation of 𝜎−1. 
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2.2 Wasserstein GAN 

From the viewpoint of statistics, 𝑥 and 𝑦 can be regarded as two samples from two different data distributions: noisy 

image distribution 𝑃𝑛 and noise-free image distribution 𝑃𝑟 , respectively. Then, the denoising operation is a mapping pro-

cedure that transforms one distribution to another; that is, the function 𝑓 maps the samples from 𝑃𝑛 to another distribu-

tion 𝑃𝑔, which is close to 𝑃𝑟 . 

A generative adversarial network (GAN) (Goodfellow et al.,2014) is a kind of generative model that comprises two 

components: a generative model 𝐺 and a discriminative model 𝐷. GANs have been widely applied in many fields, such 

as image super-resolution (Ledig et al.,2017), image modality transform (Isola et al.,2017) and image generation (Kataoka 

et al.,2016). The role of the discriminative model is to determine whether a sample is from the generative model distribution 

𝑃𝑔 or the real data distribution 𝑃𝑟 , and the generative model generates a new sample from the input sample and tries to 

make the new sample satisfy the real data distribution 𝑃𝑟  as much as possible.

 The training process of GANs is a minimax game with the following loss function 𝐿(𝐷, 𝐺) as 

 𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝐿(𝐷, 𝐺) = 𝛦𝑦~𝑃𝑟[𝑙𝑜𝑔 𝐷(𝑦)] +𝛦𝑥~𝑃𝑛 [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑥)))] (3) 

To solve Eq. (3), 𝐺 and 𝐷 are optimized alternatingly. 

In (Arjovsky and Bottou,2017), the authors suggested that the training of GAN is difficult because Eq. (3) may lead 

to a vanishing gradient for the generator 𝐺 when the discriminator 𝐷 is fixed. To avoid this problem, an improved variant 

of the GAN was proposed by Arjovsky and Bottou, called Wasserstein GAN (WGAN) (Arjovsky et al.,2017). Furthermore, 

Gulrajani et al. presented an improved version of WGAN with a gradient penalty to accelerate the convergence (Gulrajani 

et al.,2017). The changes in the loss function are as follows: 

 𝐿𝑊𝐺𝐴𝑁(𝐷) = −E𝑦~𝑃𝑟[𝐷(𝑦)] + E𝑥~𝑃𝑛[𝐷(𝐺(𝑥))] + 𝜆E𝑥~𝑃𝑥̂[(‖∇𝑥𝐷(𝑥̂)‖2 − 1)2] (4) 

where the last term is a gradient penalty factor, 𝜆 is a penalty coefficient, 𝑃𝑥 is a distribution that uniformly samples 

along straight lines between pairs of points sampled from the real data distribution 𝑃𝑟  and the generator distribution 𝑃𝑔. 

The loss function of generator 𝐺 is formulated as: 

 𝐿𝑊𝐺𝐴𝑁(𝐺) = −Ε𝑥~𝑃𝑛[𝐷(𝐺(𝑥))] (5) 

 

2.3 Combined Loss Function 

The MSE loss function is the most common loss function for pixel-level transform tasks, which minimizes the pixelwise 
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differences between the ground truth image and the generated image. It can be calculated as follows: 

 𝐿𝑀𝑆𝐸 =
1

𝑤ℎ𝑑
‖𝐺(𝑥) − 𝑦‖2 (6) 

where 𝑤, ℎ, and 𝑑 represent the dimensions of the image. Recent studies suggest that although MSE loss function can 

achieve a high peak signal-to-noise ratio (PSNR), it may suffer from a loss of details, especially high-frequency details, 

which have a serious impact on clinical diagnostics (Ledig et al.,2017). 

To efficiently handle this problem, a perceptual loss is involved in the proposed loss function (Bruna et al.,2015;Gatys 

et al.,2015;Johnson et al.,2016). A pretrained network can be utilized to extract the features from the ground truth and 

generated images. The difference between the features from the ground truth image and the generated image is treated as 

the perceptual similarity. Then, the perceptual loss function is defined as follows: 

 𝐿𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 =
1

𝑤ℎ𝑑
‖∅(𝐺(𝑥)) − ∅(𝑦)‖

𝐹

2
 (7) 

where ∅ is a feature extractor, and 𝑤, ℎ, and 𝑑 represent the dimensions of feature maps. In this paper, we apply the 

pretrained VGG-19 network (Simonyan and Zisserman,2014) to extract the features of the image. The VGG-19 network 

contains 19 layers: the first 16 layers are convolutional layers, and the subsequent 3 layers are fully connected layers. We 

only use the first 16 layers as our feature extractor. Then, the specific perceptual loss based on the VGG network is em-

ployed as follows: 

 𝐿𝑉𝐺𝐺 =
1

𝑤ℎ𝑑
‖𝑉𝐺𝐺(𝐺(𝑥)) − 𝑉𝐺𝐺(𝑦)‖

𝐹

2
 (8) 

 Then, we obtain the weighted joint loss function of generator 𝐺, which consists of MSE loss, VGG loss and discrim-

inator loss. 

 𝐿𝑅𝐸𝐷−𝑊𝐺𝐴𝑁 = 𝜆1𝐿𝑀𝑆𝐸 + 𝜆2𝐿𝑉𝐺𝐺 + 𝜆3𝐿𝑊𝐺𝐴𝑁(𝐺) (9) 

   

2.4 Network Architectures 

The overall architecture of the proposed RED-WGAN network is illustrated in Fig. 1. It consists of a generator net-

work 𝐺, a discriminator network 𝐷, and the VGG network is used as the feature extractor. The specific structure of the 

generator network 𝐺 is demonstrated in Fig. 2. To accelerate the training procedure and preserve more details, short con-

nections and deconvolution layers are introduced. Furthermore, to explore the ability of the autoencoder to deal with noisy 

samples, the convolution and deconvolution layers are symmetrically arranged. Specifically, the generator 𝐺 has an en-

coder-decoder structure composed of 8 layers: 4 convolutional and 4 deconvolutional layers. Short connections link the 

corresponding convolution-deconvolutional layer pairs. Except for the last layer, the other layers perform a 3D convolution, 
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a batch-normalization and a LeakyReLU operation in sequence, and the last layer only performs a 3D convolution and a 

LeakyReLU operation. In this paper, all kernels are set to 3×3×3, and the sequence of the number of filters used is 32, 64, 

128, 256, 128, 64, 32, 1. 

 

 

Fig. 1. Overall architecture of our proposed RED-WGAN network 

 

Fig. 2. The architecture of the generator network 𝐺 

 

Fig. 3. The structure of the discriminator network 𝐷 

The structure of the discriminator network 𝐷 is illustrated in Fig. 3. It has 3 convolutional layers: one with 32 filters, 

on with 64 filters and one with 128 filters. The kernel sizes are set to 3×3×3 in all the convolution layers. The last layer is 

a fully connected layer that has a single output: the discriminant result. 
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We use a pretrained VGG-19 network to extract the features. For more details, the readers can refer to the original 

reference (Simonyan and Zisserman,2014). Due to the power of transfer learning (Pan and Yang,2010), there is no need to 

retrain the network with our target MR images. 

 

3 Experiment 

3.1 Datasets 

To validate the performance of the proposed RED-WGAN, extensive experiments on both clinical and simulated da-

tasets were performed. 

1) Clinical Data 

For the clinical experiments, the well-known IXI dataset (http://brain-development.org/ixi-dataset/), which is collected 

from 3 different hospitals, was used. The detailed scanning configuration is given in the website mentioned above. 

We randomly selected 110 T1-, T2- and PD-weighted brain image volumes from the Hammersmith dataset acquired 

from a Philips 3T scanner, which is a subset of the IXI dataset. One hundred image volumes were randomly selected as the 

training set, and the other 10 image volumes from the Hammersmith dataset formed the testing set. To evaluate the robust-

ness of the proposed model for different scanners, 10 image volumes from the Guy’s Hospital dataset were also added into 

the testing set. In the training set, we simulated noisy images by manually adding Rician noise to the images. It is well 

known that deep learning-based methods require a great deal of training samples, which is very difficult to satisfy, espe-

cially in clinics. In this study, to solve this problem, overlapping voxels were extracted from the samples to train the network. 

This method has been proven efficient in that perceptual differences can be better detected, and the number of samples 

significantly increases (Dong et al.,2016;ganXie et al.,2012;Jain and Seung,2008). A total of 50000 voxels with of size 

32×32×6 are acquired via a fixed sliding step. 

2) Simulated Data 

For simulated experiments, the BrainWeb database (http://brainweb.bic.mni.mcgill.ca/brainweb/) was used. This da-

taset contains T1-, T2- and PD-weighted brain images with a size of 181×217×181 with 1×1×1 resolution. Meanwhile, the 

network trained by the clinical dataset from the Hammersmith Hospital dataset was used to validate the performance and 

robustness of our model. In the evaluation phase, we chose 6 continuous T1w slices from the middle position of the trans-

verse plane as a test sample to evaluate and compare the performance of the methods. 

 

http://brain-development.org/ixi-dataset/
http://brainweb.bic.mni.mcgill.ca/brainweb/
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3.2 Training Details 

To demonstrate the advantages obtained by our proposed network architecture, two different networks were trained, 

including RED-WGAN and CNN3D (RED-WGAN with only the generator part and the MSE loss), the latter of which can 

be seen as an improved version of the method proposed by (Jiang et al.,2018). 

Both networks mentioned above were trained on T1-, T2- and PD-weighted brain image volumes with specific noise 

levels. The parameters 𝜆1, 𝜆2 and 𝜆3 were experimentally set to 1, 0.1 and 1e-3, respectively, according to the suggestion 

in (Ledig et al.,2017;Yang et al.,2017a). Following the suggestions in (Goodfellow et al.,2014), the penalty coefficient 𝜆 

in Eq. (4) was set to 10. The Adam algorithm was used to optimize the loss function (Kinga and Adam,2015), and the 

parameters for the Adam optimizer were set to α = 5e − 5, 𝛽1 = 0.5, 𝛽2 = 0.9. Our codes for this work are available on 

https://github.com/Deep-Imaging-Group/RED-WGAN. 

 

3.3 Evaluation methods 

To validate the performance of the proposed RED-WGAN, three methods (CNN3D, BM4D and PRI-NLM3D 

(Manjón et al.,2012)) were compared. To evaluate the performance of these methods, three quantitative metrics were em-

ployed. The first one is the peak signal-to-noise ratio (PSNR), which considers the root mean square error (RMSE) between 

the ground truth and denoised images. The second is the structural similarity index measure (SSIM) (Wang et al.,2004), 

which measures the similarity between ground truth and denoised images. The last one is the information fidelity criterion 

(IFC) (Hamid Rahim et al.,2005), which quantifies the mutual information between the reference and the testing images to 

evaluate the perceptual quality. 

 

3.4 Results 

1）Clinical results 

The average quantitative results of BM4D, PRI-NLM3D, CNN3D and RED-WGAN on T1w, T2w and PDw images 

with different noise levels from 1% to 15% with a step of 2% are illustrated in Tables 1-3. The performances on all metrics 

of the DL-based methods are significantly superior to traditional denoising algorithms, such as BM4D and PRI-NLM3D. 

For T1w images, the scores of RED-WGAN are close to CNN3D when the noise level is less than 7%. While the noise 

level increases, RED-WGAN yields a better performance than the other methods. For T2w images, the results of RED-

WGAN are slightly better than all the other methods in most noise levels. In Table 3, the differences are trivial, but the 

results of CNN3D are slightly better than those of RED-WGAN when the noise level is less than 11%. 

https://github.com/Deep-Imaging-Group/RED-WGAN
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Table 1 

From top to bottom, the PSNR, SSIM and IFC measures of different methods on T1w images with different noise levels 

 1% 3% 5% 7% 9% 11% 13% 15% 

Noise 
39.2092 
0.8325 
6.9618 

29.2209 
0.6007 
3.8510 

24.6349 
0.4964 
2.7399 

21.6248 
0.4242 
2.1268 

19.3978 
0.3667 
1.7276 

17.6280 
0.3186 
1.4405 

16.1530 
0.2771 
1.2262 

14.8845 
0.2417 
1.0577 

BM4D 
43.7217 
0.9832 
7.3469 

37.3037 
0.9393 
4.6026 

34.5095 
0.9034 
3.6226 

32.6762 
0.8926 
3.0635 

31.3338 
0.8798 
2.6889 

29.7973 
0.8622 
2.3640 

28.1597 
0.8417 
2.0850 

25.9018 
0.8126 
1.8054 

PRI-NLM3D 
42.5101 
0.9601 
6.9492 

36.7709 
0.9357 
4.4683 

33.8254 
0.8854 
3.4591 

31.3052 
0.7830 
2.8532 

29.4420 
0.7432 
2.4492 

27.9812 
0.6767 
2.1196 

26.8905 
0.6816 
1.8879 

26.3974 
0.6664 
1.6662 

CNN3D 
44.7101 

0.9867 

7.6368 

38.4564 

0.9542 

4.9561 

35.8638 

0.9293 

4.0391 

33.6071 

0.9091 

3.2551 

32.7940 
0.9005 
3.0046 

31.4896 
0.8927 

2.6684 

29.9069 
0.8659 
2.1961 

28.6901 
0.8525 
2.0109 

RED-WGAN 
44.4336 
0.9806 
7.5411 

36.5281 
0.9205 
4.5158 

34.4664 
0.8957 
3.7543 

33.0387 
0.8957 
3.2673 

33.0367 

0.9021 

3.0780 

32.1459 

0.8927 

2.8640 

30.5995 

0.8779 

2.4169 

29.5566 

0.8679 

2.1702 

 

Table 2 

From top to bottom, the PSNR, SSIM and IFC measures of different methods on T2w images with different noise levels. 

 1% 3% 5% 7% 9% 11% 13% 15% 

Noise 
39.4202 
0.8608 
7.3619 

29.3326 
0.6026 
3.9930 

24.7211 
0.4751 
2.8271 

21.7165 
0.3915 
2.1905 

19.4976 
0.3304 
1.7797 

17.7243 
0.2816 
1.4861 

16.2557 
0.2417 
1.2607 

14.9919 
0.2093 
1.0919 

BM4D 
44.0309 
0.9758 
7.7125 

37.7481 
0.9238 
4.7985 

34.8165 
0.8856 
3.7447 

32.5272 
0.8582 
3.0918 

30.1290 
0.8222 
2.6203 

28.0781 
0.7935 
2.2847 

24.6566 
0.7315 
1.9444 

20.7909 
0.6267 
1.6280 

PRI-NLM3D 
43.1845 
0.9615 
7.4173 

37.2417 
0.9320 

4.6000 

33.9030 
0.8494 
3.5335 

31.3343 
0.7550 
2.9057 

30.0204 
0.7380 
2.4820 

28.1753 
0.6749 
2.1621 

26.4021 
0.6005 
1.9017 

26.0070 
0.6042 
1.6926 

CNN3D 
44.9166 
0.9757 
7.8464 

38.5515 
0.9210 
5.0305 

36.2237 
0.8972 
4.1207 

34.4047 
0.8833 
3.5154 

33.0077 
0.8657 
3.0997 

31.9171 
0.8511 
2.8026 

30.7051 
0.8274 
2.4815 

29.9941 

0.8197 

2.2502 

RED-WGAN 
44.9592 

0.9769 

7.8499 

38.5799 

0.9223 
5.0346 

36.2267 

0.8972 

4.1170 

34.5710 

0.8838 

3.5556 

33.0959 

0.8672 

3.1483 

31.9171 

0.8511 

2.8026 

30.7556 

0.8294 

2.4974 

29.7998 
0.8181 
2.2272 

 

Table 3 

From top to bottom, the PSNR, SSIM and IFC measures of different methods on PDw images with different noise levels 

 1% 3% 5% 7% 9% 11% 13% 15% 

Noise 
39.3873 
0.8536 
6.7055 

29.3073 
0.5840 
3.6066 

24.6963 
0.4510 
2.5488 

21.6903 
0.3668 
1.9745 

19.6796 
0.3128 
1.6429 

17.6862 
0.2620 
1.3399 

16.2160 
0.2262 
1.1451 

14.9550 
0.1970 
0.9948 

BM4D 
44.7089 
0.9787 
7.1283 

38.6318 
0.9266 
4.4597 

36.0036 
0.8898 
3.5642 

34.2296 
0.8703 
3.0383 

32.6456 
0.8547 
2.6771 

30.9293 
0.8342 
2.3371 

29.0103 
0.8124 
2.0549 

26.3797 
0.7857 
1.8061 

PRI-NLM3D 
43.8139 
0.9721 
6.8131 

37.6367 
0.9058 
4.2496 

34.5373 
0.8520 
3.2572 

32.4614 
0.8131 
2.6843 

31.2401 
0.7900 
2.3273 

29.3602 
0.7250 
1.9870 

28.3420 
0.6946 
1.7431 

27.333 
0.6606 
1.6410 

CNN3D 
45.7124 
0.9839 

7.2873 

39.8149 
0.9447 

4.7514 

37.1052 

0.8966 

3.8276 

34.9915 

0.8739 

3.2373 

33.6963 

0.8559 

2.8932 

33.0781 

0.8549 

2.6220 

31.5944 

0.8319 

2.2493 

30.5857 

0.8037 
2.1192 

RED-WGAN 
45.7125 

0.9836 
7.2848 

39.8201 

0.9452 
4.7519 

37.1031 
0.8965 
3.8251 

34.9867 
0.8738 
3.2014 

33.6870 
0.8556 
2.8747 

33.0561 
0.8546 
2.6078 

31.3285 
0.8154 
2.2788 

31.5303 

0.8197 

2.3422 
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Fig. 4. One denoised T1w example from the testing set with 15% Rician noise. (a) Noise-free image, (b) Noisy image, (c) BM4D, (d) PRI-NLM3D, (e) 

CNN3D, (f) RED-WGAN, (g) Residual of BM4D, (h) Residual of PRI-NLM3D, (i) Residual of CNN3D, (j) Residual of RED-WGAN. 

(a) (b) (c) 

(d) (e) (f) 

(f) (h) (i) (j) 
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Fig. 5. One denoised T2w example from the testing set with 15% Rician noise. (a) Noise-free image, (b) Noisy image, (c) BM4D, (d) PRI-NLM3D, (e) 

CNN3D, (f) RED-WGAN, (g) Residual of BM4D, (h) Residual of PRI-NLM3D, (i) Residual of CNN3D, (j) Residual of RED-WGAN. 

 

Table 4 

Quantitative results associated with different methods for Figs. 4(T1w), 5(T2w) and 6(PDw). 

Method 
 T1w  T2w  PDw Average 

 Execution Time  
 PSNR SSIM IFC  PSNR SSIM IFC  PSNR SSIM IFC 

Noise  14.7437 0.2603 1.0887  14.6613 0.1797 0.9352  14.2264 0.2164 1.0564  

BM4D  27.0763 0.8354 2.1528  22.9486 0.7173 1.5034  25.7049 0.7776 1.7739 5.73 

PRI-NLM3D  28.2652 0.7901 2.0454  26.0788 0.5612 1.2938  26.3631 0.6897 1.4646 4.16 

CNN3D  29.1561 0.8742 2.2831  29.8515 0.8254 1.9280  28.3651 0.7893 2.1017 0.17 

RED-WGAN  30.0584 0.8892 2.4639  29.9575 0.8351 1.9467 

.1.868 

 31.1590 0.8624 2.6937 0.16 

 

(a) (b) (c)

) 

(d) (e) (f) 

(g) (h) (i) (j) 
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Fig. 6. One denoised PDw example from the testing set with 15% Rician noise. (a) Noise-free image, (b) Noisy image, (c) BM4D, (d) PRI-

NLM3D, (e) CNN3D, (f) RED-WGAN, (g) Residual of BM4D, (h) Residual of PRI-NLM3D, (i) Residual of CNN3D, (j) Residual of RED-WGAN. 

 

Figs. 4-6 provide a visual evaluation of the different results for T1w, T2w and PDw brain images selected from 

the Hammersmith Hospital dataset in the testing set and corrupted with 15% Rician noise. All of the methods can 

suppress noise to varying degrees. However, BM4D and PRI-NLM3D suffer from obvious oversmoothing effects and 

distort some important details, which can be better sensed in Figs. 5 and 6. Both RED-WGAN and CNN3D efficiently 

avoid oversmoothing and preserve more structural details than BM4D and PRI-NLM3D. RED-WGAN outperforms 

CNN3D in noise suppression and obtains the most consistent results with respect to the reference images. The quantitative 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) (j) 
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results from different methods for Figs. 4-6 are summarized in Table 4. The results suggest that RED-WGAN achieved the 

best performance in terms of PSNR, SSIM and IFC on all the modalities, which is consistent with the visual inspection. 

Although the quantitative results of RED-WGAN and CNN3D are similar, the visual effect of RED-WGAN is significantly 

better than CNN3D in the enlarged regions. This benefit is due to the introduction of WGAN and the combined loss function, 

which can efficiently generate results that are closer to the original data distribution. In Table 4, we also demonstrate the 

running times for different methods. It is clear that CNN3D and our proposed RED-WGAN are much faster than other 

traditional methods. Once the deep learning-based method finishes training, forward propagation is very fast. 

To further demonstrate the robustness of the proposed RED-WGAN approach, the Guy’s Hospital dataset, which is 

another subset of the IXI dataset, was included as the testing set. Figs. 7-9 show a denoised example in different modalities 

with different methods on the Guy’s Hospital dataset with 15% Rician noise. Table 5 summarizes the corresponding quan-

titative results. Although CNN3D and RED-WGAN were trained with a different training set, which has different scanning 

parameters to the testing set, we still obtained satisfactory results in Figs. 7-9. Most of the noise is efficiently removed, and 

the structural details are better preserved in the results from RED-WGAN. Some ROIs, indicated by red dotted boxes, were 

magnified to further demonstrate the differences produced by different methods. It can be noted that RED-WGAN main-

tains the details better than other methods, which lose the details to varying degrees. Furthermore, DL-based methods 

demonstrate a robust performance for the datasets obtained with different scanners and scanning parameters. 

 

2）Simulated results 

One representative T1w result with 9% Rician noise from the BrainWeb dataset is shown in Fig. 10. In Fig. 10, all 

the methods can eliminate most of the noise, but in the residual images, BM4D lost part of the structural details. From the 

enlarged regions, it is clear that PRI-NLM3D and DL-based methods perform better than BM4D in terms of structure 

preservation. Meanwhile, RED-WGAN obtains the best scores in all the metrics, even though the model was trained with 

clinical data. 
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Fig. 7. One denoised T1w example from the Guy’s Hospital dataset with 15% Rician noise. (a) Noise-free image, (b) Noisy image, (c) BM4D, (d) PRI-

NLM3D, (e) CNN3D, (f) RED-WGAN, (g) Residual of BM4D, (h) Residual of PRI-NLM3D, (i) Residual of CNN3D, (j) Residual of RED-WGAN 

  

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) (j) 
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Fig. 8. One denoised T2w example from the Guy’s Hospital dataset with 15% Rician noise. (a) Noise-free image, (b) Noisy image, (c) BM4D, (d) 

PRI-NLM3D, (e) CNN3D, (f) RED-WGAN, (g) Residual of BM4D, (h) Residual of PRI-NLM3D, (i) Residual of CNN3D, (j) Residual of RED-WGAN. 

 

Table 5 

Quantitative results associated with different method outputs for Figs. 7 (T1w), 8 (T2w) and 9 (PDw) 

Method 
 T1w  T2w  PDw 

 PSNR SSIM IFC  PSNR SSIM IFC  PSNR SSIM IFC 

Noise  14.5527 0.3020 1.2473  14.2563 0.2183 1.1340  14.1508 0.1874 1.0456 

BM4D  24.3476 0.8279 2.1817  24.4251 0.7949 1.9152  27.5299 0.8525 1.5781 

PRI-NLM3D  25.1755 0.7701 1.7740  23.5693 0.6480 1.4618  28.5738 0.6984 1.3268 

CNN3D  26.2868 0.8372 2.1055  25.1037 0.8211 2.1484  30.4959 0.8611 1.9326 

RED-WGAN  27.1845 0.8645 2.2909  25.0004 0.8174 2.1295  30.2283 0.8323 1.9430 

 

  

(a) (b) (c) 

(g) (h) (i) (j) 

(d) (e) (f) 
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Fig. 9. One denoised PDw example from the Guy’s Hospital dataset with 15% Rician noise: (a) Noise-free image, (b) Noisy image, (c) BM4D, (d) PRI-

NLM3D, (e) CNN3D, (f) RED-WGAN, (g) residual of BM4D, (h) residual of PRI-NLM3D, (i) residual of CNN3D, (j) residual of RED-WGAN. 

  

(a)  (b)  (c)  

 (d)  (e)  (f) 

 (g)  (h)  (i)  (j) 
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Fig. 10. One denoised T1w example from the BrainWeb dataset with 9% Rician noise. (a) Noise-free image, (b) Noisy image (PSNR

=24.0697, SSIM=0.5847, IFC=2.8367), (c) BM4D (PSNR=30.2730, SSIM=0.9335, IFC=3.3105), (d) PRI-NLM3D (PSNR=32.4518, SSIM=0.8

099, IFC=3.6819), (e) CNN3D (PSNR=34.2789, SSIM=0.9665, IFC=4.0195), (f) RED-WGAN (PSNR=34.7432, SSIM=0.9706, IFC=4.1887) 

(g) Residual of BM4D, (h) Residual of PRI-NLM3D, (i) Residual of CNN3D, (j) Residual of RED-WGAN. 

 

 

(a)  (b)  (c) 

 (d)  (e)  (f) 

 (g)  (h)  (i)  (j) 
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 (a) (b) (c)  

 

   

 

 (d) (e) (f)  

Fig. 11. One denoised T1w example from the testing set with 15% Rician noise. (a) Noise-free image, (b) Noisy image, (c) WGAN-MSE, 

(d) RED-WGAN, (e) Residual of WGAN-MSE, (f) Residual of RED-WGAN. 

 

 

   

 

 (a) (b) (c)  

 

   

 

 (d) (e) (f)  

Fig. 12. One denoised T2w example from the testing set with 15% Rician noise. (a) Noise-free image, (b) Noisy image, (c) WGAN-MSE, 

(d) RED-WGAN, (e) Residual of WGAN-MSE, (f) Residual of RED-WGAN. 
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 (a) (b) (c)  

 

   

 

 (d) (e) (f)  

Fig. 13. One denoised PDw example from the testing set with 15% Rician noise. (a) Noise-free image, (b) Noisy image, (c) WGAN-MSE, 

(d) RED-WGAN, (e) Residual of WGAN-MSE, (f) Residual of RED-WGAN. 

 

Table 6 

Quantitative results associated with different method outputs in Figs. 11 (T1w), 12 (T2w) and 13 (PDw). 

Method 
 T1w  T2w  PDw 

 PSNR SSIM IFC  PSNR SSIM IFC  PSNR SSIM IFC 

Noise  15.0129 0.2698 1.2038  15.0275 0.2108 1.0588  14.6892 0.1966 1.0953 

WGAN-MSE  28.9253 0.8280 2.1799  26.7390 0.7212 1.8081  31.7060 0.8449 2.2641 

RED-WGAN  29.8372 0.8743 2.2834  29.3393 0.8156 1.9494  32.2121 0.8309 2.4691 

 

3）Impact of perceptual loss 

In this section, to sense the impact of perceptual loss, we compare RED-WGAN with the variant that has the same 

structure as RED-WGAN but with only the MSE loss, and we denote it as WGAN-MSE. Figs. 11-13 show examples of 

denoising results with both RED-WGAN and WGAN-MSE on T1w, T2w and PDw images, respectively. From the results, 

it can be observed that the noise in WGAN-MSE is not well suppressed, and some structures are blurred. On the other hand, 

RED-WGAN eliminates most of the noise and preserves the structural details better than WGAN-MSE. In Fig. 13, the 

blood vessel marked by the red arrows is very hard to identify, but RED-WGAN preserves it. Table 6 shows the quantitative 

results for Figs. 11-13. Table 6 shows that RED-WGAN outperforms WGAN-MSE in most cases, which is consistent with 

the visual results. 
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3.5 Robustness Analysis 

For the results shown in the previous section, the proposed RED-WGAN model was trained and tested with images 

with identical noise levels, which is a difficult requirement to meet in practice. Meanwhile, although the proposed model 

was validated by different datasets with various scanners and scanning parameters, the noise in these images was simulated, 

which may be different from real situations. To validate the robustness of the proposed model under these two scenarios, 

additional experiments were performed. All the models used in this section were also trained with the Hammersmith dataset. 

1) Comparisons with the Special Model on Various Noise Levels 

To show the robustness of RED-WGAN for various noise levels, three RED-WGAN models were trained with differ-

ent noise levels: 1%, 9% and 15%. We denote these models as RED-WGAN-n, where n indicates the corresponding noise 

level. Meanwhile, the same model denoted as RED-WGAN-m was trained with a mix of noise levels, which ranged from 

1% to 19% with a step of 2%. These four models were tested on the images from the Hammersmith dataset with various 

noise levels. The quantitative results are shown in Table 7. We denote the best results in red and the second best in blue. It 

is clear that RED-WGAN-m is superior to the other methods in most situations, which means that for real clinical applica-

tions without prior knowledge about the noise level, training the DL model with a mix of possible noise levels is one of the 

potential solutions. The performance of RED-WGAN-m is slightly worse than traditional methods at a low noise level 

(1%). The possible reason is that when simultaneously training with higher noise levels, the risk that the network may 

mistreat the noise as details from a low noise level is increased. 

It also can be observed that the model RED-WGAN-n trained with a single noise level of n% can efficiently cover a 

certain noise range. For example, RED-WGAN-9, which was trained with a 9% noise level, has better scores on the testing 

set with 7% to 13% noise levels. This can also be seen as solid evidence for the generalization and robustness of our model, 

as most traditional methods also need to adjust the parameters to fit the different noise levels. 

 

2) Real MR data 

The propose of this subsection is to verify the effectiveness of the proposed model on real noisy clinical data. The 

experiments were conducted on two brain MR image volumes, which belong to a human being and a mouse, respectively. 

The human brain image was acquired on a Siemens (Erlangen, Germany) Trio Tim 3T scanner using an MP-RAGE se-

quence with TR=2400 ms, TE=2.01 ms, TI=1000 ms, flip angle=8, voxel resolution=0.8×0.8×0.8 mm3 and 256×256×

224 voxels. The mouse brain image was acquired on a Bruker BioSpec 7T scanner using a 3D RARE sequence with a 

TR=1200, an effective TE=62.5 ms, a RARE factor=16, a voxel resolution=0.1×0.1×0.1 mm3 and 225×192×96 voxels. 
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Due to the lack of knowledge about the noise level in the real data, we experimentally selected RED-WGAN models trained 

with 1% and 4% noise for human and mouse data, respectively. Since ground truth images are unavailable, the SNR was 

measured in a homogeneous region and used as the quantitative metric. The results are shown in Figs. 14 and 15. In Fig. 

14, it is clear that the traditional methods cannot eliminate all the noise in the brain, especially in the epencephalon and 

brainstem, but RED-WGAN can efficiently suppress most of the noise, even near the epencephalon and brainstem, which 

are indicated by red arrows. It is noted that a certain level of noises in homogeneous areas can be noticed in Fig. 14(d). In 

Fig. 15, the noise is much heavier than Fig. 14. All the methods can remove most of the noise, but the results of BM4D and 

PRI-NLM3D look oversmoothed, and RED-WGAN obtained better visual effects and preserved more details. Furthermore, 

RED-WGAN obtained a better SNR in both cases. 

 

Table 7 

From top to bottom, the PSNR, SSIM and IFC measures of special methods on T1w images with different noise levels 

 1% 3% 5% 7% 9% 11% 13% 15% 17% 19% 

Noise 
39.2102 
0.8324 
6.9754 

29.222 
0.6008 
3.8463 

24.6338 
0.4965 
2.7421 

21.6303 
0.4241 
2.1253 

19.3947 
0.3662 
1.7185 

17.6232 
0.3181 
1.4412 

16.1494 
0.2771 
1.2245 

14.8897 
0.2417 
1.0575 

13.7963 
0.2114 
0.9228 

12.8121 
0.1849 
0.8107 

PRI-NLM3D 
42.3523 
0.9597 
6.8742 

36.6855 

0.9211 
4.4655 

33.8387 
0.8906 
3.4645 

31.4226 
0.8116 
2.8561 

29.9465 
0.7784 
2.4292 

28.3322 
0.7244 
2.1327 

27.4751 
0.6940 
1.8660 

25.9823 
0.6529 
1.6781 

25.5629 
0.6540 
1.5103 

24.0545 
0.5917 
1.3814 

BM4D 
43.7217 

0.9832 

7.3469 

37.3037 

0.9393 
4.6026 

34.5095 

0.9034 

3.6226 

32.6762 

0.8926 

3.0635 

31.3338 
0.8798 
2.6889 

29.7973 
0.8622 

2.3640 

28.1597 
0.8417 
2.0850 

25.9018 
0.8126 
1.8054 

23.1987 
0.7727 

1.5234 

21.1881 
0.7320 

1.3300 

RED-WGAN-1 
44.5211 

0.9804 

7.5668 

32.0828 
0.6716 
4.1701 

26.1881 
0.5358 
2.9079 

22.6619 
0.4527 
2.2258 

20.1564 
0.3893 
1.7858 

18.227 
0.3375 
1.4899 

16.6428 
0.2936 
1.2609 

15.3077 
0.2560 
1.0856 

14.1590 
0.2236 
0.9452 

13.1323 
0.1954 
0.8287 

RED-WGAN-9 
31.2806 
0.8746 
2.9934 

31.4654 
0.8711 
3.0662 

31.7522 
0.8726 
3.1033 

32.2856 
0.8828 
3.1022 

33.0640 

0.9009 

3.1470 

31.1793 

0.8392 
2.6533 

28.1836 
0.6572 
2.2611 

24.9473 
0.5206 
1.8946 

22.1897 
0.4296 
1.5957 

19.9061 
0.3664 
1.3478 

RED-WGAN-15 
25.5915 
0.8041 
1.8390 

26.0521 
0.7978 
2.0015 

26.5919 
0.7946 
2.0015 

27.2255 
0.7996 
2.1009 

27.9520 
0.8108 
2.1997 

28.7735 
0.8276 
2.2984 

29.5500 

0.8446 

2.3404 

29.6708 

0.8212 

2.2839 

28.3798 

0.7129 
2.0773 

25.7872 

0.5747 
1.8279 

RED-WGAN-m 
41.5200 
0.9495 
6.8936 

36.1271 
0.9298 

4.4793 

33.9343 

0.9053 

3.6446 

33.3728 

0.9066 

3.3569 

32.8044 

0.9031 

3.1052 

32.4096 

0.8995 

2.9320 

31.9193 

0.8958 

2.7547 

31.1414 

0.8849 

2.5607 

29.9954 

0.8556 

2.3460 

28.2576 

0.8044 

2.0864 

 

4 Discussions and Conclusions 

In this paper, we propose a novel method based on the Wasserstein generative adversarial network to remove the 

Rician noise in MR images while effectively preserving the structural details. This network aims to process 3D volume 

data using a 3D convolutional neural network. In addition to the introduction of the WGAN framework, there are two more 

advantages to our method: the innovative generator structure and mixed weighted loss function. The generator is con-

structed with an autoencoder structure, which symmetrically contains convolutional and deconvolutional layers, aided by 

a residual structure. Another improvement of our method is the adaptation of the mixed loss function, which combines the 
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MSE and perceptual losses with a weighted form. 

    

(a)Noisy 

(SNR=26.52 dB) 

(b)BM4D 

(SNR=27.41 dB) 

(c)PRI-NLM3D 

(SNR=27.00 dB) 

(d) RED-WGAN 

(SNR=28.34 dB) 

Fig. 14. Denoised result on real T1w human brain data. 

 

    

(a) Noisy 

(SNR=30.38 dB) 

(b)BM4D 

(SNR=37.62 dB) 

(c)PRI-NLM3D 

(SNR=39.00 dB) 

(d) RED-WGAN 

(SNR=39.41 dB) 

Fig. 15. Denoised result on real T1w mouse brain data. 

 

The experimental results demonstrate that with the help of WGAN and perceptual loss, the CNN-based method is 

significantly improved in both qualitative and quantitative aspects. Compared to several state-of-the-art methods, including 

BM3D, PRI-NLM3D and CNN3D, our proposed RED-WGAN effectively avoids oversmoothing effects while preserving 

more details. Furthermore, to validate the robustness and generalization of our model, we trained our model with several 

specific noise levels and tested it on various noise levels. Meanwhile, real noisy clinical data were involved. In both cases, 

the proposed RED-WGAN model achieved a performance better than the traditional methods in both visual effects and 

quantitative results. 

The computational cost of the deep learning-based method is worth mentioning. The training stage is the costliest 
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step. Although the training procedure is usually performed on the GPU, it is still time consuming. For our training set, 

when we alternatingly train the generator and discriminator networks, each epoch takes approximately 40 minutes. Alt-

hough other methods, such as BM4D and PRI-NLM3D, do not need to train, their running times are much longer than the 

DL-based methods. In this paper, the average execution times for the clinical dataset for BM4D, PRI-NLM3D, CNN3D 

and RED-WGAN were 5.73, 4.16, 0.17 and 0.16 s, respectively. In practice, the running time for DL-based methods can 

be further reduced by using GPU for testing. 

In conclusion, the results obtained in the paper are encouraging and efficiently demonstrate the potential of deep 

learning-based methods for MRI denoising. In the future, instead of training on a specific noise level, we will try to extend 

our method to a more general form for different noise levels. Furthermore, incorporating the image reconstruction method 

may be interesting. 
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