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Abstract 
 

The availability of large-scale annotated image datasets and recent advances in supervised deep learning methods 

enable the end-to-end derivation of representative image features that can impact a variety of image analysis problems. 

Such supervised approaches, however, are difficult to implement in the medical domain where large volumes of 

labelled data are difficult to obtain due to the complexity of manual annotation and inter- and intra-observer variability 

in label assignment. We propose a new convolutional sparse kernel network (CSKN), which is a hierarchical 

unsupervised feature learning framework that addresses the challenge of learning representative visual features in 

medical image analysis domains where there is a lack of annotated training data. Our framework has three 

contributions: (i) We extend kernel learning to identify and represent invariant features across image sub-patches in 

an unsupervised manner. (ii) We initialise our kernel learning with a layer-wise pre-training scheme that leverages the 

sparsity inherent in medical images to extract initial discriminative features. (iii) We adapt a multi-scale spatial 

pyramid pooling (SPP) framework to capture subtle geometric differences between learned visual features. We 

evaluated our framework in medical image retrieval and classification on three public datasets. Our results show that 

our CSKN had better accuracy when compared to other conventional unsupervised methods and comparable accuracy 

to methods that used state-of-the-art supervised convolutional neural networks (CNNs). Our findings indicate that our 

unsupervised CSKN provides an opportunity to leverage unannotated big data in medical imaging repositories.   

 

Keywords: Unsupervised Feature Learning, Medical Image Retrieval, Medical Image Classification, Kernel 

Learning. 

1. Introduction 
 

Medical imaging is now ubiquitous in modern healthcare because it provides invaluable data for patient diagnosis 

and management. Most current medical imaging data are digital and stored in vast imaging repositories. These 

repositories or archives provide new opportunities for evidence-based and computer-aided diagnosis, physician 

training and biomedical research (Litjens et al., 2017) (Kumar et al., 2013). Computer-aided diagnosis systems (CADs) 

can automatically analyse, categorise, and retrieve images, by relating low-level image features to high-level semantic 
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concepts or expert domain knowledge using machine learning approaches. These supervised approaches use prior 

knowledge derived from labelled training data and approaches, such as convolutional neural networks (CNNs) have 

produced impressive results in natural (photographic) image classification (Simonyan and Zisserman, 2014),(He et 

al., 2016),(Szegedy et al., 2015). CNNs learn image features in a hierarchical fashion. Each deeper layer of the network 

learns a representation of the image data that is high-level and semantically more meaningful. For example, in image 

classification, the learned features can be a class-specific representation (Le, 2013) to enable better discrimination 

between different image classes (Simonyan and Zisserman, 2014),(He et al., 2016). These CNNs require a large 

number of annotated training images, e.g., ImageNet with over 1 million natural images. Such large image datasets 

are scarce in the medical domain because the images can be difficult to interpret and image labelling / annotation is 

costly, tedious, slow, and subject to clinician inter- and intra-observer variability (Shin et al., 2013). 

  

Transfer learning was introduced to address the lack of large amounts of labelled medical image data through a 

model that was pre-trained on a different domain, e.g., natural images as a generic feature extractor, or through using 

a relatively small dataset of medical images to optimise a pre-trained model from a different domain, i.e., fine-tuning 

(Kumar et al., 2017),(Tajbakhsh et al., 2016),(Shin et al., 2016),(Bi et al., 2017). Unfortunately, both approaches rely 

on general image features derived from a different domain and they are unable to capture the high-level semantic 

features, which are most relevant to a specific dataset. As a result, they have inferior accuracy when compared to 

approaches that learn image features directly from large, specific annotated data. An alternative approach is to use 

unsupervised feature learning algorithms to build features from unlabelled data,  which then allows unannotated image 

archives to be used (Lee et al., 2006),(Hinton et al., 2006),(Nair and Hinton, 2010),(Le, 2013),(Erhan et al., 

2010),(Romero et al., 2016). Many of these methods, however, have only shown strong performance in learning low-

level features such as ‘lines’ or ‘edges’ (Lee et al., 2006),(Hinton et al., 2006),(Nair and Hinton, 2010),(Le, 2013). 

Many unsupervised methods were used to pre-train a model that was later coupled to a supervised learning stage, i.e., 

the unsupervised component was used as a pre-training phase to derive useful priors that acted as an initialisation point 

for the supervised fine-tuning (Erhan et al., 2010),(Romero et al., 2016). Thus the onus was on the supervised phase 

to learn high-level and semantically meaningful image features. Our aim was to derive a framework that enables 

learning semantically meaningful image features in a completely unsupervised fashion.  

 

1.1 Related work 
 

Many unsupervised feature learning approaches are based on sparse coding (Lee et al., 2006), sparse auto-

encoders (Hinton et al., 2006), and Restricted Boltzmann Machines (RBMs) (Nair and Hinton, 2010) and are limited 

to learning and extracting low-level features. Only a few methods, such as the stacked sparse autoencoder (SSAE) 

reported by Le et al, where the SSAE pre-trained a model was coupled to supervised deep learning (i.e., fine tuning), 

have been able to extract semantic high-level features. Highly non-linear and non-parametric models are crucial to 

unsupervised feature learning algorithms (Song et al., 2018). Kernel learning is a natural approach to derive non-linear 

models via a similarity function in a reproducing kernel Hilbert space (RKHS) (Zhuang et al., 2011). Machine learning 

techniques have been adapted to a RKHS and have improved performance in object recognition and clustering 

(Thiagarajan et al., 2014). Recently, deep learning architectures have been used for kernel learning (Mairal et al., 2014; 

Song et al., 2018) with state-of-the-art performance in natural image classification (Mairal et al., 2014) and retrieval 

(Paulin et al., 2015). These architectures learned data representations in a RKHS and a non-linear hierarchical manner, 

but they are prone to overfitting (the learning cost function often gets stuck in local minima) when the training data 

are small.  

The concept of sparsity is widely used in computer vision and has proven effective in image compression (Skodras 

et al., 2001), denoising (Buades et al., 2005), tomographic reconstruction, segmentation (Ahn et al., 2015; Ahn et al., 

2017; Zhang et al., 2012), and classification (Ahn et al., 2016; Jiang et al., 2011). Sparsity can be used to derive 

compact and optimal representations of image data, where trivial information or parameters can be ignored without 

compromising image quality or characteristics (Leahy and Byrne, 2000). Recently, sparsity-based CNNs have been 

also applied to supervised deep learning approaches to reduce the number of parameters in the architecture (Graham 

et al., 2018; Graham and van der Maaten, 2017; Liu et al., 2015; Liu et al., 2018). (Liu et al., 2015) were able to reduce 

90% of the parameters in dense CNNs that then provided a marked in improvement in computational speed. It has 
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been shown that in medical image data, feature representations have an intrinsic sparse structure under certain fixed 

bases (e.g., Fourier) (Li et al., 2012; Lustig et al., 2007). Lustig et al., (2007) improved temporal resolution of magnetic 

resonance (MR) imaging by adding a sparsity constraint; this step then allowed the development of a number of novel 

CADs in cardiac and brain imaging. This intrinsic sparsity often comes in two complementary forms (Willmore and 

Tolhurst, 2001): population and lifetime sparsity. Population sparsity refers to the activation of small subsets of the 

bases (i.e., a sparse set of the population) to encode different information; only a small subset of the coding outputs 

(feature maps or bases) are active for any given stimulus (input images), and different subsets are active for different 

stimuli. This ensures that the activation of different bases is a discriminator for different image data. In contrast, 

lifetime sparsity refers to the short frequency of activation of bases for different inputs (i.e., each base has a sparse 

lifetime); different bases are active very rarely and each activation has a high response. This ensures that the strong 

rare activations are indicators for higher degrees of information (the higher the information, the higher the entropy) in 

the underlying image data. Motivated by these findings, we suggest that incorporating sparsity into layerwise 

unsupervised pre-training will allow the extraction of more discriminative features for medical image data. Sparse 

pyramid pooling (SPP) can represent the spatial layout of image features by partitioning the image into multi-level 

regions and aggregating local features (Lazebnik et al., 2006). SPP has been successfully applied to image 

classification (Yang et al., 2009), (Wang et al., 2010) and object detection (Van de Sande et al., 2011).  

 

1.2. Contribution 
 

We have designed an unsupervised deep learning framework to learn semantic high-level features from unlabelled 

medical images, which we refer to as the Convolutional Sparse Kernel Network (CSKN), to address the challenge of 

learning representative visual features in medical image analysis where there is a lack of annotated training data. Our 

CSKN derives a kernel space for modelling image similarity that is constrained by the inherent image sparsity and the 

local geometric properties of distinct classes. Since our CSKN represents images in a kernel space it can derive features 

that are highly non-linear in a non-parametric manner, which is crucial for unsupervised feature learning (Song et al., 

2018). Furthermore, the derived kernel space depicts a stronger discriminative local semantic representation of the 

imaging data by ignoring trivial or redundant parameters (Leahy and Byrne, 2000). The main contributions of our 

work are: 

 

1) a new approach to characterise medical images by combining kernel learning and CNNs to learn invariant 

local features in a hierarchical manner; 

 

2) an unsupervised convolutional sparse feature learning algorithm that effectively learns initial discriminative 

features in a RKHS; 

 

3) initialising the weights of a kernel network that can then be pre-trained in a layer-wise fashion and,  

 

4) incorporating a SPP framework that provides more discriminative and geometrically invariant local feature 

representations of medical image data.  

 

The remainder of paper is organised as follows: a) materials used in this paper and proposed framework are 

introduced in Section 2; b) details of the implementation and experimental setup are described in Section 3; c) 

evaluation of the framework in comparison to different methods is provided in Section 4; d) we discuss our findings, 

limitations and future work in Section 5 and, e) we summarise the work in Section 6. 

 

2. Material and methods 
 

2.1 Datasets 
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2.1.1 IRMA X-ray dataset 

 

The Image Retrieval in Medical Application (IRMA) dataset comprises 14,410 gray-scale X-ray images with 193 

hierarchical classes (Lehmann et al., 2004),(Lehmann et al., 2003). The IRMA dataset contains images with irregular 

contrast, brightness, and artifacts, with high intra-class variability and inter-class similarity. We used the standard pre-

defined training set of 12677 images and test set of 1733 images (Lehmann et al., 2003). The images were annotated 

according to the IRMA coding system with four different axes, as described by (Lehmann et al., 2003): 1) a technical 

code that describes imaging modality, 2) a directional code for imaging orientation, 3) an anatomical code for body 

region examined, and 4) a biological code for biological system examined. Fig 1 illustrates a sample X-ray image and 

the corresponding labels from the IRMA code. 

 

 

 
 

IRMA Code 1121-420-212-700 

Technical Code 
X-ray, Plain radiography, 

Overview Image 

Directional Code 
Other orientation, 

occipitofrontal 

Anatomical Code Facial cranium, eye area 

Biological Code Musculoskeletal system 

Fig 1. A sample X-ray image (Face) and the corresponding labels from IRMA code. 

 

2.1.2 ImageCLEF dataset 

 

We used the medical Subfigure Classification dataset used in the Image Conference and Labs of the Evaluation 

Forum (ImageCLEF) 2016 competition (García Seco de Herrera et al., 2016; Villegas et al., 2016). We used the 

standard pre-defined training set of 6776 images and test set of 4166 images from 30 different image modalities. 

Ground truth annotations are available for both image datasets. While a multitude of different types of images have 

been collected to assist in the development of more advanced CADs, the labelling of the collated image data remains 

problematic (Müller et al., 2007),(Müller et al., 2008),(Müller et al., 2010),(Müller et al., 2012). In cases where 

appropriate labels are absent, automatic identification of the imaging modality is an initial important step because the 

semantics and content of an image can vary greatly depending on the modality.  

 

2.1.3 ISIC dataset 

 

    We used the skin diseases classification dataset from the International Skin Imaging Collaboration (ISIC) 2017 

competition (Codella et al., 2018). The dataset is a clinical dataset and contains 2000 training images and 600 test 

images with 3 different diagnoses of skin lesions (benign nevus, seborrheic keratosis, and melanoma). Ground 

annotations were obtained from expert clinicians as well as pathology reports. The clinical dermoscopy images in this 

dataset have complex and diverse image characteristics for the important challenge of recognising different skin 

conditions.  
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2.2  Methods 
 

2.2.1 Overview of the CSKN framework 

 

      Fig 2 is an overview of our CSKN framework. We first used a kernel map to represent the local features of medical 

image data. Then, as a pre-training step, we learned convolutional sparse features in a RKHS as a starting point of 

convolutional kernel learning. We then learned a multi-layer kernel network in a feedforward manner. Finally, we 

applied SPP to extract a final image representation that captures subtle and discriminative geometric variations.  

 

Fig 2. Our proposed framework. 

 

2.2.2 Background: convolutional neural networks (CNNs) 

 

CNN layers generally have: 1) convolutional layers to learn weights (i.e., filters) that can be used to extract features 

from the input; 2) a linear operation followed by a pointwise non-linearity such as the sigmoid function or rectified 

linear units and, 3) pooling layers to aggregate features that are in spatial proximity (down-sampling the data in the 

process). The output of single layer CNN can be represented as:  
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𝑓(𝐎) =  𝑝𝑜𝑜𝑙𝑝(𝜎(W⨂𝐎 + b)),                       (1) 

 

where 𝐎 is the input feature map, σ(∙) is the pointwise non-linear function, and 𝛉 = {W, b} are the set of parameters 

(i.e., weights and biases). The 𝑝𝑜𝑜𝑙 function denotes a down-sampling operation and 𝑝 is the size of pooling region. 

The symbol   indicates the linear convolution. When a convolutional layer is dense and unstructured, it is called 

“fully connected”. For example, the well-established AlexNet (Krizhevsky et al., 2012) CNN has 8 trainable layers 

comprising five convolutional layers followed by three fully connected layers. Training such a CNN, however, is 

challenging because of the number of hyperparameters that need to be carefully tuned. Some major hyperparameters 

include the size of learnable filters, the number of layers, the number of outputs per layer, and the size of the down-

sampling factor. Sub-optimal hyperparameter choice leads to overfitting and an inability to derive optimal high-level 

semantic image features. Some supervised CNNs have exploited unsupervised layerwise pre-training schemes to 

render better generalisation of image data (Le, 2013),(Romero et al., 2016). The pre-training acts as a form of 

regularisation which minimises variance and restricts the range of the parameter values for subsequent supervised 

training (Erhan et al., 2010). Layerwise unsupervised pre-training allows all the available unlabelled image data to be 

used to pre-train the network’s local parameters, which potentially provides a good initialisation point for further 

supervised training. 

 

2.2.3 Combining kernel learning with CNNs 

 

    Our CSKNs have the classic hierarchical architecture of CNNs but use kernel maps to represent image features. A 

kernel map is used to understand the local geometry of the image data by modelling invariance (Mairal et al., 2014). 

We suggest that kernels coupled with a hierarchical architecture allow the effective learning of image features without 

a reliance on labels. The architecture of a two-layer CSKN is shown in Fig 3. Let us consider two image patches 𝑂 

and 𝑂′of an image of size 𝑚 ×  𝑚 (𝑚 = 200 in this paper), with Ω being a set of pixel coordinates (Ω = {1, … 𝑚}2). 

Given the locations 𝑧 and 𝑧′ in Ω, let 𝑠𝑧 ∈ 𝑂and 𝑠𝑧
′ ∈ 𝑂′ be sub-patches of the image feature map, we define a single 

layer convolutional kernel network as follows (Mairal et al., 2014):  

 

     𝐾(𝑂, 𝑂′) = ∑ ‖𝑠𝑧‖ℋ‖𝑠𝑧
′‖ℋ𝑒

−
1

2𝛽2‖𝑧−𝑧′‖
2

2

𝑒
−

1

2𝛼2‖𝑠̃𝑧−𝑠̃𝑧
′‖

ℋ

2

𝑧,𝑧′∈Ω .     (2) 

 

where ‖∙‖ℋ denotes the Hilbertian norm. The kernel 𝐾 is a positive definitive kernel that consists of a sum of pairwise 

comparisons between image features of sub-patches. The term ‖𝑠𝑧‖ℋ‖𝑠𝑧
′‖ℋ  acts to emphasise the spatial and feature 

similarity (captured by the exponential terms) for non-small intensity-valued patches. The term 𝑒
−

1

2𝛽2‖𝑧−𝑧′‖
2

2

 captures 

spatial distance between 𝑧 and 𝑧′, and the term 𝑒
−

1

2𝛼2‖𝑠̃𝑧−𝑠̃𝑧
′‖

ℋ

2

 measures the feature similarity between sub-patches. 

These two terms work in conjunction with the Hilbertian norm terms to create a kernel that gives larger values for 

patches that are close in both space and intensity. We used two different types of input feature maps:  

 

1) Patch map: the sub-patch 𝑠𝑧 is an image sub-patch size 𝑏 × 𝑏 centred at 𝑧. The sub-patch 𝑠𝑧 is simply ℝ𝑏×𝑏 

and 𝑠̃𝑧 denotes a contrast-normalised version of the sub-patch. 

 

2) Gradient map: the sub-patch 𝑠𝑧 is the two-dimensional gradient of the image at pixel 𝑧, which is computed 

with first-order differences along each dimension. In this formulation, ‖𝑠𝑧‖ℋis the gradient intensity and 𝑠̃𝑧 

denotes its orientation defined as an angle with [cos 𝜃 , sin 𝜃] (Bo et al., 2010). When the input data is in a 

compact set (ℝ𝑑 , 𝑑 ≤ 2) , Equation (2) can be approximated by uniform sampling over a large enough set; the 

term 𝑒
−

1

2𝛽2‖𝑧−𝑧′‖
2

2

 indicates a spatial kernel and 𝑒
−

1

2𝛼2‖𝑠̃𝑧−𝑠̃𝑧
′‖

ℋ

2

 denotes the gradient map. 

The coefficients 𝛽 and 𝛼 are smoothing Gaussian kernel parameters that control spatial distances between  𝑧 and 𝑧′ 

and the feature closeness between 𝑠̃𝑧  and 𝑠̃𝑧
′  in the Hilbert space, respectively. The corresponding kernel map is 
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formalised as a weighted match kernel between all sub-patches from training samples that defines a feature 

representation of the image. 

 

Fig 3. A two-layer CSKN; each layer is a weighted match kernel between all sub-patches of the previous layer.  

 

2.2.4 Unsupervised feature learning via CSKNs 

 

Match kernels are expensive to compute when the input data has high dimensionality ( ℝ𝑑, 𝑑 > 2 ). The 

computational complexity also grows quadratically with increasing sample sizes. To prevent the curse of 

dimensionality, we used a fast approximation approach with finite-dimensional embedding proposed by (Mairal et al., 

2014). For all 𝑢 ∈ Ω1 and  𝑧 ∈ Ω: 

𝐾(𝑂, 𝑂′) ≈ ∑  𝑔(𝑢; 𝑂)𝑇𝑔(𝑢; 𝑂′) 𝑢∈Ω1
                    (3) 

 

𝑔(𝑢; 𝑂) ≔ ∑ 𝑒
−

1

2𝛽2‖𝑢−𝑧‖2
2

ℎ(𝑧; 𝑂)𝑧∈Ω                         (4) 

 

ℎ(𝑧; 𝑂) ≔ ‖𝑠𝑧‖2 [√b𝑖𝑒
−

1

𝛼2‖W𝑖−𝑠̃𝑧‖2
2

]
𝑖=1

𝑛1

   ,                    (5) 

 

where  Ω1 is a subset of Ω, 𝑛1 denotes number of filters, and b and W are learned parameters. This operation can be 

considered to be similar to a spatial convolution of the feature map followed by a pointwise non-linearity. Since 

𝐾(𝑂, 𝑂′)  is a sum of the match kernel terms, we can learn to approximate the kernel using training data. The 

parameters b and W are learned at the sub-patch level by solving an optimisation problem: 

 

min
W𝑖,b𝑖

∑ (𝑒
−

‖𝑠̃𝑐−𝑠̃𝑐
′ ‖2

2

2𝛼2 − ∑ b𝑖𝑒
−

‖W𝑖−𝑠̃𝑐‖
2
2

𝛼2𝑝
𝑖=1 𝑒

−
‖W𝑖−𝑠̃𝑐

′ ‖
2

2

𝛼2 )𝑛
𝑐=1 .  (6) 

 

We randomly selected 400,000 pairs of sub-patches from the training data and used the standard Limited memory 

Broyden Fletcher Goldfarb Shanno with Bounds (L-BFGS-B) (Byrd et al., 1995) optimiser to solve Equation (6) 

(Mairal et al., 2014). The L-BFGS-B requires less parameters and can be superior to the conjugate gradient (CG) or 

stochastic gradient descent (SGD) in many applications such as image classification (Ngiam et al., 2011). 

 

2.2.5 Initialisation of CSKN via layerwise unsupervised pre-training with sparsity 
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We formulated a layerwise unsupervised feature learning algorithm that efficiently enforces population and lifetime 

sparsity (EPLS) in a RKHS. Our approach learns convolutional sparse features in a RKHS, in contrast to Romero et 

al’s (2015) original EPLS algorithm that learns sparse features from decomposed raw image patches. The 

convolutional sparse features learned in the unified feature space are often more discriminative and therefore allow us 

to build more class-specific representations (Thiagarajan et al., 2014). Furthermore, the convolutional features learned 

by our method preserve the relationships between neighbourhood pixels so as to learn local structures and reduce 

redundancy in the parameters (Boureau and Cun, 2008; Romero et al., 2015). The learned parameters are used as 

initialisation points in CSKNs learning (i.e., the initial value of 𝛉 = {W, b} of each layer). The algorithm iteratively 

creates a layer-specific sparse target of the input data and optimises the dictionary by minimising the error between 

the output of the layer and the sparse target. The degree of sparsity is therefore controlled and learned differently at 

each layer. The parameters of the layer are then calculated as follows:  

 

                    𝛉𝑙 = arg min
𝛉𝑙

‖𝐎𝑙 − 𝐓𝑙‖ℋ
2 ,       (7) 

 

where 𝐎𝑙 ∈ ℛN𝑏×Nℎ are the data vectors in RKHS, which are represented as a weighted combination of the training 

samples used to construct the kernel matrix at layer 𝑙, and 𝐓𝑙  denotes the sparse target of the layer that addresses 

population and lifetime sparsity.  

Algorithm 1 is the pseudocode of the single layer EPLS derivation. Let us define 𝐎𝑗 as an element of row vector 

𝐎  and denote 𝐎𝑙  as N𝑏  output vectors of dimensionality Nℎ , where N𝑏  is the size of mini-batch. Starting with no 

activation in 𝐓𝑙  (line 1), input patches of 𝐎𝑙are normalised between 0 to 1 (line 2). The algorithm iteratively processes 

a row 𝐎𝑗 of 𝐎𝑙 by selecting the 𝑘th element of the 𝑛-th row of 𝐎𝑙 that has the maximal activation value 𝐎𝑘 minus an 

inhibitor 𝑐𝑗 (line 5). Here, the inhibitor is an accumulator that counts the number of times an output 𝒋 has been selected, 

increasing its inhibitor by Nℎ/N until reaching maximal inhibition, where N is the total number of training patches. 

This enforces the lifetime sparsity and prevents the selection of an output that has already been activated Nℎ/N times. 

The 𝑘 th element of 𝑛 -th row of target matrix 𝐓𝑙   is then activated as in line 6 (i.e., by assigning 1), considering 

population sparsity. The inhibitor is progressively updated and finally the output target is remapped to active and 

inactive values of corresponding non-linearity. The optimisation in relation to Equation 7 is performed using standard 

stochastic gradient descent (SGD) with adaptive learning rates (Schaul et al., 2013). 

Algorithm 1: Single Layer EPLS  

Input: 𝐎,  𝒂,  𝐍  

 Output:  𝐓,  𝑐 
1:  𝐓 = 0  

2:  𝐎 = (𝐎 − min(𝐎))/(max(𝐎) − min(𝐎))  

3:  for n = 𝟏 𝐭𝐨 N𝑏   
4:      𝐎𝑗 = 𝐎𝑛,𝑗∀𝑗 ∈ {1,2,3, … , Nℎ} 

5:      𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗( 𝐎𝑗 − 𝑐𝑗) 
6:      𝐓𝑛,𝑘 = 1 
7:      𝒂𝑘 = 𝒂𝑘 + Nℎ/𝑁 
8:  end for 

9: Remap  𝐓  to active/inactive values 

𝑘 is the output that has to be activated in the 𝑛-th row of 𝐓 
and 𝑐𝑗is an accumulator that counts the number of times an 
output 𝑗 has been selected. 

 

2.2.6 Multi-layer convolutional sparse kernel networks (CSKNs) 
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A CSKN kernel can be learned in a hierarchical fashion for a deeper and potentially improved high-level semantic 

feature representation. Essentially: 1) the input feature map of layer 𝑙 + 1  can be computed by applying the 

convolution operation, learned weights and biases to kernel maps from layer  𝑙; 2) EPLS is then used to learn initial 

sparse features that are used as a starting point of CSKN learning; 3) a multi-layer CSKN is learned in a feedforward 

manner, using a given input sub-patch of size 𝑆𝑧, and kernel parameters 𝛼 and 𝛽 for each layer. 

 

Fig 4. The SPP layer on top of CSKN. 

 

2.2.7 Capturing subtle geometric variations with SPP layer 

 

We added SPP as the last feature pooling layer to extract a final image representation that also captures subtle 

geometric variations. The outputs of the SPP layer are 𝑝 ∙ 𝑀 dimensional vectors with 𝑀 multi-level spatial bins (𝑝 is 

the filter size). We determined the window size of each pyramid level (𝑛) based on the last feature maps (𝑥 × 𝑥) 

generated from CSKN, as 𝑤𝑖𝑛 = 𝑥/𝑛. We then pooled and aggregated the responses of each filter by selecting the 

maximum values (max pooling) across different locations and over different spatial scales of the kernel map. This 

provides invariant image representations that are more robust to local transformations. Fig 2 and Fig 4 show a SPP 

layer combined with our CSKN. 

3. Experimental 
 

3.1 Evaluation 
 

To evaluate our framework we compared it to other unsupervised and supervised learning methods:  

a) Conventional unsupervised feature learning methods: SIFT+BoVW, Independent Component Analysis (ICA), 

and sparse coding (Lee et al., 2006). We implemented the SIFT descriptor together with BoVW model 

(SIFT+BoVW). We used a patch size of 16x16 pixels with spacing of 8 pixels in the extraction of SIFT 

descriptors. We used the standard codebook size of 1000 (Avni et al., 2011). The number of filters (i.e., weights) 

for the first layer of the ICA, and sparse coding were all set to 1600 (Romero et al., 2015).  

 

b) State-of-the-art unsupervised learning methods: SSAE (Hinton et al., 2006; Shin et al., 2013) and CKN (Mairal 

et al., 2014) . The number of filters for the first layer of the SSAE was set to 1600, which was consistent with 

the conventional baselines above; we set the number of filters for the second layer to 1024. As the CKN is also 
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a kernel learning method, for the purpose of comparison we trained the CKN using the same parameters as our 

proposed CSKN (see Section 3.2). 

 

c) State-of-the-art supervised pre-trained CNNs (with natural images). We used the AlexNet (Krizhevsky et al., 

2012), VGG (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015),  and  ResNet (He et al., 

2016), which have achieved high rankings in object recognition and localisation from the ImageNet Challenge. 

For all pre-trained CNNs models, the final fully-connected layers were used as the feature extractors. 

 

d) A recent representative sparsity-based pre-trained CNN (with natural images) where we used a model in which 

65% of the dense parameters of ResNet were removed (Liu et al., 2018). The accuracy of this pruned model 

was most similar to its counterpart of original pre-trained ResNet. The final fully-connected layer was used as 

the feature extractor. 

 

e) State-of-the-art supervised fine-tuned CNNs. We used the same models as in the pre-trained baselines above: 

AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015),  

and  ResNet (He et al., 2016).  For medical image analysis, these fine-tuned CNNs have been shown to perform 

as well as fully trained CNNs or even outperform when there is limited training data (Kumar et al., 

2017),(Tajbakhsh et al., 2016),(Shin et al., 2016). All of the models were trained for 60 epochs with the IRMA 

dataset. We used a batch size of 128 and an initial learning rate of 10-4. We used learning rate annealing, 

decaying the rate by a factor of 10 when the error plateaued. 

 

3.2 Implementation details 
  

CSKNs have four parameters that need to be determined for each layer: size of sub-patch, coefficients α and β, 

and pooling factor or filter size 𝑝. The parameters of our Gaussian kernel α and β are automatically determined for 

each layer: the β was set to be the pooling factor divided by √2; α was set to be the 0.1 quantile of the distribution of 

pair-wise distances between sub-patches, consistent with the work reported by (Mairal et al., 2014). In our 

experimentation, the final results were insensitive to the use of smaller quantiles such as 0.01 and 0.001. This is also 

consistent with other research studies, e.g., (Paulin et al., 2015).  

X-Ray image retrieval (IRMA dataset): We adopted a two-layer architecture that was shown to perform better 

on gray-scale images (Paulin et al., 2015). We used the gradient map (defined in Section 2.2.3) as the input of the 

initial layer of our architecture; the gradient map as input has been shown to perform better than raw patches (Mairal 

et al., 2014). Our parameter selection process searched within a restricted space to find the optimal values of the 

parameters. We used values in the range 2 to 8 for sub-patch sizes and pooling factors of 100, 256, 512, 800 and 1024. 

For the SPP layer, we used a 4-level spatial pyramid (1x1, 2x2, 3x3, 6x6) of 50 spatial bins in all of our experiments.   

Medical image modality classification (ImageCLEF dataset) and skin disease classification (ISIC dataset): 

We used the same settings as the X-ray image retrieval (described above) but used raw patches instead of gradient 

maps as the input because the raw patches performed better when working with RGB images. We then empirically 

chose the remaining parameters as shown in Table 1.  For all learned features, we used the setup of the multi-class 

linear SVM introduced by (Yang et al., 2009), who used a differentiable quadratic hinge loss so that the training could 

easily be done with simple gradient-based optimisation methods. We used LBFGS with a learning rate of 0.1 and a 

regularization parameter of 1, consistent with the parameters specified by (Yang et al., 2009). 
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Table 1. FOR EACH LAYER, THE SUB-PATCH SIZE, SUB-SAMPLING FACTOR, AND THE NUMBER OF POOLING FACTOR ARE 

SHOWN. FOR INITIAL GRADIENT MAP, THE VALUES 16 INDICATES THE NUMBER OF ORIENTATIONS. 

 

Dataset Layer 
Sub-patch 

Size 

Sub-sampling 

Factor 
Pooling Factor 

IRMA Layer 1 1x1 4 16 

 Layer 2 3x3 4 1024 

ImageCLEF and 

ISIC 
Layer 1 2x2 2 100 

 Layer 2 2x2 4 800 

 

3.3 Computation  
 

All the neural networks - CSKN, SSAE, CKN, fine-tuned CNNs -  were trained with a GeForce GTX 1080 Ti GPU 

(11GB memory). It took 8 hours for our CSKN to be trained with this GPU on a machine with Intel Core i7-6800K 

3.40 GHz (6 cores) processor.  

 

3.4 X-ray image retrieval  
 

We conducted medical image retrieval experiments on the IRMA dataset (Avni et al., 2011) and classification 

experiments on the ImageCLEF dataset (Villegas et al., 2016) and the ISIC dataset (Codella et al., 2018). For the 

medical image retrieval experiments, we used the ground truth annotations (i.e., IRMA code) to measure the relevance 

of similarity. Each test image was then used as a query image and the training images were ranked according to the 

Euclidean distance from the query image. For quantitative comparisons, we used precision estimates at Q = 1, 5, 10, 

and 30 as follows: 

Precision@Q =  
# 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡𝑜𝑝 𝑄 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

# 𝑖𝑚𝑎𝑔𝑒𝑠 𝑜𝑓 𝑄 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠
 .     (8)  

3.5 Medical image modality classification  
 

   For the classification experiments, we used the Top 1 accuracy (the correctness of the predicted label), which is the 

standard performance measure adopted in recent CNN studies for the classification of medical image modalities 

(Kumar et al., 2017). For the results of the supervised CNNs models with ImageCLEF dataset, we used the results 

reported in their respective papers. 

3.6 Skin diseases classification 
 

We used the area under curve (AUC) from the receiver operating characteristics (ROC) curve which were the main 

evaluation metrics in the ISIC 2017 competition (Codella et al., 2018). For the results of the supervised CNNs models 

with ISIC dataset, we used the results reported in their respective papers. 
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4. Results 
 

    The results of image retrieval experiments are shown in Table 2. We show sample results of the query and retrieval 

of varying structures in Fig 5. The query images are the shoulder of the scapulo-humeral joint (top row), shoulder of 

the acromio-clavicular joint (middle row), and (bottom left) forearm (bottom row), with artifacts including plates, 

screws and wires. The retrieved images are ranked by the order of similarity from left to right (top 1 to 3). Our 

framework had greater accuracy than other unsupervised feature learning algorithms as well as other pre-trained CNN 

models. Furthermore, it outperformed all the fine-tuned CNNs, achieving a top 1 precision of 52.97%. The fine-tuned 

GoogLeNet method achieved the best precision when considering the top 5, 10, and 30 retrieved images.  

The results of image modality classification experiments are shown in Table 3. We compared our approach with 

several conventional unsupervised feature learning methods as well as the supervised image-based methods presented 

in the competition held in 2016. Our CSKN had greater accuracy than other unsupervised approaches, achieving a top 

1 accuracy of 70.99%. The second best unsupervised method was SSAE with an accuracy of 65.17%. The best 

performing supervised method was the fine-tuned ResNet-152 with an accuracy of 85.38% (Koitka and Friedrich, 

2016). 

 

Table 4 shows the results of skin diseases classification experiments. Consistent with the modality classification 

experiments, we compared our approach with other unsupervised feature learning methods as well as the supervised 

methods presented in the competition held in 2017. Our framework had greater accuracy than other unsupervised 

approaches, with over 10% improvement from the second best unsupervised method (SSAE), achieving a mean AUC 

accuracy of 76.11%. It also had a higher accuracy than pre-trained ResNet (72.35%) and fine-tuned Inception V3 

(75.00%). The fine-tuned ResNet method had the best mean AUC of 91.10% 

 

Fig 6 shows how our initialisation with sparsity-based pre-training improves the feature representation of medical 

images compared to other standard pre-training methods including random initialisation and the K-mean algorithm. 

We also show the improvement made by the SPP. The visualisation of the learned weights from the first layer of our 

CSKN is shown in Fig 7. This shows that our CSKN learnt common structures such as lines and edges and also 

identified spatial patterns and sparse regions in the medical images. We used 400,000 image patches of size 12x12 

and learned 256 filters (Olshausen and Field, 1996). The results from deeper networks are shown in Fig 8. Our 

experiments using 3 and 4 layer CSKN architectures did not improve performance. 
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Table 2. Average Image Retrieval Precision Estimates (%) at Q=1, 5, 10, and 30 (Based on the IRMA dataset). The 

best and second-best precisions are in bold and red respectively. 

Type 
Methods/ 

Average Q 
1 5 10 30 

Unsupervised SIFT+BoVW 34.21 25.42 21.78 16.32 

Unsupervised SSAE (2 layers) 38.54 31.74 27.71 20.57 

Unsupervised ICA 33.92 26.10 22.42 16.69 

Unsupervised Sparse Coding 31.27 23.85 20.64 15.32 

Supervised 
Pre-trained 

AlexNet 
37.91 30.46 26.72 20.90 

Supervised Pre-trained VGG-16 39.29 32.39 29.25 24.17 

Supervised Pre-trained VGG-19 38.83 32.46 29.54 24.20 

Supervised 
Pre-trained GoogLeNet-

22 
40.39 33.90 31.09 26.10 

Supervised 
Pre-trained sparsity-

based ResNet 
40.40 33.95 30.01 23.60 

Supervised Pre-trained ResNet-152 41.31 34.48 31.06 24.80 

Supervised 
Fine-tuned 

AlexNet 
44.48 36.93 32.87 26.73 

Supervised 
Fine-tuned 

VGG-16 
48.75 43.73 40.40 34.59 

Supervised 
Fine-tuned 

VGG-19 
49.45 43.94 40.98 34.87 

Supervised 
Fine-tuned 

GoogLeNet 
49.39 44.61 43.12 38.70 

Supervised 
Fine-tuned 

ResNet 
47.20 41.66 39.11 34.56 

Unsupervised Our CSKN 52.97 44.18 39.87 31.59 

Table 3. Image Classification Accuracy (%) using ImageCLEF dataset. 

Type Methods Accuracy (%) 

Unsupervised Sparse Coding 57.08 

Unsupervised ICA 58.79 

Unsupervised SSAE (2 layers) 65.17 

Supervised 
VGG-like CNN (500 epochs)  

(Semedo and Magalhães, 2016) 
65.31 

Unsupervised Our CSKN  70.99 

Supervised Pre-trained sparsity-based ResNet (Liu et al., 2018) 76.60 

Supervised 

Fine-tuned AlexNet (100 epochs) with data 

augmentation 

(Kumar et al., 2016) 

77.55 

Supervised 
Modified GoogLeNet (60 epochs) with additional data 

(Koitka and Friedrich, 2016) 
81.03 

Supervised 
Ensemble of CNNs (50 epochs) with data augmentation 

(Kumar et al., 2017) 
82.48 

Supervised 
Fine-tuned ResNet-152 with additional data 

(Koitka and Friedrich, 2016) 
85.38 
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Table 4. Skin Diseases Classification AUC (%) using ISIC dataset. 

Type Methods 

Seborrheic 

keratosis 

AUC 

Melanoma 

AUC 

Mean 

AUC 

Unsupervised ICA 49.00 58.62 53.81 

Unsupervised SC 66.87 56.88 61.87 

Unsupervised SSAE (2 layers) 68.28 60.98 64.63 

Supervised 
Pre-trained sparsity-based ResNet 

(Liu et al., 2018) 
79.60 60.20 69.90 

Supervised Pre-trained ResNet-152 79.43 65.24 72.35 

Supervised 
Fine-tuned Inception V3  

(Murphree and Ngufor, 2017) 
81.70 68.40 75.00 

Unsupervised Our CSKN 84.85 67.37 76.11 

Supervised Pre-trained VGG-19 80.20 73.14 76.67 

Supervised 
An ensemble of CNNs 

(Sousa and de Moraes, 2017) 
84.00 80.50 82.30 

Supervised 
Fine-tuned ResNet-101 

(Bi et al., 2017) 
87.00 92.10 89.60 

Supervised 
Fine-tuned ResNet-50 

(Matsunaga et al., 2017) 
95.30 86.80 91.10 

 

 

 

 

Fig 5. Sample results of query and retrieval of X-ray images using CSKN. 
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Fig 6. Top 1 average precision, accuracy and mean AUC of CKN with random and K-mean initialisation, and our 

Improved CSKN with SPP. 
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Fig 7. The visualisation of learned weights by the first layer of the CSKN using ImageCLEF dataset (gray-scale). 

 

 

Fig 8. Results of retrieval and classification using deeper layers of CSKN. 
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5. Discussion  
 

Our results show that our CSKN outperformed other conventional unsupervised approaches; it had comparable 

accuracy to state-of-the-art supervised CNNs in X-ray image retrieval and comparable accuracy to other supervised 

counterparts in medical image modality classification and classification of some skin conditions. Further, we showed 

that sparsity-based pre-training improves the feature representation of medical images, and we attribute this to our 

robust pre-training scheme which provided good initialisation points for subsequent convolutional kernel learning. It 

acts as a form of regularisation that restricts parameters to certain spaces that are more discriminative for medical 

image data (Erhan et al., 2010),(Mishkin and Matas, 2015). The SPP framework also improves feature representation 

in medical images (see Fig 6) through a multi-level spatial feature pooling technique that effectively characterises the 

local geometry information in the image data. To the best of our knowledge, this is the first work that couples 

unsupervised pre-training with unsupervised learning frameworks when compared to the conventional approache 

which is to combine unsupervised pre-training with subsequent supervised learning (Erhan et al., 2010),(Salimans and 

Kingma, 2016). 

 

For X-ray image retrieval, our unsupervised CSKN achieved the highest accuracy (52.97%) when Q=1 (see Table 

2), suggesting that the CSKN was able to learn and extract data-specific features. The quality of the features learned 

with conventional unsupervised hand-crafted features such as SIFT coupled with BoVW model, sparse coding, and 

ICA were not as robust as that of the SSAE. The accuracy of pre-trained CNNs was lower than our method as these 

approaches extracted features that were not tuned to a particular dataset or application, and as such have limited 

capacity to extract the most meaningful or discriminative features. The deeper network of pre-trained CNNs had higher 

accuracy (e.g., VGG-16 to ResNet-152 layers) and the fine-tuned GoogLeNet had the highest accuracy in top 5, 10, 

30. We attribute this to its network architecture exploiting the local sparse structure of a convolutional network 

(Szegedy et al., 2015). Our method was designed to learn class-specific image features for better discrimination in an 

unsupervised fashion but this means it can be sensitive to subtle inter-class variations which is why accuracy drops at 

a higher rate compared to supervised counterparts as more subtly similar images are retrieved. For medical image 

retrieval applications, the five most similar images (i.e., top 5) for a query are commonly used for comparative analysis 

(Quellec et al., 2010). Our CSKN achieved a competitive top 5 accuracy (44.18%), which was the second best after 

the fine-tuned GoogLeNet (44.61%).  

 

In medical image modality classification, our unsupervised CSKN outperformed all other unsupervised approaches 

and achieved a comparable accuracy to all supervised CNNs that were part of the ImageCLEF 2016 challenge. Similar 

to the X-ray image results, the quality of image features extracted using conventional unsupervised approaches, sparse 

coding and ICA, were not as robust as that of the SSAE. Unlike sparse coding and ICA, SSAE learned image features 

in a hierarchal manner and hence was the closest method to our approach. The top performing methods were all based 

on well-established supervised CNNs including AlexNet (Kumar et al., 2016), VGG (Semedo and Magalhães, 2016), 

GoogLeNet (Koitka and Friedrich, 2016), and ResNet (Koitka and Friedrich, 2016). These CNNs were trained from 

scratch or fine-tuned with medical images to derive high-level data specific features. As expected, deeper CNNs also 

had higher accuracy than shallower CNNs (see Table 3). Our unsupervised CSKN (accuracy of 70.99%) performed 

better than supervised VGG-like CNNs (65.31%) (Semedo and Magalhães, 2016) with over 5% improvement in 

modality classification. While most of referenced methods used the same training data, the method reported by (Koitka 

and Friedrich, 2016) that had the best performance in the competition, added extra data from additional sources which 

contributed to its overall accuracy.  

 

The ImageCLEF dataset also contains different generic biomedical illustrations such as gene sequences or chemical 

structures, and so in comparison to the X-ray IRMA dataset, there were more diverse and complex variations in image 

characteristics. As a consequence, the overall performance of our CSKN compared to other supervised approaches 

was poorer on the ImageCLEF dataset than the IRMA dataset. Nevertheless, our method was able to derive 

discriminative medical image features from a variety of image modalities without reliance on labels, and its accuracy 

was better than that of supervised VGG-like CNNs (Semedo and Magalhães, 2016).   

 

In classification of the skin lesions our unsupervised CSKN outperformed all other unsupervised feature learning 
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methods and achieved a higher accuracy (76.11%) than pre-trained ResNet (72.35%) and fine-tuned Inception V3 

(75.00%). Consistent to the results from other datasets, SSAE was the next best approach among other unsupervised 

methods. The top performing approaches reported in the competition also used fine-tuned CNNs, e.g., AlexNet, VGG, 

Inception v3, and ResNet. The best performing methods (Matsunaga et al., 2017) (Bi et al., 2017), however, added 

extra data from additional sources. This indicates that the fine-tuned CNNs are still dependent on the availability of 

labelled data. Our CSKN, on the other hand, was able to learn meaningful medical image features in a completely 

unsupervised fashion.  

 

5.1 Limitations and Future work 
 

Although our approach learned medical image feature representations without supervision and labels, some of the 

parameters (including sub-patch size, sub-sampling factor, or pooling factor (i.e., filter size) for each layer, must be 

empirically derived (see Section 3.2). Generally, smaller subsampling factors and larger pooling factors led to better 

performance at the cost of increased computational complexity. Nevertheless, our results show that sparsity-based 

pre-training and SPP pooling consistently improved overall feature representation even when different parameters 

were used. We used an integral form of the Gaussian Radial Basis Function (RBF) kernel to approximate the kernel 

map (image feature representation in a RKHS). A multi-kernel approach (Song et al., 2018) describing diverse 

properties of medical images could potentially provide more meaningful feature representation and we will explore 

such approaches in the future.  

We suggest that our unsupervised initialisation will benefit supervised learning approaches when there are limited 

labelled training data. When CSKN is used to initialise a CNN for supervised fine-tuning, it could potentially enable 

the derivation of semantically more meaningful representations of the image data than traditional CNN fine-tuning 

approaches that are initialised with natural images. The investigation of the impact on fine-tuning is a substantial 

research study in itself and so we will pursue this in future work. Since our CSKN is completely unsupervised, we 

suggest that it can be considered as an important first step to accessing the large volume of unannotated data in medical 

imaging repositories. We note that compared to other supervised CNNs, our CSKN requires learning fewer parameters 

across fewer layers (two layers in this paper), and therefore, can be efficiently coupled with subsequent supervised 

learning approaches without a large computational cost. 

6. Conclusion 
 

We have proposed a new unsupervised sparsity-based feature learning framework for characterisation of medical 

image data. Our layerwise pre-training, using convolutional sparse features, improved the learning outcomes and 

feature representations in image retrieval and classification. We compared our approach to other unsupervised and 

supervised methods on three large public datasets and showed that our approach was competitive with the state-of-

the-art supervised CNNs. Our approach demonstrated the feasibility of using large collections of unlabelled medical 

data to characterise medical image features and offers the opportunity to access the large volume of unannotated data 

that are available in medical imaging repositories.  
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