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Abstract

The advent of medical imaging and automatic image analysis is bringing the full quantitative assessment of lesions
and tumor burden at every clinical examination within reach. This opens avenues for the development and testing of
functional disease models, as well as their use in the clinical practice for personalized medicine. In this paper, we
introduce a Bayesian statistical framework, based on mixed-effects models, to quantitatively test and learn functional
disease models at different scales, on population longitudinal data. We also derive an effective mathematical model
for the crossover between initially detected lesions and tumor dissemination, based on the Iwata-Kawasaki-Shigesada
model. We finally propose to leverage this descriptive disease progression model into model-aware biomarkers for
personalized risk-assessment, taking all available examinations and relevant covariates into account. As a use case, we
study Multiple Myeloma, a disseminated plasma cell cancer, in which proper diagnostics is essential, to differentiate
frequent precursor state without end-organ damage from the rapidly developing disease requiring therapy. After
learning the best biological models for local lesion growth and global tumor burden evolution on clinical data, and
computing corresponding population priors, we use individual model parameters as biomarkers, and can study them
systematically for correlation with external covariates, such as sex or location of the lesion. On our cohort of 63
patients with smoldering Multiple Myeloma, we show that they perform substantially better than other radiological
criteria, to predict progression into symptomatic Multiple Myeloma. Our study paves the way for modeling disease
progression patterns for Multiple Myeloma, but also for other metastatic and disseminated tumor growth processes, and
for analyzing large longitudinal image data sets acquired in oncological imaging. It shows the unprecedented potential
of model-based biomarkers for better and more personalized treatment decisions and deserves being validated on larger
cohorts to establish its role in clinical decision making.

1. Introduction

*C di th ie.piraud @tum.d . . . . .
OFfesponding author, marie.piranc=ium.de Medical imaging of tumorous lesions is a means of

choice for staging and monitoring patients with cancer.
It enables early detection through population screening,
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permits to evaluate the growth of precursor lesions and
assess qualitative and quantitative changes after clinical
intervention (Fass| 2008)). Although most imaging modali-
ties allow for a volumetric quantification of lesions, current
guidelines, like the Response Evaluation Criteria in Solid
Tumors (RECIST) (Eisenhauer et al.| 2009)), are based on
the manual assessment of the diametric size of a few le-
sions, for the sake of time, even if a large field of view
image scan would have the potential to offer more and
better information. To alleviate this problem, many tools
for the automatic detection and segmentation of lesions
are now becoming available for example in Positron Emis-
sion Tomography (Xu et al.,[2017; Bieth et al.,2018)) but
also in Magnetic Resonance Imaging (MRI) (Kamnitsas
et al.,|2016) and Computer Tomography (CT) (Christ et al.}
2016)), due in particular to the advent of deep learning tech-
niques in the medical imaging realm. They are bringing the
full quantitive assessment of individual tumorous lesions
and whole tumor burden, at each medical examination,
within reach. This raises the question of how to properly
analyze these data, both focusing on static and dynamical
properties, a question of both scientific and clinical inter-
est, which has recently started to be addressed (Hartung
et al.,|2017; |Claret et al., 2018)

Numerous theoretical models of cancer evolution have
been developed, grasping some of the complexity of the
biological processes at stake, both for general aspects or
more specific to a particular pathology. Descriptive models
have in particular been derived for single lesions (Simeoni
et al.| 2004} |Ayati et al., [2010; Herman et al.| 2011} |Ger{
leel 2013} [Benzekry et al., 2014; Murphy et al., 2016) as
well as for the distribution of disseminated tumors (Iwata
et al.| 2000; Baratchart et al.| 2015). But those are in gen-
eral not well tested, due to the lack of observations at the
right scale, or to the rarity of fully quantitative popula-
tion datasets. Furthermore, the models describe different
modes of disease propagation, and the crossover between
different scales and regimes has been very little studied.
In this paper, we establish a novel multi-scale approach,
fusing local and global tumor growth models, at the onset
of disease dissemination. We show how one can deal with
different local growth patterns of lesions and analyze their
dissemination in order to model the tumor load. We embed
those descriptive models into a probabilistic framework,
to deal with inference from observed data, and use that
framework to compare different model options and there-

fore learn the local and global tumor growth models. We
will finally show that this mixed analytical and statistical
modeling approach can be used to extract model-based
biomarkers, e.g. for patient stratification, that could ulti-
mately serve as an objective tool for clinical evaluation.

We consider Multiple Myeloma (MM) as a case study,
see box 1Driving clinical problem|. MM displays a rapid
development once the disease is manifest, but in the pre-
cursor phases of the disease, without myeloma related
organ or tissue impairment, tumorous lesions and the tu-
mor load are monitored via whole-body imaging over long
time spans (Dimopoulos et al.| |2015)), alongside with sero-
logical and histological factors. It is therefore a typical
example where proper image-based diagnosis and risk-
assessment in the precursor states are crucial for making
treatment decision (Ghobrial and Landgren, 2014; |Ahn
et al., [2015} [van de Donk et al.| |2016). This is posing hard
problems in terms of analysis, and makes it a reference
problem for empirical tumor growth modeling in dissem-
inated diseases (Ghobrial, [2012). Our study will permit
to validate key assumptions for the biological models at
the organ and tissue level (Ayati et al.,[2010) and for the
dissemination process (Iwata et al., 2000), for the first time
in a human population study.

2. Methods

Data-based tumor growth and disease progression mod-
eling can be difficult, because available data are typically
very limited in time. In particular, understanding free le-
sion growth, a cornerstone, is impeded by the occurrence
of therapy, which usually begins soon after diagnosis. Ani-
mal models can help in that respect (Mehrara and Forssell;
aronsson, 2014; Baratchart et al., 2015). But even with
rather long time series, distinguishing between different
growth models by individual curve fitting is very deli-
cate (Murphy et al.||2016). Here we rely on microscopic
biological models and translate them into clinically rele-
vant observables: local lesion volumes and the tumor load.
We propose a method to analyze longitudinal image time
series of a population, in a hierarchical Bayesian frame-
work (Ribba et al., 2012), both for lesion growth and tumor
dissemination process. We also introduce covariates in a
mixed-effect model (Laviellel 2015), enabling statistical
relevance tests of possible influential factors on the growth
process.


https://doi.org/10.1101/613869
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/613869; this version posted June 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

2.1. Overview of the modeling approach

We analyze longitudinal data of a cohort of patients, as
illustrated in Fig[I] At each observation time point, rele-
vant features of all detectable lesions have been extracted,
and used to compute the patient’s tumor load, as detailed in
Sec. Local lesions were also re-identified in follow-up
scans, in order to gather a database of lesion growth time
series.

The functional-statistical modeling approach is schemat-
ically presented in FigP] In Sec. we introduce our
multi-scale mathematical modeling of disease progression.
We first propose several biophysical models for the local
lesion growth [V(#|r, vo), blue boxes in Fig E]], correspond-
ing to different scenarii at the microscopic scale (Simeoni
et al., [2004; |Ayati et al., 2010; |Gerleel 2013} |Benzekry
et al., 2014; Murphy et al.l 2016). We also propose an
effective model for the crossover from the single-lesion
regime to the dissemination regime [V (#|R, V), green box
in Fig E]], which builds on the local lesion growth model,
as well as on the IKS model, a model for the dissemination
process (Iwata et al., [2000).

Another necessary component to compare models with
measurements, is the probabilistic model, which encodes
how observations are generated from the predictive model
[yellow boxes in Fig[2]|. As detailed in Sec. we rely on
mixed-effects models (Lavielle, [2015)), that are adapted to
population-based tumor growth modeling (Bastogne et al.
2010; Ribba et al., 2012; Hartung et al., 2014} |Baratchart
et al.l 2015)(Benzekry et al., 2016; (Claret et al.l 2018]).
We use a proportional error model, to account for a mea-
surement error that increases with the size of the lesion.
We also use population priors for the model parameters to
increase the statistical confidence on shorter time series,
and to incorporate covariates into the predictive model.

The confrontation of each mathematical model with the
corresponding dataset, and the estimation of the unknown
model parameters, is made via the Stochastic Approxima-
tion of Expectation Maximization (SAEM) algorithm (De{
lyon et al.||1999; |Kuhn and Lavielle, [2004} [Samson et al.,
2007) [gray arrows in Fig[2] introduced in Sec.[2.4]and we
use the implementation from the Monolix software (Mono+
lix). It learns the population parameters from the data.
To quantify the accuracy of the predictive model on the
observed data, we compute the log-likelihood. Model
comparison is then performed thanks to the Bayesian and

Akaike Information Criteria (BIC and AIC) and assessed
with bootstrapping. Covariates are further tested with
the Wald and Likelihood ratio (LR) tests, see ‘Supple-
mentary Method 1°. From the selected model and corre-
sponding population priors, the individual parameters of
a time series can be computed with a Maximum a pos-
teriori estimator [black arrow in Fig[2]], cf Sec.[2.4 We
propose to use them as biomarkers, and for SMM patients,
we explicitly use the tumor load growth rate. Its power
for risk-stratification is assessed with Receiver Operat-
ing Characteristic curves (Zweig and Campbell| [1993)),
Kaplan-Meier survival plots (Kaplan and Meier,|1958)) and
log-rank tests (Peto et al.,[1977), as presented in ‘Supple-
mentary Method 2°.

2.2. Mathematical parametric models

The central elements of our modeling approach are de-
scriptive functional models. We base our analysis on ex-
isting microscopic models of tumor and lesion growth
in general (Simeoni et al.| [2004} |Gerlee} 2013 Benzekry|
et al., 2014; Murphy et al., 2016), as well as specific mod-
els for MM (Ayati et al., 2010; Herman et al., [2011), and
for the dissemination process (Iwata et al., 2000). We aim
at deriving tractable models of disseminative disease in a
joint framework, and our approach is summarized in box
{Descriptive tumor load modelf.

2.2.1. Local lesion growth models

The lowest scale of our modeling approach is given
by individual tumors, also called focal lesions in MM.
In this paper we assume that all lesions follow the same
parametric growth model, i.e. that the involved biological
processes are the same. This is reasonable as the lesions
are all developing in the bone marrow. But different le-
sions potentially have different parameters, e.g. initial
volume and growth rate, that may depend, for example, on
the local environment of the lesion (Kumar et al.,[2017) as
well as its subclonal mutation status (Rasche et al.,|2017)).
We introduce below several general tumor growth models,
which are biologically founded (Simeoni et al.| [2004; |Ger;
leel 2013; Benzekry et al.,[2014; Murphy et al.,[2016), as
well as a more specific one for the microscopic biology of
MM focal lesions (Ayati et al.,2010), which we interpret
at the macroscopic scale of interest. All models are later
confronted with observations.
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Linear growth. We first introduce the linear growth model,
in which the volume of a lesion can be written as:

V() =v(re+1), (1)
where v is the initial volume and r the growth rate, e.g.
in month™!. This simple model corresponds to a constant
rate growth, and holds at the later stage of tumor growth in

some cases (Simeoni et al.,[2004; [Benzekry et al.,[2014;
Murphy et al.,[2016)).

Cubic growth. A cubic growth corresponds to a rate of
change of the volume proportional to the surface area of
the tumor itself, in a spherical approximation, 4 o V2/3,
and reads

V() =vo(rt+1)° . 2)

This assumes that only the surface of the tumor is actively
participating in the growth, which is justified in the case of
a solid tumor eroding its environment at its border (Herman
et al., [2011} |Gerlee}, |2013} Murphy et al.|[2016), represent-
ing a plausible model for lytic bone lesions.

Exponential growth. Another important tumor growth
model is the exponential growth,

V(t) = vopexp(rt). 3)
It corresponds to a volumic rate of change proportional
to the volume, ‘fi—‘: = rV(t). It therefore assumes that all
cells of the tumor participate in its growth in the same
manner, and typically holds in the early stages of tumor

development (Gerlee, 2013 Benzekry et al.l[2014; Murphy|
et al.l[2016).

Diffusive growth. Ayati et al., have derived in Ref. (Ayati
et al., 2010) a mathematical model for bone remodeling
and lesion growth in MM. Their modeling is based on a
diffusion equation with a Gompertz-like saturation term
for the local tumor density. In ‘Supplementary Method 3’,
we show that it can be reduced to a two-parameters growth
model for the tumor volume,

V() = vo(rt + 1), “4)
which corresponds to a half-cubic growth law, lying be-
tween the linear and cubic growth. Such a growth law can

also be justified by advanced considerations on the frac-
tal nature of the tumor vasculature (Herman et al., 2011}
Benzekry et al., 2014).

Those models, Egs. (T)-(@)), comprise two free parame-
ters each, v and r, which have a clear biophysical inter-
pretation. There exists more involved models describing
individual tumor growth with three parameters, for exam-
ple the Gompertz and the van Bertalanffy models (Ger}
lee, [2013). Even more complex, are the models from
Refs.(Herman et al.,|2011) and (Ribba et al., 2012), which
consider metabolic processes in details, but result in a high
number of free parameters. For the sake of simplicity,
and to avoid overfitting, given the limited length of the
available time series, we restricted ourselves to the above
models with two free parameters.

2.2.2. Global tumor load models

The tumor load is obtained by summing up the volumes
of all tumors detected in one patient, Viot = > csions¢ Ve
We now consider how the local lesion growth models in-
troduced above translate to this global scale. Let us dis-
tinguish between the volume of the putative initial lesion,
Vinit» Which is the largest detected lesion at first observa-
tion time, and the volume of all subsequent disseminated
lesions, Viyi:

Viot(®) = Vinie(®) + Vaiss (1) - (5)

Note that we single out the first detectable lesion for mod-
eling purposes, but this does not necessarily mean that it is
the strict origin of the cancer. In the following, we simplify
MM complex biology and assume that the cancer propa-
gates from this leading cluster of cancerous cells, which
grows and emits malignant cells, at a rate which depends
on its size. Those in turn have a chance to settle in other
locations, and give rise to further cell-emitting growing
clusters, gradually making up the disseminated burden.

Early regime: initial lesion dominated. In the early stages
of the disease, the initial cluster of malignant cells is the
most prominent one and the disseminated burden Vs can
be neglected, such that

Vtol(t) ~ Vinit(t)- (6)

In that case, the tumor load growth model is the same as
the lesion growth model in Eqs. (I)-(@).
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Later regime: dissemination dominated. The Iwata-
Kawasaki- Shigesada (IKS) mathematical model (Iwata
et al., 2000) for metastasis formation seems particularly
well suited to describe the evolution of MM. It assumes
that growing tumors emit malignant cells at a rate propor-
tional to the fraction of tumors cells in contact with blood
vessels w(v) = mv®, where v is the volume of the tumor
and « a fractal dimension related to the vascularization of
the tumor. Similarly as above, & would be equal to 1 if the
whole tumor volume can emit malignant cells, and @ = 2/3
if only the surface of a round-shaped tumor can emit ma-
lignant cells. Emitted malignant cells can develop into new
lesions far away from the original site, which will grow
following the same tumor model, and emit further malig-
nant cells. Note that the model assumes that each lesion
grows with the same parameters, which is not strictly the
case, as they depend on the lesion’s microenvironment and
its subclonal mutation status (Kumar et al., [2017; Rasche
et al., [2017). However, as extra-medullar dissemination
is rare in SMM, their growth conditions should be more
homogeneous than in multi-organ metastasis.

In ‘Supplementary Method 4°, we recall the solutions
of the IKS model, as derived in Refs. (Iwata et al., |2000;
Struckmeier, 2003; Evys et al.,[2009), and show that for the
different tumor growth models described above, the num-
ber of disseminated lesions Ny (f) and the disseminated
burden Vyiss(f) asymptotically displays an exponential be-
haviour. Such that, as soon as the volume of the initial
lesion becomes negligeable, we expect

Viot(1) ~ Vaiss(1) ~1500 Vo™ ™
Crossover regime: effective modeling. In the crossover
regime, neither of the terms of Eq. () is negligeable. In the
cases where Viyi(7) follows a power-law, [Egs. (I), (Z) and
@)1, Via(r) will effectively appear as a power-law with a
higher power than Vi, (#), due to the exponential behaviour
of Viyiss(1). We therefore propose the effective model

Viat) = Vo (Rt + 1) . ®)

2.3. Probabilistic modeling: Mixed-effect model

To describe inter-subject variability in the population
and compare parametric models with available longitudi-
nal data, we need a probabilistic model. Here we use non-
linear mixed-effects models (Laviellel [2015)), which are

adapted to population-based tumor growth modeling (Bas?
togne et al.,|2010; Ribba et al., [2012; Hartung et al., [2014;
Baratchart et al.| 2015)). In each experiment, we consider a
dataset of observations {y;;} made at time ¢;;, where j is the
index of the time series (lesion or patient in the following),
and i is the index of the observation point. We are then
comparing observations with the predictive growth model,
V(t|0), where 8 = (vo, r) and (V{, R) for the lesion and the
tumor load modeling, respectively. For that, using popula-
tion priors permit to increase the statistical confidence on
shorter time series, and to incorporate covariates into the
predictive model.

Residual error model. The probabilistic model includes a
discrepancy between the predictions and the observations,
which can either stem from the inaccuracy or incomplete-
ness of the parametric model as well as from the imper-
fections of the measurement process. To account for it,
we assume that the measurements are normally distributed
around the model predictions, following a proportional
error model:

yij = V(110 + bV(1;16))€;;,

GijNN(O,l), (9)

where b is the error parameter. We have tested other stan-
dard error models (constant, combined and power-law er-
ror models). They systematically gave worse results on all
experiments (i.e. lower BIC values).

Population priors. To introduce variability, time series are
considered independent from each other, and the model
parameters 6 are taken as log-normally distributed among
them. Note that 6 represents initial volumes and growth
rates in this paper, which are indeed expected to take
strictly positive values. We use

log(6)) = log(6pop) + 1, n; ~N(O,),  (10)

which is parametrized by 6,,p, a vector of median values,
and a diagonal matrix Q = diag(wy), where wy is also a
vector, representing the correlation matrix of the logarithm
of subject parameters 6.

Categorical covariates. Categorical covariates split the
subjects into different groups, such as the sex of the patient
or the region of the lesion location. To study their influence
on the prediction, we include them in the prior, in a so-
called mixed-effects model (Lavielle, 2015). In the case of
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a categorical variable that takes K values k =0, 1,..K — 1,
we write

IOg(epop,k) = 1Og(epop,o) + &, (11

where &, = 0 for the reference group k = 0.

2.4. Parameter inference: Stochastic Approximation of
Expectation Maximization

We have introduced above a probabilistic model, which
describes how data can be generated from the parametric
model. We are left with the task of evaluating the best
set of population parameters ¥ = (6p0p,0, {E}k=1..k-1, We, b)
and subject parameters ® = {6;};-1 _n,, Where N, is the
total number of time series, to match the observed dataset.

Population parameters. In the Maximum likelihood es-
timation (MLE), one searches the optimal population pa-
rameters as

Y* = argmaxy p(data|?),

where data refers to all observations {y;jlt;;} that are
available. One has p(data|?) = f p(data, ®¥)dO® =
[T, [ p(j16,)p(6,1%)d6;, where p(y;l6;) is determined
by Eq. ©) and p(6,|¥) is given by Egs. (I0)-(TT). We use
the SAEM algorithm to estimate ¥* (Delyon et al., [1999;
Kuhn and Laviellel 2004; |Samson et al.,|2007), which is a
stochastic version of the Expectation Maximization algo-
rithm, in which the computation of the expectation of the
data in the ‘E step’ is replaced by a stochastic approxima-
tion. We use the implementation of the Monolix software
and the nlmefitsa function in Matlab (Monolix; Matlab).

Log-Likelihood. To estimate the accuracy of the result-
ing regression over all time points of all time series, we
compute the log-likelihood

LLH = log [p(data|¥")] ,

which is a quantification of the adequacy of the model
on our data. Following Refs. (Kuhn and Lavielle| [2005}
Samson et al., 2007)) we use an importance sampling esti-
mation, as implemented in Monolix and Matlab (Monolix;
Matlab)).

Individual parameters. Parameters for individual time se-
ries are estimated with the maximum a posteriori estimator.
It consists in searching 9’]‘., for each time series j, to maxi-

mize (00,1
 p(;.0;
ply;, ¥") = j—j*,
p(yiI¥*)

which is estimated using a Markov chain Monte Carlo
(MCMC) method, also provided in Monolix and Matlab.

3. Experiments and results

In this section, we present the multi-scale modeling of
disease progression in the SMM state. We compare several
biologically-founded models for the growth of individual
lesions, as well as for the tumor load, by confronting them
with the datasets. We also carry out an analysis of the
influence of the patient’s sex and lesion location on the
growth rate. We finally propose to consider the extracted
parameters as model-based biomarkers, and we assess their
predictive power for the transition to MM.

3.1. Tumor imaging data

Our datasets result from the analysis of a large cohort of
63 SMM patients from the University Hospital of Heidel-
berg and the German Cancer Research Center, that both
follow the same protocol for imaging and treatment deci-
sions. We focus on the MRI modalities, which directly
image focal lesions and the tumor load and is used to detect
rapid progression to MM (Ghobrial and Landgren) 2014)),
whereas lytic bone lesions only appear at a later stage on
CT scans. Our work follows a study for volumetry based
biomarkers (Wennmann et al.,|2018) in whole-body MRI
scans. We use the same cohort and additionally analyzed
all non whole-body scans that were available for those
patients. In total, over 370 MR volumes were analyzed,
with a median time interval of 1.1 years between scans,
and a median patient follow-up time of 5.9 years. All
detectable focal lesions were manually volumetrized, as il-
lustrated on a T1-weighted sequence in Fig. |3} and tracked
in time, as sketched in Fig|l} before the occurrence of the
CRAB criteria or any systemic therapy. The manual vol-
umetrization was performed by a research assistant with
medical training, under the supervision of an experienced
musculoskeletal radiology resident. When both T1- and
T2-weighted sequences were available, the latter with fat
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suppression, the volume of the lesion was quantified in
both modalities and averaged as in Ref. (Wennmann et al.,
2018)). This resulted in the detection of 180 lesions in 33
patients, each being observed at 2.19 different time points
on average (8 time points for the longest observation).

Focal lesions series. Among those focal lesions, 49 were
detected at 3 or more different points in time. 36 of this
subset originate from 11 male patients (M), and the 13
others from 8 female patients (F). The location of the
tumor was also recorded and classified into 13 different
anatomical regions (see ‘Supplementary Table 1’). Those
49 series constitute the first dataset, with 3.96 time points
per series on average, which is used for lesion growth
modeling.

Tumor load series. We also derived the total tumor load
for each patient, by summing up the volume of all detected
lesions at each time point. In rare cases, focal lesions
became too diffuse to be properly segmented or were tar-
geted by a local therapy, like radiotherapy. As the tumor
load is not expected to decrease in the absence of ther-
apy, if a tumor had already been detected but could not
be segmented, we filled-in the data with its last measured
volume. Selecting the series with 3 or more time points,
we constitute a dataset of 21 patient series (13M and 8F)
bearing 1 to 16 tumors (median of 4) with an average of
4.48 time points per series and a median total observation
time of 3.7 years. The analysis of those tumor load series
is used for tumor load modeling.

Progression to MM. For the 26 patients with focal lesion
measurements on at least two different time points, we
create a tumor load dataset, as above, that we complement
with the date of transition to the progressive state of MM,
as defined by the CRAB-criteria from the IMWG (Inter{
national Myeloma Working Group, [2003)), the standard
procedure until 2014. If the transition did not occur, the
data is censored with the date of the last information about
the patient. We use this dataset for a risk-analysis of SMM
patients with focal lesions, comparing different radiologi-
cal biomarkers.

3.2. Modeling local lesion growth

Lesion growth model. Using the focal lesions dataset,
we estimate the population parameters of a mixed-effect
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Model: | nocovariate [ M/F cov. for r |
Linear 2951.89 (0.12) | 2952.99 (0.13)
Cubic 2954.65 (0.17) | 2956.99 (0.19)
Exponential || 2074.77 (0.22) | 2976.85 (0.21)
Diffusive 2950.33 (0.17) | 2952.96 (0.17)

Table 1: Mean and standard deviation of BIC values for different lesion
growth models, in two mixed-effects models: without covariate (first
column) and with the patient’s sex as a covariate for r (second column).

model without covariate, as presented in Sec. with the
different growth models introduced above, using SAEM.
We compare a linear, a cubic, an exponential and a diffu-
sive growth model [Eqs. (I)-@)]. From the first column
of Table [T} which presents the resulting BIC values for
each model, we conclude that the diffusive growth model
is selected, as it has the lowest BIC. It gives slightly bet-
ter results than the linear and the cubic models (mean
BIC separated by 5 resp. 13 confidence intervals), and
much better than the exponential growth model. The
learned population parameters for the diffusive model are
Fpop = 3.2(0.9) X 1072 month™" and vy pop = 393(72) mm?,
associated with the error parameter b = 0.24(0.02), where
the number between brackets is the standard deviation
estimated from the Fisher information matrix. The pre-
dictions from the diffusive model are shown in Fig [ for
two patients, and further lesion time series are presented
in ‘Supplementary Figure 1.

To assess the robustness and the generalizability of our
model selection, we use a bootstrapping approach to resam-
ple our dataset, and compare the two best models selected
above, whose BIC values are closer together than the other
models. Due to the difficulty of resampling observations
when doing regression (Davison and Hinkleyl, 2013)), we
use case bootstrapping to preserve inter-series variabil-
ity (Thai et al., 2014)). We therefore create bootstrapped
sample datasets by resampling individual tumor time se-
ries. Following Ref. (de Graft Acquah, |2012), we then
repeat the model selection procedure on the two best per-
forming models for each sample, and report the selection
rate of each model (i.e. how often a model is ranked first
according to the BIC):
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Samples: || Diffusive (no cov.) | Linear (no cov.) | | Model: | nocovariate | M/F cov. forR |
full dataset 1 0 Diffusive B = 3/2 1757.92 (0.13) | 1755.52 (0.12)
10 samples 0.75 0.25 IKS (exponential) 1745.42 (0.16) | 1742.09 (0.12)
20 samples 0.775 0.225 Power-law B = 3 1744.15 (0.14) | 1741.40 (0.23)

The diffusive model is therefore selected for more than 3/4
of the bootstrapped samples, which confirms its selection.

Subgroup analysis. The statistical model introduced
above allows for the introduction of covariates, as in
Eq. (TT). We introduce the sex of the patient (M/F) as
a categorical covariate for the parameter r. For each of the
four growth models, SAEM converges to prior distribu-
tions that correspond to a lower median growth rates r for
women than men (i.e. 7popF < Fpop,m)- With the diffusive
model, we find &y = 0.664(0.59) with &g = 0, which cor-
responds to a factor 1.9 for the ratio of the median rates.
We also find that the log-likelihood is improved compared
to the no covariate case. However, the improvement is
not large enough to compensate for the introduction of the
extra model-parameter &y, and the BIC does not improve,
as can be seen from the second column of Table [l In
‘Supplementary Table 2’, we report the AIC values for the
same experiments. Using this less stringent criterion for
model selection would select the M/F covariate split for
some of the growth models. To lift this ambiguity, we
proceed to the Wald and LR tests

Model: H Wald (p-value) \ LR (p-value) ‘
Linear X (0.089) X (0.0949)
Diffusive X (0.26) X (0.2617)

Using the threshold p = 0.05 on the p-values, both the
Wald and the LR tests reject the covariate model. Thus
using the sex as a covariate does not bring a statistically
significant improvement for inferring the lesion growth
rates.

Our model also permits to introduce multiclass cate-
gorical covariates, such as the lesion location categories
presented in ‘Supplementary Table 1°. In ‘Supplementary
Table 3°, we illustrate this and test for the significance
of this covariate. We find an indication that focal lesions
might grow slower in long bones (humerus, femur and
tibia), but the limited amount of data does not permit to
draw clear conclusions.

Power-law B = 6.5

1741.30 (0.18) | 1738.19 (0.11)

Table 2: Mean and standard deviation of BIC values for different tumor
load growth models, in two mixed-effect models: without covariate (first
column) and with the patient’s sex as a covariate for R (second column).

3.3. Modeling global tumor load

Tumor load effective model. Using SAEM, we estimate
the population parameters of a mixed-effect model with-
out covariate, as presented in Sec. @ with the different
growth models introduced above [Egs. (6)-(8)]. We test the
diffusive model, which was selected for the lesion growth
in the previous section, and should therefore hold at short
times, together with the IKS model, which should hold
when the dissemination process dominates and different
power-laws for the crossover regime, with B > 3/2.

The resulting BIC values are presented in the first col-
umn of Table [2| We find that the IKS model performs
much better than the diffusive model (mean BIC separated
by 40 confidence intervals), confirming that the dissemina-
tion process plays a great role in the tumor load evolution.
However, power-law models with B > 3, lead to further
improved values of the BIC (mean BIC improved by 8
confidence intervals for B = 6.5), indicating that we are in
the crossover regime. In ‘Supplementary Table 4°, we sys-
tematically look for the most appropriate effective model,
and compare BIC values for different values of B. This
selects B = 6.5 as the best effective model for this dataset.

Subgroup analysis. We now use the sex of the patient as a
categorical covariate for the growth rate R, as in Eq. (TT).
The introduction of this additional population parameter
permits to improve the BIC for each parametric model (see
second column of Table[2), indicating that the patient’s sex
is relevant for modeling the evolution of the tumor load.
We further proceed to the Wald and LR tests for the three
best performing models

’ Model: H Wald (p-value) \ LR (p-value) ‘
IKS (exponential) v (0.008) v (0.0116)
Power-law B = 3 v (0.012) v (0.0160)
Power-law B = 6.5 v (0.0074) v (0.0131)
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The Wald and the LR test p-values are all smaller than
5%, such that the covariate model is selected in all cases.
The sex is thus a relevant covariate for the tumor load
growth rate R, and in each model, we find RyopF < RpopM-
For the power-law with B = 6.5, we report Rpoppr =
2.9(1.3) x 1073 month™! and &y = 1.47(0.55), such that
the median of the male population, Rpopm = RpopF X M =
12.6(5.7) x 1073 month™!, is four times as high. Those
prior distributions are presented with the individual infered
values in box {Tumor load modeling in SMM[. We also
find Vppop = 1350(500) mm?>, associated with the error
parameter b = 0.281(0.027). The predictions from this
model are shown in Fig. [5]for two patients, together with
the initial lesion. Predictions for the whole cohort are dis-
played in ‘Supplementary Figure 2’. Further introducing
the sex as a covariate for the initial volume V/, or for wg,
does not improve the BIC further, and gives negative Wald
and LR tests, consistently over all growth models.

To assess the robustness of our model selection, we
repeat the bootstrapping strategy from above and create
bootstrapped samples, by resampling the tumor load time
series. We repeat the model selection procedure, for each
sample, and report the selection rate of each model, for the
three best-candidates and using M/F as a covariate:

Samples: Power law Power-law
B=65 (exponent1al)

’ full dataset \ 0 \ 1 \ 0 ‘

| 10samples | 025 [  0.65 | 0.1 |

[ 20samples | 0225 [ 0575 | 0.2 \

We see that the power-law model with B = 6.5 is selected
in more than 50% of the cases, confirming our effective
modeling approach for the crossover regime.

Dissemination. As a further check, we carried out a simi-
lar model selection analysis, applied to Nyjss(#), the number
of disseminated lesions, which is expected to fully follow
the IKS model Eq. (7), as it directly models the distribution
of disseminated lesions. Using the total number of lesions,
excluding the initial one, we compute the Nyiss(f) series
and obtain a dataset of 13 patient series (8M and 5F) with
4.31 time points per series on average. We test in Table [3]
the exponential model, and search for the best power-law
model, in the model without covariate. We find a clear

Model: | no covariate |
Diffusive B = 3/2 217.01 (0.10)
Cubic B=3 211.94 (0.09)

Power-law B = 5
Power-law B = 10
IKS (exponential)

210.04 (0.09)
208.82 (0.09)
207.88 (0.05)

Table 3: Mean and standard deviation of BIC values for the number of
disseminated lesions, in a mixed-effect model with no covariate, (see
‘Supplementary Table 5° for more values of B).

selection of the exponential model for Ny (), thus nicely
complementing our analysis of the crossover regime. In
‘Supplementary Table 5°, we further introduce the sex of
the patient as a covariate. This analysis is, however, not
conclusive: the model predicts a high ratio of the median
of the rates in the two populations, but the Wald and LR
tests do not permit to assert that those distributions are
undistinguishable on this cohort.

3.4. Novel model-based biomarkers

Based on this careful mathematical modeling of the
disease evolution, that is agnostic of the survival chances
of the patient, we propose to use patients’ parameters as
model-aware biomarkers for clinical use. We show below
that the tumor load growth rate R provides a relevant risk-
stratification for MM. We then compare it with other non-
model-based radiological biomarkers, and find indications
that R is more relevant than the other criteria.

Transition to MM. As described in Sec. 3.1} we select the
patients with at least two focal lesion measurements (26 pa-
tients), and include the information on progression to MM.
For those patients, we compute the tumor load growth rate
R, using the best performing model and priors from above
i.e. power-law with B = 6.5 and M/F as a covariate, and
the resulting prediction curves are shown together with the
measured data in Fig[6] Using a threshold Ry,, we then use
R to stratify patients into a low-risk (R < Ry,) and a high-
risk (R > Ry,) group to progress to MM. For each possible
value of Ry, we then compute the true positive rate for the
detection of patient who progress to MM during the obser-
vation time, and the false positive rate, measuring the false
alarms, and report them in the Receiver Operating Charac-
teristic (ROC) curve (Zweig and Campbelll, [1993)), red line
in Fig[7(a). Using the median of all observed growth rates
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R as the stratification threshold, we obtain a true positive
rate of 0.75 and a false positive rate of 0.1, as indicated
by the red star. Considering the time of progression to
MM, we show in Fig[7[b) the associated Kaplan-Meier
curve (Kaplan and Meier} |1958). We compute the signifi-
cance of the split with the log-rank test (Peto et al., [1977)
and find a p-value of 0.00071, showing that the group
compositions are statistically different. In ‘Supplementary
Figure 3’, further searching for the best threshold in this
population, we find that Ry, = 7.7 x 1073 month™! gives a
better p-value of 0.00003. We observe, however, that this
precise threshold value might be overfitted to this dataset,
and that all splits Ry, € [1.7 x 1073,4 x 1072] month™!
consistently give p-values lower than 0.05. R is therefore a
very relevant biomarker to predict the transition to MM.

Comparison with other radiological criteria. We now
compare this stratification with other MRI-based biomark-
ers. Previous studies (Hillengass et al., | 2010; Merz et al.
2014; [Brandelik et al.,|2018; |Wennmann et al.,|2018) pro-
posed radiological biomarkers for the risk stratification
of SMM patients. Ref. (Brandelik et al., 2018)) showed
that volumetric measurements of tumors leads to a bet-
ter assessment of the tumor load than diametric size, and
Refs. (Merz et al., [2014; [Wennmann et al.| | 2018)) proposed
to take into account the evolution between two measure-
ments, by e.g. considering the rate of change of the tumor
load (Wennmann et al.l |2018). Here we therefore con-
sider the following non-model-based biomarkers, which,
for a fair comparison with the proposed biomarker R, are
also volumetric and retrospectively based on all available
measurements:

1- the largest observed focal lesions number, Ny.x =
max;, Nio(),

1 - the largest observed tumor load, Viax = max;, Vie(t:),

m - the largest rate of change of the tumor load be-
tween two consecutive measurements, 57

“At Imax
AVio(ti) = max, Viot(ti+1)=Viot(t:)

maxy; =4, i I

Figure [7[(a) displays the ROC curves for those criteria,
and we see that they provide a fair stratification as well,
although not as good as the one provided by R. In Table ]
we report the corresponding Area Under the Curve values,
which reaches 0.94 for R. We also report the log-rank test

p-values associated to the Kaplan-Meier survival curves
obtained using each of those criteria and taking the median
observed value as stratification threshold, together with
the associated relative risk (Stare and Maucort-Boulch,
2016). Criteria m and m are both providing a statistically
relevant classification, with comparable p-values ~ 0.01
and comparable relative risks ~ 5.1 — 5.3. In row 1v, we
see that the growth rates R —i.e. the model-based approach
— provide the most relevant split, with a significantly lower
p-value = 0.0007 and the best risk-stratification relative
risk = 9.6, compared to other radiological criteria.

4. Discussion

Diffusive growth of local lesions. In Sec.[3.2] we ana-
lyzed disease progression at the local scale. We found
that the growth of focal lesions in MM is best modeled
by a diffusive growth, thereby confirming a basic hypoth-
esis of Ayati ef al. (Ayati et al., | 2010) and is in line with
phenomenological observations, in particular that lesions
sometimes become too diffuse to be properly volumetrized.
This could be further analyzed by the study of the evolu-
tion of lesion borders, possibly in multiple imaging modal-
ities (Konukoglu et al., 2010; |Lipkova et al., 2018)) With
respect to other tested models, we found that cubic growth,
which would correspond to a solid tumor with a rate of
growth proportional to the tumor surface, performed better
than exponential growth. This does not come as a surprise,
as the latter would correspond to a volumetric growth,
implying that the newly generated mass is ’pushing’ its
surrounding, which may be rather unlikely to happen in a
bone environment.

Effective model for the crossover to global dissemination.
In Sec. we considered the global propagation of the
disease on the patient’s scale, through the analysis of the
tumor load. We showed that the diffusive growth para-
metric model does not translate to the tumor load as such.
Here, a model taking the dissemination process into ac-
count, like the IKS model using an exponential term (Iwata
et al., [2000), is likely more relevant in our SMM cohort,
where most of the monitored patients show a progress
in the number of lesions observed. Still, the tumor load
model that aligns best with our observations is a power-

law with B = 6.5. As summarized in box

[fumor load modell, we interpret this as a crossover from
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| Criteria | Median value | Area Under the Curve | p-value | relative risk |
I | Nmax 4 lesions 0.75 0.2038 2.39
| Vinax 8816 mm> 0.81 0.0116 5.28
m | AV/Aflpex | 5.2 x 1077 mm® month™! 0.80 0.0130 5.13
v | R 1.0 x 1072 month™! 0.94 0.0007 9.58

Table 4: Area Under the Curve values of the ROC curves from Fig. [7[a), Kaplan-Meier log-rank test p-values and relative risk for progression to MM,
associated to the stratification into low- and high-risk groups when using the median observed value of different radiological criteria. Details on
those tests for evaluating the discriminative power of biomarkers are given in ‘Supplementary Method 2’.

an initial diffusive regime (power-law with power 3/2)
to an exponential dissemination regime. This is best ef-
fectively modeled by a power-law model with a higher
power B > 3/2. Further tests on the number of dissemi-
nated lesions confirm that the basic assumptions of the IKS
model (Iwata et al.,|2000), i.e. exponential dissemination,
apply in this cohort.

In the original paper, the IKS model was validated on
one single patient with a metastatic hepatocellular carci-
noma (Iwata et al.l 2000) and has been further tested on
one other patient with liver cancer and one with lung can-
cer in Ref. (Mehrara et al.|[2013)). A few population studies
have been carried out on mice populations with orthotoptic
cell implantation (Hartung et al., 2014; |Baratchart et al.,
2015)(Benzekry et al., | 2016)), the observed dissemination
dynamics also showing an overall good agreement with the
IKS model, although Ref. (Baratchart et al.| |2015)) incorpo-
rated interaction between lesions growing in close vicinity
to match the experimental conditions. The IKS model
has also been used in breast cancer to fit cross-sectional
data on the risk of metastatic evolution (Barbolosi et al.,
2011) using ad hoc parameters, and Ref. (Benzekry et al.,
2016) used it to predict metastatic relapse. Another study
of brain metastasis in non-small cell lung cancer (Bilous
et al., 2018 was concomitant to ours. We are, however,
not aware of any previous longitudinal human population
study of the IKS model in the context of MM, such that
our study, with 21 patients in the crossover regime and 13
series for the number of disseminated lesions, is unprece-
dented.

Role of the sex and other covariates. Our hierarchical sta-
tistical model is evaluated on the whole population jointly,
and permits to systematically test for the impact of covari-
ates on model parameters. We found that the patient’s sex
is a relevant covariate to predict the tumor load growth

11

rate, with a median rate four times as high in the male
population as in the female one. The role of the patient’s
sex in the incidence of MM is known (Raab et al., [2009;
Roellig et al.| 2015; [Kumar et al.,|2017)), but no indication
of its role in the disease evolution in the presence of focal
lesions has been previously reported. However, it has been
shown that activated estrogene receptors inhibit cell sur-
vival pathways and support cell apoptosis in MM (Sola and
Renoir, 2007), which provides one possible explanation.
This effect deserves to be further investigated in a larger
cohort. The sex covariate alone is, however, a less relevant
covariate for the local lesion growth modeling, indicating
that other hidden covariates might play a role and could be
added in the model as well. The location of focal lesions
could be a candidate, and in ‘Supplementary Table 3* we
have found indication that long bones tend to have lower
growth rates than other bones. Our sample size is, however,
too small to carry out multi-covariate tests with enough
statistical strength. The role of the sex covariate in tumor
load modeling in our cohort could also be explained by a
difference in the dissemination rate, but more statistical
strength would be needed to conclude here as well.

Growth rates as model-based biomarkers. In Sec. [3.4]
we identified the tumor load growth rate as viable image
biomarker that is integrating information along the full
observational sequence. We have shown that it provides
a pertinent risk-stratification of SMM patients to develop
end-organ damage and therefore transition to MM. This
biomarker provides a better risk-stratification than other
MRI-based biomarkers that have been suggested in the
literature, even when few observations are present, gaining
strength from the population priors. The biomarker gets re-
fined over time when the number of observations increases,
as it takes all available measurements into account, thereby
confirming the unprecedented potential of model-based
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biomarkers for better and more personalized treatment de-
cisions. This contrasts with current biomarkers, which
consider the most recent examination only (International
Myeloma Working Group), [2003}; Rajkumar et al., [2014;
Rajkumar, 2016)). The model used for the biomarkers was
derived on part of the population on which the biomarker
is tested. This however does not lead to overfitting, as
the growth model and the model selection process do not
know about survival and progression to MM. We do ac-
knowledge the limited size of the patient’s cohort and the
retrospective nature of the study, and for full clinical rele-
vance, the proposed model-based radiological biomarkers
should be combined with the remainder of MM biomarkers
in future studies.

5. Conclusion

In this paper, we propose a descriptive functional-
statistical framework to carry out multi-scale modeling
of cancer evolution, from single lesion growth to global
dissemination. Applying it to MM, we tested different
mathematical models, which permits to confirm basic as-
sumptions on disease progression (Ayati et al., 2010} ITwata
et al.l 2000). We learned population priors, as well as
tested the influence of various covariates, on clinical data.
Our study establishes a new benchmark for the study of
metastatic and disseminated diseases in general, and for un-
derstanding the progression of MM in particular. We also
propose to use the inferred model parameters as biomark-
ers, and showed the relevance of the growth rate to predict
the transition to overt MM in our dataset. We were able
to show that biomarkers based on biologically-grounded,
but tractable models could be more significant than phe-
nomenological ones, which offers new and unprecedented
directions.

Model-based biomarkers could be used in the clinical
routine, as inference of the individual parameters is very
fast. Indeed, for our study, it takes 0.15s per patient on
average with the Monolix software (Monolix). This com-
putation could therefore be implemented after computer-
aided segmentation of focal lesions in MRI, for example.
The use of whole-body imaging and whole-body lesion
analysis is hindered by a lack of means to postprocess
and analyze these added information. Our model now of-
fers such means fostering the impact of high capacity data
analytics in clinical decision making.
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Future work should integrate other image-based and non-
image-based, static and dynamical features in a radiomics
approach. Our model could be extended and refined by
considering the interaction between lesions in the growth
process, such as done in (Baratchart et al., 2015; Benzekry
et al., [2017) One could in particular investigate related
models for other observed parameters for MM, such as
laboratory parameters that are known to correlate with the
progression of the disease (Mai et al., [2015; ' Wennmann
et al.| [2018), genetic markers or cell-surface proteins mea-
sured with flow-cytometry (Flores-Montero et al., 2017).
Next-generation sequencing, which is becoming available
and permits to distinguish different clonal phenotypes of
plasma cells (Takamatsu, |2017) would enable to analyse
separately the role of different mutations in disease pro-
gression.
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‘
J

Zweig, M.H., Campbell, G., 1993. Receiver-

operating  characteristic  (ROC) plots: A Driving clinical problem

fundamental evaluation tool in clinical

medicine. Clinical Chemistry 39, 561-577. | Multiple Myeloma is a cancer of plasma cells that
doiROC;Receiver-OperatingCharacteristic; is still incurable, with a median survival of 6 years
SDT;SignalDetectionTheory! at the time of diagnosis (Raab et al., 2009; |[Roellig

et al.l 2015 |Kumar et al., [2017). It is a systemic
cancer, which can be considered as a model for the
cancer dissemination process (Ghobrial, 2012} |(Gho+
brial and Landgren, |2014). Its development starts
with the development and infiltration of clonal
plasma cells within and into the bone marrow,
homing into a niche and creating a micrometas-
tasis. This initial cluster of malignant cells, can
grow into a focal lesion and emit malignant cells
that can in turn colonize other niches in the bone
marrow. In overt MM, the malignancy causes end-
organ damage, such as lytic bone lesions due to the
perturbation of the bone remodeling cycle (Ayati
et al., 12010).

The International Myeloma Working Group
(IMWG) distinguishes two precursor stages, Mon-
oclonal Gammopathy of Undertermined Signifi-
cance (MGUS) and Smoldering Multiple Myeloma
(SMM), preceding symptomatic Multiple Myeloma.
This advanced stage is defined by the occurrence
of end organ damage, following the CRAB criteria:
‘C’ for calcium elevation, ‘R’ for renal insuffi-
ciency, ‘A’ for anemia and ‘B’ for bone damage,
corresponding to the appearance of bone lytic le-
sions on skeletal radiography or CT (International
Myeloma Working Groupl 2003). In 2014, further
malignancy criteria were added to the definition of
symptomatic MM, such as the presence of more
than one focal lesions in MRI (Rajkumar et al.,
2014; Rajkumar, 2016).

The incidence of MGUS is high in the population
(1% of persons over 50 years-old (International
Myeloma Working Group, 2003)) but only 15% of
patients with MGUS will progress to MM (Kumar
et al., [2017). Risk-stratification of patients in the
early stages is therefore of primordial importance,
to make treatment decisions (Ghobrial and LLand-
gren, 20145 Ahn et al., |2015; ivan de Donk et al.
2016).
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Figure 1: Overview of the approach: Observations and dataset.
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Descriptive tumor load model
The tumor load is made of the putative initial le-
sion and the disseminated burden representing the
process of new lesions starting to grow and to con-
tribute to the overall load:
Vlot(t) = Vinit(t) + Vdiss(t) a)
3500 . /]
. . . t #24, F
Vinit(?) € {linear, cubic, diff., exp.} and Vy;s(¢) ~ pa}gﬁ sex /
exp.
We propose an effective model in the observation
range:
Via®) ~ Vo (Rt + 1*
: observation : tu_r':ﬁor
X range ' load
, ! (SMM phase) !
2 ' '
> | |
= | Y/ (xponential)
£ 1 t (months)
~. ! b)
= ! T
. ! (énéngiflfis:ﬁg) patient #33, sex M /
' 2500
..... : 2000
time o
\ J E 1500
>
slide 4 slide 8 slide 10 1000
500
0
0 5 10 15
t (months)

Figure 4: Local lesion growth time series (dots) with the predictions
(solid lines) and the corresponding 95% error margin (shaded area), for
(a) a female and (b) a male patient. The predictions are based on the
SAEM results using the diffusive parametric growth model, Eq. (@), and
no covariate.

vertebrae lesion sacrum lesion vertebrae lesion

|

Figure 3: Three-dimensional segmentation and volumetrization of all
visible hypo-intense focal lesions in a T1-weighted MRI sagittal MRI
sequence.
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Tumor load modeling in SMM

We find the effective model

6.5
x10* Viot@® = Vo (Rt + 1),
a /|
) 3t patient #24, sex F ,'J
7

with the following median population values:
25| R=0.0119 S o Growth rates for males and females
Ropopm = 12.6(5.7) x 10~ month™!
Rpopr = 2.9(1.3) x 107> month™!
e Initial volumes: Vg pop = 1350(500) mm?>
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Figure 5: Tumor load Vi (7) (blue dots) and initial lesion Vi (7) (red RS
dots) time series with the predictions (solid lines) and the corresponding 0 L e
95% error margin (dashed lines), for (a) a female and (b) a male patient, 20 e pat 2‘1’ sxM
who both transition to MM. The predictions for the tumor load are based " Low-risk Pat 33, sex
on the SAEM results using the power-law parametric model, Eq. (8) with ) Pat 57, sex M
B = 6.5, and a covariate model for the sex M/F. of - T T ' o e Pat 63, sox P
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Figure 6: Rescaled tumor load series for patients with at least two time
points, together with their fit using the best tumor load model and priors.
The proposed risk groups are defined by the dashed separatrix.
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to R. Stars indicate median splits, that are used in (a), (c) and TableEl (b)
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Supplementary Material

Supplementary Method 1. Model comparison. We present here the different metrics that we use to qualitatively assess
the adequacy of a model, and perform model selection.

Akaike and Bayesian Information Criteria.. The Akaike Information Criterion (AIC) is defined as (Akaike, |1973))
AIC = -2 x LLH + 2k,

where £ is the total number of parameters, i.e. the length of the vector which gathers all population and error parameters.
The Bayesian Information Criterion (BIC) in turn reads (Schwarz, |1978)

BIC = -2 X LLH + log(N)) k.

Both criteria are meant to be minimized, hereby tending to maximize the log-likelihood, i.e. the goodness of the fit.
They both contain a penalty term for models which have a greater number of free parameters, in order to select models
that are more efficient in modeling the data. We see that the BIC penalizes model complexity more heavily as soon as
N; > 7. Comparison of the performance of those criteria shows that AIC performs better for small number of time
series N;, whereas the BIC is more consistent for larger datasets (Markon and Krueger, |2004; |de Graft Acquahi[2012).

Wald and Likelihood ratio tests.. In the case where one model is a particular case of a more complex one, there
exists further statistical tests for model comparison. This applies in particular to testing the relevance of the use of
a covariate in a model, as a model with covariates embeds the simpler case without covariate [e.g. take & = 0 for
k €[1,K—1]in Eq. (TT)]. The Wald test (Wald} [1943) aims at testing if the inferred distributions of the extra-parameters
[{é}i=1.x-1 in Eq. (I0)] of the more complex model are statistically distinguishable from the value they take in the
simpler model, in the so-called null hypothesis. Those distributions are approximated by normal ones, whose variance
is estimated via the Fisher information matrix, and the corresponding p-value computed to assess the plausibility of
the null hypothesis. The likelihood ratio (LR) considers the ratio of the likelihood of the two models (Neyman and
Pearson, |1933)). The distribution of its logarithm is then compared to a chi-square distribution, which is expected in the
null hypothesis (Wilks| [1938]), via the computation of the p-value. The Wald approach is simpler, and asymptotically
equivalent to the LR test. It is, however, less reliable in some cases, in particular as it cannot capture any structure or
asymmetry of the likelihood function (Meeker and Escobar, (1995} Pawitan), [2000).

Supplementary Method. Biomarker evaluation. We introduce here different methods to assess the relevance of a
biomarker in risk-stratification. We are concerned in this study with binary clinical outcome, i.e. whether the patient
progresses to MM or not.

Receiver Operating Characteristic (ROC) curve.. The ROC curve is often used in the clinical medicine context (Zweig
and Campbell, [1993). In this case, each test time series is associated with a value of the biomarker, as well as a positive
or a negative label, labeling if the event (progession to MM) occurred or not over the observation period. For a split in a
high-risk and a low-risk group, we compute the True Positive Rate (TPR), measuring the probability that a positive
example was classified in the high-risk group, and the False Positive Rate (FPR), measuring the rate of negative events
classified in the high-risk group:

TPR = True Positives/Positives and FPR = False Positives/Negatives .

The ROC curve consists in plotting the TPR against the FPR for various thresholds of the biomarker. A ROC curve
is considered discriminative if it is above the TPR=FPR line, that would correspond to random assignments to the
risk-groups. The discriminative power of a biomarker can be assessed by the area under the ROC curve, which should
be above 0.5 and as close to 1 as possible; a value of 1 corresponding to a perfect discriminator.
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Kaplan-Meier survival plots.. Risk prediction in time can be made using Kaplan-Meier ’survival® plots (Kaplan and
Meier, |1958)), which take the timing of the event into account. This plot estimates the survival function for each group,
taking into account censored data (i.e. when the observation ends, without occurrence of the event). The log-rank test
measures if the survival distributions of the two groups are statistically distinguishable (Peto et al.| [{1977). To quantify
the difference in survival between the two groups, we compute the Relative Risk (Stare and Maucort-Boulch, 2016):

RR=7T1/7T2,

where 7, are the probabilities of event occurrence in each group, i.e. the total follow-up time, divided by the number
of events.

Supplementary Method 3. Derivation of the diffusive growth model. Reference (Ayati et al., 2010) assumes a diffusion
equation with a Gompertz-like saturation term for the tumor density, in one-dimension (see Eq. (33) in Ref. (Ayati
et al.,[2010)). We extend it to three dimensions in an isotropic manner:

—T([ )?) o4 AT (t, )?) +yrT(t, )?) IOg( )

T(t,%)
where T'(z, %) is the local tumor density, y7 > 0 is the Gompertz growth constant, and Ly the maximum tumor density,
and o is the diffusion coefficient of the lesion. In the lesion area (i.e. where T(t, ¥) ~ Lr), the growth is essentially
diffusive, with a reaction term that can be simplified to:

%T(t,f) ~ 04T (1, %) + yrT(1,X). (12)

¥ /2d; , we find the evolution of

. . . e e . . . . . _ _ LO
Solving Eq. (1_12]) with an initial isotropic lesion of size dy, using T'(t = 0, X) = e
the tumor density

yrt
T(.7) = Lye o~ 1ATu(t+o)
[4roy(t + 10)]*/?

bl

with 7y = d(z)/ 204. Computing the linear size of the lesion using the root-mean-square distance from the origin, gives

T,
dz(t)zfd G L( j) 3(20ut +d2) .

The time evolution of the associated volume is therefore V(¢) = 4 \/§7r( AJ20 4t + d5)3. After reparametrization, we find

V(t) = vo(re + 12, (13)
which corresponds to ‘fj—‘l/ o« V()!13.

Supplementary Method 4. Solutions of the IKS model. The IKS equation models the size distribution of disseminated
lesions in time p(v, t) (Iwata et al.| 2000). This quantity follows a transport equation:

dp(v, 1) N 0g(p(v, 1)
ot v

=0, (14)

where g(v) is the growth rate of individual lesmns = g(v). Considering the standard boundary conditions, also
presented in Ref. (Iwata et al., |2000; |Struckmeier 2003 Evys et al.,[2009)), one can solve those equations.
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Full analytical solution of Eq. (T4) is obtained in the case of exponential growth for the individual lesions (i.e.
g(v) = rv) which is for example presented in Ref. (Struckmeier, [2003)):

—a—"-1 e(r(l+m)z

m :
p(v, 1) = —v for t>0;1 <v<e” and 0 otherwise .
r

In the cases of the power-law lesion growth models, we use g(v) = av'~”, where y = 1 holds for a linear growth, 1/3

Ay .
for a cubic growth and 2/3 for the diffusive growth. In equation (TG), one then finds p(v, 1) oo €'v™1#7e™7 "D with

a

Ao = ad; and where 4, is the maximum real solution of the eigenvalue equation 1 = %e%y% (%)’H 1"(% +1, %) (Iwata
et al., [2000).

Therefore, for the different lesion growth models described in Sec. Lesion growth models, the distribution p(v, f) is
asymptotically separable (Evys et alJ,2009), and has an exponential time-dependence

P, 1)~ CeV'F (), 15)

where 1y and F depend non-trivially on the growth and the dissemination models. This will translates into an exponential
asymptotic behaviour for both the number of disseminated lesion Nyjss(f) = f dv p(v, t) and the disseminated burden
Vaiss(t) = [ dvvp(v,1):

Viiss (1) ~—00 Voer . (16)

Supplementary Table 1. Lesion location categories in the individual lesions dataset. This table presents the distribution
of the locations of lesions in the individual lesions dataset, amongst time series and patients.

] \ Category \ Number of lesions \ Number of patients
1 Skull - -
2 Cervical vertebrae 2 1
3 Thoracic vertebrae 10 4
4 Lumbar vertebrae 6 4
5 Sacrum & Coccyx 5 5
6 Shoulders 2 2
7 Humerus - -
8 Pelvis 7 6
9 Femur 12 8
10 | Tibia & Foot 2 1
11 | extra-osseous 1 1
12 | Ribs - -
13 | Sternum 2 2

Supplementary Table 2. AIC values for lesion growth model selection. We present the AIC values for the different
lesion growth models, with three mixed-effects models: without covariate (first column), with the patient’s sex as
a covariate for r (second column), and with the lesion location as a covariate for r (third column), as detailed in
[Supplementary Table 3]

| Model: | nocovariate | M/F cov. for r | loc cov. for r |
Linear 204243 (0.12) | 2941.64 (0.13) | 2943.79 (0.13)
Cubic 2945.19 (0.17) | 2945.64 (0.19) | 2944.47 (0.20)
Exponential || 296531 (0.22) | 2965.50 (0.21) | 2964.82 (0.21)
Diffusive 2940.87 (0.17) | 2941.61 (0.17) | 2940.73 (0.17)
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Supplementary Table 3. Lesion location covariate testing. Using the lesion location categories (see [Supplementary]
[Table TJ), we test for the lesion location as a multiclass covariate in the lesion growth model. However, as some
categories are not, or almost not, represented in our dataset, we group different locations together. We obtain a low
log-likelihood when grouping the lesions of the spine in one group (categories 2, 3, 4 and 5 in[Supplementary Table 1}
denominated ’spine’ group in the following), those in long bones in a second (categories 7, 9 and 10, denominated "long’
group) and the remaining categories together (categories 1, 6, 8, 11, 12 and 13, denominated "0’ group). Long bones are
known to have a different trabecular structure than other bones. Introducing those groups as a 3-fold covariate for r in
the diffusive model, we find that SAEM converges to lower growth rates for the long bones group, i.€. 7pop.long < 7pop,0s
with &g = —0.749(0.68), and to growth rates for the spine group that are not distinguishable from the other bones, with
Eopine = 0.0607(0.64).

We therefore further analyze the binary split "long’ vs {’spine’ and other bones}. The log-likelihoods are comparable
to that of the ternary split and the BIC values are reported below:

Model: H loc cov. for r ‘
Linear 2955.14 (0.13)
Cubic 2955.82 (0.20)

Exponential || 2976.17 (0.21)
Diffusive 2952.09 (0.17)

We find that the BIC increases compared to the no covariate case (first column of Table[I). The AIC criterion, however,
would select this covariate split in some cases, and does not permit to decide within the error bars for the diffusive
model (see third column of [Supplementary Table 2). To confirm, we again proceed to the Wald and LR tests:

| Model: [ Wald (p-value) | LR (p-value) |
| Diffusive |  X(0.14) | X(0.1435) |

Both the Wald and the LR tests reject the covariate model. Thus using the ’long’” bone covariate does not bring a
significant improvement for inferring the local lesion growth rates on this dataset. However, we found an indication
that tumors might grow slower in those bones. We also observe that the p-value of those tests tends to decrease with the
dataset size, indicating that a larger cohort could permit to draw significant conclusions.

Supplementary Table 4. Effective model for the tumor load. We perform model selection for the tumor load time series,
comparing power-law models [Eq. (8)] with different values of B. We estimate, with SAEM, the population parameters
of a mixed-effect model without covariate and with the sex of the patient (M/F) as a categorical covariate for the growth
rate R, as in Eq. (TT). The BIC values are gathered in the following table:
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| B | nocovariate | M/F cov. for R |
0.5 | 1792.83 (012) | 1789.86 (0.11)
1 1772.12 (0.14) | 1769.91 (0.11)
1.5 | 175791 (0.24) | 1755.52 (0.12)
3 1744.19 (0.14) | 1741.40 (0.23)
5 [ 174138 (0.15) | 1738.58 (0.22)
5.5 | 1741.27 (0.19) | 1738.42 (0.21)
6 | 1741.35 (0.16) | 173830 (0.19)
6.5 | 1741.22 (0.15) | 1738.19 (0.11)
7 | 1741.24(0.16) | 1738.23 (0.23)
7.5 | 1741.32(0.14) | 1738.39 (0.15)
8§ | 174145 (0.14) | 173850 (0.16)
10 | 1741.89 (0.15) | 1738.78 (0.23)
12 | 1742.18 (0.18) | 1739.02 (0.13)
20 | 1743.31(0.18) | 1739.95 (0.21)

This permits to select the model with B ~ 6.5 as the best effective model.

Considering B as a patient-dependent parameter in Eq. (8), we also run SAEM with a normal prior on Bj, i.e.
B; = Byop + 17; with n; ~ N(0, w3), and we fix wp = 2. We use the sex of the patient as covariate for R, as selected
by the previous experiment. The value selected by the algorithm for the parameters of the prior is By, ~ 6.39(1.3),
corresponding to a BIC of 1741.58(0.15). This population value is fully consistent with the best value of B ~ 6.5
selected above. Introducing a patient-dependent width to the prior can be justified by the fact that we are analyzing an
effective transitional behaviour, and different patient series might be at a different stages of the transition. However,
this additional degree of freedom does not permit to reduce the BIC values.

Supplementary Table 5. Model selection on the number of disseminated lesions. We proceed to an analysis similar to
Sec. Modeling global tumor load, on Ng;ss, the number of disseminated lesions, which is expected to fully follow the
IKS model, Eq. (8). Computing the Ngiss(#) series (using total number of lesions, excluding the initial lesion), we obtain
a dataset of 13 patient series (8M and 5F) with 4.31 time points per series on average. As in[Supplementary Table 4]
we test the exponential model, and we search for the best power-law model, using both no covariate, and the sex as a
covariate for R. We compare the BIC values obtained with SAEM, on those experiments:

’ Model: H no covariate \ M/F cov. for R ‘
Diffusive B=3/2 || 217.01 (0.10) | 217.04 (0.09)
Cubic B=3 211.94 (0.09) | 211.86 (0.09)

Power-law B = 5

210.04 (0.09)

210.05 (0.08)

Power-law B = 6

209.63 (0.09)

209.57 (0.10)

Power-law B = 8

209.09 (0.15)

209.04 (0.08)

Power-law B = 10

208.82 (0.09)

208.67 (0.08)

Power-law B = 12

208.67 (0.10)

208.57 (0.08)

Power-law B = 20

208.32 (0.08)

208.21 (0.08)

IKS (exponential)

207.88 (0.05)

207.79 (0.07)

This clearly selects the exponential model over the power-law ones, confirming that the dissemination process
follows the IKS model. The BIC is (very) slightly improved in the M/F covariate model for R, but both values are
compatible within the error bars. In the covariate model, we obtain &y = 1.98(1.3), which corresponds to a high ratio
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RpopM/Rpopr = €™ ~ 7.2 for the population median, but is associated to a very high variance. We therefore proceed to
the Wald and LR tests,

’ Model: H Wald (p-value) \ LR (p-value) ‘
| IKS (exponential) [| X (0.12) | X(0.1035) |

which both rejects the covariate model on this cohort, considering a 5% threshold.

Supplementary Figure 1. Focal lesion time series. We show here selected focal lesion growth series V() (blue dots)
with individual predictions (red lines) and the corresponding 95% error margin (black dashed lines). The predictions
are based on the SAEM results using the diffusive parametric model, Eq. @).
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Supplementary Figure 2. Tumor load time series. We show below the tumor load time series Vi () (blue dots) with
individual predictions (red lines) and the corresponding 95% error margin (black dashed lines). The predictions are
based on the SAEM results using the power-law parametric model, Eq. (8), with B = 6.5, and a covariate model for the

sex M/F.

2000

1000
L

500©

pat. #02, seX F

0
0 20 40 60 80

x10*

t (months)

tot

A% (mms)

pat. #21, sex M.

10 20 30

t (months)

2000

“g 1500
E

5 1000
>

500

pat. #30, s:cx’[’:

50 100
t (months)

0 20 40 60
t (months)

10000
8000
£ 6000

tot (

4000
2000

pat. #50, sex M

9
'

10 20
t (months)

tot

3
tot (mm )

v

8000

pat. #05, sex F

4 6 8

0 10 20
t (months)
x10*
10 pat. #46, sex M
5
0 ==
0 10 20 30
t (months)
800 ’
pat. #51, sex M
N
600 ’
400
200 .

20 40 60
t (months)

0
0

x 10

5 10 15
t (months)

pat. #47, sex M

10 20
t (months)

pat. #53, sex F

5 10
t (months)

(mm?)

2 1000

2500

2000

1500

pat. #16, SE:)g«F:

50 100
t (months)

pat. #29, sex’M

20 40
t (months)

pat. #48, sex F

10 20
t (months)

pat. #56, seX(Ml

5 10
t (months)


https://doi.org/10.1101/613869
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/613869; this version posted June 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

pat. #63, sex F
10000 SeTa

(mm?)
[ ]
[ ]

2 50008

'
v
v
'
'
v
'
v

0
0 20 40 60
t (months)

31


https://doi.org/10.1101/613869
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/613869; this version posted June 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Supplementary Figure 3. Varying the threshold R, The figure below shows (a) the histogram of the tumor load growth
rates R, used as a biomarker, (b) the Kaplan-Meier p-values obtained for different threshold values Ry,.
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