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Abstract
Classical deformable registration techniques achieve impressive results and offer a rigorous theoreti-
cal treatment, but are computationally intensive since they solve an optimization problem for each
image pair. Recently, learning-based methods have facilitated fast registration by learning spatial
deformation functions. However, these approaches use restricted deformation models, require super-
vised labels, or do not guarantee a diffeomorphic (topology-preserving) registration. Furthermore,
learning-based registration tools have not been derived from a probabilistic framework that can offer
uncertainty estimates.
In this paper, we build a connection between classical and learning-based methods. We present
a probabilistic generative model and derive an unsupervised learning-based inference algorithm
that uses insights from classical registration methods and makes use of recent developments in
convolutional neural networks (CNNs). We demonstrate our method on a 3D brain registration task
for both images and anatomical surfaces, and provide extensive empirical analyses. Our principled
approach results in state of the art accuracy and very fast runtimes, while providing diffeomorphic
guarantees. Our implementation is available at http://voxelmorph.csail.mit.edu.

Keywords medical image registration · diffeomorphic
registration · invertible registration · probabilistic
modeling · convolutional neural networks · variational
inference · machine learning

1 Introduction

Deformable registration computes a dense correspondence
between two images, and is fundamental to many medi-
cal image analysis tasks. Classical registration techniques
have been rigorously developed and studied, but require
computationally intensive optimization for each image pair,
often requiring tens of minutes to hours of compute time
on a CPU. Recent, learning-based registration methods
achieve fast runtimes by building on machine learning
developments, but largely omit rigorous theoretical treat-
ment of deformations and topology-preserving guarantees.
In this work, we present an approach that builds on the
strengths of both paradigms, and overcomes these short-
comings. We provide a rigorous connection between prob-
abilistic generative models for deformations and learn-
ing algorithms based on convolutional neural networks
(CNNs). We also demonstrate that the learning can be
done end-to-end in an unsupervised fashion for this model.

The resulting framework provides registration for a new
image pair in under a second on a GPU, while maintaining
guarantees developed for classical methods.

Our formulation casts registration as variational inference
on a probabilistic generative model. This framework nat-
urally results in an algorithm that leverages a collection
of images to learn a global convolutional neural network
with an intuitive cost function. Importantly, we introduce
diffeomorphic integration layers combined with a spatial
transform layer to enable unsupervised end-to-end learning
for diffeomorphic registration. We demonstrate that our
algorithm achieves state-of-the-art registration accuracy
while providing diffeomorphic deformations and fast run-
time, and can estimate of registration uncertainty. In our
experiments we focus on the example of registering 3D
MR brain scans, using a multi-study dataset of over 3,500
scans. However, the method is broadly applicable to many
registration tasks.

This paper extends a preliminary version of this work pre-
sented at the Medical Image Computing and Computer As-
sisted Intervention (MICCAI) 2018 conference [18]. We
build on that work by providing theoretical extensions, new
results, analysis, and discussion. We first expand the model,
including a natural extension to anatomical surfaces. In our
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experiments, we add baselines, new experiments on regis-
tration of both images and surfaces, and provide an analysis
of the effect of our diffeomorphic implementation on field
regularity and runtime. We implement our method as part
of the registration framework called VoxelMorph, which is
available at http://voxelmorph.csail.mit.edu.

1.1 Related Works

1.1.1 Classical Registration Methods

Classical methods solve an optimization over the space
of deformations [5, 7, 8, 11, 19, 28, 66, 69, 70]. Com-
mon representations are displacement vector fields, in-
cluding elastic-type models [8, 21, 62], free-form defor-
mations with b-splines [61], statistical parametric map-
ping [6], Demons [56, 66], and more recently discrete
methods [19, 30, 28].

Constraining the allowable transformations to diffeomor-
phisms ensures certain desirable properties, such as preser-
vation of topology. Diffeomorphic transforms have seen
extensive methodological development, yielding state-of-
the-art tools, such as Large Diffeomorphic Distance Met-
ric Mapping (LDDMM) [11, 14, 15, 32, 37, 49, 55, 70],
DARTEL [5], diffeomorphic Demons [67], and symmetric
normalization (SyN) [7]. In general, these tools demand
substantial time and computational resources for a given
image pair.

Some recent GPU-based iterative algorithms use these
frameworks to develop faster algorithms by requiring a
GPU to be available for each registration [51, 50]. Recent
learning-based registration methods have demonstrated
that they can provide good initializations to iterative GPU
methods [10] to further improve runtime.

Probabilitic image registration methods specify priors on
the deformation between two images, and likelihood mod-
els that describe image intensities [63, 70, 31, 58, 3]. These
formulations also lead to iterative optimization methods,
but can yield distributions of deformation fields. In this
paper, we build on these models by presenting a general
variational inference strategy to optimize a global neural
network that efficiently outputs distributions of deforma-
tions.

1.1.2 Learning-based Registration

Recent methods have proposed to train neural networks
that map a pair of input images to an output deforma-
tion. Most earlier approaches demonstrated the feasibility
of deep learning based registration, and required ground
truth registration fields [13, 42, 59, 64, 68]. Such ground
truth deformations are often derived via more conventional
registration tools or simulations, sometimes limiting their
applicability.

Building on the successful demonstration of these methods,
several recent papers [9, 10, 23, 22, 44] explore unsuper-
vised, or end-to-end, strategies. These methods employ a
neural network that computes spatial transformation [36]

to warp one image to another, enabling end-to-end train-
ing. A recent approach builds on these methods by learn-
ing a spatially-adaptive regularizer within a registration
model [54] These approaches use machine learning tech-
niques to achieve efficient training and fast runtimes, but
build on classical registration development, such as proba-
bilistic models and diffeomorphic theory. In our work, we
bridge these two paradigms to offer classical guarantees
within a machine learning approach. We note the contem-
poraneous development of a method that uses a conditional
variational auto encoder (CVAE) to learn diffeomorphic
representations [43, 41]. Similar to our method, this ap-
proach uses a variational strategy to learn a network to
predict a stationary velocity field (SVF). However, the
authors focus on representing the SVF through the mani-
fold of the CVAE, and focus on the anatomical variation
captured through this encoding

Recent methods proposed using segmentation-based cost
functions, such as Dice [25], to replace the image-based
similarity term when segmentations are available during
training for multi-modal registration, such as T2w MRI
and 3D ultrasound, within the same subject [35, 34]. We
extend this line of work by showing that our generative
probabilistic model naturally describes the deformation
of surfaces, therefore enabling the use of segmentations
during training within a single cohesive framework. The
extended model results in a combination of segmentation
(surface) and image-based training losses.

1.1.3 Surface-based Registration

In this paper, we also present an extension to our main con-
tribution which enables alignment of surfaces. In medical
image registration, surface matching methods often use
surface coordinates or geometric features extracted from
anatomical structures [2, 26, 47, 57]. Several methods treat
surfaces as 3D point sets with shape descriptors, and often
use Iterated Closest Point based optimization methods to
find the shape correspondences [12]. Currents, defined as
unconnected oriented points, have been used to register sur-
faces, for example using Matching Pursuit algorithms [26].
Some methods combine volume and surface registration,
often using surface registrations to initialize dense volu-
metric transforms [57]. Similar to volume registration,
these classical surface matching methods use iterative op-
timization strategies, requiring significant computational
resources. Building on these methods, we use a 3D point
representation jointly with images to achieve fast regis-
tration with neural networks, enabled by a differentiable
surface distance function.

1.2 Background: Diffeomorphic Registration

Although the method presented in this paper applies to
a multitude of deformable representations, we choose to
work with diffeomorphisms, and in particular with a sta-
tionary velocity field representation [5]. Diffeomorphic
deformations are differentiable and invertible, and thus
preserve topology. Let φ : R3 → R3 represent the defor-
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Figure 1: A graphical representation of our generative
model. Circles indicate random variables and rounded
squares represent parameters. Shaded quantities are ob-
served at test time, and the plates indicate replication. f
and m are the input images. The image intensities f are
generated from a normal distribution centered atm ◦ φz .
The registration prior is defined by normal parameters µz ,
and Σz . In blue, the optional similar model structure is in-
cluded for an anatomical surface, used purely for learning
an improved posterior of registration.

mation that maps the coordinates from one image to co-
ordinates in another image. In our implementation, the
deformation field is defined through the following ordinary
differential equation (ODE):

∂φ(t)

∂t
= v(φ(t)) (1)

where φ(0) = Id is the identity transformation and t is
time. We integrate the stationary velocity field v over
t = [0, 1] to obtain the final registration field φ(1) [53].

While we implement and evaluate several numerical inte-
gration techniques, we find scaling and squaring to be most
efficient, and we briefly review the technique here [4]. The
integration of a stationary ODE represents a one-parameter
subgroup of diffeomorphisms. In group theory, v is a mem-
ber of the Lie algebra and is exponentiated to produce φ(1),
which is a member of the Lie group: φ(1) = exp(v). From
the properties of one-parameter subgroups, for any scalars
t and t′, exp((t+ t′)v) = exp(tv) ◦ exp(t′v), where ◦ is
a composition map associated with the Lie group. Start-
ing from φ(1/2T ) = p + v(p)/2T where p is a map
of spatial locations, we use the recurrence φ(1/2t−1) =

φ(1/2t) ◦ φ(1/2t) to obtain φ(1) = φ(1/2) ◦ φ(1/2). T is
chosen so that v/2T is very small.

2 Methods

We let f andm be 3D images, such as MRI volumes, and
let z be a latent variable that parametrizes a transforma-
tion function φz : R3 → R3. We propose a generative
model that describes the formation of f by warping m
viam ◦ φz . We propose a variational inference approach
that leverages a convolutional neural network with diffeo-
morphic integration and spatial transform layers. We learn
network parameters in an unsupervised fashion, without
access to ground truth registrations. We describe how the

network yields fast diffeomorphic registration of a new
image pair (f ,m), in a probabilistic framework. We ex-
pand this treatment by including anatomical surface align-
ment, which enables training the network given (optional)
anatomical segmentations.

2.1 Generative Model

We model the prior probability of the parametrization z as:

p(z) = N (z; 0,Σz), (2)

where N (·;µ,Σ) is the multivariate normal distribution
with mean µ and covariance Σ. Our work applies to a
wide range of representations z. For example, z could be
a dense displacement field, or a low-dimensional embed-
ding of the displacement field. In this paper, we let z be
a stationary velocity field that specifies a diffeomorphism
through the ODE (1). We let L = D −A be the Lapla-
cian of a neighborhood graph defined on the voxel grid,
whereD is the graph degree matrix, andA is a voxel neigh-
bourhood adjacency matrix. We encourage spatial smooth-
ness of the velocity field z by setting Σ−1z = Λz = λL,
where Λz is a precision matrix and λ denotes a parameter
controlling the scale of the velocity field z.

We let f be a noisy observation of warped imagem:

p(f |z;m) = N (f ;m ◦ φz, σ2
II), (3)

where σ2
I captures the variance of additive image noise.

We aim to estimate the posterior registration probabil-
ity p(z|f ;m). Using this, we can obtain the most likely
registration field φz for a new image pair (f ,m) via MAP
estimation, along with an estimate of velocity field variance
at each voxel. Figure 1 provides a graphical representation
of our model.

2.2 Learning

Given our assumptions, computing the posterior proba-
bility p(z|f ;m) is intractable. We use a variational ap-
proach, and introduce an approximate posterior probabil-
ity qψ(z|f ;m) parametrized by ψ. We minimize the KL
divergence

min
ψ

KL [qψ(z|f ;m)||p(z|f ;m)]

= min
ψ

IEq [log qψ(z|f ;m)− log p(z|f ;m)]

= min
ψ

IEq [log qψ(z|f ;m)− log p(z,f ;m)] + log p(f ;m)

= min
ψ

KL [qψ(z|f ;m)||p(z)]− IEq [log p(f |z;m)] + const,

(4)

which yields the negative of the variational lower bound
of the model evidence [39]. We model the approximate
posterior qψ(z|f ;m) as a multivariate normal:

qψ(z|f ;m) = N (z;µz|m,f ,Σz|m,f ), (5)

where we let Σz|m,f be diagonal. To understand the effects
of this assumption, we explore a non-diagonal covariance
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Figure 2: Overview of end-to-end unsupervised architecture. The first part of the network, defψ(m,f) takes the input
images and outputs the approximate posterior probability parameters representing the velocity field mean, µz|m;f , and
variance, Σz|m;f . A velocity field z is sampled and transformed to a diffeomorphic deformation field φz using novel
differentiable squaring and scaling integration layers. Finally, a spatial transform warpsm to obtainm ◦φz . Figure 12
expands on this overview by including the optional surface-based loss.

in a later section. The statistics µz|m,f and the diagonal
of Σz|m,f can be interpreted as the voxel-wise mean and
variance, respectively.

We estimate µz|m,f , and Σz|m,f using a convolutional
neural network defψ(f ,m) parameterized by ψ, as de-
scribed in the next section. We learn parameters ψ by
optimizing the variational lower bound (4) using stochastic
gradient methods. Specifically, for each image pair (f ,m)
and sample zk ∼ qψ(z|f ;m), we computem◦φzk , with
the resulting loss (detailed derivation in supplementary
material):

L(ψ;f ,m) = −IEq [log p(f |z;m)]

+ KL [qψ(z|f ;m)||p(z)]

=
1

2σ2K

∑
k

||f −m ◦ φzk ||
2

+
1

2

[
tr(λDΣz|x;y − log Σz|x;y) + µTz|m,fΛzµz|m,f

]
+ const, (6)

whereK is the number of samples used to approximate the
expectation. The first term encourages image f to be simi-
lar to the warped imagem ◦φzk . The second term encour-
ages the posterior to be close to the prior p(z). Although
the variational covariance Σz|m,f is diagonal, the last term
spatially smoothes the mean, which can be seen by expand-
ing µTz|m,fΛzµz|m,f = λ

2

∑∑
j∈N(I)(µ[i] − µ[j])2,

where N(i) are the neighbors of voxel i. We treat σ2

and λ as fixed hyper-parameters that we investigate in our
experiments, and use K = 1.

2.3 Neural Network Framework

We design the network defψ(f ,m) that takes as input f
and m and outputs µz|m,f and Σz|m,f , based on a 3D
UNet-style architecture [60]. The network includes a con-
volutional layer with 32 filters, four downsampling layers
with 64 convolutional filters and a stride of two, and three
upsampling convolutional layers with 64 filters. We only
upsample three times to predict the velocity field (and fol-
lowing integration steps) at every two voxels, to enable
these operations to fit in current GPU card memory.

To enable unsupervised learning of parameters ψ us-
ing (6), we must form m ◦ φz and compute the data
term. We first implement a layer that samples a new
zk ∼ N (µz|m,f ,Σz|m,f ) using the “re-parameterization
trick" [39]: zk = µz|m,f +

√
Σz|m,fr, where r is a sam-

ple from the standard normal: r ∼ N (0, I).

Given zk, we need to compute φzk = exp(zk) as de-
scribed in the introduction. We propose vector integration
layers using scaling and squaring operations. Specifically,
scaling and squaring operations involve compositions
within the neural network architecture using a differen-
tiable spatial transformation operation. Given two 3D vec-
tor fields a and b, for each voxel p this operation computes
(a ◦ b)(p) = a(b(p)), a non-integer voxel location b(p)

in a, using linear interpolation. Starting with φ(1/2T ) =

p+zk/2
T , we compute φ(1/2t−1) = φ(1/2t) ◦ φ(1/2t) re-

cursively using these operations T times, leading to φ(1) ,
φzk = exp(zk). In our experiments, we extensively an-
alyze the effect of the step size T on the runtime of the
network, the accuracy of the registration, and the regularity
of the deformation. We also implement vector integration
layers using quadrature and ODE solvers, and in the ex-
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periments show that these are significantly slower and can
require significant memory.

Finally, we warp volume m according to the computed
diffeomorphic field φzk using a spatial transform layer.

In summary, the network takes as input images f andm,
computes statistics µz|m,f and Σz|m,f , samples a new
velocity field zk ∼ N (µk,Σk), computes a diffeomor-
phic φzk and warps m. Since all the steps are designed
to be differentiable, we learn the network parameters us-
ing stochastic gradient descent-based methods. This net-
work results in three outputs, µz|m,f ,Σz|m,f andm◦φzk ,
which are used in the model loss (6). The framework is
summarized in Figure 2.

2.4 Registration

Given learned parameters, we approximate registration of
a new scan pair (f ,m) using φẑk . We first obtain the most
likely velocity field ẑk using

ẑk = arg max
zk

p(zk|f ;m) = µz|m;f , (7)

by evaluating the neural network defψ(f ,m). We then
compute φẑk using the scaling and squaring based integra-
tion, altogether requiring less than a second on a GPU. We
highlight that at test time, the diagonal covariance Σz|m,f
is not used, however it enables an estimation of the defor-
mation uncertainty. Analysis of uncertainty is beyond the
scope of this paper, and is an interesting avenue for future
study.

Using a stationary velocity field representation, comput-
ing the inverse deformation field φ−1z can be achieved by
integrating the negative of the velocity field: φ−1z = φ−z ,
since φz ◦ φ−z = exp(z) ◦ exp(−z) = exp(z − z) =
Id [5, 52]. This enables the computation of both fields
inside one efficient network when desired.

2.5 Implementation

We implement our method as part of the
VoxelMorph package [9], available online
at http://voxelmorph.csail.mit.edu, using
neuron [20] and Keras [16] with a Tensorflow [1] backend.
We use a learning rate of 1e − 4 for the Adam opti-
mizer [38], a batch size of 1 due to memory constraints,
and Glorot uniform initialization for the convolution
weights. We use a single sample (K = 1), which has been
shown to lead to useful gradients for optimization while
maintaining the memory footprint and implementation
complexity low [39]. For large volumes, the number
of samples is often constrained by the available GPU
memory.

𝑠𝑠
𝑥𝑥
sd(𝑥𝑥; 𝑠𝑠)

𝑏𝑏

𝑎𝑎

Figure 3: Left: an illustration of the surface distance func-
tion sd(x; s). Right: asymmetric surface behavior requires
that we compute the surface distance in both directions.
For example, computing

∑
v sd(a[n], b) will be consider-

ably smaller than
∑
v sd(b[n],a) due to surface points on

the hairpin of b (recall that surface points are not directly
corresponding.)

3 Method Extensions

3.1 Surface-based Registration

In various instances, anatomical segmentation maps for
specific structures of interest may also be available with
some of the training images. Recent papers have demon-
strated that the use of segmentations can help in registra-
tion [10, 34]. Here, we show that our proposed model
naturally extends to handle surfaces, enabling the use of
segmentations during training within the same principled
framework.

We focus on the case where one anatomical structure is
segmented in the image. Given a segmentation map where
each voxel is assigned the desired anatomical label or back-
ground, we extract the anatomical surface and let sf repre-
sent the N surface coordinates of the anatomical structure
for image f , which can be stored as an N × 3 matrix.
Given the diffeomorphism φz in the previous section, we
model each surface location sf [n], as formed by displacing
a matching surface location sm[n] according to φz , and
adding (spatial) displacement noise:

p(sf |z; sm) = N (sf ; sm ◦ φz, σ2
sI), (8)

where the composition sm ◦φz warps surface coordinates.

Given both images and segmentation maps during training,
we extract surfaces of the desired structure and aim to esti-
mate the posterior probability p(z|f , sf ;m, sm). As be-
fore, we use a variational approximation. Since segmenta-
tion maps, and hence surfaces, are usually derived from im-
ages, we assume that images are sufficient to approximate
the posterior: q(z|f , sf ;m, sm) = qψ(z|f ;m). As be-
fore, we minimize the KL divergence between the true and
approximate posterior (derived in supplementary material):

min
ψ

KL [qψ(z|f ;m)||p(z|f , sf ;m, sm)]

= min
ψ

KL [qψ(z|f ;m)||p(z)]− IEq [log p(f |z;m)]

− IEq [log p(sf |z; sm)] , (9)

5
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and arrive at the loss function:

L(ψ;f , sf ,m, sm)

=
1

2

[
tr(λDΣz|x;y − log Σz|x;y) + µTz|m,fΛzµz|m,f

]
+

1

2σ2
IK

∑
k

||f −m ◦ φzk ||
2

+
1

2σ2
sK

∑
k

||sf − sm ◦ φzk ||
2. (10)

Compared to the original model loss (6), the additional
third term encourages the deformation φzk to warp the
moving surface close to the fixed surface sf . As described
in the generative model (8), this requires corresponding
surface points in sf and sm. However, these correspon-
dences are not available in practice, as segmentations are
provided independently for each image. Therefore, the
third term cannot be computed directly.

We propose an approximation of the surface term using
surface distance transforms. Let sd(x, s) be a surface
distance function, which for location x returns the Eu-
clidean distance to the closest surface point in s (Fig-
ure 3Left).1 Noting that for two surfaces a and b,∑
n sd(a[n], b) 6=

∑
n sd(b[n],a) due to potential asym-

metries in the surfaces (see Figure 3Right), we approxi-
mate the distance ‖sf − sm ◦φzk‖

2 by computing sd(·, ·)
in both directions:

‖sf − sm ◦ φzk‖
2

≈ 1

2

∑
n

sd(sf [n] ◦ φ−1z , sm) +
∑
n

sd(sm[n] ◦ φz, sf ).

(11)

We implement this function efficiently using distance trans-
forms. Specifically, to compute sd(sm[n] ◦ φz, sf ), we
first pre-compute distance transforms for the (fixed) given
structure sf . We then sample 100, 000 points along sm,
which we find to be sufficient to estimate accurate mea-
sures along the surface. We warp (move) them according
to the deformation φz , and compute the distance trans-
form of sf at these locations. We take advantage of our
diffeomorphic representation that enables computing the
inverse φ−1z efficiently within the network to similarly
compute sd(sf [n] ◦ φ−1z , sm).

In summary, since to compute the posterior approxima-
tion qψ(z|f ;m) the neural network takes as input only
the images f andm, images alone are required at test time.
Given a diffeomorphism φzk , at training time the network
uses both a warped image and a warped surface to evaluate
the quality of the registration.

This model can also be used to register two surfaces
when the images themselves are not available. The only
modelling change required is removing the image like-
lihood terms and using the variational approximation

1Function sd(x, s) is a generating function for a distance
transform image for the surface s, by evaluating it at every grid
point x

qψ(z|Sf ;Sm), which uses the segmentation maps Sm
and Sf as input. Surface-only registration is beyond the
scope of this paper, and we leave it for future work. How-
ever, registration with images and surfaces is described
here as an example of possible extensions of the model,
and surface-only registration is beyond the scope of this
paper.

The complete neural network framework, including the
surface loss, is illustrated in supplemental Figure 12.

3.2 Non-diagonal Covariance

Approximating the velocity field covariance Σz|m,f us-
ing a diagonal matrix is a strong assumption that ignores
spatial smoothness. As seen in (6), the spatially-smooth
prior p(z) encourages a smooth mean velocity fieldµz|m,f ,
but samples zk ∼ N (µz|m,f ,Σz|m,f ) might still be noisy.
In this section, we investigate the effects of this restriction,
by providing a model expansion that computes a less re-
strictive covariance. In our experiments below, we analyze
the effects of these different approximations.

To evaluate the effects of the diagonal covariance, we ex-
plore a second approximation Σz|m,f = CσcGG

TCT
σc

where G is a diagonal matrix returned by the neural net-
work and Cσc

is a fixed smoothing convolution matrix.
Specifically, for each row of Cσc

we create a flattened
Gaussian smoothing kernel centered at a particular voxel,
such that Cσc

w is equivalent to 3D convolution of im-
age w by a gaussian filter with variance σ2

c . We choose σc
such that the smoothing operation matches the scale of the
prior p(z) determined by λ: 1√

2πσ
3/2
c

= (λ ∗ 6)−1.

During training, sampling from the posterior is achieved
using the reparametrization trick: zk = µz|m,f +Cσc

Dr,
where r is a sample from the standard normal. Intuitively,
compared to the diagonal Σz|m,f approximation, this sam-
pling procedure smoothes the termDr before adding the
mean µz|m,f .

In our experiments, we show that this approximation yields
smoother velocity fields during training, and the effect di-
minishes with higher λ values. However, the resulting
deformation fields are diffeomorphic and accurate for both
approximations, demonstrating that the diagonal covari-
ance approximation is sufficient when working with dif-
feomorphisms.

4 Experiments

We perform a series of experiments demonstrating that
the proposed probabilistic image registration framework
achieves accuracy and runtime comparable to state-of-the-
art methods while enabling diffeomorphic deformations.
We also show the improvements enabled by the extended
surface model, and analyze the effect of the various inte-
gration layers during test time.
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Method Avg. Dice GPU sec CPU sec mean |JΦ| |JΦ| ≤ 0
Affine only 0.584 (0.157) 0 0 1 0

ANTs (SyN) 0.749 (0.136) - 9059 (2023) 1.001 (0.036) 7523 (4790)
NiftyReg (CC) 0.755 (0.143) - 2347 (202) 1.072 (0.131) 33838 (8307)

VoxelMorph (CC) 0.753 (0.145) 0.45 (0.01) 57 (1.0) 1.032 (0.074) 19715 (3540)
Supervised-diff 0.730 (0.144) 0.35 (0.03) 82.6 (3.8) 1.088 (0.121) 0.05 (0.5)

VoxelMorph-diff 0.754 (0.139) 0.47 (0.01) 84.2 (0.1) 1.075 (0.124) 0.2 (1.0)

Table 1: Summary of results: mean Dice scores over all anatomical structures and subjects (higher is better), mean
runtime; mean Jacobian determinant; and mean number of locations with a non-positive Jacobian determinants of
each registration field (lower is better). All methods have comparable Dice scores, while our method and the other
VoxelMorph variants are orders of magnitude faster than ANTs or NiftiReg. Only our presented method, VoxelMorph-
diff, achieves both high accuracy and fast runtime while also having nearly zero non-negative Jacobian locations. All
methods have mean Jacobian determinants close to 1, indicating smooth deformations. Each aspect of these results is
studied in more details in the rest of the experiments and figures.
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Figure 4: Boxplots indicating Dice scores for anatomical structures for baselines ANTs, NiftiReg, VoxelMorph (CC),
and finally our algorithm VoxelMorph-diff. Left and right hemisphere structures are merged for visualization, and
ordered by average ANTs Dice score. In general, all four algorithms demonstrate comparable results, each performing
slightly better in some structures and slightly worse in others.

We focus on atlas-based registration, a common task in
population analysis. Specifically, we register each scan to
an atlas computed using external data [27, 65]. Because
we implement our algorithm as part of the VoxelMorph
framework, we will refer to it as VoxelMorph-diff.

4.1 Experiment setup

4.1.1 Data and Preprocessing

We use a large-scale, multi-site dataset of 3731 T1-
weighted brain MRI scans from eight publicly available
datasets: OASIS [45], ABIDE [24], ADHD200 [48],
MCIC [29], PPMI [46], HABS [17], and Harvard GSP [33].
Acquisition details, subject age ranges and health condi-
tions are different for each dataset. We performed standard
pre-processing steps on all scans, including resampling
to 1mm isotropic voxels, affine spatial normalization and
brain extraction for each scan using FreeSurfer [27]. We
crop the final images to 160× 192× 224. Segmentation

moving

Su
bj

ec
t 1

Su
bj

ec
t 2

atlas moved (ours) moved (ANTs) warp fieldwarp field

Figure 5: Example MR slices of input moving image, atlas,
and resulting warped image for our method and ANTs,
with overlaid boundaries of ventricles, thalami and hip-
pocampi. Our resulting registration field is shown as a
warped grid and RGB image, with the channels represent-
ing the x, y and z dimensions. We omit VoxelMorph (CC)
and NiftyReg examples, which are visually similar to our
results and ANTs. More examples are provided in the
supplementary material Figure 13.
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Figure 6: Surface results for the proposed VoxelMorph models. Left: maximum Euclidean surface distance (lower is
better). Middle: median Euclidean surface distance (lower is better). Right: mean Dice (higher is better). VoxelMorph-
surf trained with surfaces of the desired structures achieves significantly smaller surface distances and larger Dice scores
on each structure. We use left hemisphere white matter (WM), gray matter (GM), lateral ventricle (LV), Thalamus (T),
and hippocampus (H).

maps including 29 anatomical structures, obtained using
FreeSurfer for each scan, are used in evaluating registra-
tion results. Each image contains roughly ∼ 1.6 million
brain voxels. We split the dataset into 3231, 250, and 250
volumes for train, validation, and test sets respectively,
although we underscore that the training is unsupervised.

4.1.2 Evaluation Metrics

To evaluate a registration algorithm, we register each sub-
ject to an atlas, propagate the segmentation map using the
resulting warp, and measure volume overlap using the Dice
metric. For the surface experiments, we also employ the
Euclidean surface distance, computed using the strategy
described in (11).

We also evaluate the diffeomorphic property, a fo-
cus of our work. Specifically, the Jacobian matrix
Jφ(p) = ∇φ(p) ∈ R3×3 captures the local properties of
φ around voxel p. The local deformation is diffeomor-
phic, both invertible and orientation-preserving, only at
locations for which |Jφ(p)| > 0, where | · | is the deter-
minant operator [5]. We count all other (folding) voxels,
where |Jφ(p)| ≤ 0.

4.1.3 Baseline Methods

We compare our approach with the popular ANTs soft-
ware package using Symmetric Normalization (SyN) [7], a
top-performing algorithm [40]. We found that the default
ANTs settings are sub-optimal for our task, and performed
a wide parameter and similarity metric search across sev-
eral datasets. We used the default geodesic implementation
of SyN, which is most faithful to theoretical diffeomor-
phic development. Other versions, such as greedy SyN,
would yield a slightly faster runtime, while giving less
diffeomorphic deformations. We identified and use top
performing parameter values for the Dice metric using:
the cross-correlation (CC) loss function, SyN step size
of 0.25, Gaussian smoothing of (9, 0.2) and three scales
of 201 iterations. We also test the NiftyReg package, for
which we use a multi-threaded CPU implementation as a

GPU implementation is not currently available.2 We ex-
perimented with different parameter settings for improved
behavior, and used the following setting: CC cost function,
grid spacing of 5, and 500 iterations.

To compare with recent learning-based registration ap-
proaches, we also test our recent CNN-based method,
VoxelMorph, which produces state-of-the-art fast and ac-
curate registration, but does not yield diffeomorphic re-
sults [9, 10]. We sweep the regularization parameter using
our validation set, and use the optimal regularization pa-
rameter of 1 in our results.

We also compute a supervised baseline by training a
VoxelMorph-diff network using ground truth deformations.
We build a ground truth dataset by registering over 650
atlas-MRI subject training pairs using NiftyReg with the
described settings. We then train a neural network to pre-
dict the resulting deformation fields using a mean squared
error (MSE) loss. We explored several variants, and found
that doubling the model capacity by doubling the num-
ber of features at each layer, as well as penalizing the
deformations fields only within the proximity of the atlas
brain, yielded optimal results. To enable direct comparison,
we used the VoxelMorph-diff architecture, but without
sampling of the velocity field.

4.2 Image Registration

Table 1 provides a summary of the results on the held-
out test set. Figure 5 and supplementary material Fig-
ure 13 show representative results. Figure 4 illustrates
Dice results on several anatomical structures. For better
visualization, we combine the same structures from the
two hemispheres, such as the left and right hippocampus.
Our algorithm, VoxelMorph-diff, achieve state-of-the-
art Dice results and runtimes, but produces diffeomorphic
registration fields (nearly no folding voxels per scan) in a
probabilistic framework.

All methods achieve comparable Dice results on each struc-
ture and overall, except the supervised method. Despite

2We compiled the latest source code from March, 2018 (tree
[4e4525]).
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Figure 7: Average Dice score for VoxelMorph-surf mod-
els on the validation set. We test various values of the
spatial noise parameter σs, for both the desired structures
observed during training (obs) and all structures (all). For
a range of values of σs ∈ [0.5, 2.0], we find significant
increases for observed surfaces when using the generative
surface model.

training the latter on 650 subjects, we found that the super-
vised network leads to more diffeomorphic deformations
than the training deformations, but results in a slight loss
in Dice score. Learning-based methods require a fraction
of the baseline runtimes to register two images: less than
a second on a GPU, and less than a minute and a half
on a CPU. Runtimes were computed for an NVIDIA Ti-
tanX GPU and a Intel Xeon (E5-2680) CPU, and exclude
preprocessing common to all methods.

Our method outputs positive Jacobians at nearly all vox-
els, which we analyze in more detail in a later section.For
VoxelMorph-diff, we find that for most scans, the de-
formation fields result in zero folding voxels. Very few
volumes lead to a few or tens of grouped folding voxels,
leading to a population average of less than a folding voxel
per test scan. In contrast, the deformation fields resulting
from the baseline methods contain a few thousand loca-
tions of non-positive Jacobians for each scan (Table 1),
usually grouped in clusters. This may be alleviated with
increased spatial regularization or more optimization it-
erations, but this in turn leads to a drop in performance
on the Dice metric or even longer runtimes. The table
also shows that, at the presented settings, all methods re-
sult in an average Jacobian determinant close to 1, with
VoxelMorph-diff yielding smoothness statistics nearly
identical to those given by NiftyReg, indicate smooth de-
formations.

4.3 Image and Surface Registration

In this section, we evaluate the generative surface model.
We demonstrate the use of anatomical segmentation along-
side images during training, and refer to this model
as VoxelMorph-Surf. We focus on the setting where
one structure of interest is available during training, and
learn separate networks for the left white matter, gray mat-
ter, ventricle, thalamus and hippocampus. Our goal is to
analyze how the additional surface model terms affect the
accuracy and regularity of resulting deformations.

Method |J | ≤ 0 % of |J | ≤ 0

ANTs SyN (CC) 9060 (4445) 0.545 (0.267)
NiftyReg (CC) 40425 (9901) 2.431 (0.595)

VoxelMorph (CC) 19077 (5928) 1.147 (0.360)
VoxelMorph-diff 0.1 (1.2) 6.1e-6 (7.6e-5)

VoxelMorph-surf (cer.w.m.) 3.0 (6.2) 1.8e-4 (3.8e-4)
VoxelMorph-surf (cer.cor.) 3.4 (6.4) 2.0e-4 (3.9e-4)
VoxelMorph-surf (lat.ven.) 4.0 (8.0) 2.3e-4 (4.8e-4)

VoxelMorph-surf (thalamus) 4.3 (8.2) 2.6e-4 (4.9e-4)
VoxelMorph-surf (hip.) 2.7 (5.8) 1.6e-4 (3.5e-4)

Table 2: Regularity measures for image and surface models
on the test set. Leveraging diffeomorphic aspect of our
joint image and surface model, VoxelMorph-surf preserved
very low numbers of folding voxels even when training
with example surfaces.

Figure 7 illustrates the behaviour of the model with respect
to the hyper-parameter σs on the validation set. For a
range of σs values, we find a significant improvement in
terms of Dice for the desired structure. For very small
values of σs, the training becomes unstable leading to
poor generalization. A very large σs value leads to the
model ignoring the surface term. Since the Dice scores
are comparable in the range σc ∈ [0.5, 2], for the rest of
this section we use σs = 2, which exhibits slightly fewer
folding voxels (≤ 5 compared to ∼ 20 for σc = 1).

Figure 6 demonstrates the improvement on the test set in
terms of Euclidean surface distance and Dice, compared
to the image-only registration model VoxelMorph-diff.
VoxelMorph-surf improves significantly in all measures
for most desired structures. Additionally, Table 2 illus-
trates that with increased accuracy in both metrics, the
number of folding voxels in the entire volume increases
only very slightly (to an average 3.5 voxels per volume),
which remains orders of magnitude fewer than the base-
line methods (Table 1). Figure 14 in the supplementary
material illustrates example results.

In summary, the principled joint diffeomorphic model en-
ables the use of surfaces during training which dramati-
cally improves registration near a given structure while
preserving desired deformation properties. For example,
given hippocampus surfaces at training, registration us-
ing VoxelMorph-Surf improves Dice by ∼ 9 points over
VoxelMorph-diff, improves maximum surface distance
by more than three voxels, and preserving diffeomorphisms
(less than three folding voxels per scan).

4.4 Analysis

4.4.1 Parameter Analysis

The two main hyper-parameters, smoothing precision λ
and image noise σ2

I , have physical meaning in our genera-
tive model. However, they share a single degree of freedom
in the loss function. We set σ2

I = 0.02, and vary the preci-
sion scale λ between 0.5 and 100. Figure 9 shows average
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Figure 8: C-shape controlled experiments. We learn to warp disks to Cs of different radii, and illustrate the registration
results for one example. The top row illustrates the integration of the velocity field at different time points, and the
second row shows the resulting warp of the circle or C. Finally, on the bottom row, we illustrate deforming the grid with
a composition of the forward warp and the inverse warp, demonstrating a return to identity.
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Figure 9: Dice score (computed using 50 validation scans)
for VoxelMorph-diff with various values of the precision
parameter λ.

Dice scores for 50 validation set scans for different param-
eter values, showing that the results vary smoothly over
a large range, with reasonable behavior even near λ ∼ 0.
We use λ = 20 in our experiments above.

4.4.2 C-shape Registration

We also perform analysis on controlled experiments with
C-shape synthetic images with intensities in [0, 1]. Specif-
ically, we train a VoxelMorph-diff network to learn to
register a disk with a radius ranging from one third to one
fifth of the image, to a C-shape with variable radius and
thickness. The outer radius of the C shape is sampled
uniformly in the range [1/3.5, 1/2.5] of the image size,
whereas the inner radius is in the range [1/6.5, 1/5.5]. We
increase hyper-parameter σs = 0.06 to account for the
increase in maximum intensity. Figure 8 illustrates rep-
resentative images and deformation fields. To obtain the
fields at intermediate time points between 0 and 1, we
employ Tensorflow ODE solver. We find that all the defor-

mation fields lead to accurate registration between disks
and C shapes, and have no folding voxels. We also find
that the deformation fields are invertible, bringing the grid
back to identity when the transforms are composed.

4.4.3 Integration Steps

During training, we hold the number of scaling and squar-
ing steps fixed. However, this number can be varied at
test time, affecting aspects of the resulting deformation
field. In this section, we analyze the effects of the number
of steps on accuracy, runtime, field regularity and inverta-
bility. We perform this experiment using 50 validation
subjects and the image registration network VoxelMorph-
diff trained with T = 7 integration steps and regularization
parameter λ = 20. The velocity field is computed every
two voxels, but all of the conclusions in this section are
likely to apply to many reasonable field spacings.

Figure 10 summarizes the analysis results. The runtime
increases modestly with the number of steps, and is over-
all significantly smaller than the cost of the rest of the
network (i.e. the deformation network computation of the
velocity field, and the spatial transform of the full moving
image). After four scaling and squaring steps, the method
achieved maximum Dice score. We observe a steep decline
in the number of folding voxels (note the log-scale vertical
axis), reaching less than five voxels after five scaling and
squaring steps, compared to classical methods which can
include thousands of such voxels (Table 1). Finally, we
measure the average displacement error after inverting the
deformation fields: ∆u = |Id − φ ◦ φ−1|. We find that
after five scaling and squaring steps, even the worst error is
under a half voxel, indicating that five steps are sufficient
to ensure invertible deformations.
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Figure 10: The effect of different number of scaling and
squaring steps on the registration accuracy, runtime, defor-
mation regularity and invertability. We find that after five
scaling and squaring steps, our model, VoxelMorph-diff, is
able to produce state-of-the-art accuracy while having es-
sentially no folding (note the log-scale vertical axis in the
top-right graph). Similarly, it is able to produce invertible
deformations, as seen by the measure of the displacement
error ∆u = |I − φ ◦ φ−1|. The total runtime cost of the
scaling and squaring operations is below the runtime of the
rest of the networks, indicating that increasing the num-
ber of steps improves deformation properties for trivial
runtime cost.

In addition, we implemented the integration of the velocity
field using Tensorflow ODE solvers and using standard
quadrature, but found that these required significantly more
runtime compared to the scaling and squaring strategy,
consistent with literature findings [4, 5, 50]. Specifically,
while five scaling and squaring operations required 0.06±
0.01 seconds, equivalent quadrature integration required 64
operations (occupying prohibitive amounts of memory)
and 0.53±0.01 seconds, and ODE-solver based integration
with default parameter required a single layer and 2.9±0.1
seconds. At comparable integration settings such as these,
all three methods achieve similar Dice scores of 0.75 ±
0.01. While these alternative methods require significant
resources, all three implementations are available in our
source code for experimentation.

This analysis indicates that the proposed scaling and squar-
ing network integration layer is efficient and accurate. In-
creasing the number of scaling and squaring layers incurs
a negligible runtime cost while improving deformation
field properties. We use T = 7 squaring steps in the test
experiments above.

𝜆𝜆
=

1
𝜆𝜆

=
20

sample 𝑧𝑧𝑘𝑘 standard deviation sample 𝑧𝑧𝑘𝑘 standard deviation
diagonal extension

Figure 11: Illustration of voxel independence assump-
tion in variational approximations for two prior param-
eters λ = 1 (top) and λ = 20 (bottom). Each row contains
an example sample velocity field zk, and the voxel-wise
standard deviation over 500 samples for that subject.

Dice |J | ≤ 0
λ diagonal extension diagonal extension
1 0.74 (0.01) 0.74 (0.01) 2934 (2007) 2720 (1593)
20 0.75 (0.01) 0.75 (0.01) 0.32 (0.96) 0.16 (0.57)

Table 3: Accuracy and deformation regularity for the dif-
ferent variational approximations and two dramatically
different values for smoothing parameter λ. We find that
for a given parameter value, the approximations lead to
comparable accuracy and number of folding voxels.

4.4.4 Velocity Sampling and Uncertainty

We also evaluate the modeling assumptions of the varia-
tional covariance Σz|m,f . Figure 11 illustrates example
samples of the velocity field zk and voxel-wise empirical
variance for the two Σz|m,f approximations: diagonal co-
variance and the extended approximation in Section 3.2
that smooths samples zk. For under-regularized networks
(very low values for hyper-parameter λ), the latter approx-
imation yields smoother velocity fields. However, given
a higher hyper-parameter λ value, such as the one used
in our experiments, the network learns smaller values for
the diagonal Σz|m,f approximation, and yields smooth
samples zk with either method. Futhermore, despite the
difference in smoothness of the velocity field samples zk,
the integration operation leads to equally regular and accu-
rate deformations φzk for a given λ (Table 3).

Therefore, although the diagonal covariance has the poten-
tial to add noise to velocity field samples, the loss func-
tion coupled with the integration operation lead to smooth
and accurate deformation fields φz at reasonable λ values.
Therefore, in the current setting, the diagonal and non-
diagonal covariances give similar results. Nonetheless, in
other applications the non-diagonal covariance might be
important. For example, diagonal covariances would likely
have negative effects in a different deformation model, for
instance if z was modelled as the displacement field itself.
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5 Discussion and Conclusion

In this work, we build a principled connection between
classical registration methods and recent learning-based
approaches. We propose a probabilistic model for diffeo-
morphic image registration and derive a learning algorithm
that leverages a convolutional neural network and unsu-
pervised, end-to-end learning for fast runtime. To achieve
diffeomorphic transforms, we integrate stationary velocity
fields through novel scaling and squaring differentiable
network operations, and provide implementation and anal-
ysis for other integration layers.

Although the simplifying diagonal approximation to the
velocity covariance Σz|m,f adds voxel-independent noise
to every velocity field sample zk, the resulting deformation
fields are well behaved because of our smoothing prior and
diffeomorphic representation.

We also provide an anatomical surface deformation model.
If image segmentations are available for a particular
anatomical structure, the generative model incorporates
them naturally in the same joint framework during training,
while not requiring the surfaces at test time.

Our algorithm can infer the registration of new image pairs
in under a second. Compared to traditional methods, our
approach is significantly faster, and compared to recent
learning based methods, our method offers diffeomorphic
guarantees. We demonstrate that the surface extension to
our model can help improve registration while preserving
properties such as low runtime and diffeomorphisms.

Furthermore, several conclusions shown in recent papers
apply to our method. For example, when only given very
limited training data, deformation from VoxelMorph can
still be used as initialization to a classical method, enabling
faster convergence (Balakrishnan et al, 2019).

Our focus in this framework has been to present the techni-
cal connection between classical and learning paradigms,
and show that diffeomorphisms are attainable in a very low
runtime. Immediate extensions can enable other models
and applications. For example, our derivation is general-
izable to other formulations: z can be a low dimensional
embedding representation of a deformation field, or the
displacement field itself. Similarly, the variational covari-
ance Σz|m,f enables an estimation of the uncertainty of the
deformation field at each voxel, which can be informative
in downstream tasks such as biomedical segmentation or
population analysis. The model is also widely applicable to
other applications, such as subject-to-subject registration,
segmentation-only registration, or using multiple surfaces
to improve image-based registration.
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Supplementary Material

Derivation of Main Loss

L(ψ;m,f) = −IEq [log p(m|z;f)] + KL [qψ(z|m;f)||p(z)]

= −IEq
[
logN (m; z ◦ f ;σ2I)

]
+ KL

[
N (z;µz|m,f ,Σz|m,f )||N (z; 0

¯
,Λz)

]
=

1

2
IEq

[
log 2πσ2d +

1

σ2
‖m− f ◦ φz‖2

]
+ KL

[
N (z;µz|m,f ,Σz|m,f )||N (z; 0

¯
,Λz)

]
=

1

2σ2
IEq
[
‖m− f ◦ φzk‖

2
]

+
1

2

[
log

|Λ−1z |
|Σz|m,f |

− 3d+ tr(ΛzΣz|m,f ) + µTz|m,fΛzµz|m,f

]
+ const.

Using the facts that log |Λz| is constant, log |Σz|m,f | = tr log Σz|m,f , and tr(ΛzΣz|m,f ) = tr((λD −A)Σz|m,f ) =
tr(λDΣz|m,f ), and approximating the expectation with K samples zk ∼ qz , we obtain

L(ψ;m,f) =
1

2σ2K

∑
k

‖m− f ◦ φzk‖
2 +

1

2

[
tr(λDΣz|x;y − log Σz|x;y) + µTz|m,fΛzµz|m,f

]
+ const. (12)

Derivation of Surface VLB and Loss

We derive the variational lower bound and loss for the generative surface model. We start by minimizing the KL
divergence between the true and approximate posteriors:

min
ψ

KL [qψ(z|f ;m)||p(z|f , sf ;m, sm)]

= min
ψ

IEq [log qψ(z|f ;m)− log p(z|f , sf ;m, sm)]

= min
ψ

IEq [log qψ(z|f ;m)− log p(z,f , sf ;m, sm)] + log p(f , sf ;m, sm)

= min
ψ

IEq [log qψ(z|f ;m)− log p(z)− log p(f , sf |z;m, sm)] + const

?
= min

ψ
IEq [log qψ(z|f ;m)− log p(z)− log p(f |z;m)− log p(sf |z; sm)] + const

= min
ψ

KL [qψ(z|f ;m)||p(z)]− IEq [log p(f |z;m)]− IEq [log p(sf |z; sm)] + const, (13)

where in ? we used the assumptions that the fixed image is independent of anatomical surfaces given the moving image
and the deformation, and the fixed surface is independent of either image given the moving surface and the deformation.
Following this variational lower bound, the loss follows the previous section closely (see (13)), with the additional term:

IEq [log p(sf |z; sm)] = IEq
[
logN (m; z ◦ f ;σ2I)

]
=

1

2
IEq

[
log 2πσ2d

s +
1

σ2
s

‖sf − sm ◦ φzk‖
2

]
=

1

2
IEq

[
1

σ2
s

‖sf − sm ◦ φzk‖
2

]
+ const. (14)

Combining this term with (12), and approximating expectations with k samples leads to the final loss (10):

L(ψ;f , sf ,m, sm) =
1

2σ2K

∑
k

||f −m ◦ φzk ||
2 +

1

2σ2
sK

∑
k

||sf − sm ◦ φzk ||
2

+
1

2

[
tr(λDΣz|x;y − log Σz|x;y) + µTz|m,fΛzµz|m,f

]
+ const. (15)
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Overview figure with surface loss
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Figure 12: Overview of end-to-end unsupervised architecture building on Figure 2. The first part of the net-
work, defψ(m,f) takes the input images and outputs the approximate posterior probability parameters representing the
velocity field mean, µz|m;f , and variance, Σz|m;f . A velocity field z is sampled and transformed to a diffeomorphic
deformation field φz using novel differentiable squaring and scaling layers. Finally, a spatial transform warpsm to
obtainm ◦ φz . The blue window illustrated the computation of optional surface registration loss. The surface points
and distance transform are computed for the both the moving and fixed surfaces. The surface points are warped by the
resulting deformation, and a distance is computed using distance transforms.
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Additional Figures

moving atlas moved (ours) moved (ANTs) warp fieldwarp field

Figure 13: Additional example MR slices of input moving
image, atlas, and resulting warped image for our method
(VoxelMorph-diff) and ANTs, with overlaid boundaries of
ventricles, thalami and hippocampi. Each row is a different
scan. Our resulting registration field is shown as a warped
grid and RGB image, with each channel representing a
dimension. We omit VoxelMorph and NiftyReg examples,
which are visually similar to our results and ANTs.
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Figure 14: Example surface-driven results. For three sub-
jects, we show cropped MR slices of input moving im-
age, atlas, and resulting warped image for our method
and ANTs, with overlaid boundaries of ventricles for
VoxelMorph-diff (top) and VoxelMorph-surf (bottom). For
each set of two rows, we highlight in the red box an im-
provement in the segmentation of the ventricle from the
top row to the bottom row.
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