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Highlights

• An effective method for quantifying LV from multiple dimensions and
views.

• A brand-new recurrent net for embedding subject and temporal
information.

• An efficient location loss function for robust location and cropping.

• A creative regularization item for enhancing sequential data evolution
fitting.
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Abstract

Accurate direct estimation of the left ventricle (LV) multitype indices from
two-dimensional (2D) echocardiograms of paired apical views, i.e., paired
apical four-chamber (A4C) and two-chamber (A2C), is of great significance
to clinically evaluate cardiac function. It enables a comprehensive assessment
from multiple dimensions and views. Yet it is extremely challenging
and has never been attempted, due to significantly varied LV shape and
appearance across subjects and along cardiac cycle, the complexity brought
by the paired different views, unexploited inter-frame indices relatedness
hampering working effect, and low image quality preventing segmentation.
We propose a paired-views LV network (PV-LVNet) to automatically and
directly estimate LV multitype indices from paired echo apical views. Based
on a newly designed Res-circle Net, the PV-LVNet robustly locates LV and
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automatically crops LV region of interest from A4C and A2C sequence with
location module and image resampling, then accurately and consistently
estimates 7 different indices of multiple dimensions (1D, 2D & 3D) and views
(A2C, A4C, and union of A2C+A4C) with indices module.

The experiments show that our method achieves high performance with
accuracy up to 2.85mm mean absolute error and internal consistency up to
0.974 Cronbach’s α for the cardiac indices estimation. All of these indicate
that our method enables an efficient, accurate and reliable cardiac function
diagnosis in clinical.

Keywords: multitype cardiac indices, direct estimation, 2D echo, paired
apical views, Res-circle Net

1. Introduction1

Accurate estimation for left ventricle (LV) indices (i.e., dimension, area2

& volume) in two-dimensional (2D) echocardiograms (echo) of paired apical3

views (i.e., paired apical four-chamber and two-chamber views) is of great4

clinical significance to cardiac function evaluation (Schiller et al., 1989; Lang5

et al., 2006, 2015). 2D echo is the most frequently used noninvasive modality6

for the diagnosis of cardiac disease because of its unique ability to provide7

real-time images of the beating heart, combined with its availability and8

portability (Lang et al., 2015; Abdi et al., 2017; Gao et al., 2017, 2018).9

The multitype indices of LV from 2D echo paired apical views, covering10

long-axis dimension (LAD), short-axis dimension (SAD), area and volume,11

which are measured from cavity as Fig.1, are most widely used to assess LV12

chamber size and contractile function (Schiller et al., 1989; Pascual et al.,13

2003; Lang et al., 2015). It promotes comprehensive metrics from 1D (i.e.,14

LAD, SAD), 2D (i.e., area) and 3D (i.e., volume). Such paired orthogonal15

apical four-chamber (A4C) and two-chamber (A2C) views enable a better16

stereoscopic reproducibility of cardiac LV motion compared to the separate17

plane observation from single view, for further comprehensive quantitative18

functional analysis (Schiller et al., 1989; Ciampi and Villari, 2007).19

The existing (semi-)automated cardiac indices estimation methods never20

refers to multitype indices in 2D echo sequences of paired apical views. These21

methods are mainly classified into two groups: segmentation and direct22

regression. However, the segmentation methods just enable limited simple23

index types (i.e. area) without extra interaction, and the existing direct24
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(a) 1D metric (b) 2D metric (c) 3D metric

Figure 1: The multitype indices from the paired apical views (A2C & A4C) are
critically important for clinical diagnosis, yet extremely laborious measurement.
They cover the 1D and 2D metrics of each single view, and the 3D metric of union
view, for a comprehensive assessment. (a) LAD: from the apex to the middle mitral
valve plane. SAD: perpendicular to the long axis, at one-third of the LAD from
the mitral valve plane. (b) Area: the whole LV cavity. (c) LV volume: jointly from
A4C and A2C by using the biplane method of discs (modified Simpson’s rule).

methods almost all focus on a single view of cardiac magnetic resonance25

(CMR) causing limited observation and evaluation. Strong clinical evidence26

shows that the indices from echo that cover multiple dimensions and views27

enable a comprehensive cardiac diagnosis, yet their automated estimation is28

still thwarted by inherently existing challenges such as 1) LV shape and29

appearance in apical view significantly vary among subjects, and along30

the cardiac cycle. 2) Although the paired views provide complementary31

information, the different image structures are introduced with increased32

complexity. 3) Ambiguous relatedness inter frames hampers learning33

procedure of sequential indices from better convergence and generalization.34

4) Low image quality of echo, like fuzzy border, edge dropout, acoustic35

shadows, etc., raises great challenges for automated methods, especially36

segmentation method.37

1.1. Related Works38

Segmentation methods aim to achieve automated LV segmentation for39

improving the diagnosis efficiency, however it is still an open and challenging40

task, due to the inherent characteristics of the 2D echo, such as low signal-to-41

noise ratio, edge dropout, shadows, indirect relation between pixel intensity42

and the physical property of the tissue, and anisotropy of ultrasonic image43

formation (Carneiro et al., 2012). Active contours (Debreuve et al., 2001;44

Malladi et al., 1995; Paragios, 2003) and deformable templates (Jacob et al.,45

2002; Nascimento et al., 2008) achieve good segmentation results relying on46
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the LV shape and appearance of the prior knowledge (Georgescu et al., 2005).47

By considering use of inaccurate prior knowledge and low-level handcrafted48

features may bound working robustness, the supervised deep learning method49

(Mo et al., 2018; Chen et al., 2016; Carneiro et al., 2012; Oktay et al., 2018)50

tries to learn information from data. The deep Poincar Map (Mo et al., 2018)51

coupled deep learning with the dynamic-based labeling scheme to reduce the52

requirement on the huge data; iMD-FCN (Chen et al., 2016) used the transfer53

learning from cross domains to enhance the feature representation; Carneiro54

et al. (2012) combined the deep belief networks, the decoupling rigid and55

nonrigid classifiers and the derivative-based search to increase the robustness56

for imaging conditions and LV shape variations; ACNNs (Oktay et al., 2018)57

encouraged the models to follow the global anatomical properties of the58

underlying anatomy via the non-linear representations of the shape learnt59

from the stacked convolutional autoencoder. All of these show great potential60

with the development of deep learning. Nevertheless, most of the working61

LV segmentation methods in the practical clinical diagnosis are still semi-62

automatic, which need time-consuming user interaction to handle a great63

number of medical images (Luo et al., 2018).64

Direct regression methods without intermediate segmentation has65

undergone a great development and recognition (Ravı et al., 2017; Peng66

et al., 2016; Wu et al., 2017; Lathuilière et al., 2017; Pereira et al., 2018;67

Zhen et al., 2014a, 2015b, 2017) for better and more efficient cardiac indices68

estimation, but never performed on paired 2D echo apical views. By directly69

analyzing LV biological structure, these methods provide effective tools to70

automate the analysis of one single view from CMR, especially the short-71

axis view, and enable accurate and efficient diagnosis in clinical practice72

(Zhen et al., 2016). With two-phase operation, LV volume (as integration73

of cavity areas in short-axis view slices) is estimated on the handcrafted74

cardiac image representation, including Bhattacharyya coefficient between75

image distributions (Afshin et al., 2012, 2014), appearance features (Wang76

et al., 2014), multiple low level image features (Zhen et al., 2014b), as77

well as unsupervised features from multiscale convolutional deep belief78

network (Zhen et al., 2016) and supervised descriptor learning (Zhen et al.,79

2015a). Instead of separate representation and regression, joint learning (Xue80

et al., 2017a,c) captures task-relevant cardiac information for the indices81

estimation. For a comprehensive assessment of cardiac function, Xue et al.82

(2017b, 2018) achieve multitype indices estimation on short-axis view cardiac83

CMR. However, all of these direct methods still have the limitation on84
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2D echo paired apical views, due to: 1) multitype indices estimation from85

different views is ignored and lacked, 2) some cardiac indices in 2D echo,86

like volume, are often obtained jointly from paired views, and 3) LV shape87

in apical view is irregular and make it difficult to establish a standard88

preprocessing method for getting LV cropping (short-axis view CMR just89

need to manually find several relatively fixed landmarks).90

1.2. Contributions91

In this paper, we propose a paired-views LV network (PV-LVNet) to92

automatically achieve a high-quality estimation of LV multitype indices from93

2D echo sequences of paired apical views. As shown in Fig.2, the network is94

built based on our newly designed Res-circle Net, and implemented with three95

interdependent functional parts: LV location module, image resampling and96

LV indices module. The Res-circle Net for sequential analysis embedded with97

subject’s holistic characteristics and frame’s temporal changes is used in both98

LV location and indices modules. And functionally, the LV location module99

with the anisotropic Euclidean distance loss shape-accordingly detects the100

LV center in echo apical views. The image resampling further crops the LV101

region of interest (LV-ROI) capable of efficiently reducing the interference of102

various structure from the different views. Accepting the LV-ROI, the LV103

indices module with the inter-frame gradient regularization and the views104

union effectively makes the comprehensive, accurate and internally consistent105

indices estimation.106

The main contributions of our work include:107

• For the first time, the proposed PV-LVNet enables an automatically108

and reliably comprehensive cardiac function clinical assessment from109

various dimensions and views by directly and accurately estimating LV110

multi-type indices on 2D echos of paired apical views.111

• The newly designed Res-circle Net enables accurately and consistently112

estimating continuous changing centric positions and indices of LVs in113

echo sequence of each subject, by comprehensively combining both the114

subject-level base of cardiac cycle and the interrelated dynamic residual115

of each frame. Moreover, its residual transferring effectively reduces the116

gradient vanishing problem in recurrent net.117

• The novel location loss in the form of anisotropic Euclidean distance118

(AED) guarantees robust and efficient location and cropping by119

matching the approximate bullet shape of LV in apical view echo.120
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Figure 2: The PV-LVNet simultaneously estimates multitype indices of various
single (A4C, A2C) and union views (A4C+A2C) from paired apical 2D echo
sequences, to provide a comprehensive cardiac function assessment. Based on the
Res-circle Net (Sect. 2.1), it has three interdependent parts: LV location module
(Sect. 2.2) for LV location, image resamping (Sect. 2.3) for LV-ROI cropping and
LV indices module (Sect. 2.4) for multitype indices estimation.

• The gradient of LV indices between adjacent frames in a cardiac cycle121

creatively and effectively enhances sequential indices fitting, by fully122

exploring inter-frame relatedness to introduce frame-by-frame evolution123

characteristic to regularize indices estimation.124

2. Methodology125

As shown in Fig.2, based on the Res-circle Net (Sect. 2.1) to analyze126

echo sequences, the PV-LVNet entirely works via three interdependent parts:127

LV location module (Sect. 2.2), Image Resampling (Sect. 2.3) and LV128

indices module (Sect. 2.4) for location, cropping and indices estimation.129
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To enable the comprehensive and efficient echo sequence analysis, the novel130

Res-circle Net combines subject-level base for avoiding coarse sequential131

estimation from zero level and temporal dynamic residual for developing132

the refinement on each frame. To provide the robust LV location among133

views for accurate indices estimation, LV location module creatively adopts134

the loss in form of AED considering the LV shape in apical view echo.135

To automatically crop LV-ROI with the interference of various structure in136

paired views reduced, and build unblocked joint learning of location and137

indices regression, image resampling, as a differentiable transformation, is138

embedded. To achieve the various dimensional indices regression from single139

and union views, LV indices module performs not only indices-aware feature140

abstraction but also views union for 3D index. Moreover, to fulfill the inter-141

frame relatedness potential of indices for enhancing sequential data fitting,142

the inter-frames gradient in the time polyline of the cardiac index is used to143

deeply explore sequence evolution characteristics.144

2.1. Res-circle Net for Analyzing Echo Sequence145

The Res-circle Net combines both subject-level base and frame-level146

residuals for a comprehensive analysis on echo sequence. Subject-level147

base reflects the holistic characteristics among the different frames of148

the same subject. It gives a whole and inherent expression on the echo149

sequence and distinguishes different subjects. It is further extracted from150

the representations of all frames. Frame-level residual reflects interrelated151

temporal dynamic changes in the cardiac cycle. It enables a further152

refinement on each frame. It is extracted by using the inter-frame relationship153

among the whole cardiac cycle. The Res-circle Net captures interrelated154

temporal residual of each frame, then adds the residual with subject-level155

base together. It embeds subject and temporal information to guarantee156

a stable and dynamic estimation for location and indices in continuous157

moving and deforming LV. The net is implemented in the circle recurrent158

of a novel residual learning and transferring convolutional unit named as159

residual recurrent unit (RRU).160

As shown in Fig.3, the Res-circle Net accepts current frame representation161

and links it to the integrated former residuals of the frames in the cycle,162

then adaptively updates the current frame-level residual and combine the163

residual with the subject-level base for a refined outputting. The Res-circle164

Net is achieved in the circle recurrent structure (Graves, 2012; Xue et al.,165

2017c) of RRU, which gives the memory characteristics of the cycle temporal166
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Figure 3: The Res-circle Net embeds both subject and interrelated temporal
information together for comprehensive and reliable analysis on the echo sequence.
It adaptively updates current dynamic change as residual by linking the current
frame representation with the former memory in cycle, then adds such residual
with the subject-level base together as the comprehensive state of the frame.

changes. Similar works to analyze data sequence can be seen in using LSTM167

of recurrent neural networks (RNN) as: Xu et al. (2018) adopt fully connected168

LSTM (FC-LSTM) for the dependence crossing over a long time interval; Xue169

et al. (2017c) further deployed circle FC-LSTM for shortening the distance170

between the first and last frames; and convolutional LSTM (Xingjian et al.,171

2015) was developed for the spatial structure in the sequence. Specially, our172

Res-circle Net of circle recurrent convolutional residual net is designed for173

temporally-spatially modeling the residuals among frames and the entirety174

of sequence, to the echo of dynamic and consecutive data.175

The RRU has both functions of current frame state prediction and176

residuals memory integration, as shown in Fig.4. In the output path, the177

RRU provides the current state (statei) for the followed regression, by adding178

current frame-level residual (resi) on the subject-level base (base). In the179

hidden path, it transfers residual information (resi) together with the formers180

(res memi−1) to integrate residuals memory (res memi) for the next frame.181

Instead of the frame-wise coarse estimation from the zero level, the net182

provides such a more refined way as the subject-level base reflects the stable183

base level of sequence and residual focuses on interrelated dynamic change of184

Figure 4: Residual recurrent unit (RRU) has both functions of current frame state
prediction and residual transfer. In output path, the current frame-level residual
is added to the subject-level base for followed regression. In hidden path, the
residual information is transferred together with the formers for the next frame.
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each frame. Benefited from the residual connection with subject-level base185

and former residuals, the net has powerful sequence analysis and temporal186

modeling, and meanwhile effectively reduces the gradient vanishing problem187

with the shortcut connection (Szegedy et al., 2017; He et al., 2016a,b).188

The RRU takes both spatial structure and temporal information into189

account. It uses convolution process, instead of full connection in traditional190

RNN, to extract feature for keeping spatial correlation in the cardiac image.191

In recurrent way, it maps the current frame to the integrated residual memory192

to get its current frame-level residual. The inherent potential spatiotemporal193

characteristic in echo sequence is effectively mined and transmitted. Given194

the inputting individual frame representation framei at each time step i,195

the memory res memi−1 from the previous frames, and the subject-level196

base base, RRU gets the current frame-level residual resi for the updated197

memory res memi and outputting state representation statei, as:198

resi = LN(ELU(LN((framei ⊕ res memi−1) ∗W1 + b1)) ∗W2 + b2)
res memi = ELU(resi + res memi−1)

statei = ELU(base+ resi)
(1)

where W1 and W2 are convolutional kernels in Conv1 and Conv2, b1 and b2199

represents biases. ⊕ means concatenation, ∗ is convolution operation, and200

LN , ELU denote the element-wise transformations of layer normalization201

(Ba et al., 2016) and exponential linear unit (Clevert et al., 2015).202

2.2. LV Location Module for Detecting Left Ventricle Center203

LV location module aims to detect continuously moving LV center in both204

A4C and A2C sequences, as in Fig.5. It has four steps: 1) CNN-loc firstly205

extracts cardiac subject-level base and individual frame representations of206

the cardiac sequence and feeds them to the res-circle net; 2) Res-circle Net207

then models sequential LV moving in cardiac cycle for the final location,208

with subject’s holistic position and frame’s temporal changes embedded;209

3) Fully connected (FC) layer further performs LV center coordinate210

regression with the output of Res-circle Net fed; And 4) AED metric is211

used to measure the regressed center with anisotropic scaling by considering212

approximate bullet shape of LV in echo apical views for robust location.213

Advantageously, LV Location Module is benefited from the special design214

of CNN-loc and AED location metric, besides Res-circle Net that has215

been proposed in Sect. 2.1.216

CNN-loc. To get expressive and task-aware representation of individual217

frame and entire subject on the paired echo sequences, CNN-loc consists218
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Figure 5: To achieve locating continuously changing center of LV in both A4C
and A2C sequences, LV location module works via: 1) CNN-loc extracts subject-
level base and frame representations for both paired views. 2) Res-circle Net
captures residual information of each frame by leveraging inter-frame relationship
for modeling dynamic changes, and further combine subject-level base to provide
the frame state for location. 3) FC layer linearly regresses LV center coordinate. 4)
The metric of anisotropic Euclidean distance (AED) ensures the robust location.

of several shared layers for general expression and two shallow paths that219

further refine on A4C and A2C respectively considering big view difference220

and enhancing robustness, as shown in Fig.6 (a). The individual cardiac221

distribution in each frame is extracted by the hierarchical convolutions, and222

the global sequence base of the subject is then captured by concatenating223

all these individual representations together with a further convolution224

operation followed so that holistically characterizes all frames. The backbone225

structure of CNN-lock is the stack of the successive convolutional blocks (He226

et al., 2016a) in Fig.6 (b), which chooses identity map for the layer input227

and output of the same size, or convolution of kernel size 1 × 1 to match228

dimensions. Such block promotes information propagation both forward and229
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Figure 6: CNN-loc gets subject-level base and frame representation of paired echo
sequences. (a) CNN-loc is composed of several shared layers and two shallow paths
refined on A4C and A2C. (b) The stacked block in CNN-loc. The use of short-cut
connection accelerates the net convergence and improve learning performance.
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(a) AED has elliptical isarithm, enabling
robust metric on LV location for ROI
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(b) IED has circle isarithm, causing pool
metric on LV location for ROI

Figure 7: The anisotropic Euclidean distance (AED) provides an elliptical isarithm
to match the approximate bullet shape of LV in apical view echo and enable a more
reasonable and robust LV location metric than the isotropic Euclidean distance
(IED). (a) Considering LV shape, AED gives different scaling on the horizontal and
vertical direction to construct elliptical isarithm for efficient LV location in apical
view echo. (b) IED causes pool metric on LV location due to its circle isarithm.

backward and hence accelerate the net convergence and improve learning230

performance (Szegedy et al., 2017; Yu et al., 2017).The configurations of231

the stacked convolutions in CNN-loc are: 7× 7× 64 with stride 2 for conv1,232

channel = 64, 128, 128, 256, 256 for convolutional blocks (conv{2,3,4,5}-block233

and conv-path-fram), and 3× 3× 256 with stride 1 for conv-path-seq.234

AED location metric. To achieve a structure matching location235

measurement, anisotropic Euclidean distance (AED) is deployed on the236

regressed center with the different metric scaling on horizontal and vertical237

directions, as shown in Fig.7 (a). Differently and traditionally, the location238

metric generally uses strict isotropic Euclidean distance (IED) in Eq. (2),239

where the regressed result Ô = (ôx, ôy) and the ground truth O = (ox, oy).240

distanceIED =
∥∥∥O − Ô

∥∥∥ (2)

However, the shape of the LV is approximate to the bullet, so that the241

regressed points with same IED values still cause different influences to the242

ROI, and smaller IED does not mean a more accurate location. For example,243

Ô1 and Ô5 in Fig.7 (b) fall on the same circle isarithm of the IED to the LV244

center O, and Ô4 even has smaller IED than Ô1. But only the Ô1 centered245

square contains the entire LV cavity, while Ô4 and Ô5 lead to the weak ROIs.246

In order to overcome the shortcoming in IED, AED using anisotropic247

scaling is a more reasonable metric that conforms to the LV shape.248

Comparing Figs.7 (a) with (b), Ô4 and Ô5 that have the same IED value249

as Ô1 or smaller than Ô1 are outside the elliptical isarithm of AED, which250

means getting higher AED metric. It aligns with their poor ROI quality in251

Fig.7 (b). Besides, the ROIs centered by the points Ô2 and Ô3 that fall on252

the ellipse in Fig.7 (a) have the same ROI situation as Ô1, that the entire253
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LV cavity is contained and close to the square border, and gains the same254

metric. Therefore, the AED introduces a more robust and effective location255

metric for LV. The AED calculation is given in Eq. (3).256

distanceAED =
√
β · (ôx − ox)2 + (1− β) · (ôy − oy)2 (3)

2.3. Image Resampling for Cropping LV-ROI257

Image resampling is implemented via spatial transform and bilinear258

interpolation to automatically crop LV-ROI according to the location from259

Sect. 2.2. Image resampling puts attention on determining the region most260

related to the LV. It aims to reduce the disturbance from the other pathology261

caused by various structure and extra chambers in different views, with the262

LV-ROI being cropped. Also, the LV-ROI sequence maintains the relative263

shapes of LVs among different frames to not destroy the inherent subject264

characteristics and frame-by-frame LV dynamic changes along the cardiac265

cycle for developing the sequential LV indices estimation of each subject. In266

a similar work, Dai et al. (2016) used ROI warping layer to crop feature map267

regions for refining further semantic segmentation. Additionally, Jaderberg268

et al. (2015) and Vigneault et al. (2018) used STN to spatially transform269

intermediate feature maps or inputting image for improving performance in270

classification and medical segmentation, respectively.271

In our work, the image resampling transforms the images into the pattern272

that are centred on the predicted LV centre, and crops them to the predefined273

dimensions images. Given the predicted LV centre Ô = (ôx, ôy) and the274

source echo image I, the target LV-ROI image IROI(Ô) is obtained by the275

image resampling as formulated as the differentiable linear transformation:276

IROI(Ô) = B(T (Ô)) · I. (4)

In Eq. (4), T (·) is the spatial transform that firstly translates the echo277

image I horizontally and vertically to be centred on Ô and then scales278

the translated image to crop a 153.6 pixel × 153.6 pixel image (physical279

dimensions 79.49 ∼ 115.80mm × 79.49 ∼ 115.80mm with pixel space280

0.5175mm/pixel ∼ 0.7539mm/pixel) centred on the predicted LV centre.281

B(·) means bilinear interpolation further calculates the pixel value and282

produces the LV-ROI in a sufficiently fine resolution which is set as same283

as the original echo image, for the following indices estimation.284
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Figure 8: To estimate multitype indices from single/union views, LV indices
module works via: 1) CNN-ind1+Feature Concatenation+CNN-ind2 gets feature
representation on both entire subject and individual frame for all single and union
views. 2) Res-circle Net models frame-by-frame dynamic residuals in the cardiac
cycle by inter-frame relationship, then add them with the subject-level base of
the holistic shape, for embedding subject and temporal information. 3) FC layer
regresses indices with the outputs of the Res-circle Net. 4) Inter-frames gradient
regularizes indices changes among frames to enhance sequential indices estimation.

2.4. LV Indices Module for Estimating Multitype Indices285

LV indices module is designed to estimate multitype sequential cardiac286

indices in union and single views from continuously deformed LVs, as shown287

in Fig. 8. It consists of four components: 1) CNN-ind1 + Feature288

Concatenation + CNN-ind2 makes frame and subject feature extraction,289

as well as union view representation. 2) Res-circle Net combines subject290

holistic shape and temporal deformation. 3) FC layer further regresses on291

the feature representation from Res-circle Net to estimate all indices. And 4)292

Inter-frames Gradient is meanwhile introduced to regularize the indices293

evolution among frames.294

The superiority of LV indices module benefits from the special in295

CNN-ind1 + Feature Concatenation + CNN-ind2 and Inter-frames296

Gradient Regularization, besides Res-circle Net demonstrate in Sect. 2.1.297

CNN-ind1 + Feature Concatenation + CNN-ind2. In order to298

get both the frame and the subject features for all union and single views,299

it is further split and developed from CNN-loc that CNN-ind1 conducts the300

preliminary view-specialized representation on paired fed A4C and A2C ROI301

sequence, Feature Concatenation integrates the union view information via302
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Figure 9: Inter-frames gradient regularization promotes sequential indices
regression. (a) Frame-by-frame evolution of index is reflected by the polyline
of index value vs. frame. (b) Inter-frames gradient regularizes frame-by-frame
evolution of estimated results to strengthen sequential indices fitting. It reveals
index changes among frames, and thus characterizes index evolution. Evolution is
an important metric in measuring the similarity between two sequential data.

unifying the A4C and the A2C representations along the feature channel,303

and CNN-ind2 of the individual and the holistical features extraction is304

further performed on all the A4C, A2C and union view. In the procedure,305

the union view aims to construct the 3D spatial information from the two306

orthogonal views for the volume of 3D indices estimation and meanwhile307

further strengthening the contact among all views.308

Inter-frames Gradient Regularization. For the accurate sequential309

indices estimation, the gradient inter frames is used with considering the310

evolution characteristics in the cardiac cycle. The frame-by-frame evolution311

of index in the cardiac cycle is shown in Fig. 9(a) with the polyline of index312

value vs. frame, it reflects the trend over time. And the gradient can be313

explored to depict these evolution characteristics of time polyline in 9(a),314

so that enhance the sequential indices fitting elegantly with the interrelated315

fluctuation regularized on the sequence of the preliminary regressed index. As316

shown in 9(b), it measures the slope of the secant passing through adjacent317

discrete points. Given the regressed result ŷf , and normalized the frame318

interval ∆t as ±1 for both adjacent frames, the inter-frames gradient k̂f at319

each frame step is defined as:320

k̂f =
(
k̂f−, k̂f+

)
, and

{
k̂f− = ŷf − ŷf−1

k̂f+ = −(ŷf − ŷf+1)
(5)

where k̂f− and k̂f+ mean left and right gradient of frame f , respectively. k̂f321

thus effectively characterizes index evolution of frame f between adjacent322

frames f − 1 and f + 1.323

Therefore, the inter-frames gradient of each index among the cardiac cycle324

is introduced to fit the trend of polylines of regressed results and ground325

truth, as shown in Fig. 9(b), to enhance sequential LV indices estimation.326

Euclidean distance is used to calculate the gap of the change rate of each327

16

                  



frame between regressed results and ground truth. The fitness of sequential328

indices evolution is measured as Eq. (6). In addition to the fitting of329

each index value, such evolution of the index further gives full play to the330

constraint between adjacent frames, and can be used as a regularization item331

to strengthen sequential objects estimation.332

Reggrad =
N∑

f=1

∑

t

∥∥∥kft − k̂ft
∥∥∥

2
(6)

where f ∈ {1, 2, .., N} for all frames in cardiac cycle, t ∈ {LADA4C , SADA4C ,333

AreaA4C , LADA2C , SADA2C , AreaA2C , V olume} for all index types.334

3. Joint Loss Function for Different Tasks335

The loss function in our work is designed for optimizing the two trainable336

modules (LV location module and indices module, while image resampling,337

as a powerful linear transformation, needs no training) of different tasks in338

the integrated PV-LVNet, so that the task-inter relevance and dependence339

enable the modules to mutually promote refinement of each other. The joint340

loss Ljoint is constructed as:341

Ljoint = λ1Lloc + λ2Lind + λ3R(θ) (7)

where Lloc and Lind are the loss functions of location and indices estimation,342

R(θ) = ‖θ‖2
2, known as Tikhonov regularization for improving the training343

generality, is used as the regularization item of the network parameter vector344

θ with l2-norm. λ1, λ2 and λ3 are set as 1000.0, 1.0 and 0.1.345

The location loss function Lloc aims to guarantee a robust location of LV346

for LV-ROI cropping. It is constructed with AED for taking account of the347

approximate bullet shape of LV. The definition of Lloc is given by:348

Lloc =
1

N

N∑

f=1

distancefAED (8)

where distancefAED denotes distanceAED (defined in Eq. (3)) for the349

predicted centre in each frame f .350

The indices loss function Lind aims to boost high-quality indices351

regression. It utilizes not only the MAE of indices value estimation error352

in each frame but also the trend between indices of adjacent frames for both353

accuracy and inter consistency of the sequential indices estimation, as:354

Lind =
1

N

∑

t

N∑

f=1

∣∣∣ŷft − yft
∣∣∣+Reggrad (9)
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where the first item is the MAE loss of indices, Reggrad (defined as Eq.(6))355

is the inter-frames gradient regularization item for indices evolution.356

4. Experiment Configurations357

Dataset. A dataset of 2D echos with the ground truth is used to evaluate358

our method, which includes 2000 echo images from 50 subjects collected from359

2 hospitals. Each subject provides both paired A4C and A2C views echos,360

with the temporal resolution of 20 frames per cardiac cycle and the resize of361

256 × 256. All ground truth of location and indices are manually annotated362

by two experienced cardiac radiologists with double-checking. In training,363

location labels are normalized to [−1, 1]× [−1, 1] through subtracting half of364

the image dimension (128) and then being divided by the image dimension365

(256). The labels of 1D (i.e., LADA4C , SADA4C , LADA2C and SADA2C), 2D366

(i.e., AreaA4C and AreaA2C) and 3D (i.e., V olume) metrics are normalized by367

LV-ROI dimension (256
p

, where 1
p

= 0.6 is set according to prior investigation368

on our dataset), area ((256
p

)2) and volume ((256
p

)3), respectively.369

Data Augmentation. To avoid the over-fitting and improve the370

generalization, we augment the dataset to 8000 images by three strategies as:371

1) randomly rotating between −15◦ and 15◦; 2) randomly zooming between372

0.9 and 1.1 times; and 3) the combination of random rotation + zoom.373

Configurations. The net is implemented by Tensorflow, and performed374

on NVIDIA P100 GPU. Ten-fold cross validation is employed for performance375

evaluation and comparison.376

Evaluation Metrics. We evaluate the performance of the PV-LVNet in377

terms of estimation accuracy and internal consistency for multitype indices378

of all frames in the cardiac cycle. The evaluation is performed with two379

metrics including: the mean absolute error (MAE) for measuring accuracy380

and Cronbach’s α (Cronbach, 1951) for measuring internal consistency381

between the estimated results and the corresponding ground truth. Denote382

the estimated cardiac index and ground truth of the ith subject and383

the fth frame as ŷft,i and yft,i, where t ∈ {LADA4C , SADA4C , AreaA4C ,384

LADA2C , SADA2C , AreaA2C , V olume} for index types. The MAE of each385

cardiac index is given by MAEt = 1
S×N

∑S
i=1

∑N
f=1

∣∣∣ŷft,i − yft,i
∣∣∣, where S and386

F are the number of subjects and frames, respectively. Cronbach’s α of387

each cardiac index is calculated as αt = 2 · (1−
σ2
Ŷt

+σ2
Yt

σ2
Xt

), where Xt is the sum388

of estimated indices Ŷt =
{
ŷ1
t,1, ŷ

2
t,1, ŷ

3
t,1, ..., ŷ

N
t,S

}
and corresponding ground389
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truth Yt =
{
y1
t,1, y

2
t,1, y

3
t,1, ..., y

N
t,S

}
, i.e., Xt = Ŷt + Yt. Moreover, σ2

Ŷt , σ
2
Yt and390

σ2
Xt

are the corresponding variances for Ŷt, Yt and Xt.391

5. Results and Analysis392

We conduct a set of experiments to evaluate the performance of our393

proposed PV-LVNet, including: 1) overall performance; 2) effectiveness of394

res-circle net; 3) effectiveness of anisotropic Euclidean distance location395

loss; 4) effectiveness of inter-frames gradient regularization; 5) performance396

comparison with relevant methods; 6) performance of activation function and397

Hyper parameter selection.398

5.1. Overall Performance399

As shown in the last column of Table 1, the proposed PV-LVNet achieves400

excellent estimation accuracy and internal consistency on all the 7 different401

indices, which are attributable to comprehensively analyzing sequential402

echos, robustly locating and cropping LV, deeply exploiting inter-frame403

indices relatedness. It gains extremely low MAE of 2.85mm, 3.16mm,404

3.06mm, 2.98mm, 287mm2, 264mm2 and 10.7ml for LADA2C , SADA2C ,405

LADA4C , SADA4C , AreaA2C , AreaA4C and LV volume, as well as high406

Cronbach’s α all exceeding 0.9, with the manually obtained ground truth.407

Moreover, our proposed PV-LVNet also achieves high coincide indices408

estimation along the cardiac cycle, indicating powerfully modeling the LV409

activity. As shown in Fig. 10, it reaches extremely low normalized410

root-mean-square error of 1.26% (NRMSE, NRMSE = 1
ȳ

∑N
f=1

(ŷf−yf )2

N
)411

with the sequential ground truth, on average. Such rare few deviations412

strongly validate that the network effectively captures the activity pattern413

of sequential LVs.414

Our method is also very efficient in running time. The training takes 16.36415

hours with one P100 GPU. The testing takes only 0.70 seconds per subject.416

Clearly, our method enables a real-time solution for clinical application.417

5.2. Effectiveness of Res-circle Net418

As shown in Table 2, the Res-circle Net decreases the MAE by 15.7% (e.g.,419

15.7% = 1
7
[3.46−2.85

3.46
+ 3.64−3.16

3.64
+ 3.37−3.06

3.37
+ 3.24−2.98

3.24
+ 336−287

336
+ 321−264

321
+ 15.1−10.7

15.1
])420

and gains exceeding 0.9 Cronbach’s α on all indices, compared to the421

the situation of being replaced by CNN in the PV-LVNet for revealing422

its effectiveness. By combining subject-level holistic characteristics and423
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Table 1: The proposed method gains most advanced performance in the various
dimensional metrics for LV of all views compared to the existing methods. It
achieves higher accuracy and more excellent internal consistency, with lower MAE
(18.9% ↓) and higher Cronbach’s α (> 0.9) for each LV index. MAE and α are
shown in each cell.

Multi-features+RF SDL+AKRF MCDBN+RF Indices-Net U-Net PV-LVNet

One-dimensional Metric (mm)

LADA2C
3.52±3.10

0.895
3.29±2.48

0.913
3.44±3.18

0.898
3.19±2.43

0.923
/

2.85±2.46
0.941

SADA2C
3.76±3.02

0.890
4.51±3.34

0.866
3.81±3.13

0.895
3.60±2.82

0.910
/

3.16±2.68
0.930

LADA4C
3.86±3.48

0.864
3.73±3.05

0.904
3.93±3.38

0.863
3.29±2.42

0.896
/

3.06±2.73
0.932

SADA4C
3.23+2.91

0.901
3.21±2.82

0.907
3.18±3.00

0.903
4.27±3.37

0.887
/

2.98±2.85
0.917

Two-dimensional Metric (mm2)

AreaA2C
331±259

0.870
321±274

0.884
320±264

0.885
361±431

0.876
393±338

0.887
287±284
0.907

AreaA4C
323±266

0.902
280±236

0.934
312±255

0.915
354±338

0.885
392±305

0.901
264±228
0.940

Three-dimensional Metric (ml)

V olume
16.1±14.2

0.918
16.4±14.6

0.922
16.1±14.0

0.925
15.3±8.7

0.938
/

10.7±7.6
0.974

interrelated temporal changes existing in echo sequence, the Res-circle Net424

outperforms CNN which just performs independent processing for each425

frame, on accuracy and internal consistency. Adding subject-level base426

and interrelated dynamic residual of each frame together, the res-circle net427

enables and enhances refined sequential indices estimation by leveraging428

inter-frame temporal relationship and avoiding coarse estimation on each429

separate frame from zero level to improve accuracy. Moreover, introducing430

subject-level and temporal characteristics, the Res-circle Net guarantees431

excellent internal consistent estimation across subjects and among frames432

with the ground truth.433

5.3. Effectiveness of AED location loss434

As shown in Table 3, the AED location loss ensures developing accurate435

indices estimation. Compared with using IED in location, the AED location436

loss significantly decreases the MAEs by 21.3%, 11.0%, 13.8% and 30.5% on437

LAD, SAD, area and volume on average. These improvements are resulted438

from the fact that IED location loss effectively provides a robust and efficient439

location and cropping for indices estimation. It suits LV in apical view440

echo by adopting different scaled metrics on different directions to match441
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Figure 10: The proposed PV-LVNet effectively achieves high coincide indices
estimation along the cardiac cycle to model the LV activity. The polygonal lines
reflect the frame-wise value of each index for average subject. The normalized
root mean square error (NRMSE) is used to measure the deviation between the
polygonal lines of the estimated value and ground truth. As the results show, the
network gains low NRMSE of 1.26% on average, with rarely few deviations.

the approximate bullet shape that is more strict on locations in the vertical442

direction than the horizontal direction, while the general IED loss can only443

provide a low-quality metric of no direction difference. Thus, LAD, area and444

volume which are extremely sensitive to vertical direction location get the445

highest improvements. Additionally, the SAD which is the most difficult to446

be estimated due to its non-independent measurement and a certain degree447

dependence on LAD still gets an obvious improvement of 11.0% with more448

accurate LAD.449

5.4. Effectiveness of Inter-frames Gradient Regularization450

As shown in Table 4, the inter-frames gradient regularization is capable of451

increasing the internal consistency of the estimated results with the ground452

truth. It gains higher Cronbach’s α exceeding 0.9 on all indices and increased453

from 0.914 to 0.934 on average. By measuring the index change rate between454

adjacent frames, the inter-frames gradient is used to fit indices frame-by-455

frame evolution in sequence. So that the estimated sequential indices are456
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Table 2: The Res-circle Net contributes to high estimation accuracy and excellent
internal consistency. It obtains lower MAE (15.7% ↓) and higher Cronbach’s α
(> 0.9) than being replaced by CNN.

CNN Res-circle Net

One-dimensional Metric (mm)

LADA2C
3.46±2.87

0.915
2.85±2.46

0.941

SADA2C
3.64±2.86

0.913
3.16±2.18

0.930

LADA4C
3.37±2.66

0.893
3.06±2.73

0.932

SADA4C
3.24±2.65

0.888
2.98±2.85

0.917

Two-dimensional Metric (mm2)

AreaA2C
336±279

0.885
287±284
0.907

AreaA4C
321±289

0.908
264±228
0.940

Three-dimensional Metric (ml)

V olume
15.1±11.8

0.935
10.7±7.6
0.974

regularized to get consistent variation with the ground truth.457

Besides, the inter-frames gradient regularization also enhances sequential458

data fitting to ensure stable and accurate estimation across the whole cardiac459

cycle, as shown in Fig. 11. It not only gains consistently lower estimation460

error, but also increases the stability by 18.7% on average. The inter-frames461

gradient regularization mines indices inter-frame relatedness to learn the462

fluctuation across the cardiac cycle. Such fluctuation explicitly explores the463

constraints among indices of different frames to promote stable and accurate464

estimation and reduce pulse estimation error for sequential indices.465

5.5. Performance Comparison with Relevant Methods466

Our PV-LVNet achieves the most advanced performance in the various467

dimensional metrics for the LV of all views compared to the existing methods:468

1) the two-phase direct estimation including Multi-features+RF (Zhen et al.,469

2014b), SDL+AKRF (Zhen et al., 2015a), MCDBN+RF (Zhen et al., 2016);470

2) the end-to-end direct estimation, i,e, Indices-Net (Xue et al., 2017a); 3) the471

indirect estimation with segmentation U-net (Ronneberger et al., 2015). As472

shown in Table 1, our method significantly decreases the MAE by 18.9% on473

average on all indices, compared to these methods. Besides, it simultaneously474

maintains excellent internal consistency with the manually obtained ground475

truth by high Cronbach’s α all exceeding 0.9.476
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Figure 11: The inter-frames gradient well regularizes the network to enhance
sequential data fitting. The polygonal lines record the frame-wise average MAE
of each index. The standard deviation (std) is used to reflect the dispersion of
MAE polygonal lines across a whole cardiac cycle. As the results show, using
the inter-frames gradient regularization for the sequential indices decreased std by
18.7% compared to be removed, on average. It means stable and robust estimation
on each frame. Also, the polygonal lines show consistently lower estimation error
with inter-frames gradient regularization.
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Table 3: The AED location loss ensures developing accurate estimation for LV
indices. It brings higher estimation accuracy than the IED location loss, with
lower MAE (17.3% ↓) on each type of cardiac indices.

IED location loss AED location loss

Long-axis Dimension (mm)

LADA2C 3.89±2.89 2.85±2.46
LADA4C 3.62±2.38 3.06±2.73
Averge 3.76±2.64 2.96±2.60

Short-axis Dimension (mm)

SADA2C 3.48±2.84 3.16±2.68
SADA4C 3.41±2.84 2.98±2.85
Average 3.45±2.84 3.07±2.77

Area (mm2)

AreaA2C 322±255 287±284
AreaA4C 314±224 264±228
Average 318±240 274±259

Volume (ml)

V olume 15.4±15.6 10.7±7.6

In detail, our method is superior to the relevant methods as:477

1) The proposed PV-LVNet outperforms the two-phase direct method,478

with the average MAE decreased by 16.2%, 12.3% and 34.0% on 1D, 2D479

and 3D metrics, respectively. Different from these compared methods,480

the proposed method jointly learns the deep task-aware information and481

regresses target in an end-to-end way, instead of the split handcrafted feature482

extraction and regression. It is obviously validated on the volume estimation.483

The proposed method conducts a deeper learning on the concatenated feature484

jointly with volume estimation, and gets 34.0% improvement.485

2) The proposed PV-LVNet outperforms the existing end-to-end direct486

method, with the average MAE decreased by 19.4% and all Cronbach’s487

α increased to above 0.9. All of these are own to the fact that the488

proposed method effectively introduces the subject holistic characteristics489

and temporal changes for developing an accurate, stable and consistent490

estimation in a coarse-to-refine way, and deeply explores inter-frame indices491

relatedness for enhancing sequential indices estimation. However, the492

compared method just conducts separate estimation on each image.493

3) The proposed PV-LVNet outperforms the segmentation method, with494
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Table 4: The inter-frames gradient regularization increases internal consistency
with the ground truth. It gains higher Cronbach’s α (> 0.9) than being removed.

non-Reggrad Reggrad

One-dimensional Metric
LADA2C 0.926 0.941
SADA2C 0.904 0.930
LADA4C 0.904 0.932
SADA4C 0.902 0.917

Two-dimensional Metric
AreaA2C 0.897 0.907
AreaA4C 0.918 0.940

Volume
V olume 0.945 0.974

estimating 5 more indices. It efficiently explores holistic characteristics495

and interrelated changes among the different frames in the same subject496

to directly analyze LV sequence and LV biological structure for adaptively497

learning all cardiac indices. And U-net (Ronneberger et al., 2015) just498

automatically provides LV area from its segmentation while the other indices499

need extra interaction from the expert for apex and mitral valve plane.500

In the implementation of comparison, our proposed method needs no501

extra interaction. Our method is fed with entire echo image and does not502

require post-processing, benefited from its robust processing ability. But503

the other direct methods need to be performed on the the pre-handcrafted504

region to work (Zhen et al., 2014b, 2015a, 2016; Xue et al., 2017a). The505

segmentation method U-net is post processed as general with maximum506

connected region extraction to improve its segmentation results for indices507

estimation.508

5.6. Performance of Activation Function and Hyper Parameters Selection509

Activation Function ELU vs. ReLU. As shown in Figure. 12,510

ELU better fits the RRU than ReLU, with the lower estimation MAE511

(sum of normalized multitype indices MAE). Since the activation of ELU512

is able to transmit not only positive value message but also negative value513

message among frames, which is important for stimulating the inter-frames514

communication. But ReLU misses the information during the negative515

regime because of all being forcefully pushed to zero.516
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Figure 12: ELU activation outperforms ReLU in the RRU with lower testing MAE
and better fitting.

Hyper Parameters Setting. As shown in Figure. 13, our Hyper517

parameters of λ1 = 1000, λ2 = 1 and λ3 = 0.1 gain the best estimation518

accuracy compared to the other settings, with the lowest estimation MAE.519

Defaulting λ2 for indices estimation as 1, λ1 gets the large magnitude of 1000520

for the trade-off between the trainable tasks location and indices estimation521

to mutually promote them; λ3 with the small magnitude of 0.1 balances tasks522

training and network parameters regularization. Figure 13(a) indicates that523

the large λ1 is more effective than small setting as larger ones have lower524

rate of accuracy decay. Specifically, λ1 setting smaller than 1000 extremely525

increases the estimation error. Since the unsuitable small λ1 decreases the526

location supervision of LV-ROI, which leads the indices estimation in a mess.527

The messed indices estimation then arbitrarily misleads the location through528

the joint learning and further degrades the indices accuracy in return via the529

chain reaction. Big is better, but not infinite. The too huge magnitude of λ1530

exceeding 1000 also has the risk of decreasing the performance. Because the531

too huge λ1 weakens the effect of indices estimation in the mutual promotion,532

so that make the indices accuracy lower. In Figure 13(b), our choice also gets533

the best result. The big λ3, as 1 and 10, have the serious problem of making534

the learning target unclear, so that influence the learning ability. Small λ3535

keeps the learning target clear, but the too tiny λ3 of 0.01 and 0.001 weakens536

the regularization on network parameters so that reduces the generalization537

of the network and worsens the practical estimation.538

6. Conclusions539

In this paper, we proposed the PV-LVNet for the first time achieve the540

direct and accurate estimation of LV multitype indices (LADA2C , SADA2C ,541

AreaA2C , LADA4C , SADA4C , AreaA4C , V olume) from 2D echos of paired542

apical views. The PV-LVNet conducts the sufficient metrics from various543

dimensions (1D, 2D & 3D) and views (A2C, A4C, and union of A2C+A4C)544
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Figure 13: Our hyper-parameters setting gets the best estimation accuracy. (a)
Influence of λ1 selection. (b) Influence of λ3 selection.

to provide a reliable comprehensive cardiac function assessment. It is545

built based on the Res-circle Net for sequential analysis. The Res-circle546

Net embeds both subject holistic characteristics and temporal changes547

by combining common subject-level base among frames and interrelated548

residuals of each frame, so that accurate and consistent location and indices549

estimation of LVs in echo sequence are enabled. The PV-LVNet is integrated550

of three interdependent parts for location, cropping and indices regression, as:551

1) the LV location module utilizes AED that gives different scaled metrics on552

different directions as the loss to suit approximate bullet shape of LV in apical553

echos, so that robust and efficient location for indices estimation is ensured;554

2) the Image Resampling automatically crops LV-ROI from the entire echo555

image, so that the interference of various structures in paired views is556

reduced; 3) by using inter-frames gradient regularization for exploring indices557

inter-frame relatedness, the LV location module fits not only each index value558

but also the indices evolution, so that sequential indices estimation is further559

enhanced. The PV-LVNet reaches high accuracy on all indices estimation and560

maintains excellent internal consistency with the ground truth, indicating its561

great potential in clinical cardiac function evaluation.562
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