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Abstract

We propose a new method for breast cancer screening from DCE-MRI based
on a post-hoc approach that is trained using weakly annotated data (i.e.,
labels are available only at the image level without any lesion delineation).
Our proposed post-hoc method automatically diagnosis the whole volume
and, for positive cases, it localizes the malignant lesions that led to such
diagnosis. Conversely, traditional approaches follow a pre-hoc approach that
initially localises suspicious areas that are subsequently classified to establish
the breast malignancy – this approach is trained using strongly annotated
data (i.e., it needs a delineation and classification of all lesions in an image).
Another goal of this paper is to establish the advantages and disadvantages of
both approaches when applied to breast screening from DCE-MRI. Relying
on experiments on a breast DCE-MRI dataset that contains scans of 117
patients, our results show that the post-hoc method is more accurate for
diagnosing the whole volume per patient, achieving an AUC of 0.91, while
the pre-hoc method achieves an AUC of 0.81. However, the performance for
localising the malignant lesions remains challenging for the post-hoc method
due to the weakly labelled dataset employed during training.
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1. Introduction

Breast cancer is amongst the most diagnosed cancers (AIHW, 2007; Siegel
et al., 2017) affecting women worldwide (DeSantis et al., 2015; Torre et al.,
2015). One of the most effective ways of increasing the survival rate for this
disease is based on early detection (Saadatmand et al., 2015; Welch et al.,
2016). Screening programs aim to provide such early detection by diagnos-
ing at-risk, asymptomatic patients, allowing for an early intervention and
treatment. The most widely employed image modality for population-based
breast screening is mammography. High risk patients are also recommended
to undergo screening with dynamically contrast enhanced magnetic resonance
imaging (DCE-MRI) (Mainiero et al., 2017; Smith et al., 2017). DCE-MRI
is known to increase the sensitivity, compared to mammography, especially
in young patients that have denser breasts (Kriege et al., 2004).

However, the diagnosis and interpretation of DCE-MRI is a challenging
and time consuming task that involves the interpretation of large amounts
of data (Behrens et al., 2007) and is prone to high inter-observer variabil-
ity (Grimm et al., 2015; Lehman et al., 2013). Computer-aided diagnosis
(CAD) systems are designed to reduce the analysis time (Gubern-Mérida
et al., 2016; Wood, 2005), increase sensitivity (Vreemann et al., 2018) and
specificity (Meinel et al., 2007), and serve as a second (automated) reader (Shi-
mauchi et al., 2011). Designing such systems is challenging due to the vari-
ability in location, appearance (Levman et al., 2009), size and shape (Song
et al., 2016), and the low signal-to-noise ratio (Kousi et al., 2015) of lesions.
In general, such CAD systems can be categorised as pre-hoc or post-hoc,
depending on how the processing stages are organised, as explained below.

Fully automated pre-hoc CAD methods for breast screening (Amit et al.,
2017b; Dalmış et al., 2018; Gubern-Mérida et al., 2015) from DCE-MRI com-
pute the confidence score of malignancy of a breast using the following two-
stage sequential approach: 1) detection of suspicious lesions, and 2) classifica-
tion of the detected lesions. During detection (i.e., first stage), the algorithm
localises benign and malignant lesions, and possibly false positive detections,
in the image, which are then classified as malignant or non-malignant in the
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Figure 1: Example of a DCE-MRI breast image and annotation types. Image (1a) shows
a slice of a breast DCE-MRI volume. Image (1b) shows the same slice with the strong
annotations: lesion delineation classification as malignant. Image (1c) shows the weak
annotation (i.e., whole image) of the same breast volume as malignant.

second stage. Four important challenges arise with this pre-hoc approach.
Firstly, the modelling of the detector requires strong labels, i.e., precise voxel-
wise annotation of lesions (see Fig. 1 for an example of different types of anno-
tations). Strong annotation is expensive because it requires experts to label a
relatively large number of training volumes; in addition, given the difficulties
involved in such manual labelling process, this annotation may contain noise
(this happens partly because experts are generally not trained to provide
such precise annotations in regular practice). Secondly, the classifier may be
trained using incorrect manually annotated lesion class labels. Such manual
annotation is usually produced by biopsy analysis, but if there are benign
and malignant lesions jointly present in the same breast, this analysis may
not determine the correct association. Thirdly, apart from rare exceptions
that need large annotated training sets (Ribli et al., 2018), pre-hoc diagnosis
systems are generally trained in a two-stage process (Gubern-Mérida et al.,
2015; Mcclymont, 2015). This pipeline is not the optimal way to maximise
classification diagnosis performance because the final classification depends
on the detection, but the detection optimality does not warrant classification
optimality. Finally, the fourth challenge is that the classification accuracy is
limited by the detector performance, where it is impossible for the classifier
to recover from a missing lesion detection because it can not be classified.

An alternative approach that is starting to gain traction (Esteva et al.,
2017; Maicas et al., 2018a; Wang et al., 2017a) reverses these stages. The
first stage aims to classify the whole breast scan directly, followed by a second
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stage that localizes regions in the scan that can explain the classification
– for instance, if the first stage outputs a malignant diagnosis, then the

second stage aims to find malignant lesions in the scan. We term this a
post-hoc approach. This approach is of special interest for the problem of
breast screening from DCE-MRI because the whole-scan diagnosis can, for
example, analyse regions other than lesions that may contain relevant infor-
mation for the diagnosis (Kostopoulos et al., 2017). The main advantage of
these systems compared to pre-hoc systems is the possibility of using scan-
level labels (referred to as weak labels in the rest of the paper). Such labels
are already present in many Picture Archiving and Communication Systems
(PACS) or can be automatically extracted from radiology reports (Wang
et al., 2017a), eliminating almost completely the effort needed for the man-
ual annotation described above for the pre-hoc approach. Also, the use of
scan-level labels overcomes the limitations in annotations required by pre-
hoc approaches. Firstly, there is no need for lesion delineation avoiding such
costly process. Secondly, the incorrect labelling of lesions explained above is
reduced as the most likely lesion to be malignant is biopsied and therefore
the label is more likely to be correct –there is no need to associate labels
with lesions). The main challenge of post-hoc systems resides in highlighting
the scan regions that can justify a particular classification (e.g., in the case
of a malignant classification, it is expected that the regions represent the
malignant areas of the scan), given that such manual annotation is not avail-
able. This challenge is important for the deployment of post-hoc systems in
clinical practice (Caruana et al., 2015).

In this paper, we propose a new post-hoc method and a systematic com-
parison between pre-hoc and post-hoc approaches for breast screening from
DCE-MRI. We aim to answer the following research questions: 1) which
approach should be chosen if the goal is to optimally classify a whole scan
in terms of malignant or non-malignant findings, and 2) how accurate is
the localisation of malignant lesions produced by post-hoc approaches when
compared with the localisation of malignant lesions produced by pre-hoc
methods. The pre-hoc system considered in this paper is based on our re-
cent detection model (Maicas et al., 2017b) that achieves state-of-the-art
(SOTA) lesion localisation, while reducing the inference time needed by tra-
ditional exhaustive search methods. For the post-hoc system, we rely on our
recently proposed approach based on meta-learning (Maicas et al., 2018a)
that holds the SOTA performance for the problem of breast screening from
DCE-MRI. Decision interpretation is based on our recent 1-class saliency de-
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tector (Maicas et al., 2018b), especially designed for the weakly supervised
lesion localisation problem after performing volume diagnosis. See Fig. 2 for
an overview of the pre-hoc and post-hoc pipelines.

Experiments on a breast DCE-MRI dataset containing 117 patients and
141 lesions show that the post-hoc system achieves better malignancy clas-
sification accuracy than the pre-hoc method. In terms of lesion localisation,
the post-hoc approach shows less accurate performance compared to the pre-
hoc system, which we infer that is mostly due to the weak annotation used
in the training phase of the post-hoc method.

Figure 2: Pre-hoc and post-hoc approaches for breast screening. a) The pre-hoc approach
first localises lesions in the input breast volume (e.g., detections in orange), and then these
lesions are classified to decide about their malignancy (e.g., red indicates positive and blue
means negative malignancy classification). Finally, the breast volume is diagnosed accord-
ing to the classification scores of the lesions. b) The post-hoc approach first diagnoses the
input breast volume (e.g., red means positive malignancy classification). If the diagnosis
is positive, then malignant lesions are localised in the breast (e.g., detections in orange).

2. Literature Review

2.1. Pre-hoc Approaches

Pre-hoc approaches are assumed to contain two sequential stages: 1)
detection of regions of interest (ROI) containing suspicious tissue, and 2)
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classification of ROIs into malignant or not malignant (benign and/or false
positive) tissue.

Traditional pre-hoc approaches for breast screening from breast DCE-
MRI were based on manual (Agner et al., 2014; Gallego-Ortiz and Martel,
2015; Mus et al., 2017; Soares et al., 2013) or semi-automated (Chen et al.,
2006; Dalmış et al., 2016; Meinel et al., 2007; Milenković et al., 2017; Platel
et al., 2014) ROI detection. In addition, the classification in these traditional
approaches was based on support vector machine (SVM), random forest, or
artificial neural network models, using hand-designed features (e.g., dynamic,
morphological, textural or multifractal) (Dalmış et al., 2016; Meinel et al.,
2007; Milenković et al., 2017; Platel et al., 2014).

Aiming at reducing user intervention to reduce the number of ROIs (Liu
et al., 2017), pre-hoc systems evolved to be fully automated. Such automated
pre-hoc approaches generally employed an exhaustive search method or clus-
tering to detect ROIs in the scan using hand-designed features (Gubern-
Mérida et al., 2015; Mcclymont, 2015; Renz et al., 2012; Wang et al., 2014).
The classification of ROIs into false positive, benign or malignant findings
is then performed with a new set of hand-designed features extracted from
the ROIs (Gubern-Mérida et al., 2015; Mcclymont, 2015; Renz et al., 2012;
Wang et al., 2014). These fully automated methods generally suffer from
two issues: 1) the sub-optimality of hand-designed features needed at both
ROI localization and ROI classification, and 2) the high computational cost
of the exhaustive search to detect ROIs.

Both limitations have been addressed after the introduction of deep learn-
ing methodologies (Krizhevsky et al., 2012) in the field of medical image
analysis. Initially, feature sub-optimality was addressed either for ROI de-
tection (Maicas et al., 2017a,b) or classification (Amit et al., 2017a,b; Rasti
et al., 2017), but it was recently solved for both detection and classifica-
tion (Dalmış et al., 2018). Dalmış et al. (2018) also reduced the inference
time of the exhaustive search by directly computing a segmentation map
from the scan using a U-net (Ronneberger et al., 2015).

Although each step of the pipeline has been individually optimized, there
is no guarantee that the full pipeline is optimal in terms of classification
accuracy. This was addressed with the formation of large datasets that has
enabled the use of SOTA one-stage detection and classification computer vi-
sion techniques, such as Faster R-CNN (Ren et al., 2015) or Mask RCNN (He
et al., 2017). The main advantage of these methods lies in the optimality of
the end-to-end training, effectively merging the detection and classification
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tasks (Dalmış et al., 2018). For example, Ribli et al. (2018) applied Faster
R-CNN to detect tumours from mammograms and they showed that this ap-
proach is quite efficient in terms of inference time. However, Faster R-CNN
generalises poorly, which means that the training set must contain a large
annotated set of ROIs and, at the same time, be rich enough to comprise
all possible lesion variations. Besides the need for large datasets, which are
difficult to acquire for DCE-MRI breast screening, these systems suffer from
the need for strong annotations (i.e., the accurate delineation of the lesions).
Li et al. (2018) partially addressed this issue by developing a semi-supervised
system, alleviating the need of lesion annotations. However, a large number
of annotated images (880) is still required to train the system.

2.2. Post-hoc Approaches

Post-hoc systems aim to overcome the need for strong annotations by
training models with only scan-level labels (i.e., weak labels). This is es-
pecially useful for the problem of breast screening, where the analysis of
adjacent regions to lesions may be important (Kostopoulos et al., 2017). In
addition, the classification accuracy of post-hoc systems are not constrained
by the lesion detection, which is the case in pre-hoc systems.

Several post-hoc systems have been proposed (Wang et al., 2017a; Zhu
et al., 2017). For instance, Wang et al. (2017a) use a deep learning model to
produce classification scores from whole scans and Zhu et al. (2017) propose a
deep multiple instance learning. However, these approaches still require large
datasets to achieve good performance. This issue was addressed by Maicas
et al. (2018a), who proposed a new meta-learning methodology to learn from
a small number of annotated training images. Their work established a new
SOTA classification accuracy for breast screening from DCE-MRI.

The main challenge for post-hoc models arises from the fact that they
do not use manually annotated ROIs for training, which makes the ROI
localisation (and delineation) a hard task. Such ROI localisation is important
for explaining the classification made by the CAD system in clinical settings
(e.g., for a scan classified as malignant, doctors are likely to know where the
lesions are located). Solving this lesion localisation problem is a research
problem that is being actively investigated in the field (Dubost et al., 2017;
Feng et al., 2017; Maicas et al., 2018b; Wang et al., 2017b; Yang et al.,
2017). The approach proposed by Maicas et al. (2018b) achieves SOTA
detection performance by properly defining saliency for the problem of weakly

7



supervised lesion localisation, which assures that salient regions represent
malignant lesions in the image.

However, the literature does not provide any studies comparing pre and
post-hoc diagnosis approaches. The main reason for this absence of com-
parison among the methods described in this literature review is that such
analysis is not straightforward due to (Maicas et al., 2017b): 1) the lack of
publicly available datasets that can be used to compare new approaches to the
current state-of-the-art, 2) the criteria to decide if an ROI is a true positive
detection, and 3) the criteria to decide if lesions labelled as the challenging
BIRADS=3 should be included into the benign category (Gubern-Mérida
et al., 2015). In addition, not all assessments of pre-hoc fully automated
methodologies consider false positives in the diagnostic stage as they only
differentiate between benign and malignant (Mcclymont, 2015). We pro-
pose to compare both types of automated approaches for the problem of
breast screening from breast DCE-MRI. With the use of a common dataset
and well-defined criteria to satisfy the issues described above, we investigate
which approach performs better for breast diagnosis and lesion localisation.

3. Methods

This section provides a formal description of the dataset in Sec. 3.1, the
pre-hoc method in Sec. 3.2, and the post-hoc approach in Sec. 3.3.

3.1. Dataset

Let D =
{(

bi,xi, ti, {s
(j)
i }

M
j=1, {l

(j)
i }

M
j=1,yi

)
i

}
i∈{1,...,|D|},bi∈{left,right}

denote the 3D DCE-

MRI dataset, where bi ∈ {left, right} specifies the left or right breast of the ith

patient; xi, ti : Ω → R represent the first 3D DCE-MRI subtraction volume
and the T1-weighted MRI volume used for preprocessing, respectively, with
Ω ∈ R3 representing the volume lattice of size w × h× d; s

(j)
i : Ω→ {0, 1} is

the voxelwise annotation of the jth lesion present in the breast bi (s
(j)
i (ω) = 1

indicates the presence of lesion in voxel ω ∈ Ω, and s
(j)
i (ω) = 0 denotes the

absence of lesion); {l(j)i }Mj=1 ∈ {0, 1} indicates the classification of lesion j as
benign or malignant, respectively; and yi is a scan-level label with the follow-
ing values: yi = 0 if there is no lesion in breast bi, yi = 1 if all the lesion(s)
in breast bi are benign or yi = 2 if there is at least one malignant lesion.
The dataset is patient-wise split into train T , validation V and test U sets,
such that images of each patient only belong to one of the sets. Note that the
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voxelwise lesion annotations {s(j)i }Mj=1 and {l(j)i }Mj=1 are not employed during
the training of the post-hoc system – they are only used to train and test
the pre-hoc system and in the quantification of the results for both systems.
Finally, the motivation behind the use of the first subtraction image x lies
in the reduction of cost and time for image acquisition and analysis (Gilbert
and Selamoglu, 2018; Mango et al., 2015).

3.2. Pre-hoc Method

Our proposed pre-hoc approach is based on the following steps:

1. Lesion detection (Sec. 3.2.1): an attention mechanism based on deep
reinforcement learning (DRL) (Mnih et al., 2015) searches for lesions
using a method that analyses large portions of the breast volume and
iteratively focuses the search on the appropriate regions of the input
volume.

2. Lesion diagnosis (Sec. 3.2.2): a state-of-the-art deep learning classi-
fier (Huang et al., 2017) analyses the lesions detected in the previous
step in order to classify them as malignant or non-malignant (note that
non-malignant regions are represented by benign lesions or normal tis-
sue, i.e. false positive detections). The confidence score of malignancy
for the breast volume is defined as the maximum probability of malig-
nancy among the detected lesions.

3.2.1. Lesion Detection

We propose an attention model that is capable of reducing the infer-
ence time of previous methods for lesion detection (Gubern-Mérida et al.,
2015; McClymont et al., 2014) in pre-hoc systems. This attention mecha-
nism searches for lesions by progressively transforming relatively large initial
bounding volumes (BV) (i.e. sub-regions of the MRI volume) into smaller
regions containing a more focused view of potential lesions (Maicas et al.,
2017b). The transformation process is guided by a policy π that indicates
how to optimally change the current BV to detect a lesion. The policy is
represented by a deep neural network, called deep Q-net (DQN), that re-
ceives as input an embedding vector o ∈ RO of the current BV and outputs
a measurement (i.e., the Q-value (Q)), representing the optimality associated
with each of the possible transformations to find a lesion. See Figure 3 for a
block diagram of this process. The aim of the learning phase is to model such
policy, i.e., find the optimal parameters of the DQN. The inference exploits
the policy to detect the lesions present in a breast DCE-MRI volume.
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Figure 3: Overview of the proposed lesion detection method. The bounding volume of the
current observation is extracted from the input breast volume and fed to the 3D ResNet
to obtain the embedding of the observation. The embedding is then forwarded through
the Q-net to obtain the Q-values for each of the actions.

The training process of the DQN follows that of a traditional Markov
Decision Process (MDP), which models a sequence of decisions to accomplish
a goal from an initial state. At every time step, the current BV, represented
by the observations o, will be transformed by an action a, yielding a reward
r – this reward indicates the effectiveness of the the chosen transformation
for detecting a lesion. The goal is to learn what actions should be applied to
transform the current observation to another one with larger Dice coefficient
measured with respect to the target lesion. In an MDP set-up, this translates
into choosing the action that maximizes the expected sum of discounted
future rewards (Mnih et al., 2015): Rt =

∑T
t′=t γ

t′−trt′ , where γ ∈ (0, 1) is a
discount factor.

Let Q?(o, a) be the optimal Action-Value Function representing the ex-
pected sum of discounted future rewards by choosing action a to transform
the observation o. The optimal Action-Value function follows the policy π,
as in:

Q?(o, a) = max
π

E[Rt|ot = o, at = a, π]. (1)

Intuitively, Q?(.) represents the quality of performing the action a given the
current observation o to achieve the final goal. Therefore, the goal of the
training process is to learn Q?(.), which maximizes the commulative sum of
expected discounted rewards.

The optimalQ?(o, a) can be computed iteratively using the Bellman equa-
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tion and the Q-Learning algorithm (Sutton and Barto, 1998):

Qi+1(ot, at) = Eot+1

[
rt + γmax

at+1

Q(ot+1, at+1)|ot, at
]
. (2)

However, since it is impractical to compute Q(ot, at) due to the large size
of the observation-action space, a DQN function approximator, represented
by Q(o, a,θ), can be used. The weights θ of the DQN Q(ot, at,θt) can be
learned by minimizing the mean square error of the Bellman equation:

L(θt) = E(ot,at,rt,ot+1) ∼ U(E)

[(
rt + γmax

at+1

Q(ot+1, at+1;θ
−
t )︸ ︷︷ ︸

target

−Q(ot, at;θt)
)2]

,

(3)

where θt are the parameters of the DQN at iteration t, θ−t are the weights
of the target network (defined below) used to compute the target value at
iteration t, and U(E) is a batch of experiences uniformly sampled from the
experience replay memory Et (also defined below). The target network is
used to compute the target values for each update of the weights of the
DQN. The architecture of this target network is the same as that of the
DQN and its parameters θ−t contain the weights of the DQN at a previous
iteration of the optimization process. The weights θ−t are updated after
every iteration through the entire training set from the parameters θt at
the iteration t − 1 and maintained constant between updates: θ−t = θt−1.
The experience-replay memory Et = {e1, ..., et} stores previous experiences
denoted by et = {ot, at, rt,ot+1}, where each et is collected at time step t by
choosing the action at to transform from ot into ot+1, yielding the reward
rt. We describe in the next paragraphs how to obtain the observations, to
choose the actions and to compute the reward function.

The embedding o of the current BV is computed as:

o = fResNet(x(b), θResNet) (4)

where b = [bx, by, bz, bw, bh, bd] ∈ R6 is a bounding volume, with the triplets
(bx, by, bz) and (bw, bh, bd) denoting the top-left-front and the lower-right-back
corners of the bounding volume, respectively; the DCE-MRI data is repre-
sented by x; and fResNet(.) represents a 3D Residual Network (ResNet) (He
et al., 2016). The training of the 3D ResNet in (4) relies on a binary loss
function that differentiates between input bounding volumes with and with-
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out lesions. The dataset to train this 3D ResNet is built by sampling random
BVs that are labelled as positive if the Dice Coefficient with a ground truth
lesion is larger than 0.6, and negative otherwise. Note that the training of the
3D ResNet with a potentially infinite number of BVs from different scales,
sizes and locations allows us to obtain a rich collection of BVs without the
need for a large training set.

The setA = {l+x , l−x , l+y , l−y , l+z , l−z , s+, s−, w} represents the actions to mod-
ify the current BV, where {l, s, w} represent the translation, scale and trig-
ger (to terminate the search for lesions) actions, respectively; the subscripts
{x, y, z} denote the horizontal, vertical and depth translation, and the super-
scripts {+,−} represent the positive/negative translation or up/down scal-
ing.

The reward function depends on the improvement in the lesion localisa-
tion process after selecting a specific action. For action a ∈ A \ {w}, we
measure the improvement in terms of the variation of the Dice coefficient
after applying action a to transform the observation ot to ot+1:

r(ot, a,ot+1) = sign(d(ot+1, s)− d(ot, s)), (5)

where d(.) is the Dice coefficient between the bounding volume o and the
ground truth s. The intuition behind (5) is that the reward is positive if the
Dice coefficient from observation ot to observation ot+1 increases, and the
reward is negative otherwise. The quantization in (5) avoids a deterioration of
the training convergence due to small changes in d(.) (Caicedo and Lazebnik,
2015).

The reward for the trigger action, a = w, is defined as:

r(ot, a,ot+1) =

{
+η if d(ot+1, s) ≥ τw

−η otherwise
(6)

where η > 1 encourages the trigger action to finalize the search for lesions
if the Dice coefficient with the ground truth s is larger than a pre-defined
threshold τw.

Actions during the training process are selected according to a modified ε-
greedy strategy to balance exploration and exploitation (Maicas et al., 2017b):
with probability ε, a random action will be explored, and with probability
1− ε, the action will be chosen from the current policy. During exploration,
with probability κ, a random action is selected, and with probability 1−κ, a
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random action from the actions that will produce a positive reward is selected.
During exploitation, the action is selected according to the current policy:
at = arg maxat Q(ot, at;θt). The training process starts with ε = 1, which
decreases linearly, transitioning from pure exploration to mostly exploitation
following the current policy as the model learns to detect lesions.

During inference, we exploit the learned policy to detect lesions. In prac-
tice, we propose several initial bounding volumes covering different relatively
large portions of the DCE-MRI volume. Each initialization is processed inde-
pendently and is iteratively transformed according to the action a?t indicated
by the optimal action-value function:

a?t = arg max
at

Q(ot, at;θ
?). (7)

where θ? represents the parameter vector of the trained DQN model learned
with (3).

We define the set of detected lesions as Dpre = {Dprei }
|Dpre|
i=1 , where Dprei

represents the ith bounding volume, when the trigger action is selected to stop
the inference process. If the trigger action is not selected after 20 iterations,
the search for a lesion is stopped yielding no detection.

3.2.2. Lesion diagnosis

The detected lesions in Dpre, formed during the lesion localization stage,
are classified in terms of their malignancy. This binary classification is per-
formed with a 3D DenseNet (Huang et al., 2017), trained using the detections
from the training set to differentiate normal tissue and benign lesions (i.e.,
negative diagnoses) from malignant lesions (positive diagnosis). During in-
ference, each detection Dprei is fed through the 3D DenseNet to obtain its
probability of malignancy. Finally, the confidence score of malignancy of
a breast is defined as the maximum of the malignancy probabilities com-
puted from all the detected regions in such breast. The confidence score of
malignancy for the breast volume with no detections is set to zero.

3.3. Post-hoc Method

Our proposed post-hoc approach is characterised by the following steps:

1. Diagnosis (Sec. 3.3.1): the classifier outputs the probability that a
breast DCE-MRI volume contains a malignant lesion. Given the small
training dataset, the model is first meta-trained with a teacher-student

13



curriculum learning strategy to learn to solve several tasks. Then, the
classifier is fine-tuned to solve the breast screening diagnosis task.

2. Lesion Localization (Sec. 3.3.2): the detector is weakly-trained to
localise malignant lesions on breast DCE-MRI volumes that have been
positively classified in the diagnosis stage above. This lesion localisa-
tion process can be used to interpret the decision from the diagnosis
stage.

3.3.1. Breast Volume Diagnosis

Meta-training aims to learn a model that can solve new given tasks (clas-
sification problems) as opposed to traditional classifiers that solve a specific
classification problem. Traditionally, models for solving new tasks have been
achieved by fine-tuning pre-trained models (Tajbakhsh et al., 2016). How-
ever, these pre-trained models are rarely available for 3D volumes and large
datasets are still required. These limitations can be overcome by including a
meta-training phase before training, where the model is presented with sev-
eral classification tasks that need to be solved, where each task has a small
training set. Eventually, the model learns to solve new tasks that contain
small training sets.

As noted in our previous work (Maicas et al., 2018a), the order in which to
present classification tasks during meta-training influences the ability of the
model to solve new tasks. Therefore, we propose to use the teacher-student
curriculum learning strategy (Matiisen et al., 2017) that has been shown to
outperform other strategies (Maicas et al., 2018a).

We propose to meta-train the model to solve several related classification
tasks, each containing a relatively small number of training images instead of
training a classifier to distinguish volumes with any malignant findings from
others containing no malignant lesions. Firstly, during the meta-training
phase, our model learns to solve different tasks that are formed from our
breast DCE-MRI datasets. The tasks to be presented to the model are se-
lected via the teacher-student curriculum learning strategy and contain a
small training set. Secondly, the training phase is similar to that of any
traditional classifier and solves the breast screening task using the samples
available from the training set. The difference in our approach lies in the
employment of the meta-trained model as the initialization for the train-
ing process. As a result, when the meta-trained model is fine-tuned on the
breast screening task with the small training set, it is able to efficiently
and effectively classify previously unseen volumes containing malignant find-
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ings (Maicas et al., 2018a). Finally, the inference phase (or breast diagnosis)
consists of feeding the input volumes to the classifier to estimate the proba-
bility that they contain a malignant finding. See Figure 4 for an overview of
the volume diagnosis process.

Figure 4: Volume diagnosis process. Firstly, the model is meta-trained on several related
classification tasks. Secondly, the model is trained in the breast screening task. Finally,
the model is tested on the breast screening task.

During meta-training, the model is meta-trained to solve the following
five classification tasks:

1. K1 : findings (lesions) versus no findings,

2. K2 : malignant findings versus no findings,

3. K3 : benign findings versus no findings,

4. K4 : benign findings versus malignant findings,

5. K5 : malignant findings versus no malignant findings (i.e., breast screen-
ing).

Let K = ∪5i=1Ki, where each task Ki is associated with a dataset Di that
contains the volumes from the training set that are relevant for the task Ki.
We define the meta-training set D = ∪5i=1Di.

Let the model to be meta-trained be defined by gθ and the meta-update
step be indexed by t. For each meta-update, a meta-batch Kt of tasks is
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sampled and contains |Kt| tasks from K (see bellow for a description of the
task sampling method). For each of the tasks Kj ∈ Kt, N = N tr + N val

volume-label samples are sampled from the corresponding meta-training set
Dj to form Dtrj . Let Dtrj contain N tr samples that will be used as training
set and Dvalj contain N val samples that will be used as validation set during
the tth meta-update for the jth task.

For every task Kj ∈ Kt in the meta-batch, the model is trained with Dtrj
to adapt to the task by performing several gradient descent updates. For
simplicity, the adaptation of the model with one gradient descent update is
defined by:

θ
′(t)
j = θ(t) − α

∂LKj

(
gθ(t)

(
Dtrj
))

∂θ
, (8)

where θ(t) are the parameters of the model at meta-iteration t, LKj
(gθ(t)

(
Dtrj
)
)

is the cross-entropy loss computed from Dtrj for task Kj, α is the learning rate

for model adaptation, and θ
′(t)
j are the adapted parameters after performing

model adaptation for task Kj.
The adapted models g

θ
′(t)
j

are subsequently evaluated with the validation

pairs Dvalj of the corresponding task. The loss produced by the validation set
on each of the tasks is used to compute the meta-gradient associated to each
task. Finally, the model parameters θ are updated using the average of the
meta-gradients associated to each of the tasks in the meta-batch:

θ(t+1) = θ(t) − β
∑

Kj∈Km

∂LKj

(
g
θ
′(t)
j

(
Dvalj

))
∂θ

, (9)

where β is the meta-learning rate and LKj

(
g
θ
′(t)
j

(
Dvalj

))
is the cross entropy

loss of the validation volumes in Dvalj for task Kj. This procedure is repeated
for M meta-iterations, as shown in Alg. 1.

The breast screening training process is initialised by the meta-trained
model. Using the entire training set T , the model adapts to the breast
screening task by performing several gradient descent updates, similarly to
the training of a traditional deep learning classifier. We use the validation
set V for model selection. The inference of the model is similar to that of
any standard classifier and consists of feeding the testing volume through
the network to obtain the probability of malignancy of each of the input
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Algorithm 1 Overview of the meta-training procedure presented in (Maicas
et al., 2018a)

procedure Meta-train({K1 . . .K5}, {D1 . . .D5}, model gθ)
Initialise parameters θ from gθ
for t = 1 to T do

Sample meta-batch Kt by sampling |Kt| tasks from {K1 . . .K5}
for each task Kj ∈ meta-batch Kt do

Adapt model using (8) with samples from Dtrj
Evaluate adapted model using with samples from Dvalj

Meta-update model parameters with (9)

volumes. The confidence score of malignancy corresponds to the probability
of malignant output by the classifier.

During the meta-learning process, the task sampling process to form
a meta-batch of tasks depends on the past observed performance improve-
ments of the model in each of the tasks. This has been shown to outperform
other alternative approaches (Maicas et al., 2018a). A partially observable
Markov decision process (POMDP) solved using reinforcement learning with
Thompson Sampling can model such an approach. A POMDP is charac-
terized by observations, actions, and rewards. In our set-up, we define an
observation OKj

as the variation in the area under the receiving operating

characteristic curve (AUC) of the adapted model θ
′(t)
j compared to the initial

AUC before the model θ(t) was adapted to the task Kj ∈ Kt – in both cases,
the AUC is measured using the sampled validation set Dvalj . The actions cor-
respond to sampling a particular task. The reward is defined as the difference
between the current and previous observations during the last time that the
task was sampled. The goal is to decide which action to apply, i.e. which task
should be sampled for the next meta-training iteration. We use Thompson
sampling to decide the next task to be sampled, which allows us to balance
between sampling new tasks, and sampling tasks for which the improvement
of performance is currently higher (similar to the exploration-exploitation
dilemma in reinforcement learning) (Matiisen et al., 2017).

Let Bj be a buffer of recent rewards for task Kj – this buffer stores the last
B rewards for this task. To perform Thompson sampling, a random recent
reward RBj ∈ Bj is uniformly sampled. The next task Kj to be included in
the meta-batch Kt of iteration t is selected with j = arg maxi |RBi |. This
process is repeated for |Kt| times to form Kt. The intuition behind this is
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that for tasks where performance is increasing rapidly (i.e. yielding higher
rewards) they will be sampled more frequently until mastered (i.e. the reward
will tend to zero as the variation in AUC after adaptation will tend to be
smaller in consecutive iterations). Then, a different task will be sampled more
frequently. However, if the model reduces the performance in the previously
mastered task, it will be sampled again more frequently because the absolute
value of the reward will tend to be higher again.

3.3.2. Malignant Region Localization

A breast volume is diagnosed as malignant in the previous step if its
confidence score of malignancy is higher than the equal error rate (EER) of
the proposed classifier on the validation set. The EER as threshold is chosen
to avoid any preference between sensitivity and specificity. For positively
classified volumes, we aim to generate a saliency map represented by a binary
mask indicating the localization of lesions that can explain the decision made
by the classifier; while for negatively classified volumes, no salient region is
produced. Therefore, we propose a 1-class saliency detector (Maicas et al.,
2018b) that has been specifically designed to satisfy these conditions.

Our 1-class saliency detector is modelled with a weakly-supervised train-
ing process to detect salient regions in positively classified volumes, where
these regions denote malignant lesions. The detector follows an encoder-
decoder architecture that generates a mask m : Ω → [0, 1] of the same size
as the input volume, where this mask localizes the most salient regions of the
input volume that are involved in the positive classification. The encoder is
the classifier from Sec. 3.3.1, which produces the diagnosis. The decoder up-
samples the output from the encoder to the original resolution from the lowest
resolution feature maps by concatenating four blocks of feature map resize,
convolution layer, batch normalization layer and ReLU activation (Zeiler and
Fergus, 2014). Skip connections are used to connect corresponding layers of
the same resolution in the encoder and decoder. During training, the param-
eters of the encoder are fixed and the parameters of the decoder are updated
using the gradient corresponding to the following loss for each volume xi:

`i(m) = λ1`TV (m) + λ2`A(m)− yiλ3`P (m,xi) + yiλ4`D(1−m,xi), (10)

where `TV measures the total variation of the mask forcing the boundary of
salient regions to be relatively smooth, `A measures the area of the salient
regions and aims to reduce the total area of regions, `P measures the con-
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fidence in the classification of the input volume xi masked with m, and `D
measures the confidence in the classification of the input volume xi masked
with the inverse of the generated mask, i.e (1−m).

By training the mask generator model with the loss function (10), there
is an explicit relationship between saliency and malignant lesions (Maicas
et al., 2018b). By setting yi = 0 for negative volumes, they are forced to
have no salient regions. For positives volumes, salient regions are forced to
have the following characteristics: 1) be small and smooth, 2) when used to
mask the input volume, the classification result is positive; and 3) when its
inverse is used to mask the input volume, the classification result is negative.
During inference, volumes diagnosed as positive are fed forward through
the decoder to produce a mask, where each voxel has values in [0, 1]. This
mask is thresholded at ζ to obtain the malignant lesions.

4. Experiments

In this section, we describe the dataset and experimental set-up used
to assess the proposed methods for the problems of breast screening and
malignant lesion detection.

4.1. Dataset

Our methods are evaluated with a dataset containing MRI scans from
117 patients. The dataset is patient-wise split into training, validation and
test sets using the same split as previous approaches (Maicas et al., 2017b,
2018a,b). The training set contains scans from 45 patients, where these scans
show 38 malignant lesions and 19 benign lesions – the scans also show that 29
of the patients have at least one malignant lesion while 16 only have benign
lesion(s). The validation set has scans from 13 patients, with 11 malignant
and 4 benign lesions – these scans show that 9 of the patients have at least
one malignant lesion while 4 patients have only benign lesion(s). The test
set contains scans from 59 patients, with 46 malignant and 23 benign lesions
– the scans show that 37 of the patients have at least one malignant lesion
while 22 have only benign lesion(s). The characterization of each lesion was
confirmed with a biopsy. Every patient has at least one lesion, but not every
breast contains lesions. There are 42, 13, and 58 breasts with no lesions in
the training, validation and testing sets, respectively. Likewise, 18, 4, and
22 breasts contain only benign lesions (i.e. are considered “benign”) and
30, 9, and 38 contain at least one malignant lesions (i.e. are considered
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“malignant”). For the breast screening problem, “Malignant” breasts are
considered positive while “benign” and breasts with no lesions are considered
negative. The MRI dataset (McClymont et al., 2014) contains T1-weighted
and two dynamic contrast enhanced (pre-contrast and first post-contrast)
volumes for each patient acquired with a 1.5 Tesla GE Signa HDxt scanner.
The T1-weighted anatomical volumes were acquired without fat suppression
and with an acquisition matrix of 512×512. The DCE-MRI images are based
on T1-weighted volumes with fat suppression, with an acquisition matrix of
360 × 360 and a slice thickness of 1 mm. Firstly, a pre-contrast volume
was acquired before a contrast agent was injected. The first post-contrast
volume was acquired after a delay of 45 seconds after the acquisition of the
pre-contrast. The first subtraction volume is formed by subtracting the pre-
contrast volume to the first post-contrast volume. Both T1-weighted and
DCE-MRI were acquired axially.

The dataset was preprocessed using the T1-weighted volume to segment
the breast region from the chest wall using Hayton’s method (Hayton et al.,
1997; McClymont et al., 2014). This involves removing the pectoral muscle
which may produce false positive detections. In addition, the breast region
was divided into left and right breasts by splitting the volume in halves, as
the breast region was initially centred. Each breast volume was resized to a
size of 100 × 100 × 50 voxels. Note that we operate the proposed methods
breast-wise.

4.2. Experimental Set-up

The aim of the experiments is to assess our pre-hoc and post-hoc ap-
proaches in terms of their performance for diagnosing malignancy and localis-
ing malignant lesions from breast DCE-MRI. Firstly, we individually evaluate
the components of our proposed pre-hoc and post-hoc methods. Secondly, we
compare the performance of both approaches in terms of diagnosis accuracy
and malignant lesion localisation. Note that in every localisation evaluation
we consider a region to be true positive if the Dice coefficient measured be-
tween a candidate region and the ground truth lesion is at least 0.2 (Maicas
et al., 2017b, 2018b).

4.2.1. Pre-hoc System

The lesion detection step in the pre-hoc approach is evaluated in terms of
the free response operating characteristic (FROC) curve measured patient-
wisely (as in previous detection works (Gubern-Mérida et al., 2015; Maicas
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et al., 2017b, 2018b)), which compares the true positive rate (TPR) against
the number of false positive detections per patient (FPP). We also measure
the inference time in a computer with the following configuration: Intel Core
i7, 12 GB of RAM and a GPU Nvidia Titan X 12 GB. As in previous diag-
nosis work (Maicas et al., 2017b), the diagnosis step in the pre-hoc method
is evaluated in terms of the area under the receiving operation characteris-
tic curve (AUC), which compares true positive diagnosis rate against false
positive diagnosis rate. The AUC is measured breast-wise in two different
scenarios: 1) all the breasts in the testing set are considered, and 2) only
breasts with at least one detected region are considered.

The lesion detection uses a 3D ResNet trained from scratch with ran-
dom bounding volumes sampled from the training volumes. More specifi-
cally, we sample 8000 positive and 8000 negative patches that are resized
to 100 × 100 × 50 (the input size to the 3D ResNet). The choice of the
input size of the ResNet is 100 × 100 × 50 so that every lesion is visible –
some tiny lesions disappear at finer resolutions. The architecture of the 3D
ResNet (He et al., 2016) comprises 5 Residual Blocks (Huang et al., 2016),
each of them preceded by a convolutional layer. After the last residual block,
the model contains two additional convolutional layers and a fully connected
(FC) layer. The embedding of the observation “o” is the output of the second
to last convolutional layer, before the FC layer and it has 2304 dimensions.

The DQN is a 2-layer multi-layer perceptron, with each layer containing
512 nodes. It outputs the Q-value for 9 actions: translation by one third
of the size of the observation in the positive or negative direction on each
of the dimensions (i.e. 6 actions), scaling by one sixth of the size of the
observation and is applied in every dimension (i.e. 2 actions) and the trigger
action. The reward value for the trigger action has been empirically defined
as η = 10 if τw = 0.2 (i.e., the Dice coefficient is at least 0.2 during the
trigger action), and the discount factor is γ = 0.9. The DQN is trained with
batches of 100 experiences from the experience replay memory E , which can
store 10000 experiences. We use Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 10−6.

During training, the model is initialized with one centred large observa-
tion covering 75% of the input breast volume. During inference, the lesion
detection algorithm is launched from 13 different initializations in order to
increase the chances of finding all possible lesions present in a breast. In ad-
dition to the same initialization used during training, eight initializations are
placed in each of the eight 50×50×25 corner volumes, and four 50×50×25
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initializations are placed centred between the previous 8 initializations. The
balance between exploration and exploitation during training is given by ε,
which decreases linearly from ε = 1 to ε = 0.1 after 300 epochs, and by
κ = 0.5.

Detected regions are resized to 24× 24× 12, which is the median value of
the size of all detections in the training set. The lesion diagnosis uses a 3D
DenseNet (Huang et al., 2017) composed of three dense blocks of two dense
layers each. Each dense layer comprises a batch normalization, ReLu and a
convolutional layer. In the particular DenseNet implementation used in this
paper, we use a compression of 0.5 and a growth rate of 6. Global average
pooling of 6× 6× 3 is applied after the last dense block and before the fully
connected layer. The DenseNet is optimized with stochastic gradient descent
with a learning rate of 0.01. The dataset used to train the 3D DenseNet is
composed of all detections obtained from the training set. Model selection is
performed using the detections from the validation set based on the breast-
wise AUC for breast screening. Note that detections that correspond to
malignant lesions are labelled as positive while detections that correspond to
benign lesions or false positives are labelled as negative.

4.2.2. Post-hoc System

The diagnosis step in the post-hoc approach is evaluated with the breast-
wise AUC. The malignant lesion localization step in the post-hoc approach is
evaluated in terms of FROC curve patient-wise under two different scenarios:
1) all the patients in the test set are considered to compute the FROC (A),
and 2) only the number of patients that had at least one breast diagnosed
as malignant (+), such that the performance of the 1-class saliency detector
can be isolated.

The breast volume diagnosis meta-training algorithm uses as the underly-
ing model a 3D DenseNet (Huang et al., 2017). The architecture was decided
based on the optimization of a 3D DenseNet (trained with the training set
T ) to achieve the best results for the breast screening task on the validation
set V and consists of 5 dense blocks with 2 dense layers each. Each dense
layer comprises a batch normalization, ReLu and convolutional layer, where
compression was 0.5 and growth rate 6. No data augmentation or dropout
were used since they did not improve the performance of this 3D model. For
meta-training, the learning rate is α = 0.01 and the meta-learning rate is
β = 0.001. The number of gradient descent steps during adaptation is 5
and the number of meta-iterations is M = 3000. The meta-batch size con-

22



Inference Time Per Patient
DQN ( 13 Initializations ) 92± 21s
MS-SL 164± 137s
Cascade O(60)min

Table 1: Inference time per patient of our proposed pre-hoc detection method (DQN
using 13 initializations per breast), the MS-SL (mean-shift structured learning), and the
multi-scale cascade baselines.

tained |Kt| = 5 tasks, where each task had N tr = 4 samples for training and
N val = 4 for validation. Each buffer Bj stored 40 recent rewards.

The localisation of malignant lesions in positively classified volumes
is achieved by thresholding the generated saliency map at ζ = 0.8 – this
threshold was decided based on the detection performance in the validation
set. The parameters for training the 1-class saliency detector in (10) are:
λ1 = 0.1, λ2 = 3, λ3 = 1, and λ4 = 2.5.

4.2.3. Comparison Between Pre- and Post-Hoc

Using the set-up described above for pre-hoc and post-hoc approaches,
we compare the performance of both methods. We evaluate diagnosis breast-
wisely and patient-wisely in terms of the area under the receiving operation
characteristic curve (AUC). We also evaluate the performance of malignant
lesion localisation for each approach patient-wisely using the FROC curve as
in previous works (Gubern-Mérida et al., 2015; Maicas et al., 2017b, 2018b).
Note that the TPR for malignant lesion localization breast-wisely is the same
as patient-wisely, while the FPR breast-wisely is the same as the one for
patient-wisely divided by two. For the post-hoc method, we also plot the
two scenarios (A) and (+), explained above.

4.2.4. Experimental Results for the Pre-hoc System

We compare the performance of our lesion detection step against an
improved version of exhaustive search, namely a multi-scale cascade based
on deep learning features (Maicas et al., 2017a), and a mean-shift clustering
method followed by structured learning (McClymont et al., 2014) (note that
only one operating point is available for this approach), which is evaluated
on the same dataset using a different training and testing data split. Figure 5
shows the FROC curve with the detection results and Table 1 contains the
inference times per patient needed by each of the methods.
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Figure 5: FROC curve per patient for the lesion detection step of our pre-hoc method,
labelled as DQN, where the information in brackets refers to the number of initialisations
per breast used during the inference process. MS-SL refers to the mean-shift structured
learning approach, and Cascade denotes the multi-scale cascade method based on deep
learning features.

The diagnosis of breast volumes, based on the classification of the de-
tected regions, achieves an AUC of 0.85, if all volumes in the test dataset are
considered.

4.2.5. Experimental Results for the Post-hoc System

We evaluate the performance of our post-hoc diagnosis against three
state-of-the-art classifiers. The first baseline is the 3D DenseNet (Huang
et al., 2017) that has been optimized to solve the breast screening problem
(as explained in Sec. 4.2.2). The second baseline is the same 3D DenseNet
fine-tuned using a multiple instance learning (MIL) set-up (Zhu et al., 2017),
which holds the state-of-the-art for the breast screening problem from mam-
mography. Finally, we compare against a 3D DenseNet trained from scratch
using multi-task learning (Xue et al., 2018), such that the model is jointly
trained to solve all the tasks defined in Sec. 3.3.1. See Table 2 for the AUC
diagnosis results.

Our 1-class saliency detector specially designed to detect malignant
lesions in positively classified volumes is compared against the following
baselines: CAM (Zhou et al., 2016), and Grad-CAM and Guided Grad-
CAM (Selvaraju et al., 2017). Figure 6 shows the FROC curves for our
proposed methods and baselines in each of the two scenarios (A) and (+).
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Baseline AUC
Meta-Training(Ours) 0.90
Multi-task (Xue et al., 2018) 0.85
MIL (Zhu et al., 2017) 0.85
DenseNet (Huang et al., 2017) 0.83

Table 2: Breast-wise AUC for diagnosis in post-hoc systems. Our proposed post-hoc
diagnosis method based on meta-training is labelled as Meta-Training, while the baseline
based on multiple instance learning is labelled as MIL and the one based on multi-task
learning is denoted as Multi-task.

Pre-Hoc Post-Hoc
Breast-wise 0.85 0.90
Patient-wise 0.81 0.91

Table 3: AUC comparing the diagnosis performance between pre-hoc and post-hoc mea-
sured breast-wise and patient-wise.

4.2.6. Experimental Results for the Comparison Between Pre- and Post-Hoc

Table 3 contains the AUC for the malignancy diagnosis measured breast-
wise and patient-wise for the pre-hoc and post-hoc approaches. Figure 7
shows the ROC curves used in the computation of the AUC in Table 3.
Figure 8 shows the FROC curves for malignant lesion detection of pre-hoc and
post-hoc ( (A) and (+) ) methods. Figures 9, 10, and 11 display examples of
breast diagnosis and lesion localizations obtained from the proposed pre-hoc
and post-hoc methods, where both methods correctly performed diagnosis
(Fig. 9), only the pre-hoc method correctly diagnosed the breast (Fig. 10),
and only the post-hoc method correctly diagnosed the breast (Fig. 11).

5. Discussion

The localization step in the pre-hoc method achieves similar accuracy to
the baseline methods. As shown in Figure 5, the TPR and FPR directly
depends on the number of initializations used by the reinforcement learning
algorithm. In addition, the performance of our localization step is very simi-
lar to the baseline based on a multi-scale cascade using exhaustive search with
deep features. However, multi-scale cascade (164s) and clustering+structure
learning (several hours) methods require large inference times compared to
our attention model (92s) as shown in Table 1.
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Figure 6: Patient-wise FROC curves for post-hoc malignant lesion detection, where our
method is denoted as 1-Class Saliency. Baselines are denoted as CAM (Zhou et al., 2016),
and Grad-CAM and Guided Grad-CAM (Selvaraju et al., 2017). For each method, we
present two scenarios: (A) all the volumes in the test set are considered to compute the
FROC, and (+) only positively classified volumes are considered.

The post-hoc diagnosis step improves over several baseline methods, as
shown in Table 2. These baseline methods are based on a DenseNet (Huang
et al., 2017), specifically optimised for the breast screening classification,
and on extensions derived from multiple instance learning (Zhu et al., 2017)
and multi-task learning (Xue et al., 2018). These results show that meta-
training the model to solve tasks with small training sets is an important step
to improve the learning of methods when only small datasets are available.
Baseline approaches (Huang et al., 2017; Xue et al., 2018) only show a limited
improvement over the DenseNet baseline.

The localization step in our post-hoc method benefits from our definition
of saliency, as shown in Figure. 6. In contrast, baseline methods show acti-
vations that do not correlate well with the target classification. In addition,
baseline methods, such as CAM (Zhou et al., 2016) and Grad-Cam (Selvaraju
et al., 2017), suffer from the low resolution of the activation feature maps,
despite the improvement achieved by Guided Grad-Cam (Selvaraju et al.,
2017). Measuring results only on positively classified volumes ( (+) curves in
Figure 6) discounts the mistakes made by the diagnosis step and provides an
evaluation that isolates the lesion detection ( (A) curves in Figure 6). Note
that there is no straightforward comparison between the localization steps
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Figure 7: ROC curves for malignancy diagnosis of pre-hoc and post-hoc full pipelines
measures breast and patient-wise.

in post-hoc methodologies (that only detects malignant lesions) and the lo-
calization step in pre-hoc methodologies (that detects benign and malignant
lesions). Such malignant lesion detection comparison only makes sense in
terms of the full pre-hoc and post-hoc pipelines, which is detailed below.

In terms of the full pipeline, we observe in Table 3 and Figure 7 that
the post-hoc system has a higher classification AUC than the pre-hoc for
breast screening from breast DCE-MRI. The difference between these two
methods is higher when measured patient-wise compared to breast-wise. It
seems reasonable to think that the reason behind such discrepancy is an
effect of the missed detections in pre-hoc. In difficult (small and low contrast
lesions) cases with missed detections, the confidence score of malignancy of a
breast is considered 0. While this effect is smaller when the AUC is measured
breast-wise (as there are 118 samples of breasts), it is larger when measured
patient-wise (59 samples of patients). Furthermore, the better results of
the post-hoc method suggest that the analysis of the whole image allows
it to find indications for malignancy that are located in other areas of the
image (Kostopoulos et al., 2017).

Regarding the localization of malignant lesions, the pre-hoc system achieves
better accuracy, compared with the post-hoc. This suggests that the strong
annotations used to train the pre-hoc method gives it an advantage for the
localisation of lesions, when compared with the weak annotation used to train
the post-hoc approach. This issue is exemplified in Figure 9 (Row 1), where
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Figure 8: Patient-wise FROC curve for malignant lesion detection of pre-hoc and post-hoc
full pipeline methods. For the post-hoc method, we present two scenarios the two scenarios
(A) and (+).

although both approaches present a correct diagnosis, the post-hoc method
yields a higher number of false positive malignant lesion detections. A simi-
lar behaviour can be seen in Figure 10 (Row 2), where the post-hoc produces
an incorrect diagnosis and additionally yields two false positive detections.
In addition, the detection step for the pre-hoc system is mainly designed to
achieve good performance when only a small training set is available. On the
contrary, the malignant lesion localization step in the post-hoc approach is
not particularly focused on being able to perform well from a small dataset.
This difference in design focus is likely to be influencing the detection results
too. Finally, it is worth noting that the FROC for the post-hoc approach
(Post-hoc (A) curve in Fig. 8) is affected by the diagnosis process. However,
if we remove the effect of the diagnosis step and consider the performance
of malignant lesion localization in positively classified volumes, we observe a
closer performance compared to the pre-hoc method, even though the post-
hoc system is trained with weak annotations.

6. Limitations and Future Work

The main limitation of our work comes from the small dataset available.
In addition to a larger test set, we aim to increase our dataset to include
patients where no lesions are found in order to better recreate the scenario
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(a) (b) (c)

(d) (e) (f)

Figure 9: Example of two correct diagnosis by both pre-hoc and post-hoc full pipeline
methods. Left column is the ground truth, middle column is the result of the pre-hoc
method and right column is the result of the post-hoc method. Red image frames indicate
malignant diagnosis, green frames indicate non-malignant diagnosis. Detections in red
indicates TP malignant detections, yellow detections indicate FP malignant detections,
detections in green indicate benign lesions. First row: pre-hoc and post-hoc correct
positive diagnosis with the malignant lesion detected. Second row: pre-hoc and post-
hoc correct negative diagnosis where the pre-hoc method correctly classified as negative a
detected benign lesion and the post-hoc method did not localize any malignant lesion

of a screening population. Ideally, this dataset will contain scanners from
different vendors too. Another limitation of this work involves the lack of
cross-validation experiments. This decision is justified to allow a fair com-
parison with other works (Maicas et al., 2017a,b, 2018a,b; McClymont et al.,
2014) on the same dataset.

Future work involves the improvement of the malignant lesion localiza-
tion in post-hoc methodologies by designing a new method specifically for
the small training set available. We believe that the Lesion localization step
in pre-hoc approaches could also be improved in terms of inference time and
accuracy. As noted in (Maicas et al., 2017b), improvements in running time
can be achieved by running the different initializations of the detection al-
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(a) (b) (c)

(d) (e) (f)

Figure 10: Example of two correct diagnosis by the pre-hoc system, but wrongly diagnosed
by the post-hoc method. Left column is the ground truth, middle column is the result of the
pre-hoc method and right column is the result of the post-hoc method. Red image frames
indicate malignant diagnosis, green frames indicate non-malignant diagnosis. Detections in
red indicate TP malignant detections, yellow detections indicate FP malignant detections,
detection in blue indicates a ROI detection correctly classified as negative (non-malignant).
First row: correct positive diagnosis by the pre-hoc method with the malignant lesion
correctly detected but incorrect non-malignant diagnosis by the post-hoc method. Second
row: correct negative diagnosis by the pre-hoc method, but incorrect positive diagnosis
by the post-hoc system – yielding the potential malignant regions in the rectangles shown
in yellow.

gorithm in parallel and by optimizing the resizing operation of the current
bounding volume. In addition, the use of a U-net (Ronneberger et al., 2015)
would allow the implementation of a faster segmentation map maintaining
the detection accuracy. Finally, it would be interesting to design a method
that could diagnose based on the combined analysis of MRI and mammog-
raphy.

7. Conclusion

We introduced and compared two different approaches for breast screen-
ing from breast DCE-MRI: pre-hoc and post-hoc methods. The pre-hoc
method localizes suspicious regions (benign and malignant lesions) using an
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(a) (b) (c)

(d) (e) (f)

Figure 11: Example of two incorrect diagnosis by the pre-hoc, but correctly diagnosed
by the post-hoc method. Left column is the ground truth, middle column is the result
of the pre-hoc method and right column is the result of the post-hoc method. Red im-
age frames indicate malignant diagnosis, green frames indicate non-malignant diagnosis.
Detections in red indicate TP malignant detections, yellow detections indicate FP malig-
nant detections, detection in green indicates a benign ROI detection. First Row: the
pre-hoc system incorrectly diagnoses as negative, while post-hoc system correctly diag-
noses as positive and yields the malignant lesion. Second row: the post-hoc method
correctly diagnoses as negative, but pre-hoc incorrectly diagnoses as positive due to the
wrong positive classification of a detected lesion

attention model based on deep reinforcement learning. Detected regions
were subsequently classified into malignant or non-malignant lesions using
a 3D DenseNet. The post-hoc method diagnoses a DCE-MRI breast vol-
ume using a classifier that, before being trained to solve the breast screening
task, has been meta-trained to solve several breast-related tasks where only
small training sets are available. Malignant regions are then localized with a
1-class saliency detector specifically designed for post-hoc systems that per-
form diagnosis. Results showed that the post-hoc method can achieve better
performance for malignancy diagnosis, whereas the pre-hoc method could
more precisely localize malignant lesions. However, this improvement of the
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pre-hoc detection method relies on the employment of strong annotations
during the training process. On the other hand, post-hoc methods only use
weak labels during the training phase and outperforms pre-hoc methods in
diagnosis, which is the main aim of a breast screening system. In conclu-
sion, we believe that future research should focus on the development and
improvement of post-hoc diagnosis methods.

We would like to thank Nvidia for the donation of a TitanXp that sup-
ported this work.
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Renz, D.M., Böttcher, J., Diekmann, F., Poellinger, A., Maurer, M.H., Pfeil,
A., Streitparth, F., Collettini, F., Bick, U., Hamm, B., et al., 2012. Detec-
tion and classification of contrast-enhancing masses by a fully automatic
computer-assisted diagnosis system for breast mri. Journal of Magnetic
Resonance Imaging 35, 1077–1088.

37

http://dx.doi.org/10.1002/jmri.24229
http://dx.doi.org/10.1002/jmri.24229
http://dx.doi.org/10.1002/jmri.24229
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