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(hrvoje.bogunovic@meduniwien.ac.at) were with the Christian Doppler Lab-
oratory for Ophthalmic Image Analysis (OPTIMA), Vienna Reading Center
(VRC), Department of Ophthalmology and Optometry, Medical University of
Vienna, 1200 Vienna, Austria.

Huazhu Fu was with Inception Institute of Artificial Intelligence, Abu
Dhabi, United Arab Emirates (hzfu@ieee.org)

João Barbossa Breda (joao.breda@med.up.pt) was with the Surgery and
Physiology Department, Ophthalmology Unit, Faculty of Medicine of the
University of Porto, Porto, Portugal, and Research Group Ophthalmology,
KU Leuven, Leuven, Belgium

Karel Van Keer (karel.vankeer@uzleuven.be) was with the Research Group
Ophthalmology, KU Leuven, Leuven, Belgium.

Apoorva Sikka (apoorva.sikka@iitrpr.ac.in), Sai Samarth R. Phaye and
Deepti R. Bathula were part of the NightOwl team and the Indian Institute
of Technology Ropar, Punjab, India.

Pengshuai Yin (pshuai.yin@gmail.com) and Guanghui Xu were part of the
Masker team and South China University of Technology, Guangzhou, China.

Andrés Yesid Diaz-Pinto (andiapin@i3b.upv.es) and Valery Naranjo were
part of the Cvblab team and Instituto de Investigación e Innovación en
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but preventable blindness in working age populations. Color
fundus photography (CFP) is the most cost-effective imaging
modality to screen for retinal disorders. However, its application
to glaucoma has been limited to the computation of a few
related biomarkers such as the vertical cup-to-disc ratio. Deep
learning approaches, although widely applied for medical image
analysis, have not been extensively used for glaucoma assessment
due to the limited size of the available data sets. Furthermore,
the lack of a standardize benchmark strategy makes difficult
to compare existing methods in a uniform way. In order to
overcome these issues we set up the Retinal Fundus Glaucoma
Challenge, REFUGE (https://refuge.grand-challenge.org), held in
conjunction with MICCAI 2018. The challenge consisted of two
primary tasks, namely optic disc/cup segmentation and glaucoma
classification. As part of REFUGE, we have publicly released a
data set of 1200 fundus images with ground truth segmentations
and clinical glaucoma labels, currently the largest existing one.
We have also built an evaluation framework to ease and ensure
fairness in the comparison of different models, encouraging the
development of novel techniques in the field. 12 teams qualified
and participated in the online challenge. This paper summarizes
their methods and analyzes their corresponding results. In
particular, we observed that two of the top-ranked teams outper-
formed two human experts in the glaucoma classification task.
Furthermore, the segmentation results were in general consistent
with the ground truth annotations, with complementary outcomes
that can be further exploited by ensembling the results.

Index Terms—retinal imaging; glaucoma; fundus photography;
grand challenge

I. INTRODUCTION

GLAUCOMA is a chronic neuro-degenerative condition
that is one of the leading causes of irreversible but pre-

ventable blindness in the world [1]. In 2013, 64.3 million peo-
ple aged 40-80 years were estimated to suffer from glaucoma,
while this number is expected to increase to 76 million by 2020
and 111.8 million by 2040 [1]. In its many variants, glaucoma
is characterized by the damage of the optic nerve head (ONH),
typically caused by a high intra-ocular pressure (IOP). IOP
is increased as a consequence of abnormal accumulation of
aqueous humor in the eye, induced by pathological defects
in the eye’s drainage system. When the anterior segment is
saturated with this fluid, the IOP progressively elevates, com-
pressing the vitreous to the retina. If this remains uncontrolled,
it can produce damage in the nerve fiber layer, the vasculature

https://refuge.grand-challenge.org
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and the ONH, leading to a progressive and irreversible vision 
loss that can ultimately result in blindness. As this process 
occurs asymptomatically, glaucoma is frequently referred as 
the ”silent thief of sight” [2]: patients are not aware of the 
progressing disease until the vision is irreversibly lost.

Life-long pharmacological treatments based on the regular 
administration of eye drops are usually prescribed to control 
the IOP and to temper further damage in the retina. Alterna-
tively, laser procedures and other surgeries can be performed to 
increase the drainage. In any case, early detection is essential 
to prevent vision loss [2]. Unfortunately, at least half of pa-
tients with glaucoma currently remain undiagnosed [3]. Being 
glaucoma a chronic condition, one of the major challenges is to 
be able to detect this large number of undiagnosed patients [3]. 
Generalized screening programs have not been employed be-
cause of the large amount of false positives these can generate. 
These misdiagnoses cannot be absorbed by current healthcare 
infrastructures and would have an unnecessary negative impact 
on the patient’s quality of life, until it would be recognized 
that no glaucomatous neuropathy existed [2].

Color fundus photography (CFP, Fig. 1) is currently the 
most economical, non-invasive imaging modality for inspect-
ing the retina [4], [5]. Its widespread availability makes it 
ideal for assessing several ophthalmic diseases such as age-
related macular degeneration (AMD) [6], diabetic retinopathy 
(DR) [7] and glaucoma [8]. Screening campaigns can be aided 
by the incorporation of computer-assisted tools for image-
based diagnosis. As these initiatives require to manually grade 
a large number of cases in a short period of time, automated 
tools can help clinians by providing them with quantitative 
and/or qualitative feedback (e.g. disease likelihood, segmen-
tations of relevant lesions and pathological structures, etc). 
These approaches have already been successfully applied for 
detecting DR, in a FDA-approved autonomous diagnostic 
system, a first of its kind [9]. However, the broad application of 
similar methods for glaucoma detection is still pending. This 
is partially due to the fact that the earlier signs of glaucoma 
are not so easily recognizable in CFP [10] (Fig. 2). In current 
best clinical practice, CFPs are complementary to other studies 
such as IOP measurements, automated perimetry and optical 
coherence tomography (OCT). This approach is not cost-
effective to be applied for large scale population screening for 
glaucoma [2]. Therefore, developing automated tools to better 
exploit the information in CFP is paramount to reduce this 
burden and ensure an effective detection of glaucoma suspects.

A significant research effort has been made to introduce au-
tomated tools for segmenting the optic disc (OD) and the optic 
cup (OC) in CFP automatically, or to identify glaucomatous 
cases based on alternative features [11]–[13]. Nevertheless, 
these approaches currently cannot be properly compared due 
to the lack of a unified e valuation f ramework t o validate 
them. Moreover, the absence of large scale public available 
data sets of labeled glaucomatous images has hampered the 
rapid deployment of deep learning techniques for glaucoma 
detection [14]. It has been recently shown that image anal-
ysis competitions in general can aid to identify challenging 
scenarios that need further development [15]. Recent grand 
challenges such as ROC [16], Kaggle [17] and IDRiD [18],

Input image
Optic disc/cup
segmentation

Glaucomatous

Non
Glaucomatous

Glaucoma
classification

Fig. 1. REFUGE challenge tasks: glaucoma classification and optic disc/cup
segmentation from color fundus photographs.

on the other hand, have shown to be useful to address both
inconveniences in DR [5], favoring the deployment of these
tools into the daily clinical practice [9]. Unfortunately, similar
initiatives have not been introduced for glaucoma detection
and/or assessment yet.

In an effort to overcome these limitations, we introduced
the Retinal Fundus Glaucoma Challenge (REFUGE), a com-
petition that was held as part of the Ophthalmic Medical
Image Analysis (OMIA) workshop at MICCAI 2018. The key
contributions of the challenge were: (i) the release of a large
database (approximately two times bigger than the largest
available so far) of 1200 CFP with reliable reference stan-
dard annotations for glaucoma identification, optic disc/cup
(OD/OC) segmentation and fovea localization; and (ii) the
constitution of a unified evaluation framework that enables
a standardized fair protocol to compare different algorithms.
To the best of our knowledge, REFUGE is the first initiative
to provide these key tools at such a large scale. REFUGE
participants were invited to use the data set to train and eval-
uate their algorithms for glaucoma classification and OD/OC
segmentation. Their results were quantitatively evaluated using
our uniform protocol, to ensure a fair comparison.

In this paper, we analyze the outcomes and the method-
ological contributions of REFUGE. We present and describe
the challenge, reporting the performance of the best algo-
rithms evaluated in the competition and identifying successful
common practices for solving the proposed tasks. The results
are contrasted with the outcomes of two glaucoma experts to
study their performance with respect to independent human
observers. Finally, we take advantage of all these empirical
evidence to discuss the clinical implications of the results and
to propose further improvements to this evaluation framework.
In line with the recommendations suggested in [19], REFUGE
data and evaluation remain open to encourage further develop-
ments and ensure a proper and fair comparison of those new
proposals.
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(a) Cupping in the optic nerve head (ONH) (b) Peripapillary hemorrhages (c) Retinal nerve fiber layer (RNFL) defects

Fig. 2. Pathological changes typical from glaucoma, as observed through fundus photography. (a) Neuroretinal rim thinning due to cupping in the optic
nerve head (ONH). White lines indicate the vertical diameter of the optic disc (green) and the optic cup (yellow). (b) Peripapillary hemorrhages, observed as
flame-shaped bleedings in the vicinity of the ONH. (c) Retinal nerve fiber layer defects are observed as subtle striations spanning from the optic disc border.

II. AUTOMATED GLAUCOMA ASSESSMENT:
STATE-OF-THE-ART AND CURRENT EVALUATION

PROTOCOLS

Early attempts for glaucoma classification and OD/OC seg-
mentation were mostly based on hand-crafted methods using a
combination of feature extraction techniques and supervised or
unsupervised machine learning classifiers [11]–[13]. However,
their accuracy was limited due to the application of manu-
ally designed features, which are unable to comprehensively
characterize the large variability of disease appearance. Deep
learning techniques, on the contrary, automatically learn these
characteristics by exploiting the implicit information of large
training sets of annotated images [20]. In this section we
briefly analyze the state-of-the-art techniques for glaucoma
classification and OD/OC segmentation and their main evalu-
ation issues. The interested reader could refer to [11]–[13] for
a comprehensive analysis of the previous non-deep learning
based approaches.

A. Glaucoma classification

Glaucoma classification consists in categorizing an input
CFP into glaucomatous or non-glaucomatous, based on its
visual characteristics. Table I summarizes the most recent
methods introduced for this task. In general, most of them
are based on adaptations of standard deep supervised learning
techniques that are customized to deal with small training sets
(Section II-C). In [21], [22], [30], authors proposed to use
shallow architectures with a limited number of layers. This
is useful to prevent overfitting but limits the ability of the
networks to learn rare, specific features. Alternatively, other
studies [23], [25], [27] used transfer learning methods, based
on deeper architectures but pre-trained on non-medical data.
In [25], authors fine-tuned a network initialized with weights
learned from ImageNet [32] to detect glaucomatous optic
neuropathy. Similarly, transfer learning was shown in [31]
to outperform networks trained from scratch for glaucoma
detection. Both studies applied a massive image data set
with more than 14.000 images to fine tune these networks.
Other studies such as [23], [27] used deep learning features
extracted from the last fully connected layers of pre-trained
networks. The classification task was then performed using
linear classifiers trained with these features [23], [27]. This
allows to use smaller data sets, although at the cost of lower
performance.

Another widely used approach is to restrict the area of
analysis to the ONH. This regions is the one that is mostly
affected by glaucoma, and focusing only there grant a better
exploitation of model parameters. This was done by most of
the methods in Table I, and resulted in better performance
than learning from full size images. However, such a strong
restriction in the networks’ field of view hampers their ability
to learn alternative features from other regions and therefore
their utility for biomarker discovery [21].

B. Optic disc/cup segmentation

Segmenting the OD and the OC from CFPs is a challenging
but relevant task that helps to assess glaucomatous damage to
the ONH [11]. Automated methods have to be robust against
complex pathological changes such as peripapillary atrophies
(PPA) or hemorrhages [12], [13] (Fig. 2 (b)). On the other
hand, the accurate delineation of the OC is specially difficult
due to the high vessel density in the area and the lack of
depth information in CFP [43]. Alternative features such as
vessels bendings [44] or intensity changes [45] have been
studied in the past to approximate the ONH depth. Table II
summarizes current deep learning methods for simultaneous
OD/OC segmentation.

Most of existing methods use a surrogate segmenta-
tion/detection approach to first localize the ONH area and
them crop the images around it [33]–[35], [37], [38]. This
prevents false positive detections in regions with e.g. severe
illumination artifacts and grants a better exploitation of model
parameters, as they are only dedicated to characterize the
local appeareance of the OD/OC and not to differentiate these
structures from other fundus regions. Alternatively, a two-stage
approach was followed in [39], using a first neural network to
retrieve a coarse segmentation and a second one to refine the
results.

Different neural network architectures have been proposed
for OD/OC segmentation. In [33], a classification network
similar to LeNet [46] was applied at a patch level to classify
its central pixel as belonging to the OD, the OC or the back-
ground. Using patches as training samples artificially increases
the available training data, although at the cost of loosing
spatial information. Alternatively, Zilly et al. proposed to
overcome the data limitation issue by training a convolutional
neural network using an entropy sampling approach instead
of gradient descent. Most of the recent methods [35]–[39],
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TABLE I
OVERVIEW OF EXISTING DEEP LEARNING BASED METHODS FOR GLAUCOMA CLASSIFICATION FROM COLOR FUNDUS PHOTOGRAPHS, SORTED BY THEIR

YEAR OF PUBLICATION. n INDICATES THE NUMBER OF IMAGES USED FOR TRAINING/TEST. DIFFERENT TRAINING/TEST DATA COMBINATIONS ARE
SEPARATED WITH BARS (”/”). AUC: AREA UNDER THE ROC CURVE. SE: SENSITIVITY, TRUE POSITIVE RATE OR RECALL. SP: SPECIFICITY OR TRUE

NEGATIVE RATIO. PR: PRECISION OR POSITIVE PREDICTED VALUE). ACC: ACCURACY.

Reference Input Architecture Methodology Data set Eval. metricsTraining Test
Chen et al.
(2015) [21] ONH area Custom (5 CONV, 2 FC) Training from scratch with data

augmentation
Sample (n =99) from

ORIGA / ORIGA ORIGA / Private AUC

Chen et al.
(2015) [22] ONH area Custom (ALADDIN) Training from scratch with data

augmentation
Sample (n =99) from

ORIGA / ORIGA ORIGA / Private AUC, Se, Sp

Orlando et al.
(2017) [23]

Cropped
FOV VGG16, Overfeat Transferred features and logistic

regression
DRISHTI-GS
(training set) DRISHTI-GS (test set) AUC

Cerentinia et
al. (2018) [24] ONH area GoogLeNet Transfer learning with data

augmentation
HRF, RIM-ONE v1, v2 and v3

(90% training, 10% test) Acc

Christopher et
al. (2018) [25] ONH area VGG16, Inception,

ResNet50
Training from scratch / Transfer
learning, with data augmentation Private (n =14.822) (10 fold cross validation) AUC, Se, Sp

Fu et al.
(2018) [26]

Full
image Custom (DENet) Training from scratch with data

augmentation Private (n = 1676 and 5783) AUC, Se, Sp,
Balanced Acc

Li et al.
(2018) [27] ONH area AlexNet, VGG16-19,

GoogLeNet, ResNet50-152 Transferred features and SVM ORIGA (10 fold cross validation) AUC

Li et al.
(2018) [8]

Full
image Inception-v3 Training from scratch with data

augmentation Private (n =31.745) Private (n =8000) AUC, Acc, Se,
Sp

Liu et al.
(2018) [28] ONH area ResNet50 Transfer learning with data

augmentation
Sample from private +
RIM-ONE (n =3014)

Sample from private +
RIM-ONE (n =754) / HRF AUC, Se, Sp

Pal et al.
(2018) [29] ONH area Custom (G-EyeNet) Training from scratch with data

augmentation
HRF + RIM-one v3 +

DRISHTI-GS (n = 400) DRIONS-DB AUC

Raghavendra et
al. (2018) [30]

Full
image Custom (4 CONV, 1 FC) Training from scratch Private (n = 1003) Private (n = 423) Acc, Se, Sp, Pr

Gómez-
Valverde et al.

(2019) [31]

Croppped
FOV

VGG19, ResNet,
GoogLeNet

Training from scratch / Transfer
learning, with data augmentation

RIM-ONE (v1, v2, v3) +
DRISHTI-GS + Private

(n = 1560)

RIM-ONE (v1, v2, v3) +
DRISHTI-GS + Private

(n = 579)
AUC, Se, Sp

TABLE II
OVERVIEW OF EXISTING DEEP LEARNING BASED METHODS FOR OPTIC DISC/CUP SEGMENTATION FROM COLOR FUNDUS PHOTOGRAPHS. DIFFERENT

TRAINING/TEST DATA COMBINATIONS ARE SEPARATED WITH BARS (”/”). ONH: OPTIC NERVE HEAD. FOV: FIELD OF VIEW. IOU: INTERSECTION OVER
UNION OR JACCARD INDEX. MAE: MEAN ABSOLUTE ERROR OF THE VERTICAL CUP-TO-DISC RATIO. SE: SENSITIVITY, TRUE POSITIVE RATE OR RECALL.

SP: SPECIFICITY OR TRUE NEGATIVE RATIO. ACC: ACCURACY.

Reference Input Architecture Methodology Data set Eval. metricsTraining Test

Lim et al.,
2015 [33]

ONH
area Patch-based LeNet

Vessel segmentation and inpainting,
contrast enhancement on green and red
channels, vessel bending enhancement

MESSIDOR / Private
(cross-validation) IoU, MAE

Zilly et al.,
2015 [34]

ONH
area Custom network Convolutional filters iteratively learned

using entropy sampling
DRISHTI-GS

(training) DRISHTI-GS (test) Dice, IoU

Sevastopolsky
2017 [35]

ONH
area Modified U-Net Training from scratch on contrast-enhanced

images RIM-ONE v3 DRIONS-DB, RIM-ONE
v3, DRISHTI-GS Dice, IoU

Al-Bander et al.,
2018 [36]

Cropped
FOV U-shaped Dense-Net Training from scratch ORIGA (70%)

ORIGA (30%),
DRIONS-DB,

DRISHTI-GS, ONHSD
and RIM-ONE

Dice, IoU,
Acc, Se, Sp

Edupuganti et
al., 2018 [37]

Cropped
FOV U-shaped VGG16 Fine tunning (encoder pre-trained on

ImageNet) and data augmentation
DRISHTI-GS

(training) DRISHTI-GS (test) IoU, Dice

Fu et al., 2018
[38]

ONH
area

Multi-scale input
U-shaped network

Training from scratch on transformed
images in polar coordinates ORIGA (50%) ORIGA (50%)

IoU,
Balanced

Acc, Se, Sp,
MAE

Sevastopolsky et
al., 2018 [39]

Full
image

U-Net + Residual
U-Net

Two stage networks (pre-segmentation and
refinement) trained from scratch Not specified DRIONS-DB, RIM-ONE

v3, DRISHTI-GS, Private Dice, IoU

Sun et al.,
2018 [40]

Full
image

ResNet [41] with Faster
R-CNN [42] fully
connected layers

Training from scratch with data
augmentation for localization, ellipse fitting ORIGA ORIGA and SCES

(Private) IoU, MAE

however, are based on modifications to the original U-Net
architecture [47]. This is due to the fact that this network
can achieve good results even when trained using a relatively
small amount of images. Architecture changes that heavily
increase the capacity of the networks such as those introduced
in [37] usually demand the application of transfer learning
in the encoding path. In addition, heavy data augmentation
through different combination of image transformations has
also been explored [38], [40].

C. Evaluation protocols

Large discrepancies in the evaluation protocols can be
observed in Tables I and II, regardless of the target task. These
differences are mostly related with two key aspects: (i) the data
used for training/evaluation, and (ii) the evaluation metrics.

1) Datasets: Table III summarizes the public available
data sets of CFPs for glaucoma classification and/or OD/OC
segmentation used by the literature. The REFUGE database
(Section III-A) is included for comparison purposes.

In general, we observed that a lack of pre-defined partitions
into training and test sets has induced a chaotic practical
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TABLE III
COMPARISON OF THE REFUGE CHALLENGE DATA SET WITH OTHER PUBLICLY AVAILABLE DATABASES OF COLOR FUNDUS IMAGES. QUESTION MARKS

INDICATE MISSING INFORMATION, AND N/A STANDS FOR ”NOT APPLICABLE”.

Dataset Num. of images Ground truth labels Different
cameras

Training &
test split

Diagnosis
from

Evaluation
frameworkGlaucoma Non

glaucoma Total Glaucoma
classification

Optic
disc/cup

Fovea lo-
calization

ARIA [48] 0 143 143 No Yes/No Yes No No ? No
DRIONS-DB [49] - - 110 No Yes/No No ? No N/A No

DRISHTI-GS [50], [51] 70 31 101 Yes Yes/Yes No No Yes Image No
DR HAGIS [52] 10 29 39 Yes No/No No Yes No Clinical No

IDRiD [18] 0 516 516 No Yes/No Yes No Yes ? Yes
HRF [53] 15 30 45 Yes No/No No No No Clinical No

LES-AV [54] 11 11 22 Yes No/No No No No Clinical No
ONHSD [55] - - 99 No Yes/No No No No N/A No
ORIGA [56] 168 482 650 Yes Yes/Yes No ? No ? No

RIM-ONE [57] v1 40 118 158 Yes Yes/No No No No Clinical No
RIM-ONE [57] v2 200 255 455 Yes Yes/No No No No Clinical No
RIM-ONE [57] v3 74 85 169 Yes Yes/No No No No Clinical No

RIGA [58] - - 750 No Yes/Yes No Yes No ? No
REFUGE 120 1080 1200 Yes Yes/Yes Yes Yes Yes Clinical Yes

application of the existing data. As discussed in [19], this
affect the feasibility of directly comparing the performance
of existing methods, difficulting to conclude which model
characteristics are more appropriate to solve each task. To
the best of our knowledge, DRISHTI-GS1 [50], [51] is the
only existing database for glaucoma assessment that provides
a clear training/test split.

Another important aspect is related with the reliability of
the assigned diagnostic labels. Some public data sets such
as DRISHTI-GS provide glaucoma labels that were assigned
based only on image characteristics. This has been also
observed in private data sets such as those used in [25] and
[8], which were built using images from Internet that were
manually graded based on their visual appeareance, without
additional clinical information. Surprisingly, no information
about the source of the diagnostic labels is provided in most
of existing databases (see Table III). Using images with
labels that were not assigned using retrospective analysis of
clinical records can be problematic as it might bias automated
methods to reproduce wrong labelling practices. On the con-
trary, clinical labels can aid algorithms to learn and discover
other supplemental manifestations of the disease that are still
unknown or that are too difficult to distinguish with the naked
eye.

The amount of images and their diversity is also an im-
portant aspect to consider. In particular, existing databases
rarely include images obtained from different acquisitions
devices, ethnicities or presenting challenging glaucoma related
scenarios. Therefore, the learned models might exhibit a weak
generalization ability. To partially bypass this issue, some au-
thors have proposed to train their methods using combinations
of different data sets [24], [29].

Finally, it is important to highlight the lack of a large public
data set providing both OD/OC segmentations and clinical
diagnostics simultaneously. ONHSD2 [55] and DRIONS-DB3

[49] only include segmentations of the OD, and no glaucoma

1http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php
2http://www.aldiri.info/Image%20Datasets/ONHSD.aspx
3http://www.ia.uned.es/ ejcarmona/DRIONS-DB.html

labels are given. ARIA4 [48] provides OD segmentations and
incorporates vessel segmentations and annotations of the fovea
center. However, the images correspond to normal subjects
and patients with DR and AMD, and no segmentations of
the OC are included. DR HAGIS5 [52], HRF6 [53] and
LES-AV7 [54], on the other hand, include reliable diagnostic
labels and vessel segmentations, but no labels for the OD/OC.
Moreover, their size is relatively small (39, 45 and 22 images,
respectively). RIGA8 [58] is a recent data set that contains
750 fundus images with OD/OC segmentations but without
glaucoma labels. The three releases of RIM-ONE (v1, v2
and v3) [57] provide image-level glaucoma labels and OD
segmentations. RIM-ONE v1 and v2 include CFPs cropped
around the ONH. Furthermore, RIM-ONE v1 incorporate OD
annotations by five different experts and image level labels
for control subjects, ocular hypertensive patients and subjects
with early, moderate and deep glaucoma. RIM-ONE v2 and
v3, on the contrary, only include OD segmentations by two
experts, and the diagnostic labels are classified into normal
and glaucoma suspect cases. Moreover, RIM-ONE v3 do not
include typical CFPs but stereo images. To the best of our
knowledge, only DRISHTI-GS and ORIGA [56] include both
glaucoma classification labels and OD/OC segmentations. The
diagnostic labels in DRISHTI-GS, however, were assigned
solely based on the images [51]. ORIGA, on the other hand,
is not publicly available anymore.

2) Metrics: Most of the literature in glaucoma classification
uses receiver-operating characteristic (ROC) curves [59] for
evaluation, including the area under the curve (AUC) as a
summary value [8], [21]–[23], [25], [27]–[29], [31], [38].
Sensitivity and specificity [22], [25], [27], [28], [31], [38] are
also used in different studies to complement the AUC when
targetting binary classification outcomes. Accuracy was re-
ported in [24], [30] as another evaluation metric, although this

4https://eyecharity.weebly.com/aria online.html
5https://personalpages.manchester.ac.uk/staff/niall.p.mcloughlin/
6https://www5.cs.fau.de/research/data/fundus-images/
7https://ignaciorlando.github.io/data/LES-AV.zip
8https://deepblue.lib.umich.edu/data/concern/data sets/3b591905z

http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php
http://www.aldiri.info/Image%20Datasets/ONHSD.aspx
https://eyecharity.weebly.com/aria_online.html
https://personalpages.manchester.ac.uk/staff/niall.p.mcloughlin/
https://www5.cs.fau.de/research/data/fundus-images/
https://ignaciorlando.github.io/data/LES-AV.zip
https://deepblue.lib.umich.edu/data/concern/data_sets/3b591905z
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(b) Normal case(a) Myopic case

(c) Megalopapilae (d) Glaucomatous case

Fig. 3. Representative examples of color fundus photographs from the
REFUGE data set. Non-glaucomatous (green) and glaucomatous (yellow)
groups. (a) Myopic case with enlarged optic cup. (b) Healthy subject. (c)
Patient with megalopapilae. (d, yellow) Glaucomatous case with cupping.

metric might be biased if the proportion of non-glaucomatous
images is significantly higher than the glaucomatous ones [60].
To overcome this limitation, Fu et al. [38] used a balanced
accuracy, consisting on the average between sensitivity and
specificity.

Current literature in OD/OC segmentation make use of
classical overlap metrics such as the intersection-over-union
(IoU, also known as Jaccard index) [33]–[40] and the Dice
index [34]–[37], [39], [40]. Although different by definition,
these two metrics can be computed from each other, as they
are defined as ratios of overlap between the predicted area
and the manual reference annotation [61]. Pixelwise sensitivity
and specificity values have been also reported in [36], [38] to
illustrate the behavior in terms of false negatives and false
positives, respectively. Finally, the accuracy for segmenting
both the OD and the OC has been simultaneously assessed by
means of the mean absolute error (MAE) of the estimated vs.
manually graded CDR values [33], [38], [40].

All these metrics are well-known and were previously used
in several domains. However, it is still necessary to come up
with a uniform evaluation criteria to assist method comparison
and prevent the usage of potentially biased metrics.

III. THE REFUGE CHALLENGE

A. REFUGE database

The REFUGE challenge database consists of 1200 retinal
CFPs stored in JPEG format, with 8 bits per color channel,
acquired by ophthalmologists or technicians from patients
sitting upright and using one of two devices: a Zeiss Visucam
500 fundus camera with a resolution of 2124 × 2056 pixels

(400 images) and a Cannon CR-2 device with a resolution of
1634 × 1634 pixels (800 images). The images are centered
at the posterior pole, with both the macula and the optic
disc visible, to allow the assessment of the ONH and poten-
tial retinal nerve fiber layer (RNFL) defects. These pictures
correspond to Chinese patients (52% and 55% female in
validation and test set, respectively) visiting eye clinics, and
were retrieved retrospectively from multiple sources, including
several hospitals and clinical studies. Only high-quality images
were selected to ensure a proper labelling, and any personal
and/or device information was removed for anonymization.

Each image in the REFUGE data set includes a reference
gold standard glaucomatous/non-glaucomatous label based on
its associated clinical record. These diagnostics were restro-
spectively assigned based on multimodal clinical information,
meaning that the decisions were made not only based on the
CFP but also with complementary studies such as OCT and
visual fields. This ensures the reliability of the classification
labels. 10% of the dataset (120 samples) corresponds to glau-
comatous subjects, including Primary Open Angle Glaucoma
(POAG) and Normal Tension Glaucoma (NTG). This propor-
tion of diseased cases deviates from the global prevalence
of glaucoma (≈ 4 % for populations aged 40-80 years [1]).
However, reducing the size of the glaucoma set would have
negatively affected the ability of the classification approaches
to learn features from the diseased cases. Furthermore, in order
to model a more representative clinical scenario, the non-
glaucomatous set was designed to include not only healthy
cases but also patients with other conditions such as myopia
or megalopapilae (Fig. 3).

Manual annotations of the OD and the OC were provided by
seven independent glaucoma specialists from the Zhongshan
Ophthalmic Center (Sun Yat-sen University, China), with 5-10
years of experience in the field. Each of the readers manually
drew a tilted ellipse covering the OD and the OC, separately,
by using a free annotation tool with capabilities for image
review, zoom and ellipse fitting. The final segmentation was
created by merging all the annotations using majority voting.
The result was a single binary mask per image and region that
was further assessed by two experts to ensure its reliability.

Manual pixel-wise annotations of the fovea were also as-
signed to the images to complement the data set. The fovea
position was fixed by 7 independent glaucoma specialists, and
a reference standard was created taking the average of these
annotations.

The entire set was divided into three fixed subsets: training,
validation and test, each of them stratified in such a way that
they contain an equal proportion of glaucomatous (10%) and
non-glaucomatous (90%) cases. The training set contains all
the images acquired with the Zeiss Visucam 500 camera, while
the validation and test set includes the lower resolution images
captured with the Cannon CR-2 device.

B. Challenge Setup, Evaluation Metrics and Ranking Proce-
dure

REFUGE was held in conjunction with the 5th Ophthalmic
Medical Image Analysis (OMIA) workshop, during MIC-
CAI 2018 (Granada, Spain). The challenge proposal was
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accepted after assessing the compliance to good practices 
proposed in [62], [63]. Thereafter, REFUGE was announced 
in several platforms to maximize its visibility, including the 
MICCAI website, its associated mailing lists and on the Grand 
Challenges in Biomedical Image Analysis website 9. The 
challenge was officially l aunched i n J une 2 018 b y releasing 
the training set (images and labels) on a dedicated web-
site (https://refuge.grand-challenge.org/Home/). The registered 
teams were allowed to use the training set to learn and adjust 
their proposed algorithms for glaucoma classification, OD/OC 
segmentation and, optionally, for fovea detection. We will not 
focus on this last task as it was not mandatory for participating 
on the challenge, and therefore no team submitted results for 
it on the test set. The registered teams were allowed to use any 
other public data set for developing their methods, provided 
that they were easily accessible by everyone.

The validation set (only the images, without labels) was 
released on July 2018, and the participants were invited to 
submit their results for an off-line validation. Each participant 
could receive a maximum of five evaluations on the validation 
set. Each task was evaluated separately according to a uniform 
criteria. In particular:

1) Glaucoma classification:: T he t eams s ubmitted a  table 
with a glaucoma likelihood per each image on the set. A 
receiver operating characteristics (ROC) curve was created 
based on the gold standard glaucoma diagnostic, and the area 
under the curve (AUC) was used as a ranking score for the 
classification t ask, S class ( the h igher, t he better). Additionally,
a reference sensitivity Se = TP

TP+FN value at a specificity
Sp = TN

TN+FP of 0.85 was also reported, with TP, FP, TN and
FN standing for true/false positives and true/false negatives,
respectively. This value was not taken into account for the
ranking, but allowed each team to assess the overall perfor-
mance of the classification algorithm in a setting when a low
number of false positives is tolerated.

2) OD/OC segmentation:: The teams submitted one seg-
mentation file for each image. These files were encoded in
grayscale BMP format where 0 corresponded to the optic
cup, 128 to the optic disc and 255 elsewhere. The results
were compared with the gold standard segmentation using
the Dice index (DSC) for OD/OC separately, and the mean
absolute error (MAE) of the vertical cup-to-disc ratio (vCDR)
estimations. In particular, DSC define the overlap between two
binary regions:

DSCk = 2
|Yk ∩ Ŷk|
|Yk ∪ Ŷk|

(1)

where Yk and Ŷk are the ground truth and predicted segmen-
tations of the region of interest k, respectively (with k = OD
or OC). On the other hand, MAE is defined as:

MAE = abs(vCDR(ŶOC, ŶOD)− vCDR(YOC, YOD)) (2)

where vCDR(OD,OC) = d(OC)
d(OD) is a function that estimates the

vCDR based on the vertical diameter d of the segmentations
of the OD and the OC, respectively. Each team was ranked
using the average value of each of these metrics separately,

9grand-challenge.org

resulting in three rank values RDSCOD
segm , RDSCOC

segm and RMAE
segm , and

an overall segmentation score Ssegm was assigned to each team
based on the following weighted average:

Ssegm = 0.35×RDSCOD
segm + 0.25×RDSCOC

segm + 0.4×RMAE
segm . (3)

Notice that in this case, a lower Ssegm value is better than a
higher one. Since the MAE of the vCDR is calculated based
on the segmentation of OC and OD, we set a larger weight for
vCDR than to each individual segmentation term. Moreover,
it is standard in the literature (Section II) to first segment the
OD region and then extract the OC from the cropped OD area.
Hence, we assigned a larger weight to the OD segmentation
results than to the OC.

An overall validation (off-line) score was assigned to each
method based on:

Sval = 0.4×Rclass + 0.6×Rsegm (4)

where Rclass and Rsegm are the team rank positions based on
the classification and segmentation scores Sclass and Ssegm,
respectively. A larger weight was assigned to the ranking for
the segmentation task as the vCDR, derived from OD/OC
segmentation, can be used as a primary score for glaucoma
classification. A validation leaderboard was created by setting
a rank position Rval for each team, based on Sval. Only
those teams that submitted reports describing their proposed
approaches were taken into account for this leaderboard. These
reports can be easily accessed from the challenge website. 10

The first 12 teams according to Sval were invited to attend to
the on-site challenge, that was held in person at MICCAI. The
test set (only the images) was released during the workshop,
and the 12 teams had to submit their results before a time
deadline (3 hours). The last submission of each team was
taken into account for evaluation. Both an on-site rank and a
final rank were assigned to each team. The on-site rank Rtest
was created using the scoring described in Eq. 4, while the
final rank Rfinal was based on a score Sfinal calculated as the
weighted average of the off-line and on-site rank positions:

Sfinal = 0.3×Rval + 0.7×Rtest. (5)

Notice that a higher weight was assigned to the results on the
test set. In this paper we only focus on the results obtained
on the test set, during the on-site challenge.

The evaluation was performed using a Python 3.6 open-
source framework that was specially developed for the chal-
lenge and is publicly available. 11

IV. RESULTS

This section presents the results on the REFUGE test set
of the 12 teams that participated in the on-site challenge.
The official final rankings according to the validation and test
performances can be accessed on the REFUGE website. We
also provide the results obtained by ensembling the top-ranked
teams on each task to analyze their complementarity.

https://refuge.grand-challenge.org/Home/
grand-challenge.org
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TABLE IV
SUMMARY OF THE GLAUCOMA CLASSIFICATION METHODS EVALUATED IN THE ON-SITE CHALLENGE, IN ALPHABETICAL ORDER USING THE TEAMS

NAMES.

Team Inputs Architectures Training set Methodology Post-
processing

AIML Full image /
ONH area

ResNet-50, -101,
-152 [41], 38 [64] REFUGE training set

Ensemble of glaucoma likelihoods from multiple
networks pre-trained on ImageNet and fine-tuned on

REFUGE training set

Ensemble by
averaging

BUCT ONH area,
grayscale Xception [65] REFUGE training set Training from scratch on grayscale images None

CUHKMED OD/OC
segmentation None None vCDR values computed from ellipses fitted to

automated OD/OC segmentations None

Cvblab Full image

VGG19 [66], Inception
V3 [67],

ResNet-50 [41],
Xception [65]

REFUGE training set,
DRISHTI-GS, HRF,

ORIGA and RIM-ONE r3

Ensemble of glaucoma likelihoods from multiple
networks pre-trained on ImageNet and fine-tuned,
classes in REFUGE training set balanced using

SMOTE [68]

Ensemble by
averaging

Mammoth ONH area with
CLAHE

ResNet-18 [41] and
CatGAN [69]

Sample from REFUGE
training set

Ensemble of ResNet models pre-trained on ImageNet
and fine-tuned using REFUGE data and synthetic

images generated with CatGAN
None

Masker Full image ResNet [41] REFUGE training set and
ORIGA

Linear combination of vCDR and predictions of
multiple ResNet networks

Ensemble
with vCDR

NightOwl
ONH area

with/without
exp. transform

Custom REFUGE training set
(10-fold cross-validation)

Ensemble of classification networks trained to predict
glaucoma from features produced by the encoders of

the segmentation networks

Ensemble by
maximum

NKSG Full image SENet [70] REFUGE training set
(5-fold cross-validation)

SE-Net pretrained on images from Kaggle DR
challenge [17] and fine-tuned on REFUGE data, best
model from cross-validation taken for final prediction

None

SDSAIRC
Crop with ONH

in upper-left
corner

ResNet-50 [41] REFUGE training set
Logistic regression classifier trained with vCDR values

from OD/OC segmentation and output of ResNet-50
model fine-tuned from ImageNet

None

SmileDeepDR ONH area DeepLabv3+ [71] REFUGE training set Adaptation of a segmentation network to predict a
glaucoma likelihood None

VRT
Full image with
custom mask for

attention
Custom [72]

Kaggle [17],
MESSIDOR [73] and

IDRiD [18]

Attention guided model trained on public data sets of
DR images, weakly labelled using pre-trained models

for glaucoma classification, RNFL defects detection and
segmentation of ONH pathological changes

None

WinterFell ONH area ResNet-101, -152 [41],
DensNet-169, -201 [74] ORIGA

Ensemble of glaucoma likelihoods from multiple
networks pre-trained on Image-Net and fine-tuned on

ORIGA

Ensemble by
mode, max.

and min.

TABLE V
CLASSIFICATION RESULTS OF THE PARTICIPATING TEAMS IN THE

REFUGE TEST SET. THE LAST ROWS CORRESPOND TO THE RESULTS
OBTAINED BY THE AVERAGE ENSEMBLE OF THE THREE TOP-RANKED

TEAMS AND THE GROUND TRUTH VERTICAL CUP-TO-DISC RATIO (VCDR).

Rank Team AUC Reference
sensitivity

1 VRT 0.9885 0.9752
2 SDSAIRC 0.9817 0.9760
3 CUHKMED 0.9644 0.9500
4 NKSG 0.9587 0.8917
5 Mammoth 0.9555 0.8918
6 Masker 0.9524 0.8500
7 SMILEDeepDR 0.9508 0.8750
8 BUCT 0.9348 0.8500
9 WinterFell 0.9327 0.9250

10 NightOwl 0.9101 0.9000
11 Cvblab 0.8806 0.7318
12 AIML 0.8458 0.7250

Ensemble of top-3 teams 0.9901 0.9769
Ground truth vCDR 0.9471 0.8750

A. Glaucoma classification

The participating methods for glaucoma classification are
summarized in Table IV. Further details about each method are
provided in the appendix. The evaluation of the classification
task, in terms of AUC and the reference sensitivity at 85%
specificity, is presented in Table V. Two additional approaches
are also included: one corresponds to the ensemble of the

10https://refuge.grand-challenge.org/Results-Onsite TestSet/
11https://github.com/ignaciorlando/refuge-evaluation
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VRT - AUC=0.9885
SDSAIRC - AUC=0.9817
CUHKMED - AUC=0.9644
Ensemble - AUC=0.9901
vCDR from ground truth - AUC=0.9471
Expert 1 (Se=0.85, Sp=0.9111)
Expert 2 (Se=0.85, Sp=0.9139)

Fig. 4. ROC curves and AUC values corresponding to the three top-ranked
glaucoma classification methods (solid lines), their average ensemble (purple
dotted line) and the vertical cup-to-disc ratio (vCDR) (green dotted line).
Crosses indicate the operating points of two glaucoma experts.

three top-ranked methods, and another one is based on using
the ground truth vCDR values as a glaucoma likelihood for
classification. The ensemble was built by averaging the scores
provided by the teams VRT, SDSAIRC and CUHKMED. To
avoid biasing the ensemble towards a single model, each team
likelihood was normalized using the maximum value of each

https://refuge.grand-challenge.org/Results-Onsite_TestSet/
https://github.com/ignaciorlando/refuge-evaluation
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team. Fig. 4 presents the ROC curves of the three top-ranked 
teams, their ensemble and the ground truth vCDR values. The 
curves for each participating method are available for down-
loading in the challenge website. A series of Matt-Whitney 
U hypothesis tests [75] with α = 0.05 were performed 
using [76] to study the statistical significance of the differences 
in the AUC values of the different teams. VRT reported the 
best classification p erformance, a chieving s ignificantly better 
results that the ground truth vCDR (p = 0.006). Compared 
with SDSAIRC and CUHKMED–the second and third teams, 
respectively–the differences were only significant w ith re-
spect to CUHKMED (CUHKMED: p = 0.007, SDSAIRC: 
p = 0.187). Both SDAIRC and CUHKMED achieved also 
higher AUC values than the ground truth vCDR, although 
the differences were not statistically significant ( p >  0.05). 
By ensembling the outcomes of the three models, the AUC 
was marginally improved, with no significant differences with 
respect to VRT results (p = 0.576).

In order to understand the relevance of the classification 
results, a comparison with glaucoma experts was performed. 
To this end, two independent glaucoma expert ophtalmologists 
visually graded the test set images and assigned a binary 
glaucomatous/non-glaucomatous label to each of them. Notice 
that no clinical information but only the fundus image was 
used in this case to perform the annotation. This criteria 
was followed in order to ensure the same inputs to both 
the experts and the networks. The sensitivity and specificity 
values obtained by each human reader are included as expert 
operating points in Fig. 4. The two points are close to each 
other due to a high level of agreement between the two experts 
(96.25% of the cases). The experts graded with the same 
sensitivity (85%) and slightly different specificity (91.11% and 
91.39%) and accuracy (90.50% and 90.75%). If only the cases 
with their consensus are considered, then their joint accuracy 
increases to 92.21%, while their joint sensitivity remains the 
same (85%) and the specificity r eaches 93.04%.

Fig. 5 illustrates a sample of true negatives, false positives, 
false negatives and true positive glaucoma detections from the 
REFUGE test set, as classified b y t he e nsemble o f t he three 
top-ranked models and the two experts. Since the submitted 
results were not binary decisions but glaucoma likelihoods, the 
false positive (negative) images were selected such that their 
assigned value was higher (lower) when the ground truth label 
was negative (positive). Similarly, the true positive (negative) 
images correspond to cases in which the ensemble assigned a 
high (low) glaucoma likelihood. Diagnostic labels reported by 
the two experts are also included in the figure for comparison 
purposes.

B. Optic disc/cup segmentation

The evaluated methods for OD/OC segmentation are briefly
described in Table VI. The interested reader could refer to
the appendix for further details. The distribution of DSC and
MAE values obtained by each of the participating teams in
the REFUGE test set are represented as boxplots in Fig. 6.
Table VII summarizes the final ranking, based on the av-
erage performance of each team. The statistical significance

of the differences in performance of the top-ranked teams
was assessed by means of Wilcoxon signed-rank tests (α =
0.05). CUHKMED reported the highest DSC values for OD
segmentation, significantly outperforming all the alternative
approaches (p < 1.41 × 10−7). VRT and BUCT achieved
the second and third higher average DSC values, respectively.
However, their performance was not statistical significantly
different with respect to each other (p = 0.734). For OC
segmentation, Masker reported the highest average DSC value,
followed by CUHKMED and BUCT. The differences in the
DSC values achieved by Masker were statistically significant
with respect to every other team (p < 1 × 10−4), except to
CUHKMED (p = 0.387). When evaluating in terms of MAE
of the vCDR estimation, Masker also reported the best results,
consistently outperforming every other method (p < 0.014).
CUHKMED retained the second place, although with no
significant differences with respect to the BUCT (p < 0.403),
which was ranked in the third place.

The outputs of the three top-ranked methods in the final
leaderboard (CUHKMED, Masker and BUCT) were used to
construct an ensemble by majority voting. The results of this
combined approach are included in Fig. 6 and Table VII.
Ensembling these methods allowed to significantly improve
their DSC values for OC (Wilcoxon signed rank test, p <
1.91 × 10−7) and OD segmentation (p < 1.07 × 10−7). The
estimates of the vCDR obtained from the ensemble segmen-
tations are statistically significantly better than those obtained
by CUHKMED and BUCT methods (p < 1.27 × 10−4) but
not with respect to Masker (p = 0.148).

Fig. 7 presents the distribution of the DSC values and
MAE obtained by the ensemble, stratified according to the
glaucomatous/non-glaucomatous ground truth labels of the
images. The statistical significance of the differences was
evaluated using a Wilcoxon rank-sum test due to the unpaired
nature of the two sets (360 vs. 40 samples, respectively). For
OD segmentation, the differences in performance between the
two groups were not statistically significant (p = 0.3435). On
the other hand, the ensemble reported higher values for OC
segmentation in the glaucomatous group (p = 2.09 × 10−5).
Similarly, the MAE values were significantly smaller in the
positive set (p = 0.023). An analogous behavior was observed
when stratifying the results of each of the three top-ranked
methods.

Finally, Fig. 8 presents some qualitative examples of the
segmentations of the top-three ranked methods and their
ensemble: (a) and (d) present some degree of peripapillary
atrophy (PPA), (b) and (c) correspond to cases with ambiguous
edges and (c) and (e) are the worst performing cases as mea-
sured in terms of DSC for the OD and the OC, respectively.
The general behavior of each of the methods is rather stable
compared with each other for most of the cases (Fig. 8 (a),
(d) and (e)). In challenging scenarios such as those observed
in Fig. 8 (b-e), where the edges of the ONH structures
are difficult to assess, ensembling their responses resulted in
more accurate segmentations only when the methods were
complementary (Fig. 8 (b) and (c) vs. (d) and (e)).
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Fig. 5. Qualitative results for glaucoma classification. Images are zoomed in the ONH area for better visualization. True positives (negatives) correspond
to cases in which the ensemble of the three top-ranked methods reported a high (low) score. False positives (negatives) are images for which the ensemble
returned a low (high) score. Ground truth and two experts’ labels for glaucomatous (yellow) and non-glaucomatous (green) cases are included as colored
squares, crosses and circles, respectively.
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(a) Optic disc segmentation
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(b) Optic cup segmentation
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(c) MAE for vCDR

Fig. 6. Box-plots illustrating the performance of each optic disc/cup segmentation method in the REFUGE test set. Distribution of Dice (DSC) values for
(a) optic disc and (2) optic cup, and (c) mean absolute error (MAE) of the estimated vertical cup-to-disc-ratio (vCDR). The three top-ranked teams in the
final leaderboard (CUHKMED, Masker and BUCT) are highlighted in bolds. Last box on each plot corresponds to the ensemble by majority voting of these
methods.
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Fig. 7. Results of the ensemble of CUHKMED, Masker and BUCT segmen-
tation methods, stratified for the glaucomatous (G) and non-glaucomatous
(Non-G) subsets in the REFUGE test set. From left to right: Dice values for
optic disc and optic cup segmentation, and mean absolute error of vertical
cup-to-disc ratio (vCDR) estimates.

V. DISCUSSION

A. Findings

1) Classification methods: In line with the evolution of the
literature in the field, we observed that the proposed solutions
for glaucoma detection were generally based on state-of-the-
art convolutional neural networks for image classification,
with the only exception of SMILEDeepDR and CUHKMED
(Table IV). SMILEDeepDR adapted a segmentation network
to predict both the OD/OC regions and a glaucoma likelihood,
based on the intermediate feature representation generated by
the architecture. CUHKMED, on the other hand, proposed to
use a normalized vCDR predicted from the OD/OC segmen-
tations.

The classification networks comprised of general-purpose
image classification models that were top-ranked in ImageNet
Large Scale Visual Recognition Competition [32], such as
VGG19 [66], ResNets [41], DenseNets [74], Inception V3 [67]
or Xception [65], among others. Since training such deep
architectures from scratch on a training set with only 400
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TABLE VI
SUMMARY OF THE GLAUCOMA CLASSIFICATION METHODS EVALUATED IN THE ON-SITE CHALLENGE, IN ALPHABETICAL ORDER USING THE TEAMS

NAMES. FCN(S) STANDS FOR FULLY CONVOLUTIONAL NETWORK(S).

Team Inputs Architectures Training set Methodology Post-processing

AIML Full image FCNs ResNet-50, -101,
-152 [41] and -38 [64] REFUGE training set

Two stages: (i) Coarse ONH segmentation with
ResNet-50, cropping, (ii) Fine-grain OD/OC

segmentation with multi-view ensemble of networks

Ensemble by
averaging

BUCT Full image U-Net [47] REFUGE training set
Two stages: (i) OD segmentation with a U-Net,

postprocessing, cropping (ii) OC segmentation with
U-Net and postprocessing

OD/OC: largest
area element. OD:

ellipse fitting.

CUHKMED Full image U-Net [47] and
DeepLabv3+ [71]

REFUGE training set and
validation set (without

labels)

U-Net used for cropping, DeepLabv3+ with geometry
aware loss and domain shift adaptation via adversarial

learning used for final segmentation

Ensemble by
averaging

Cvblab
Full image

with
CLAHE

Modified U-Net [35]

DRIONS-DB,
DRISHTI-GS, RIM-ONE
r3 and REFUGE training

set

Two stages: (i) OD segmentation with a modified
U-Net, cropping, (ii) OC segmentation with a modified

U-Net from cropping
None

Mammoth Full image
Mask-RCNN [77] and

U-shaped dense
network

Sample from REFUGE
training set

Two stages: (i) OD segmentation with Mask-RNN and
cropping, (ii) OC segmentation with dense U-Net.

Resolution restored with spline interpolation

Ensemble of
outputs, spline
interpolation

Masker Full image Mask-RCNN [77] REFUGE training set and
ORIGA

Two stages: (i) Mask-RCNN to identify the ONH area,
cropping, (ii) Ensemble by bootstrap voting of

multiclass Mask-RCNN networks

Ensemble by
voting

NightOwl Full image U-shaped dense
network REFUGE training set

Two stages: (i) C-Net for ONH detection, matching
filter and cropping, (ii) OD/OC segmentation using two

F-Nets

Opening and
closing, Gaussian

smoothing

NKSG ONH area DeepLabv3+ [71] REFUGE training set Multiclass segmentation using DeepLabv3+ on cropped
images pre-processed with pixel quantization None

SDSAIRC Full image M-Net [38] REFUGE training set Two stages: (i) OD segmentation with M-Net, cropping,
(ii) OC segmentation with M-Net and postprocessing Ellipse fitting

SmileDeepDR Full image
U-shaped network with
squeeze-and-excitation

blocks (X-Unet)
REFUGE training set

X-Unet pre-trained for predicting ground truth labels,
and fine-tuned separately for segmenting OD/OC using

L1 regression loss
None

VRT Full image
U-Net [47] and

vessel-based
network [78]

IDRiD and RIGA data
sets

Two different U-Nets were applied for OD/OC
segmentation, respectively. An auxiliary CNN using
vessel segmentations as inputs was connected to the

U-Nets to aid in the segmentation

Holes filling,
convex-hull

WinterFell Full image Faster R-CNN [79] and
ResU-Net [80] ORIGA

Two stages: (i) ONH detection with Faster R-CNN, (ii)
OD/OC segmentation in multiple color spaces with

ResU-Net
None

TABLE VII
OPTIC DISC/CUP SEGMENTATION RESULTS IN THE REFUGE TEST SET.

AVERAGE DICE (AVG. DSC) INDEX FOR OPTIC CUP AND DISC AND MEAN
ABSOLUTE ERROR (MAE) OF THE VERTICAL CUP-TO-DISC RATIO
(VCDR). TEAMS ARE SORTED BY THEIR FINAL RANK. LAST ROW

INCLUDES THE RESULTS OBTAINED WITH THE ENSEMBLE BY MAJORITY
VOTING OF THE OUTPUTS OF THE THREE TOP-RANKED METHODS IN THE

SEGMENTATION LEADERBOARD (CUHKMED, MASKER AND BUCT).

Rank Team Score Optic cup Optic disc vCDR

Rank Avg.
DSC Rank Avg.

DSC Rank MAE

1 CUHKMED 1.75 2 0.8826 1 0.9602 2 0.0450
2 Masker 2.5 1 0.8837 7 0.9464 1 0.0414
3 BUCT 3 3 0.8728 3 0.9525 3 0.0456
4 NKSG 4.6 5 0.8643 5 0.9488 4 0.0465
5 VRT 5.4 6 0.8600 2 0.9532 7 0.0525
6 AIML 5.45 7 0.8519 4 0.9505 5 0.0469
7 Mammoth 7.1 4 0.8667 10 0.9361 8 0.0526
8 SMILEDeepDR 7.45 4 0.8367 10 0.9386 8 0.0488
9 NightOwl 8.6 10 0.8257 6 0.9487 9 0.0563

10 SDSAIRC 9.15 9 0.8315 8 0.9436 10 0.0674
11 Cvblab 11 11 0.7728 11 0.9077 11 0.0798
12 WinterFell 12 12 0.6861 12 0.8772 12 0.1536

Ensemble of top-3 teams - 0.8922 - 0.9626 - 0.0398

images might be prone to overfitting, most of the teams
initialized the CNNs with pre-trained weights from ImageNet
and fine-tuned them afterwards using the CFPs. Alternatively,
NKSG team used pre-trained weights from the Kaggle DR
data set [17]. This eases the fine-tuning task as the transition
from natural images to fundus photographs is less smooth than
the one from images of DR to glaucoma. Only BUCT trained
its networks from scratch, although using the ONH area and
not the full images. Nevertheless, we observed that the best

solutions were based not only on the application of an existing
classification network but also using domain-specific heuristics
as discussed next.

CUHKMED achieved the third place by relying only on
the prediction of the vCDR. Deep learning was in this case
used indirectly, as it was applied for segmenting the OD/OC
areas. Exploiting a well-known, clinical parameter such as
the vCDR allowed them to identify most of the cases with
cupping, which usually correspond to advanced glaucomatous
damage. SDSAIRC (second place), on the other hand, obtained
better results by combining vCDR estimates with glaucoma
likelihoods provided by different CNNs. Team Masker (sixth
place) followed a similar idea but using a network trained
on full images. Instead, SDSAIRC trained the CNNs using
a cropped version of each image in which the ONH is
observed at the upper-left corner. We hypothesize that this
configuration indirectly forces the network to identify other
complementary signs that are not captured by the vCDR, such
as the presence of peripapillary hemorrhages–which appear in
the border of the OD (Fig. 2 (b))–or RNFL defects–observed
as striated patterns spanning from the ONH (Fig. 2 (c)).
The winning team, VRT, further improved this idea by using
an attention-guided network that integrated the responses of
secondary segmentation models aiming for disease-specific
abnormalities. This is a promising way to perform the glau-
coma classification task as it resembles to humans targeting
glaucoma biomarkers. It is worth mentioning, though, that
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Fig. 8. Optic disc/cup segmentation results in the REFUGE test set. From left to right: zoomed ONH area, segmentation results from the three top-ranked
teams (BUCT, Masker and CUHKMED) for optic cup and disc segmentation, results obtained by ensembling the methods, ground truth segmentations.

such an approach requires manual annotations of lesions in
the training set. VRT used pixel-wise weak labels provided
by the secondary networks that were independently trained
on private data sets. Nevertheless, manual annotations were
still needed to train those secondary models. In principle, a
classification network with enough capacity would learn to
identify abnormal image patterns by itself, although a massive
training set size would be needed to this end [81].

2) Segmentation methods: The proposed solutions for
OD/OC segmentation were all based on at least one fully con-
volutional neural network (Table VI). U-shaped networks in-
spired by the U-Net [47] were the prevalent solutions, although

incorporating recent technologies such as residual connections
(AIML), atrous convolutions (BUCT) or multiscale feeding
inputs (SDSAIRC), among others. Most of the strategies were
also based on the two stage approach described in Section II
of first roughly identifying the ONH and then performing the
OD/OC segmentation on a cropped version of the original
image. The three top-ranked teams followed this principle.
CUHKMED and BUCT used a classical U-Net [47] to localize
the ONH area, while Masker applied a Mask-RCNN [77].
Once this area was localized, CUHKMED segmented the
OD/OC using a DeepLabv3+ [71] architecture, a recently pub-
lished approach based on atrous separable convolutions that is
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able to capture multiscale characteristics. Masker, on the other 
hand, used an ensemble of Mask-RNNs trained with bootstrap, 
while BUCT used a classical U-Net. NKSG was ranked fourth 
using the same architecture as CUHKMED, but normalizing 
image appeareance between training and validation sets using 
a pixel quantization technique. CUHKMED, on the other hand, 
accounted for this domain shift using adversarial learning, 
which could explain its better performance.

Interestingly, we noticed that the three top-ranked methods 
and their ensemble by majority voting achieved consistently 
better segmentation results in the subset of glaucomatous 
subjects than in the non-glaucomatous cases. This can be 
linked with the fact that advanced glaucoma cases with severe 
cupping usually present more clear interfaces between the OD 
and the OC. Such a characteristic would explain why the 
improvement is more evident in the Dice index obtained for 
the OC than in the performance for OD segmentation. On the 
other hand, the segmentation models showed a slightly worst 
accuracy in challenging scenarios with unclear transitions 
between the OD/OC, such as those illustrated in Fig. 8 (b),
(c) and (e). The lack of depth information in monocular 
color fundus photographs turns this task significantly difficult. 
Research in developing automated methods for predicting 
depth maps from CFPs is currently ungoing, trying to correlate 
image features with ground truth labels obtained from other 
imaging modalities such as stereo fundus photography [82] or 
OCT [83]. These techniques might aid to solve ambiguities in 
these scenarios.

If the segmentation results are analyzed separately, BUCT 
and CUHKMED achieved the second and the third place for 
OC segmentation and the first a nd t hird p laces f or O D seg-
mentation, respectively (Table VII). Using the same criteria, 
Masker achieved the first p lace f or O C s egmentation b ut the 
seventh for OD segmentation. Surprinsingly, the team reported 
the lowest MAE of the vCDR estimation. This indicates that 
most of their errors in the OD prediction occurs horizontally, 
and therefore not affect the prediction of its vertical diameter.

3) Ensemble methods: Independently of the target task, 
we noticed that several submissions exploited to some extent 
the application of ensembles. Combining the outcomes of 
multiple models is a common practice in challenges as it 
allows to achieve (sometimes marginal) quantitative improve-
ments that can eventually ensure higher positions in the final 
rankings [17], [84]. We observed three types of ensembles in 
REFUGE. Teams AIML, Cvblab and WinterFell, for instance, 
combined the outputs of multiple architectures trained with 
the same data set. This approach allows to take advantage of 
the characteristics of each model without explicitly integrating 
them into a single network. Alternatively, team Mammoth 
averaged the outputs of a single architecture trained under dif-
ferent configurations ( e.g. i mages p reprocessed w ith multiple 
strategies). Under this setting, model selection is bypassed as 
there is no need to choose a single configuration b ecause a 
subset or even all of them are exploited in test time. Finally, 
a similar approach was followed by NightOwl and Masker 
for classification a nd s egmentation, r espectively, a lthough by 
training the same architecture on different portions of the 
training data.

Applying majority voting or averaging on the collective
responses of multiple models could certainly ensure more re-
liable results. This has been recently applied in [85] for retinal
OCT analysis with a significant success. We also empirically
observed this behavior when ensembling the three top-ranked
models for each of the challenge tasks, which resulted in
increased performance (Fig. 4 and Fig. 6). This indicates that,
despite their impressive but similar performance, the methods
are still complementary with each other, and can be integrated
to generate a more trustable automated response. This can be
qualitatively observed in the segmentation examples in Fig. 8,
where e.g. BUCT oversegmented the OD and the OC in (b) but
achieved more accurate results in (c). On the other hand, cases
such as those in Fig. 8 (d) and (e) illustrate the need of model
diversity to achieve more accurate results under challenging
conditions.

B. Challenge strengths and limitations

REFUGE was the first open initiative aiming to introduce a
uniform evaluation framework to assess automated methods
for OD/OC segmentation and glaucoma classification from
CFPs. The challenge provided to the community with the
largest public available data set of fundus photographs (1200
scans) to date. In addition, it contains gold standard clinical
diagnostic labels, and a high quality reference OD/OC masks
and fovea positions from a total of nine glaucoma experts.
To the best of our knowledge, the most similar data set to
REFUGE was ORIGA [56], which provided 650 images with
OD/OC segmentations and glaucoma labels. However, at the
time of submitting this manuscript ORIGA was not available
anymore12, while, more than 350 teams have successfully
registered to the REFUGE website to access the database, with
183 requests submitted after the on-site challenge. Such a large
interest of the scientific community in accessing REFUGE data
clearly demonstrates that a quality open glaucoma data set and
challenge was needed.

The challenge design matched most of the principles for
evaluating retinal image analysis algorithms proposed in [19].
In particular, REFUGE data set can be easily accessed through
a website that is part of the Grand Challenges organization.
Furthermore, an automated tool is provided to evaluate the
results of any participating team, ensuring a uniform, un-
biased criterion for comparing methods, based on trustable
and accurate annotations. Furthermore, the data is already
partitioned into fixed training, validation and test sets, with
labels publicly available only for the first two sets. Future
participants are invited to submit their results to the website
to estimate their performance on the test set. By keeping these
ground truth annotations private we prevent the teams to overfit
on test data, ensuring a fair comparison between models.

As the validation set was used to determine which teams
were qualified to participate in the on-site challenge, the
access to the validation labels was restricted and they were
released only after the on-site challenge. Under this constraint,
we observed that most of the teams struggled to perform
model selection in a uniform setting, and ended up using the

12http://imed.nimte.ac.cn/origa-650.html

http://imed.nimte.ac.cn/origa-650.html
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REFUGE training set or other third-party data sets. To over-
come this issue, we have now publicly released the validation 
labels. We encourage future participants to use this data not 
only for model selection but also to perform ablation studies, 
to empirically demonstrate the contribution of each stage of 
their pipelines. These experiments might help to identify good 
practices to follow when designing glaucoma classification and 
OD/OC segmentation methods.

One limitation of REFUGE is the lack of diverse ethnic-
ities in its data set, as the images correspond to a Chinese 
population. Ethnicities manifest differently in color fundus 
photographs due to changes in the pigment of the fundus. 
Therefore, it cannot be ensured that the best performing mod-
els on the REFUGE challenge can be applied on a different 
population and obtain the same outcomes without retraining. 
Furthermore, it is worth mentioning that the percentage of 
glaucoma cases in the REFUGE data set is higher than 
expected to be encountered in a screening scenario and more 
representative of a clinical one. A representative screening 
data set should include comorbidities, diverse ethnicities, ages 
and genders and low quality images with acquisition artifacts. 
These characteristics should be addressed in future challenges 
to ensure that the winning models can be applied in a more 
general environment.

C. Clinical implications of the results and future work

Can we envision automated systems for detecting suspicious
cases of glaucoma from fundus photographs? This is still
an open question, although REFUGE results might help us
to catch a glimpse of a possible answer. With the constant
development of much cheaper and easy-to-use fundus cameras,
it is expected that this imaging technique will be widespread
even more in the decades to follow. Turning it into a cost-
effective imaging modality for glaucoma screening is still
pending due to the subtle manifestation of the early stages
of the disease in these images. Nevertheless, novel image
analysis techniques based on deep learning can pave the way
towards computer-aided screening of glaucoma from fundus
photographs.

We observed that some of the proposed segmentation mod-
els were able to obtain accurate vertical cup-to-disc ratio esti-
mates. The best team in the segmentation task (CUHKMED)
achieved the third place in the classification ranking by using
the vCDR as a glaucoma likelihood, with sensitivity and
specificity values almost in pair with two human experts, and
statistically equivalent to those obtained using the ground truth
measurements. The best performing teams, however, comple-
mented ONH measurements with the classification outcomes
of deep learning based models, and were able to significantly
surpass the glaucoma experts, with increments in sensitivity
up to a 10%. Although these results are limited to a specific
image population, we can still argue that these deep learning
models are able to identify complementary features, invisible
to the naked eye, that are essential to ensure a more accurate
diagnosis of the disease. Representing the activation areas
on the images might help to better understand which areas
were considered by the automated models to produce their

predictions. We believe that these tools might contribute in the
future to a better identification of glaucoma suspects based on
color fundus images alone.

The complementarity of CFP and OCT for automated
glaucoma screening still needs to be exploited. Although CFP
allows a cost-effective assessment of the retina, features such
as the damage in the ONH or the RNFL are more evident
in optic disc centered OCT. This is due to the fact that
OCT provides a three dimensional view of the retina, with
a micrometric resolution. Hence, the cross-sectional scans–or
B-scans–can be used to quantify the thickness of the RNFL
or the degree of cupping in the ONH. Nevertheless, the OCT
acquisition devices are more expensive than fundus cameras,
and the manual analysis of the volumetric information is costly
and time-consuming. Developing deep learning methods to
quantify glaucoma biomarkers from OCT scans is therefore
necessary to complement results in fundus images and pave
the way towards cost-effective glaucoma screening.

VI. CONCLUSIONS

We summarized the results and findings from REFUGE, the
first open challenge focused on glaucoma classification and
optic disc/cup segmentation from color fundus photographs.
We analyzed the performance of each of the twelve teams that
participated in the on-site edition of the competition, during
MICCAI 2018. We observed that the best approaches for glau-
coma classification integrated deep learning techniques with
well-known glaucoma specific biomarkers such as changes
in the vertical cup-to-disc ratio or retinal nerve fiber layer
defects. The two top-ranked teams, on the other hand, achieved
better results than two glaucoma specialists, a promising
sign towards using automated methods to identify glaucoma
suspects with fundus imaging. For the segmentation task, the
best solutions took into account the domain shift between
training and validation sets, aiming to regularize the models
to deal with image variability. Cases with ambiguous edges
between the optic disc and the optic cup showed to be the
most challenging ones. Further research should be performed
to improve the results in those scenarios. For both tasks of the
challenge, we observed that integrating the outcomes of mul-
tiple models allowed to improve their individual performance.

REFUGE unified evaluation framework allowed us to iden-
tify good common practices based on the results of the twelve
proposed approaches. We expect these findings to help in the
future to develop strong baselines for comparison and to aid in
the design of new automated tools for image-based glaucoma
assessment.
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APPENDIX
PARTICIPATING METHODS

A. AIML

1) OD/OC segmentation: The method was a two-stage
approach based on a combination of multiple dilated fully-
convolutional networks (FCNs) based on ResNet-50, -101,
-152 [41] and -38 [64]. First, a ResNet-50 FCN was used
to coarsely segment the ONH. The corresponding region was
afterwards cropped to cover approximately one quarter of the
original resolution. These images were used to fed the ResNet-
50, -101, -152 [41] and -38 [64] models, which produced
the final segmentations of the OD/OC. The networks were
trained using the REFUGE training set with data augmenta-
tion, including rescalings and rotations. The final prediction
was obtained by averaging multi-view results produced by all
the networks on different augmented versions of each image.

2) Glaucoma classification: Two sets of classification mod-
els were combined. One was trained using the whole fundus
images, while the other was trained using only local regions
around the ONH. The OD/OC area was detected using the seg-
mentation model described above. Subsequently, the REFUGE
training set was used to fine-tune pre-trained ResNet-50, -101,
-152 [41] and -38 [64] models. The final classification result
was assigned by ensembling the outputs of these architectures
by averaging.

B. BUCT

1) OD/OC segmentation: The OD/OC were segmented
separately by two different U-Net [47] models. First, the
images on the REFUGE training set were resized to fit the
resolution of those on the validation set and converted to gray
scale. Then, for OD segmentation, a square of 817×817 pixels
was cropped from the input images, leaving the ONH on the
left-hand side, and then resized to 256× 256 pixels. A U-Net
with less convolutional filters than the original approach [47]
was applied to retrieve the OD. To remove false positives,
the largest connected component was taken, and an ellipse
was fitted to the OD segmentation. For OC segmentation, the
smallest rectangle containing the OD was clipped out, and
each side of the rectangle was extended with 100 pixels to fit
a resolution of 128×128 pixels. The same U-Net architecture
was retrained then on these images and applied to retrieve
the OC. The largest connected component was taken as the
final result, too. In both cases, the U-Nets were trained using
the REFUGE training set with data augmentation, including
rotations and flippings.

2) Glaucoma classification: The same cropping strategy
applied for OD/OC segmentation was used for this task. The
resulting CFPs were then transformed into grayscale images.
Standard data augmentation techniques such as rotations and
shiftings were applied to increase the size of the training set.
Then, an X-ception [65] network was trained from scratch
for glaucoma classification using grayscale versions of the
color images on the REFUGE training set and the ground
truth annotations.

C. CUHKMED

1) OD/OC segmentation: A patch-based Output Space Ad-
versarial Learning framework (pOSAL) [86] was introduced
for this task. This method enables output space domain adap-
tation to reduce the segmentation performance degradation
on target datasets with domain shift. A region of interest
(ROI) containing the OD from each original image was first
extracted using a U-Net [47] model. The DeepLabv3+ [71]
architecture was afterwards applied for segmentation, using
the backbone of MobileNetV2 [87]. Considering the shape of
the OD and OC, a morphology-aware segmentation loss was
designed to force the network to generate smooth predictions.
To overcome the domain shift between training and testing
datasets, adversarial learning was exploited, encouraging the
segmentation predictions in the target domain to be similar
to the source ones. Specifically, a patch-based discriminator
was used to distinguish whether the prediction came from the
source or the target domain. The final image prediction was
acquired by ensembling five models, to further improve the
segmentation performance.

2) Glaucoma classification: This task was tackled without
using a dedicated method. Instead, the authors proposed to
use the OD/OC segmentation masks–automatically obtained
with the method described below–to compute the vertical CDR
(vCDR). To this end, two ellipses were fitted to the the OD and
OC masks, respectively. The vCDR values were normalized
into 0-1 as a final classification probability following: pnew =
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p−pmin , where p is the calculated vCDR values, pmin and pmax−pmin

pmax are the minimum and maximum vCDR values among all
the testing images.

D. Cvblab

1) OD/OC segmentation: A two-stage process was fol-
lowed for this task, based on a modified U-Net architec-
ture [35]. The OD was segmented first and the resulting
mask was used to crop the image and segmenting the OC.
As a pre-processing technique, the Contrast Limited Adaptive
Histogram Equalization (CLAHE) method, was applied. The
images were also resized to 256 × 256 pixels before feeding
the network. The models were trained using DRIONS-DB,
DRISHTI-GS, RIM-ONE v3 and the REFUGE training set.

2) Glaucoma classification: An ensemble of VGG19 [66],
GoogLeNet (InceptionV3) [67], ResNet-50 [41] and the Xcep-
tion [65] architectures was applied for this task. Each network
was independently fine-tuned from the weights pre-trained
from ImageNet [32] to identify glaucomatous images, using
DRISHTI-GS1, HRF, ORIGA, RIM-ONE and the training set
of the REFUGE databases. Data augmentation was applied
in the form of vertical and horizontal flippings, rotations up
to 50◦, height/width shifts of 0.15 and zooms in a range
between 0.7 and 1.3. Prior to fine tunning, the training data
was balanced using SMOTE [68] on the REFUGE training
set, with the aim of reducing the bias on the prediction model
towards the more common class (Normal). All the images
were resized to 256× 256 pixels before feeding the network.
The results were merged together by ensembling the models’
outputs taking the average glaucoma likelihood.

E. Mammoth

1) OD/OC segmentation: A Mask-RCNN [77] and a Dense
U-Net [47] were ensembled for this task. For Mask-RCNN, the
OD was first segmented. Then, each input image was cropped
around its center to retrieve a patch with a size of 512× 512
pixels, and the segmentation of the OC was performed on it.
For the Dense U-Net, which is a modified U-Net architecture
with dense convolutional blocks and dilated convolutions, the
OD was first segmented. Then the probability mask was used
as additional channel of the input (as attention) to segment
OC. Both networks were trained using a linear combination of
cross-entropy and Dice losses. The probability outputs of both
networks were averaged to generate the final segmentation
results. A subsample from the original REFUGE training set
was used to learn the models. In particular, it was divided
into two new sets, one used for training (32 glaucoma images
and 288 non-glaucoma images) and a second for validation (8
glaucoma images and 72 non-glaucoma images). The Mask-
RCNN internally used a ResNet-50 [41] model pre-trained
in the COCO [88] data set and fine-tuned using the above
mentioned training set.

2) Glaucoma classification: The OD/OC segmentation
method was used to crop each input image and generate a
patch centered in the ONH, covering 1.5 times the radius of
the OD. The resulting image was then resized to 448×448, and
CLAHE contrast equalization and mean color normalization

were subsequently applied to uniform image characteristics
across data sets. A combination of a ResNet-18 [41] (su-
pervised) and a CatGAN [69] (semi-supervised) classification
networks was applied for diagnosis. The CatGAN was used
to aid the learning process of the ResNet-18 model in a
semi-supervised setting, using fake images generated by the
CatGAN to increase the size of the training set. The same
training/validation partition used for OD/OC segmentation was
applied for this task. A series of ResNet-18 models was
trained using 4-fold cross-validation on these training set and
a weighted and an unweighted cross-entropy loss, resulting in
4×2 = 8 models in total. At inference time, the predictions of
all the models were averaged into a final glaucoma likelihood.

F. Masker

1) OD/OC segmentation: The first step consisted of local-
izing the ONH region. A Mask-RCNN [77] architecture was
used to this end. Afterwards, the image was cropped around
the ONH to build a new training set. This set was divided
into 14 partitions based on a bagging principle. Different
image preprocessing techniques were applied to each subset,
namely image dehazing [89] and edge-preserving multiscale
image decomposition based on weighted least squares opti-
mization [90]. Different networks including Mask-RCNN [77],
U-Net [47] and M-Net [38] were trained on each subset, and
the final result was obtained by a voting procedure in which
regions predicted by 80% of all the networks were taken as
the final segmentation.

2) Glaucoma classification: The vCDR value was first
calculated using the segmentation results obtained with the
previously described method. Subsequently, several classifi-
cation networks based on ResNet [41] were trained from
scratch to predict the risk of glaucoma. The REFUGE training
set and ORIGA were used to learn the models. The final
result was obtained based on a linear combination of the
vCDR values and the prediction of the classification networks.
We use ResNet-50, ResNet-101 and ResNet-152 as the basic
classification models. The final glaucoma risk is:

Glaucoma Risk = 0.8× CDR + 0.2× CNets. (6)

Here, CDR is the vertical cup to disc ratio and CNets is the
final voting of the ensemble classification networks. If 80% of
all the networks predict a image with high risk of glaucoma,
CNets = 1, otherwise, CNets = 0. In our implementation, we
use 14 different networks.

G. NightOwl

1) OD/OC segmentation: A coarse to fine approach was
proposed for this task, based on two dense U-shaped net-
works with dense blocks [74], namely CoarseNet (C-Net) and
FineNet (F-Net), respectively. The C-Net model was used to
coarsely localize the ONH region. Then, the F-Net was applied
to retrieve the final segmentation of the OD and the OC. A
modified version of pooling based on the mean of average
and max-pooling was applied for better feature accumulation.
The images were preprocessed using histogram matching–to
normalize the intensities in the sample space–and exponential
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transformations–to enhance the boundaries of the optic cup— 
. Standard data augmentation techniques were applied to the 
REFUGE training set to balance the number of images from 
each class (glaucomatous / non-glaucomatous). The original 
inputs, resized to 112 × 112 pixels, were fed to the C-Net for 
localizing the ONH region. This area was then extracted from 
the original input image, resized to 112 × 112 pixels too, and 
fed to two different F-Nets for OD/OC segmentation. Outliers 
were removed using morphological operations (opening and 
closing) and Gaussian smoothing.

2) Glaucoma classification: T he e ncoders o f e ach F-Net 
were used for extracting two vectors of 2048 features each, 
one for the OD and one for the OC. Dimensionality reduction 
via convolutions was applied to retrieve two new vectors with 
64 features each. The concatenation of these two vectors was 
used to feed a neural network with 4 fully connected layers, 
trained to predict the glaucoma likelihood. The weights of 
the F-Net encoders were not adjusted for glaucoma classifica-
tion, only the weights used for dimensionality reduction and 
those of the fully connected layers. 10-fold cross-validation 
was applied to retrieve 10 different models, and 7 of them 
were retrieved based on their confusion matrices. The final 
glaucoma likelihood was obtained by taking the maximum 
likelihood from all the models.

H. NKSG

1) OD/OC segmentation: The DeepLabv3+ [71] architec-
ture was used for this task, based on the assumption that atrous
spatial pyramid pooling (ASPP) is effective to segment objects
at multiple scales. The network was trained using cross-
entropy as the loss function. The images were pre-processed
using pixel quantization to reduce the sensitivity of the model
to changes in color and to improve its robustness. Moreover,
the segmentation approach was applied on cropped versions
of the input images. These were obtained by extracting a
bounding box surrounding the ONH area.

2) Glaucoma classification: This task was performed using
a SENet [70] architecture. This network has large capacity, as
it has 154 layers in total. Instead of using fully connected lay-
ers, it uses 1× 1 convolutions. The images were preprocessed
by applying the same strategy used for segmentation. The
glaucomatous/non-glaucomatous classes were balanced using
re-sampling. By means of data augmentation using rotations
and stretching, the REFUGE training set was increased to a
total of 2000 images.

I. SDSAIRC

1) OD/OC segmentation: A method inspired by the M-
Net [38] was applied for this task. An area of 480 × 480
pixels size was defined and prepared as the segmentation ROI
for each image, centered on the OD and transformed to polar
coordinates afterwards. The histogram of the test images were
matched to the average histogram of the REFUGE training
set to compensate image variance per camera vendor. The
segmentation task was divided into OD segmentation from the
segmentation ROI and OC segmentation from the bounding
box of the OD. This box was tightly cropped to contain the

entire OD. This two stage separation helped to tackle the
difficulty in finding the ideal weights for the M-Net [38].
The segmentation accuracy was further improved by post-
processing the resulting masks using ellipse fitting.

2) Glaucoma classification: A ResNet-50 [41] network
with pre-trained weights from ImageNet [32] was fine-tuned
on the REFUGE training for glaucoma classification. His-
togram matching was applied to uniform the appeareance of
images with respect to the training set. The CFPs were also
cropped in such a way that the OD was positioned in the
upper-left corner. This setting allows to capture RNFL defects
in more detail than cropping a square centered in the ONH.
The final glaucoma likelihood was obtained by averaging
the classification score predicted by the network with the
resulting score of a logistic regression which takes advantage
of vCDR value, estimated from the OD/OC segmentation, as
an input. To this end, the logistic regression classifier was
trained separately using the transformed vCDR value.

J. SMILEDeepDR

1) OD/OC segmentation: A modified U-Net [47] archi-
tecture, namely X-Unet, was applied for this task. It used
3 inputs so that it was able to receive more original raw
pixel information during training. This strategy was used
to reduce the risk of overfitting while enhancing the net-
work’s learning capability. Moreover, squeeze-and-excitation
blocks were embedded into this U-Net variant to weight the
features from different convolutional layers’ channels. Such
a mechanism was able to selectively amplify the valuable
channel-wise features and suppress the useless feature from
global information. In addition, deconvolution were used in the
network decoder to refine the decoding capability by refusing
the features between different level encoded features and the
corresponding level decoded features. The segmentation task
was also posed as a linear regression task instead of a typical
pixel classification problem, using L1 loss for training. A split-
copy-merge strategy was followed: a X-Unet network was
trained first to predict the ground labels. Secondly, two X-
Unets were separately fine-tuned using the learned weights,
only to predict the OD and the OC, respectively. Then, the
predictions of both networks were merged to get the final
result.

2) Glaucoma classification: The Deeplabv3+ [91] was
modified and used as a classifier. Its last layer was replaced by
a global average pooling layer followed by a fully connected
layer. The model was trained on the REFUGE training set
using the cross-entropy loss. Instead of using the full images,
a pre-processing stage based on cropping the regions around
the ONH was followed.

K. VRT

1) OD/OC segmentation: A U-Net [47] based architecture
was used, complemented by an auxiliary CNN [78] that took
a vessel segmentation mask and generated a coarse mask
with the estimated OD/OC location. The output of the second
network was concatenated to the bottleneck layer of the U-
Net to generate the final segmentation mask. A combined loss
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Ltotal = Lmain + λ ∗ Lvessel was applied, where LmainandLvessel 
are pixel-wise binary cross entropy for the U-Net and the 
auxiliary CNN. The values for λ, the depth of U-Net and 
the number of filters a t t he l ast l ayer o f t he a uxiliary CNN 
were experimentally selected using a hill-climbing approach. 
The OD and the OC were segmented separately using two 
different U-Net architectures. Holes in the final segmentations 
were filled, a nd t he O D/OC a reas w ere c onverted t o convex-
hulls to ensure a single binary mask per regions.

2) Glaucoma classification: T he m ethod w as b ased on 
three architectures as described in [72]13, each of them target-
ting glaucoma classification or t he detection of glaucomatous 
disc changes and RNFL defects. The three models were trained 
using images from three public data sets, namely Kaggle [17], 
MESSIDOR [73] and IDRiD [18]. Since these databases do 
not have labels for any of these tasks, a semi-supervised 
learning approach was followed. Models pre-trained on a 
private data set were used to assign labels to the images on 
each of the public sets. The same architectures were then 
trained from scratch on the combined data set to produce 
final p redictions. T he fi nal gl aucoma li kelihood wa s assigned 
by doing: max{glaucomatous disc change, RNFL defect + 
glaucoma suspect/2}.

L. WinterFell

1) OD/OC segmentation: The ONH was initially detected
using a Faster R-CNN [79]. This area was cropped in all 
the images, and two image processing techniques were ap-
plied on the outputs. The first a pproach c onsisted o f se-
lecting a standard image and then normalize the remaining 
ones using it as a reference, on each color channel. The 
second image version was the inverted green channel of 
the original RGB cropped image. Finally, a ResU-Net [80] 
model was applied on the resulting images for OD/OC seg-
mentation. 

2) Glaucoma classification: An ensemble of ResNets [41]
(101 and 152) and DensNets [74] (169 and 201) was used 
for classification. The networks were pre-trained on ImageNet 
and separately fine-tuned using ORIGA, based on the log-
likelihood loss. Each model was trained on cropped versions of 
the inputs images, centered in the ONH and on three different 
color space (RGB, HSV and the inverted green channel). 
Hence, 4 × 3 = 12 different models were produced. The final 
result was obtained by taking the mode of the binary decisions 
of each network. If the predicted label was glaucoma, the 
maximum confidence score was used as a final likelihood. On 
the contrary, if the image was labeled as non-glaucomatous, 
then the minimum score was applied.

13https://bitbucket.org/woalsdnd/refuge/src

https://bitbucket.org/woalsdnd/refuge/src

