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a b s t r a c t 

CT Perfusion (CTP) imaging has gained importance in the diagnosis of acute stroke. Conventional perfu- 

sion analysis performs a deconvolution of the measurements and thresholds the perfusion parameters 

to determine the tissue status. We pursue a data-driven and deconvolution-free approach, where a deep 

neural network learns to predict the final infarct volume directly from the native CTP images and meta- 

data such as the time parameters and treatment. This would allow clinicians to simulate various treat- 

ments and gain insight into predicted tissue status over time. We demonstrate on a multicenter dataset 

that our approach is able to predict the final infarct and effectively uses the metadata. An ablation study 

shows that using the native CTP measurements instead of the deconvolved measurements improves the 

prediction. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

Ischemic stroke, a major cause of mortality and disability

orldwide, is an acute disease where the blood supply to the

rain is hindered due to the occlusion of an artery. Due to the

eduction in perfusion, neuronal functioning is impaired and if

erfusion is not re-established, brain tissue becomes irreversibly

amaged. Acute treatment aims at reopening the blocked artery

hrough treatment with intra-venous thrombolytics and/or me-

hanical thrombectomy. Since both treatment options entail con-

iderable costs and side effects (e.g. increased risk of haemor-

hage), selection of patients who might benefit is important. In
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arly studies, patient selection was mainly based on the time since

troke onset; e.g. intravenous thrombolysis with tPA is shown to be

eneficial within 4.5 hours ( Hacke et al., 2008 ). Recent studies typ-

cally select patients based on both time parameters and advanced

euroimaging, allowing patient-specific assessment of the benefits

nd risk of treatment. 

One commonly used imaging modality for acute stroke diag-

osis is CT Perfusion (CTP), which consists of a series of 3D CT

cans acquired after intra-venous injection of contrast agent. The

esulting 4D image shows the passage of contrast agent through

he brain: in each spatial voxel we have a time-attenuation curve

howing the variation of intensity due to the contrast agent. Much

esearch has gone into the quantification of these images, par-

icularly aiming at the estimation of perfusion parameters such

s cerebral blood flow (CBF), cerebral blood volume (CBV) and

max. The most used approach for perfusion analysis works as

https://doi.org/10.1016/j.media.2019.101589
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.101589&domain=pdf
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follows ( Fieselmann et al., 2011 ). First the time-attenuation curves

are converted to time-concentration curves that show the concen-

tration of contrast agent over time. In CTP, there is a linear re-

lationship between the change in attenuation and the concentra-

tion. Then an arterial input function (AIF) is determined: this is

the time-concentration curve in one of the large feeding arteries

of the brain. Subsequently, the time-concentration curve in each

voxel is deconvolved with the AIF, resulting in deconvolved time-

concentration curves. These curves correspond to what would have

been measured if the contrast bolus was infinitely short and in-

finitely concentrated in the feeding artery – indeed, these curves

are impulse response functions (IRF). As such, the deconvolved

time-concentration curves are no longer influenced by the con-

trast injection protocol or the cardiac system of the particular

patient. Finally, under some reasonable assumptions, the perfu-

sion parameters can be derived from these curves. For example

CBF ∝ max t IRF( t ) and Tmax = argmax t IRF (t) . 

The deconvolution operation plays a central role in current per-

fusion analysis. However, deconvolution depends crucially on the

accurate selection of an AIF. Additionally, deconvolution is a math-

ematically ill-posed problem and that is problematic given the low

signal to noise ratio of perfusion images ( Fieselmann et al., 2011 ).

Perfusion analysis software accounts for this by preprocessing the

images and by regularizing the deconvolution. The preprocessing

mainly aims at reducing the noise through motion correction, tem-

poral and spatial smoothing, and possibly spatial downsampling.

The regularization of the deconvolution suppresses the high fre-

quency signal in the reconstructed impulse response function. This

can be done in singular value decomposition (SVD) based deconvo-

lution by regularizing the singular values, e.g. using Tikhonov regu-

larization. Nevertheless, the deconvolution-based perfusion param-

eters remain noise sensitive and research for improved algorithms

( Boutelier et al., 2012 ) or even deconvolution-free summary pa-

rameters ( Meijs et al., 2016 ) remains ongoing. 

The resulting perfusion parameters are used to assess the tis-

sue status of the brain where – apart from healthy tissue – two

types are distinguished. Tissue that is already irreversibly dam-

aged is called the infarct core. Tissue that is at risk, i.e. tissue that

will undergo infarction if not eventually reperfused, is called the

penumbra. The combination of infarct core and penumbra is called

the perfusion lesion. In current clinical practice, the perfusion le-

sion and core are determined by thresholding the perfusion param-

eters. The optimal choice of perfusion parameters and thresholds

depends on the deconvolution method ( Bivard et al., 2013 ). 

Knowledge about the volumes of the core and the penumbra is

of great clinical importance, as they are used to determine which

treatment a patient should get ( Albers, 2018; Nogueira et al., 2018 ).

However, the method that is used to analyze the CTP images plays

an important role in the accuracy of these volume estimations

( Fahmi et al., 2012; Bivard et al., 2013 ). Although great progress

has been made in the previous years, there is room and need for

improvement. 

The binary distinction between core and penumbra is some-

what artificial: as time passes, the core will become larger, as more

and more penumbral tissue becomes irreversibly damaged. The in-

farct growth rate differs between patients ( Wheeler et al., 2015;

Guenego et al., 2018 ). It depends on factors such as the location of

the thrombus and the patient’s vascular connectivity: there is con-

siderable inter-subject variation in the amount of vascular redun-

dancy and hence in the amount collateral blood supply to the af-

fected region ( Liebeskind, 2003 ). Knowledge about the growth rate

of the core is of clinical importance, as it allows assessment of

the relevance of transferring a patient to a comprehensive stroke

center depending on transport time. Hence it is valuable to not

only predict core and penumbra from an acute CTP scan, but also

how the core would evolve over time. Additionally, not every me-
hanical thrombectomy procedure achieves complete reperfusion.

lthough a more complete recanalization is arguably always bet-

er ( Kleine et al., 2017 ), it is interesting to take this into account

n the model as it might give interventional radiologists informa-

ion about the added value of an additional attempt after a partial

ecanalization. 

.1. Contributions 

In this paper we propose to train a deep neural network to pre-

ict the final infarct from acute CTP images. The prediction takes

nto account not only the CTP measurements, but also the treat-

ent parameters such as the time-to-recanalization and the com-

leteness of recanalization. Once the network is trained, it can

ake predictions for new patients based on hypothetical treatment

chemes. This allows to predict the ischemic core at baseline (i.e.

he predicted final infarct in case of an immediate perfect recanal-

zation), the perfusion lesion (i.e. the predicted final infarct in case

f no recanalization) or any intermediate scenario. The latter can

e relevant if e.g. we first need to transfer the patient and achieve

ecanalization at a particular later time point. This provides clini-

ians with additional information on the impact of potential treat-

ent options. We show that our method takes this information ef-

ectively into account resulting in better predictions. 

Another contribution of this work is that the predictions are

ade directly from the native CTP images while no explicit decon-

olution or calculation of perfusion parameters is performed. We

ollow a true end-to-end learning approach and hence avoid the

roblematic deconvolution. We evaluate our approach on the data

f the MR CLEAN trial and show the contributions of the various

omponents of the method. 

.2. Related work 

Estimation of tissue status and prediction of the final infarct

ased on perfusion measurements is a vast research domain. Early

ork aimed mainly at finding thresholds for various perfusion pa-

ameters that correlated well with the final infarct in patients with

ecanalization (with the final infarct closely related to the core)

nd patients without recanalization (final infarct equal to the per-

usion lesion) ( Wintermark et al., 2006; Bivard et al., 2013 ). These

pproaches are currently used in clinical practice. 

Various works have suggested to use more advanced machine

earning techniques to predict core and penumbra. Most of them

se MR imaging which usually consists of two modalities: MR Per-

usion, which is similar to CTP, and diffusion weighted imaging

DWI) ( Wu et al., 2001; Scalzo et al., 2012; McKinley et al., 2017;

ielsen et al., 2018 ). The latter modality gives a clear signal regard-

ng the viability of tissue and is considered the golden standard to

dentify ischemic tissue, making the prediction of final infarct eas-

er than using only perfusion information. However, since CTP is

ore prevalent in clinical practice – even in clinical trials, it is two

o three times more used than MR imaging ( Albers, 2018 ) – and

as a larger need for improved processing, we find it valuable to

ocus on this modality. 

With the advent of mechanical thrombectomy, accurate deter-

ination of the time of recanalization became possible and this

arameter was introduced in models. D’Esterre et al. (2015) in-

estigated the influence of the time between onset and imaging

nd the time between imaging and recanalization, finding that

he former does not and the latter does influence the optimal

erfusion parameters thresholds to determine the final infarct.

emmling et al. (2015) proposed a multivariate generalized linear

odel that predicts the final infarct in a voxelwise fashion based

n CTP perfusion parameters and clinical parameters including a
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inary recanalization status and the onset-to-recanalization dura-

ion. It was trained and cross-validated on 161 subjects that un-

erwent CTP imaging and mechanical thrombectomy. In a simi-

ar vein, the ISLES 2016 & 2017 challenges ( Winzeck et al., 2018 )

nvited researchers to evaluate methods that predict the final in-

arct based on acute DWI and MR Perfusion imaging. The organiz-

rs provided publicly available training data and a blinded test set

or the validation. The challenge showed the competitive advan-

age of deep neural networks. Most methods use a voxelwise pre-

iction to estimate the lesion, but other approaches are possible:

ucas et al. (2018) demonstrate on a dataset of 29 subjects a novel

ethod that predicts the core and the perfusion lesion in a voxel-

ise fashion, but predicts the final infarct by interpolating between

he former segmentations in a learnt shape space. This allows in-

orporating specific domain knowledge in the training process –

hich improves the results in their validation – but also requires

everal assumptions – which might limit the performance if larger

raining sets are used. 

All approaches discussed so far depend on deconvolution as a

rst step, but there has been some work to avoid explicit decon-

olution. On one hand we can distinguish alternative perfusion pa-

ameters that do not require deconvolution, such as the first mo-

ent of the time-concentration curve ( Christensen et al., 2009 ). On

he other hand, we see approaches that aim at replacing the tradi-

ional deconvolution analysis with a learned alternative ( Ho et al.,

016; Hess et al., 2018 ). However, this approach seems to beg the

uestion, since during training the ground truth perfusion param-

ters are provided by deconvolution analysis. In our approach –

tarting from the native images and optimizing the network for the

est final infarct prediction – the optimal features and how to cal-

ulate them is inferred directly from the data. The disadvantage of

his approach is that those features no longer have a clear physi-

logical interpretation such as the perfusion parameters have, but

epending on the application, this might be a price worth paying.

ecently Pinto et al. (2018) proposed a method for the ISLES 2017

hallenge that uses, apart from the DWI image and the perfusion

arameters, also the native MR perfusion measurements to predict

he final infarct. They show that their method benefits from the

ative measurements, but the obtained results are not as good as

ther state-of-the-art approaches that did not include native mea-

urements, making it hard to assess the added value of the na-

ive measurements. The method did not take the reperfusion sta-

us or other treatment data into account, presumably because the

ataset was fairly homogenous, consisting of mostly early reper-

used patients. Yu et al. (2017) predict hemorrhagic transformation

n a voxelwise fashion from DWI and MR Perfusion imaging and

how that using both native modalities outperforms using only the

ermeability parameter. 

. Methods 

We propose to use a voxelwise classification approach, where a

eural network learns the relation between the final infarct sta-

us of a voxel (the output) and the CTP measurements and the

etadata (the input). The CTP measurements consists of the time-

ttenuation curves of that voxel, its neighboring voxels and the

oxel of the AIF. The metadata consists of four values: the time be-

ween stroke onset and CTP imaging, the time between CTP imag-

ng and the end of the mechanical thrombectomy, the mTICI scale

fter thrombectomy and the persistence of the occlusion at 24

ours CT angiography. 

.1. Preprocessing 

There is considerable variability in the acquisition protocol of

TP images and, due to the long acquisition time, the patient
ight move. During preprocessing, we account for both aspects,

iming to reduce the unnecessary variation that the network need

o cope with. First, if the CTP was acquired with gantry tilt, the CTP

mages are resampled to an orthogonal grid that has the same x-y

lane and an orthogonalized z-axis. Second, the CTP scan is motion

orrected by rigidly aligning the volumes with the first volume.

egistration is performed using Elastix, optimizing for the sum of

quared differences. Finally, the images are spatially downsampled

o 1.5 × 1.5 × 4 mm 

3 and temporally resampled to one image per

wo seconds. The rationale is that the original high spatial resolu-

ion might help the registrations, whereas for the perfusion anal-

sis, which has a notoriously low Signal to Noise Ratio (SNR), a

igh resolution would only slow down processing. If the CTP was

cquired in shuttle mode, i.e. with the patient continuously mov-

ng back and forth in the scanner resulting in variable scan times

er CTP volume, we account for this and resample the time series

uch that each volume corresponds to a single time point. 

The creation of the ground truth – i.e. the final infarct status

f each voxel in the CTP – and the selection of the arterial input

unction is described later in Section 3.1 . 

.2. Network 

Our network is an extension of the model proposed by

amnitsas et al. (2017) and has four different inputs. Each input

s followed by series of operations such as convolutions and up-

ampling, called the pathway, and finally the outputs of the path-

ays are concatenated and fed into a common pathway that gives

he voxelwise prediction. The first input is the CTP image which

as 3 spatial dimensions plus time. The input data is anisotropic,

ith a higher resolution in-plane than out-of-plane. However, from

 clinical perspective, there is no need to cover more distance in

he z-direction than in the other directions. Hence, we compen-

ate for this by using anisotropic kernels: the first pathway consists

f 6 convolutional layers: three layers with 48 filters of 3 ×3 ×1

nd three layers with 64 filters of 3 ×3 ×3. The second input is the

ownsampled CTP. The image is downsampled with a factor 3 in-

lane, resulting in voxels of 4.5 × 4.5 × 4 mm 

3 and which provides

he network a wider spatial context to base its prediction on. Af-

er downsampling, the voxels are almost isotropic, but the field of

iew of the CTP scans is typically not: in-plane the complete brain

s covered, but along the z-axis the brain coverage is usually lim-

ted (see also Section 4.5 ). Therefore we decided to use anisotropic

ernels to make the receptive field of the output neurons larger

n-plane. This second input’s pathway has the same architecture as

he first one and is followed by an upsampling operation to recover

he original resolution. The first and second pathway do not share

heir weights. The third input is the arterial input function (AIF),

hich is a one dimensional vector. This pathway consists of 2 con-

olution layers, each with 48 filters of 1 ×1 ×1, and an upsampling

peration. The last input is the metadata (1D) and this pathway

nly consists of an upsampling operation. At this point, the out-

uts of the four pathways have the same spatial dimensions and

re concatenated in the feature dimension. This resulting output is

ed through 3 convolutional layers with each a 1 ×1 ×1 kernel. The

rst two have 150 filters and the final one has 1 filter and gives

he prediction. 

In all convolutional layers, we use batch normalization

 Ioffe and Szegedy, 2015 ) and the PreLU activation function

 He et al., 2015 ). In total, this network has 774,787 trainable pa-

ameters. 

This network has a fully convolutional structure, which allows

o use dense inference and training. By predicting multiple ad-

acent voxels simultaneously, the computational efficiency is in-

reased because redundant calculation in the overlapping receptive
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Fig. 1. The proposed neural network. There are four inputs: the CTP (3D + time) the downsampled CTP (3D + time), the arterial input function (AIF, time) and the metadata 

(1D). The network has a fully convolutional structure, where each input can go through a series of convolutional layers before being upsampled to the original resolution. The 

outputs of the four pathways are concatenated and are passed through 3 convolutional layers with a 1 ×1 ×1 kernel (acting as fully connected layers) before the prediction 

is given. 
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fields of the output neurons are avoided. We use an output size of

21 ×21 ×5, giving the architecture visualized in Fig. 1 . 

The input intensities are normalized by first clipping them to

the range of -100 to 10 0 0 HU and then linearly transforming them

to have mean of zero and a standard deviation of one. 

During training, the network is optimized by stochastic gradient

descent with Nesterov momentum for the weighted cross-entropy,

with the positive class weighted ten times as heavy, resulting in

balanced training. The training samples are uniformly chosen from

within the intracranial volume and augmented by flipping samples

left/right, small rotations, Gaussian noise and a CTP specific aug-

mentation we introduced in ( Robben and Suetens, 2018 ). 

The CTP specific data augmentation exploits the fact that the

perfusion measurements are a linear time invariant system. This

means that, if the contrast injection was a bit later, both the AIF

and the CTP timeseries would show the same delay. Similarly, if

the injection was earlier, all curves would shift to the left. How-

ever, this has no influence on the actual tissue perfusion status or

the viability of the tissue. If the concentration of the iodine in the

contrast agent were a fraction higher or lower, the concentration

curves would change with the same fraction. But again, this has
 V  
o impact on the tissue status. Hence, we augment our training

ataset by applying a random time shift (earlier or later) and a

andom scaling of the attenuation variation. The shift is randomly

hosen between −4 and 6 time points (since our measurements

re discrete) and the scaling has a log normal distribution between

ith μ of 0 and σ of 0.3. 

The method is implemented in Python using Keras and Deep-

oxNet ( Robben et al., 2018 ). 

.3. Ablation study 

We want to measure the impact of the different design choices

nd hence we gradually ablate our method to understand how the

ifferent com ponents contribute to the performance. 

.3.1. The impact of no deconvolution 

To quantify the impact of the deconvolution-free approach we

enchmark a network working on the deconvolved timeseries.

o obtain the deconvolved time series, we use Tikhonov regular-

zed SVD-based deconvolution ( Fieselmann et al., 2011 ) with the

olterra discretization scheme ( Sourbron et al., 2007 ) – to which
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Fig. 2. Subject selection. 

Table 1 

Characteristics of the 188 included subjects from the MR 

CLEAN dataset. 

Mean (IQR) age [years] 62 (52 - 73) 

Men [%] 55 

Treatment with IV tPA [%] 87 

Intra-arterial treatment [%] 45 

Location of occlusion on CTA [%] 

ICA 27 

M1 67 

M2 5 

A1 0 

A2 1 

Mean (IQR) duration from 

stroke onset to imaging [min] 174 (108–239) 

imaging to end IAT [min] 180 (138–214) 

Mean (IQR) final infarct volume [ml] 78 (21 - 121) 

Recanalisation in IAT (mTICI 2B/3) [%] 67 
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e simply refer as deconvolution. The deconvolution has one hy-

erparameter, the relative regularization parameter λrel which de-

ermines the amount of filtering and which is set to 0.4. As the

econvolution is very noise sensitive, we first perform a spa-

ial Gaussian smoothing with an isotropic sigma of 2.5 mm. To

ake the comparison fair, we also test the proposed (i.e. the non-

econvolution based) network on this smoothed data - called Pro-

osed (smoothed) . The deconvolved time series are used as in-

ut to the network Proposed (deconvolved) . This network and its

raining is identical to the one described in Section 2.2 , with the

xception that the AIF is no longer provided and the CTP specific

ata augmentation is turned off. 

.3.2. The impact of spatial context 

Current clinical systems do not take the spatial context into

ccount to determine the tissue status of a voxel. We are inter-

sted in to what extent the spatial context affects the predictions.

ence we introduce two extra networks: One-voxel (smoothed)

nd One-voxel (deconvolved) . Both only have three 1 ×1 ×1 convo-

utions on the original resolution and do not use the subsampled

ersion and hence do not use spatial context. Otherwise, both are

dentical to the earlier introduced methods. 

.3.3. The impact of the CTP data augmentation 

We investigate the impact of our CTP specific data augmenta-

ion and train the proposed network also without the augmenta-

ion. 

.3.4. The impact of the metadata 

Our network not only uses the imaging data, but also the treat-

ent parameters. In current clinical practice, there is only a dis-

inction between core and penumbra – roughly corresponding to

mmediate successful thrombectomy and no treatment at all. The

dditional treatment parameters our method uses might improve

he accuracy of the predictions. To that end, we evaluate three

ariants of the proposed network. One that uses binarized mTICI

cores (0-2a vs 2b and 3), one that does not include time from on-

et to CTP and one that does not have time from CTP to end of

hrombectomy. 

.3.5. The impact of multi-scale input 

Our proposed network works on two scales on the CTP images.

amnitsas et al. (2017) showed the benefit of that approach for

arious segmentation tasks. We perform two ablation experiments,

ne where we remove the high-resolution pathway and one where

e remove the low-resolution pathway, to see if those conclusions

lso hold for our application. Both these networks have 405,283

arameters. 

. Experiments 

We evaluate the proposed method and its variants on the data

f the MR CLEAN trial (described in more detail in the next section,

ection 3.1 ). In all experiments, we do a five-fold cross-validation,

nd report the results aggregated over all the left-out subjects. The

yperparameters of the optimization are experimentally set based

n preliminary experiments on the first fold. 

.1. Dataset 

MR CLEAN was a multicenter study to investigate the benefit of

hrombectomy in acute ischemic stroke ( Berkhemer et al., 2015 ).

he study’s inclusion criteria are described in detail in the study

rotocol; in short: patients were randomized within 6 hours af-

er stroke onset and when a large vessel occlusion was identified

n the anterior circulation. In our work, we include all MR CLEAN
ubjects that had a baseline CTP of sufficient quality and a follow-

p non-contrast computed tomography (NCCT) that could be reg-

stered to the acute CTP. This results in 188 included subjects. The

election process is shown in Fig. 2 . The patient characteristics are

hown in Table 1 . 

The MR CLEAN study protocol prescribes follow-up imaging

ith NCCT at 24 hours and 5 days after onset. Where available,

e use the 5 day follow-up otherwise the 24 h follow-up is used.

he follow-up images were semi-automatically delineated and re-

iewed by an experienced reader ( Boers et al., 2013; Bucker et al.,

017 ). 

The follow-up NCCT images are registered to the acute CTP im-

ges. First a rigid registration between the follow-up and the acute

TP is performed. Afterwards, a non-rigid registration is done in an

ttempt to compensate for brain swelling due to edema. The found

ransformations are applied to the final infarct delineations. Finally,

e segment the cerebrospinal fluid (CSF) – in particular the ven-

ricles – from the acute CTP images, and exclude those voxels from

he transformed final infarct, under the reasoning that CSF cannot

nfarct and any overlap between CSF and final infarct is rather due

o misalignment. 

We manually select in each CTP image an arterial input function

AIF) and use those in all experiments. Hereto, we select the time

eries of the voxel that shows the largest increase in attenuation

oefficient and is located in an unaffected proximal artery. 

.2. Prediction of the final infarct 

The prediction of the final infarct is the most important capa-

ility of the network. For current clinical practice, the most impor-

ant metric is the volume of the final infarct, and hence we focus

n this metric and the difference in volume between the predicted
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volume and true volume. As predicted volume, we take the sum of

all predicted probabilities, multiplied with the volume per voxel. 

From a scientific point of view, the localization of the infarct is

also interesting, and hence we also report the Dice and the soft

Dice scores. The latter is like the standard Dice score, except that

the predictions are not binarized. Non-parametric paired signifi-

cance tests (bootstrapping) are used to test the significance of the

results. 

3.3. Prediction of core and perfusion lesion 

It is interesting to see how the metadata influences the predic-

tion of the network, in particular the difference between imme-

diate recanalization and no recanalization. To this end, we predict

for each subject in the test set the hypothetical final infarct vol-

ume in the case of early complete recanalization (mTICI 3 at 60

minutes) and in case of no recanalization at all. In the former sce-

nario, the predicted final infarct should correspond to the infarct

core at baseline imaging, whereas in the latter scenario, it should

correspond to the perfusion lesion. 

3.4. Influence of the AIF selection 

The prediction of the network depends on the AIF. To investi-

gate the sensitivity of the method on the AIF selection, we ran-

domly select 15 subjects and reannotate the AIF according to the

same guidelines, with more than 6 months between the first and

second annotation. We predict the final infarct volume for those

subject with both AIFs and compare the two predictions. 

4. Results and discussion 

Fig. 3 shows a scatter plot and a Bland-Altman plot of the true

and predicted volumes for all subjects in the testing folds using

the proposed method. The mean volume error is -2.8 ml (the pre-

diction is a slight underestimation) and the mean absolute volume

error is 36.7 ml. The mean Dice score is 0.48. A representative set

of predictions is shown in Fig. 4 . 

The achieved Dice and volume errors seem respectively very

low and high. We believe nevertheless that these are state-of-the-

art results on an inherently difficult problem. This is not an im-

age segmentation task, where all the relevant information is con-

tained in the input, but a prediction problem with a ground truth

that is defined on images acquired several days later. For exam-

ple, the ISLES 2017 challenge ( Winzeck et al., 2018 ) has a simi-

lar goal, namely predicting the final infarct from acute DWI and

MR perfusion imaging, and reported a mean Dice score of 0.32

the best result. Of course, a direct comparison between these val-

ues is not possible since the ISLES challenge had different modali-

ties (with especially the DWI imaging being very informative com-

pared to perfusion imaging) and a different population (mostly
Fig. 3. The true and predicted final infarct volumes for all subjects in the testing 

folds, using the proposed method. 
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o  
arly successful early recanalization, which results in small lesions

nd hence lower Dice scores), but it illustrates the difficulty of the

roblem. 

.1. The impact of spatial context, no deconvolution and data 

ugmentation 

Table 2 shows the mean Dice, soft Dice and absolute volume

rror of the proposed method and of the various ablated variants.

t shows a gradual decrease in performance, both for removing the

patial context as for working on the deconvolved data. The ben-

ficial effect of taking context into account is expected. Perfusion

maging is a noisy modality and suffers from artifacts which results

n – often visually – erroneous predictions. In some clinical studies,

he results given by the conventional voxelwise perfusion analysis

re manually corrected. We hypothesize that a human rater is able

o do so, because she takes spatial context into account. By provid-

ng spatial context, the network is able to do this as well, which

reatly improves results: the mean Dice score more than triples

nd the volume error drops almost 20%. Our network uses both

igh and low resolution versions of the CTP image simultaneously.

he ablation experiment shows that both are beneficial, with the

ow resolution a bit more important (i.e. the ablation experiment

ithout the low resolution pathway performs worst). 

The benefit of working on the native data is more remarkable.

t can be argued that, if we have a correct physical model, there is

o need to re-learn that model a second time from our own lim-

ted training data. From the perspective of physics, deconvolution

s the right way to approach the problem. However, the way that

econvolution should be regularized is not dictated by physics. We

ypothesize that a neural network can do deconvolution better

s it has a learned model of the noise and concentration curve

hape. We showed this earlier on simulated data ( Robben and

uetens, 2018 ) and see this now confirmed on real data: using the

ative data instead of the deconvolved data improved the mean

ice score significantly from 0.42 to 0.48. Note however that learn-

ng this deconvolution implicitly is data-intensive and the pro-

osed data augmentation is a necessary part, even with our rel-

tively large training set. 

Apart from the improved performance, a second advantage of

voiding the explicit deconvolution, is that the selection of the AIF

an become part of the network. In this work, we used manu-

lly selected AIFs for all experiments, but AIF selection is a diffi-

ult problem and has great influence on the deconvolution results.

owever, if the AIF is an input to the network, it becomes possible

o let the network learn to select the AIF from an input patch and

ave the AIF selection optimized in an end-to-end fashion, such as

as explored by Hess et al. (2018) . 

.2. The impact of the metadata 

Fig. 5 shows the volumes of the predicted core and penumbra

perfusion lesion minus core). It shows that the predicted final in-

arct volumes vary widely based on the treatment: the volume of

he penumbra is the difference in final infarct volume between fast

omplete recanalization and no recanalization. This is as expected

nd already widely reported in literature. 

In the ablation experiments, we also investigated the influence

f the metadata on the quality of the predictions. Table 2 shows

hat in all cases the model became less predictive, which shows

hat the model effectively uses the metadata. Leaving out the time

rom CTP to end of treatment has the largest influence, increasing

he mean absolute volume error with 12%. This shows that the net-

ork takes this information - and hence the growth of the lesion

uring this time - into account. Binarizing the mTICI and leaving

ut the time from onset to CTP have smaller but still significant
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Table 2 

Error metrics between the predicted and ground truth final infarct. A paired significance test is performed between the proposed method and its variants, with ( ∗) 

indicating P < . 05 and ( ∗∗) indicating P < . 005 . 

Method Mean soft Dice Mean Dice Mean absolute volume error (ml) AUC precision-recall 

Proposed 0.40 0.48 36.7 0.54 

Proposed (smoothed) 0.39 ( ∗∗) 0.45 ( ∗∗) 37.5 + 2% 0.53 

Proposed (deconvolved) 0.36 ( ∗∗) 0.42 ( ∗∗) 39.1 + 6% 0.50 ( ∗∗) 

One-voxel (smoothed) 0.21 ( ∗∗) 0.15 ( ∗∗) 45.4 ( ∗∗) + 23% 0.37 ( ∗∗) 

One-voxel (deconvolved) 0.17 ( ∗∗) 0.04 ( ∗∗) 48.6 ( ∗∗) + 32% 0.34 ( ∗∗) 

Ablation proposed no data augmentation 0.39 ( ∗) 0.46 ( ∗∗) 41.5 ( ∗∗) + 13% 0.50 ( ∗∗) 

binary mTICI 0.40 0.48 38.5 ( ∗) + 5% 0.53 

no time from onset to CTP 0.40 0.48 38.4 ( ∗) + 5% 0.54 

no time from CTP to end thrombectomy 0.39 ( ∗∗) 0.47 ( ∗) 41.1 ( ∗∗) + 12% 0.54 

no hi-res pathway 0.38 ( ∗∗) 0.44 ( ∗∗) 37.6 + 2% 0.50 ( ∗∗) 

no lo-res pathway 0.35 ( ∗∗) 0.41 ( ∗∗) 38.4 + 4% 0.52 ( ∗) 

Fig. 4. Predictions of the proposed method on a representative sample of subjects from the test set. The probabilistic predictions are overlayed in red on the follow-up NCCT 

scan whereas the ground truth final infarct is outlined in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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ffect, both increasing the error with 5%. The importance of time

rom CTP to end of treatment and the precise mTICI scores were al-

eady earlier reported in literature ( Wheeler et al., 2015; D’Esterre

t al., 2015; Kemmling et al., 2015 ). The influence of time from

nset to CTP is more surprising, as earlier literature reported this

oes not have an influence ( D’Esterre et al., 2015 ). 

.3. Influence of the AIF selection 

Fig. 6 shows the predicted final infarct volumes for 15 subject

ith two different AIFs. The mean absolute volume difference be-

ween the predicted volumes is 7.80 ml, and the correlation is 0.93.

his shows that the influence of the manual AIF selection on the

olume prediction is limited compared to the actual volume er-

or of the predicted final infarcts. Nevertheless, the error is large

nough to make future research in automated AIF selection worth-

hile. 
r
.4. The quality of the ground truth 

An important limitation of this study is the quality of the

round truth. First, follow-up imaging is always with NCCT, which

s less sensitive than MR. Second, the follow-up NCCT scans are a

ix of images acquired after 24 hours and after 5 days. It is re-

orted, on the MR CLEAN dataset, that the lesion still grows af-

er 24 hours: Bucker et al. (2017) report that between these time

oints the median infarct volume increases from 42 ml to 64 ml

nd more than half of the subjects witness more 30% relative

rowth. This means that there is variability on our ground truth,

urely due to the moment of follow-up acquisition. Part of this vol-

me increase is likely due to genuine delayed tissue death and part

s due to edema, which is most pronounced at 3 to 5 days after the

troke. Finally, the brain edema increases the volume of the final

nfarct, and hence might result in overestimated core and penum-

ra volumes even though we tried to correct for this by non-rigid

egistration and CSF exclusion. 
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Fig. 5. The predicted core and penumbra volumes for all subjects in the testing 

folds, using the proposed method. 

Fig. 6. The predicted final infarct volume of 15 randomly selected subjects with the 

AIF annotated twice by the same obsever, the second time more than six months 

later, illustrating the limited influence of the manual AIF selection on the final in- 

farct prediction. 
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We perform an additional analysis in the subgroup that had

follow-up imaging at 24 hours. For the final infarct prediction task,

those 50 subjects have a mean volume error of -4.7 ml, compared

to -2.8 ml for the total population. The mean absolute volume error

is 42.3 ml, compared to 36.7 ml for the total population. These dif-

ferences are not statistically significant, something we mainly at-

tribute to the limited number of subjects and to the lower power

of the unpaired significance testing compared to paired testing. 

4.5. Limited brain coverage 

Our dataset is acquired on a variety of scanners, and not all

of them have full brain coverage during CTP acquisition. We find

that the coverage along the axial direction is on average 65 mm,

with the first and third quartiles being 40 and 96 mm. As a conse-

quence, our ground truth final infarct volume is also limited to this

field of view, resulting in an underestimation of the final infarct

volume. The correlation between the final infarct volume within

the CTP volume and the scan length is 0.16. 
. Conclusion 

We have shown that a neural network can learn to predict

he final infarct volume from acute CTP images and the treat-

ent parameters. This might help clinicians to evaluate the vari-

us treatment options. We performed a series of ablation exper-

ments, which tested the contribution of the various components

f the method and showed the benefit of our deconvolution-free

pproach. 
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