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Abstract

The difficulty of obtaining annotations to build training databases still slows

down the adoption of recent deep learning approaches for biomedical image

analysis. In this paper, we show that we can train a Deep Net to perform

3D volumetric delineation given only 2D annotations in Maximum Intensity

Projections (MIP) of the training volumes. This significantly reduces the

annotation time: We conducted a user study that suggests that annotating 2D

projections is on average twice as fast as annotating the original 3D volumes.

Our technical contribution is a loss function that evaluates a 3D prediction

against annotations of 2D projections. It is inspired by space carving, a classi-

cal approach to reconstructing complex 3D shapes from arbitrarily-positioned

cameras. It can be used to train any deep network with volumetric output,

without the need to change the network’s architecture. Substituting the loss is

all it takes to enable 2D annotations in an existing training setup. In extensive

experiments on 3D light microscopy images of neurons and retinal blood vessels

and on Magnetic Resonance Angiography (MRA) brain scans, we show that,

when trained on projection annotations, deep delineation networks perform as

well as when they are trained using costlier 3D annotations.
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1. Introduction

Computed Tomography and Magnetic Resonance Scanners can now produce

high resolution images, revealing fine details of vasculature for whole organs.

This holds the promise of a systematic analysis of the vascular networks of the

brain, or lung, which could open new diagnostic possibilities and give new in-

sight into mechanisms underlying many diseases. For example, vasculature has

been shown to carry information about brain tumor malignancy Bullitt et al.

(2005), while vascular changes play an important role in pulmonary hyperten-

sion Rol et al. (2017), Shimoda and Laurie (2013), and in neurodegenerative

diseases Sweeney et al. (2018). However, manually analyzing the finest struc-

tures of a whole organ is impractical due to the vast amounts of data that

would need to be inspected. Similarly, modern microscopy techniques enable

imaging neural networks at the scale of a whole mammalian brain. Unfortu-

nately, due to the immense amount of data this produces, the feasibility of

manual reconstruction is limited to tens of neurons while the ability to simulate

signal propagation in artificially generated models of neural tissue reaches tens

of thousands of neurons Markram et al. (2015). Automated reconstruction of

connectivity maps would help bridge this gap, enabling simulation of large-scale

models of real neural tissue.

Machine Leaning based techniques have demonstrated their effectiveness for

the purpose of reconstruction of curvilinear networks, like vasculature and neu-

ral networks, but usually require substantial amounts of annotated training data

to reach their full potential. Unfortunately, annotating complex topologies in

3D volumes by means of an inherently 2D computer interface is slow and te-

dious. The annotator must frequently rotate and move the volume to verify

the correct placement of control points and to reveal occluded details. Not only

is this inherently slow, but such interactions require continuously re-displaying

large amounts of data, which often exceeds the capacity of a workstation, thus

introducing further delays.
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Figure 1: Training a neural network to delineate 3D structures using 3D (a) and 2D (b)

annotations. (a) The standard approach is to manually or semi-automatically delineate struc-

tures in 3D volumes to create ground-truth data, which can then be used to train a deep

network. (b) Ours is to delineate in 2D in 2 or 3 Maximum Intensity Projections, which is

easier and faster. The projections are used to compute a loss function that exploits these 2D

annotations. We use it to train the network, and achieve similar performance with half as

much human intervention.

In this paper, we show that we can train a Deep Net to perform 3D volu-

metric delineation given only 2D annotations in Maximum Intensity Projections

(MIP), such as those shown on the left of Fig. 1. This is a major time-saver

because delineating linear structures in 2D images is much easier than in 3D

volumes and involves none of the difficulties mentioned above. Furthermore,

semi-automated annotation tools work more smoothly on 2D than on 3D data.

In short, limiting the annotation effort to the projections leads to a considerable

labor saving without compromising the performance of the trained network.
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More specifically, we introduce a loss function that penalizes discrepancies

between the maximum intensity projection of the predictions and the 2D anno-

tations. We show that it yields a network that performs as well as if it had been

trained using full 3D annotations. The loss is inspired by space carving, a clas-

sical approach to reconstructing complex 3D shapes from arbitrarily-positioned

cameras Kutulakos and Seitz (2000). Space carving exploits the fact that visual

rays corresponding to background pixels in 2D images cannot cross any fore-

ground voxel when passing through the volume. Conversely, rays emanating

from foreground pixels have to cross at least one foreground voxel. In our case,

the rays are parallel to the projection axes. The network is trained to minimize

the cross-entropy between the 2D annotations and the maximum values along

the rays.

Our contribution is therefore a principled approach to reducing the annota-

tors’ burden when training a Deep Net by enabling them to trace in 2D instead

of 3D, while still capturing the full 3D topology of complex linear structures.

We demonstrate this on 3D light microscopy images of neurons and retinal

blood vessels and on Magnetic Resonance Angiography (MRA) brain scans. An

earlier version of this approach first appeared in Koziński et al. (2018). We

present here an extended version that includes a user study that demonstrates

the effectiveness of our approach, as compared to more traditional ones.

2. Related Work

Delineation is a broad research topic. It operates on structures as different

as roads (Mattyus et al., 2017, Mnih, 2013, Mnih and Hinton, 2010, Wegner

et al., 2013), blood vessels (Ganin and Lempitsky, 2014, Maninis et al., 2016),

bronchi (Meng et al., 2017), neurites (Peng et al., 2017, Sironi et al., 2016), and

cell membranes (Mosinska et al., 2018), imaged using many different modalities.

In this paper, we specifically address 3D delineation where the input is a volume,

as opposed to a collection of ordered, but unregistered slices (Funke et al., 2012).

Early approaches to delineation of 3D curvilinear structures relied on filters
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manually designed to respond strongly to tubular segments (Frangi et al., 1998,

Law and Chung, 2008, Sato et al., 1998, Turetken et al., 2013). They do not

require to be trained, but their performance degrades when the structures be-

come irregular and the images noisy. This has led to the emergence of machine

learning-based methods that can cope with such difficulties, given enough an-

notated data (Becker et al., 2013, Breitenreicher et al., 2013, Meng et al., 2017,

Peng et al., 2017, Sironi et al., 2016). The most recent ones of these (Meng et al.,

2017, Peng et al., 2017) rely on a combination of Deep Learning and adaptive

exploration of the light microscopy images, and Computed Tomography (CT)

scans.

However, using Machine Learning, and Deep Learning in particular, requires

large amounts of annotated training data. Furthermore, annotating 3D stacks

is much more labor-intensive than annotating 2D images. Only true experts,

whose time is precious, are able to orient themselves and follow complex struc-

tures in large volumes (Peng et al., 2014). Until now, this problem has been han-

dled by developing better ways to visualize and interact with image stacks (Peng

et al., 2017, Vitanovski et al., 2009). Çiçek et al. (2016) annotated only a

few slices of a volume and computed the loss using only them. The technique

of Peng et al. (2014), like ours, allows the annotator to trace a linear structure

in a maximum intensity projection and then attempts to guess the value of the

third coordinate using a simple heuristic. While effective when the structures

are relatively sparse, this can easily get confused as the scene becomes more

cluttered.

There are numerous approaches to limiting the annotation effort associated

to segmentation training include weak supervision in terms of scribbles (Can

et al., 2018, Lin et al., 2016), bounding boxes (Dai et al., 2015, Khoreva et al.,

2017, Rajchl et al., 2017, Shah et al., 2018, Zhao et al., 2018), image-level

labels (Ahn and Kwak, 2018, Jing et al., 2018, Papandreou et al., 2015, Pinheiro

and Collobert, 2015), or any combination thereof. They often involve iterative

estimation of the unknown full annotations together with network parameters in

an Expectation-Maximization-like procedure, where additional prior knowledge
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is specified in form of a Markov Random Field. It has been shown that, for

some tasks, networks trained with weak supervision attain performance very

close to that of fully supervised networks (Can et al., 2018). These approaches

to making 2D annotation easier and faster could be used in conjunction with

our approach, resulting in a further decrease of the labeling workload.

In most existing 3D segmentation algorithms we know of, training is per-

formed using the standard cross entropy. Specific connectivity loss functions

have been designed for reconstructing neural morphologies from electron mi-

croscopy data (Briggman et al., 2009, Funke et al., 2018) with the goal of pro-

moting correct connectivity of the cells over spatial segmentation accuracy. By

contrast, our loss function is intended for enabling training on 2D annotations.

The originality of our approach is to introduce a method that relies solely on

2D annotations in Maximum Intensity Projections, yet captures the 3D struc-

ture of complex linear structures when the projections are used jointly.

3. Method

3.1. From 3D to 2D Annotations

Let us first consider the problem of training a neural network fw, parame-

terized by weights w, to segment linear structures within 3D image stacks, given

a training set T of pairs (x, ỹ), where each 3D image x is accompanied by the

corresponding volumetric ground-truth annotations ỹ. We denote the elements

of x and ỹ by xijk and ỹijk, where i, j, k index the positions of the elements

within the volumes. The ground-truth labels take a value in the set {1, 0,∅},

which indicate the presence of a linear structure in voxel i, j, k if ỹijk = 1, the

absence of a linear structure if ỹijk = 0, and uncertainty of the annotator if

ỹijk = ∅. Delineation can then be cast as a binary segmentation problem by

simply ignoring the voxels labeled as ∅ during training. The network output

y = fw(x) has the same size as the input and contains probabilities of presence
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of a linear structure in each voxel. To train the network, we find

arg min
w

∑
(x,ỹ)∈T

∑
i,j,k

L(fw(x)ijk, ỹijk) , (1)

where fw()ijk denotes voxel i, j, k of the prediction, and the loss L(y, ỹ) is taken

to be the cross entropy C (y, ỹ) = [ỹ = 1] log y + [ỹ = 0] log(1 − y), where [·]

is the Iverson bracket. As discussed in the introduction, the drawback of this

approach is that generating the ground-truth labels ỹ in sufficient numbers to

train a deep network is tedious and expensive when operating on large volumes.

To alleviate this problem, we reformulate the loss function of Eq. 1 so that

it can exploit annotated Maximum Intensity Projections (MIPs) of the input

volumes. A MIP of volume x along direction i, which we denote as xi, is a

2D image with elements xi
jk = maxi xijk. Annotating MIPs is easy when the

structures of interest have high intensity and are clearly visible in the projec-

tions. A MIP annotation ỹi of the projection xi is a 2D image with elements

ỹijk ∈ {1, 0,∅}, where the labels have the same interpretation as the ones used

for annotating in 3D. MIPs of the volume along the directions j and k, and their

annotations, are defined similarly.

The key property of MIP annotations, is that ỹijk = 0 tells us that all

voxels of the input column jk contain background. To see that the property

really holds, let us assume an idealized case where the Maximum Intensity

Projection operation, and the act of annotation, preserve the linear structures.

In other words, we assume that, if the training volume contains an image of

a linear structure in any voxel of column jk, then this linear structure will

necessarily be visible in the Maximum Intensity Projection, in pixel xi
jk, and

will be annotated as foreground in the MIP annotation, so that ỹijk = 1. Under

these assumptions, by De Morgan’s law, ỹijk 6= 1 implies that no voxel of the

column jk is of foreground class.

It is exactly this property that enables establishing a link between training on

MIP annotations and space carving. In space carving, a single background pixel

of an image of a 3D scene is used to classify many voxels of scene reconstruction

as background, effectively carving out the reconstructed shape. When training a
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network on MIP annotations, a pixel annotated as background could be used to

constrain many voxels of the prediction to belong to the background class, thus

generating an error signal for these voxels. In practice, instead of enforcing this

constraint directly, we formulate a loss function that capitalizes on this observa-

tion implicitly. To that end, we define the max-projection f i
w(x) along direction

i of the network output as the image with elements f i
w(x)jk = maxi fw(x)ijk.

We proceed similarly for directions j and k. We then define the loss as∑
(x,ỹ)∈T

(∑
jk

L
(
f i
w(x)jk, ỹ

i
jk

)
+
∑
ik

L
(
f j
w(x)ik, ỹ

j
ik

)
+
∑
ij

L
(
fk
w(x)ij , ỹ

k
ij

))
. (2)

To see the analogy to space carving, note that, by its definition, f i
w(x)jk upper

bounds the predicted probability of presence of a linear structure in column jk.

Eq. 2 penalizes large values of this upper bound whenever ỹijk = 0. In other

words, a single background label in a 2D annotation results in minimization

of a whole column of predictions, mimicking space carving. When ỹijk = 1,

minimizing the loss increases the largest prediction in the column. The latter

one might be placed off a linear structure, but it is then likely to be penalized

by a component of the loss defined for another projection.

As only the maximal element in each row, column, and tube contributes

to the predicted projection, the derivatives of the loss (2) with respect to the

predictions are zero for all the elements of the volume, except for the maximal

ones. In other words, the gradient tensor of the loss is very sparse. In theory, this

should detract from the effectiveness of the gradient-based training procedure.

In practice, the nonzero elements are not distributed randomly over the gradient

tensor, but penalize the strongest wrong predictions in their rows, columns,

and tubes, as explained above. As will be shown in sections 4.2.3 and 4.3,

the networks trained with 2D annotations perform on par with ones trained

on the full 3D annotations and the space carving mechanism seems to be the

secret behind this surprising result. This hypothesis is supported by the fact

that, in our experiments, networks trained on slice annotations deliver inferior

performance even though the loss gradient is equally sparse in both methods.
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Figure 2: When training on MIP annotations, using volume crops (brown cube) may lead

to situations where, a crop of a MIP annotation (brown rectangle) contains labels of linear

structures from outside of the volume crop (marked with green arrows). This annotation noise

could adversely influence performance of the trained network.

3.2. Visual Hull for Training on Cropped Volumes

Due to memory limitations, the annotated training volumes are typically

cropped into sub-volumes and the MIP annotations can be cropped to match.

However, the cropped annotations may then contain labels for structures located

outside the volume crop, as illustrated by Fig. 2. To reduce the influence of these

extraneous annotations, we use another element of the space carving theory, the

visual hull h. h is a volume containing the original one, and constructed from its

projections (Kutulakos and Seitz, 2000). A toy example of a visual hull created

from 2D projections of a volume is presented in Fig. 3(a). We define it more

precisely below.

We first introduce the definition of the hull for the classic, binary case. Given

three orthogonal MIP annotations ỹi, ỹj, ỹk, with elements ỹijk, ỹ
j
kk, ỹ

k
ij ∈ {0, 1},

we define the hull h as a binary volume with elements

hijk =

1 if ỹijk = 1 ∧ ỹjik = 1 ∧ ỹkij = 1,

0 otherwise.

(3)

By construction, an element of the hull hijk = 1 if and only if all of its pro-

jections are labeled as foreground. In our context, a foreground voxel outside

a crop only produces an incorrect label in a single projection, as demonstrated

in Fig. 2. As shown in Fig. 3(b), we can eliminate such false positive labels by
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Figure 3: Handling cropped volumes. (a) A 3D volume with three foreground voxels, the

annotations of its MIPs in green, and the visual hull computed from these in blue. (b) The

volume has been cropped so that only the left half remains. The annotations have been

cropped to match, leaving a single blue voxel in the visual hull. Reprojecting it into the MIPs

lets us eliminate the extraneous annotations, indicated with red arrows. (c) However, there

are situations such as the one depicted here, where some will survive.

projecting the visual hull back to the 2D annotations and discarding the labels

that fall outside of the projection of the visual hull. However, this technique

fails to eliminate these false positive labels, for which in each of the remaining

projection annotations another positive label exists with the same coordinate

along the common dimension. Such situation is illustrated in Fig. 3(c). Our

experiments show that such rare events have little impact on the performance

of the trained network.

As stated in section 3.1, in practice our annotations are defined in terms of a

ternary set of labels, with the additional label ∅, allowing the annotator to skip

labeling a pixel if he is not certain of its class. In our experiments, we also use

this additional label to create margins around thin annotations of centerlines of

linear structures, in order to account for the ambiguity in defining the latter.

In order to apply the visual-hull-based technique to eliminate false positive

10



labels from such ternary MIP annotations, we reduce the number of classes

in the annotations to two when constructing the visual hull. More precisely,

we consider the foreground label and the label encoding the uncertainty of the

annotator as positive, and the background label as negative. Then, for each

projection annotation, we project the hull along the same direction and suppress

all the positive and uncertainty labels that collide with the negative class in the

projection of the hull. In other words, we propagate the background labels

between projections via the visual hull.

In the experiments presented in section 4 we train a deep network on 3, 2 or 1

MIP annotations per volume. The definition of the visual hull presented above

trivially generalizes to the 2-MIP cases, and the procedure is not performed

when only 1 MIP annotation is used.

3.3. Limitations of our Method.

As mentioned above, the main requirement for our approach to be effective

is that the target structures be clearly visible in the projections, so that 2D

annotation is faster and easier than its 3D counterpart. This property is hard

to quantify but easily assessed by visual inspection of the data. Ideally, the

structures of interest should be brighter or darker than other structures visible

in the image, which is the point of most staining techniques. However, the

presence of a few bright background objects occluding small portions of the

structures of interest is typically not an issue because our approach is robust to

small disruptions in the annotations.

In addition to being visible, the target structures must have 3D shapes such

that their 2D projection is informative. This excludes structures with extensive

self-occlusions or numerous holes and concavities. In difficult cases, it would help

to split the volume into smaller chunks before projecting and to find projection

directions that best reveal the structures of interest, as will be discussed in the

following section.

In Section 4, we will show that our training method is effective for the delin-

eation neurons and blood vessels in 2-photon and confocal microscopy as well as
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axial projections oblique projections

Figure 4: Left: axial projections of a confocal microscopy image of retinal veins. Two of the

three projections are very cluttered. Right: a pair of orthogonal, non-axis-aligned projections

of the same volume, much easier to annotate. The actual projection directions are visualized

above.

in Magnetic Resonance Angiography volumes. Additional examples of suitable

data include Tomography images of airways and lung vasculature in thoracic

CT images. By contrast, we found annotating mitochondria in projections of

electron microscopy images very difficult.

3.4. Projections along Arbitrary Directions

In some modalities, the volumic distribution of target structures is anisotropic,

either due to scale differences across directions or due to specificities of the im-

aged specimen itself. For example, the retinal veins shown in Fig. 4 are densely

packed along the z direction. This results in many occlusions with one vein hid-

ing the other and makes the axial projection much harder to annotate. As stated

above, one way around this problem is to split the volume into smaller subvol-

umes and annotate the less cluttered projections of the subvolumes. However,

that increases the number of projections that require annotation and therefore

the time-saving our method can deliver. Another way is to project the volume

along directions that do not align with coordinate axes. We will show in the

results section that this yields a substantial performance improvement.
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When done naively, projecting a volume along an oblique direction involves

rotating it in 3D and projecting its rotated version. In the case of sandwich-

shaped volumes whose z dimension is much smaller than the other two, like

the retina of Fig. 4, storing the rotated copies require much more memory than

storing flattish originals. Rather than rotating and projecting, we therefore

perform the projection by tracing lines through the original volume. We trace

one line through each voxel of these faces of the volume, the normals of which

give a positive scalar product with the projection direction. For each such line,

we retain the largest of all the voxel values that the line traverses as the color

of the projection. Like ordinary max-projection, this projection mechanism is

differentiable, and can be used to compute our loss function (2).

Performing the tracing line-by-line requires random access to the input vol-

ume, which could slow down the computation of the projections. We therefore

perform the projection voxel-by-voxel. More precisely, we first initialize an

empty projection, and then, for each voxel of the volume, compute the pixel to

which it projects. We set the pixel to the minimum of its current value and

the value of the projected voxel. This algorithm is easily parallelizable and can

be used for computing projections of volumes that are too large to fit in the

memory, by processing a single slice at a time.

We selected the projection direction manually. For the data presented in

Fig. 4, where the vessels lie roughly in the xy plane, a pair of orthogonal direc-

tions inclined at ∠45 to the z-axis exposed the vessels well. However, a method

for automatic identification of the best projections to annotate would help han-

dling the use cases where very large volumes are stored on a remote server,

making interactive selection prohibitively slow, or where the imaged structures

have very complex topology, making the choice of the optimal projections con-

fusing. We leave the exploration of this path for future research.

3.5. Implementation

In practice, we implemented fw as a U-Net style network (Ronneberger

et al., 2015). Specifically, we used the network presented in Fig. 5. We only
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Figure 5: The U-Net-style architecture used in our experiments. B(nin, nout) denotes a

block that includes a convolution with nin input features and nout output features, Batch

Normalization, ReLU, another convolution with nout features both in the input and output

feature map, Batch Normalization, ReLU and spatial dropout with probability 0.1. MP

denotes max pooling in windows of diameter 2, and stride 2. UP denotes a sequence of

a convolution with two times less output than input features and stride 2. A circle denotes

concatenation of its inputs. C(nin, nout) denotes a convolution with nin input and nout output

features. The receptive field of this network has a diameter of 44 voxels.

used two max-pooling operations instead of the usual four, which resulted in

a more compact network that fits in memory even with larger volume crops.

In all our experiments, we trained the network for 200K iterations, using the

ADAM update scheme (Kingma and Ba, 2015) with momentum of 0.9, weight

decay 10−4 and step size 10−5.

4. Experimental Evaluation

4.1. Datasets

We tested our approach on four data sets that differ in terms of the imaged

tissue, the acquisition modality and the image resolution. There are substantial

variations between these datasets with respect to the density of the structures

of interest, their appearance, and the amount of clutter originating from ex-

traneous objects. Together, they constitute an exhaustive benchmark for 3D

delineation.

Axons. The dataset comprises 16 stacks of 2-photon microscopy images of

mouse neural tissue, with sizes ranging from 40× 200× 200 to 136× 322× 500

voxels and a resolution of 0.8 × 0.26 × 0.26 µm. The images were acquired in
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Figure 6: Results on our four datasets, from top to bottom, axons, retinal blood vessels, brain

vasculature in MRA scans, and neural tissue in mouse brain. (a) 2D annotations in 3 MIPs

of a test volume. The foreground centerline annotations are marked in white and the regions

to be ignored around them in gray. (b) Input test image volume. (c) Output segmentation.

vivo, from a mouse with a translucent window implanted in the scalp. We split

the data into a test set of two volumes of size 136×233×500, and a training set

of 14 smaller volumes. The top row of Fig. 6 depicts one of the test volumes.

Retina. The dataset is made of two confocal microscopy image stacks depicting

retinal blood vessels. The stacks have a size of 1024× 1024× 110 voxels and a

resolution of 0.62 µm. We use one of them for training and the other, depicted

in Fig. 6, for testing. Since most vessels are located within a 50-pixel high XY
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slice, MIPs in the X and Y directions are very cluttered. Therefore, we split

the volume into 16 subvolumes, sized 256 × 256 × 110 voxels, and annotated

their MIPs. In other words, we also traced the vertical faces of the smaller

volumes. This only requires annotating 6 additional 1024 × 110 images, which

is still fast. The middle row of Fig. 6 describes both our 2D annotations and

the segmentation results for the test volume.

Angiography. This set of MRI brain scans (Bullitt et al., 2005), one of which

is shown in Fig. 6, is publicly available. It consists of 42 annotated stacks, which

we cropped to a size of 416×320×128 voxels by removing their empty margins.

Their resolution is 0.5×0.5×0.6 mm. We randomly partitioned the data into 31

training and 11 test volumes. As in the case of the retinal vessels, we decreased

the visual clutter by splitting each volume into four 208×160×128 subvolumes

for which we produced 2D annotations. This requires annotating an additional

416× 128 image and a 320× 128 one for each training volume. The bottom row

of Fig. 6 describes both our 2D annotations and our results on one of the test

stacks.

Brain. The dataset is a part of a 2-photon microscopy scan of a whole mouse

brain. It contains 14 stacks of size 250×250×200 voxels and a spatial resolution

of 1.0 × 0.3 × 0.3 µm. Compared to the Axons dataset the volumes are more

diverse since they were pooled randomly from different brain regions. We use 10

stacks for training and 4 for testing. The last row of Fig. 6 depicts an example

volume.

All the manual annotations are expressed in terms of 2D and 3D centerlines

of the underlying structures. We then use a pixel-width of 11 for Axons, Retina

and Brain datasets, and 7 for the Angiography volumes, to define the area to ig-

nore around the centerline when computing the loss, as discussed in Section 3.1,

as well as to compute the visual hulls, as described in Section 3.2.
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Table 1: The total time needed to complete annotations of the whole Mouse Brain dataset in

the user study.

Annotation method Annotation time Performance

[min] [% 3D time] [Dice score]

Annotating in 3D 609 100 80.2

Annotating 3 2D MIPs 387 64 80.0

Annotating 2 2D MIPs 277 45 80.0

Annotating 1 2D MIP 152 25 49.2

4.2. User Study

The usefulness of our approach is predicated on the claim that annotating

linear structures in 2D is much easier than doing it in 3D, while the two annota-

tion types give equally good results when used for training. To substantiate this

claim, we conducted a user study involving 15 PhD students used to performing

such delineation for research purposes. We asked them to annotate one volume

from the Brain dataset in 2D, and another one in 3D. The annotation was per-

formed using the Fiji Simple Neurite Tracer plugin (Frangi et al., 1998). We

present the analysis of the data collected in the study below. In subsection 4.2.1

we demonstrate that switching to annotating in 2D enables annotating the data

set twice as fast as in 3D. In subsection 4.2.2 we show that, the 2D annotations

are nevertheless consistent with the 3D ones. Finally, in subsection 4.2.3 we

demonstrate that, when used for training with our method, they yield networks

performing on par with ones trained on the full 3D annotations.

4.2.1. Efficiency of MIP annotation

To estimate the annotation workload we recorded the wall-clock time it took

the participants to complete their tasks. We present the results in Fig. 7. An-

notating three projections per volume was quicker than performing full three-

dimensional annotations for all but two volumes, and annotating just two pro-

jections was at least two times quicker for all but four volumes. The few cases

where annotating projections took longer show that individual times are not a

reliable measure of annotation efficiency, as they include a high dose of random-
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ness. They are influenced by many factors, including personal predispositions,

familiarity with the task and the tool, whether the annotator was asked to per-

form the 3D or the 2D annotation first, and random events, for example, loosing

concentration or a crash of the annotation tool. However, meaningful patterns

emerge from the data as a whole. This is best illustrated in Table 1, containing

aggregated times. Annotating all 15 volumes in 3D took the participants of our

user study 10 working hours in total. The time needed to label the dataset in

2D was 6.5 hours, or 65% of the 3D annotation time, when annotating 3 MIPs

per volume. This could further be reduced to 45% by annotating only two pro-

jections per volume, and to 25% by annotating only one. The differences in the

average time needed to annotate each of the views stem from the non-isotropy of

the data. The scans have lower resolution along the z axis than in the xy-plane.

Additionally, the sizes of the annotated volumes along these dimensions differ.

4.2.2. Quality of the 2D annotations

The results of our user study suggest that annotating a dataset in 2D re-

quires two times less work than doing it in 3D. But are the 2D annotations

equally good as the 3D ones: 2D projections carry less information than the

original 3D data and one might wonder if this affects the quality of the 2D

annotations. To answer this, we evaluated the quality of the 2D projection an-

notations produced in our user study by comparing them to the 3D annotations.

More precisely, we projected the 3D annotations and compared the 2D MIP an-

notations to the resulting projections. We computed the precision P and recall

R of the 2D annotations with respect to the projections of the 3D annotations,

defined as P2D3D =
∑

ij [ỹ
2D
ij =1][ỹ3D

ij =1]∑
ij [ỹ

2D
ij =1]

and R2D3D =
∑

ij [ỹ
2D
ij =1][ỹ3D

ij =1]∑
ij [ỹ

3D
ij =1]

, where [·]

is the Iverson bracket, and the summation is over all pixels of the projection.

We found P = 75% and R = 70% indicating reasonable consistency. Given that

the annotations are one-pixel-thick centerlines, some of the inconsistent annota-

tions might simply be shifted by a small distance, while others may be missing

altogether. To investigate this, we checked what percentage of annotations of

one type is within a distance of no more than d pixels to the closest annotation
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Figure 7: Annotation times captured during the user study. The volumes of the mouse brain

dataset were annotated both in 3D and in 2D by different users to ensure that the users are

not familiar with the stack they were annotating. A pair of annotation times is represented

as a single point in each of the plots. Plot (a) presents the time needed to annotate 3 MIPs

in 2D, the time needed to annotate 2 MIPs is presented in plot (b), and plot (c) depicts the

amount of time necessary to annotate 1 MIP for each training volume.

of the other type. The results are presented in Fig. 8. We vary d between 1

and 10 and observe that over 95% of all 2D annotations are within a distance

of 3 pixels from a projection of a 3D annotation, and vice versa. The results

suggest that less than 5% of annotations of each type are inconsistent with the

annotations of the other type.
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Figure 8: Left : Consistency of the 2D and 3D annotations produced for the Brain dataset in

our user study. The bars show the percentage of positive 2D labels within a distance d to the

closest projection of a positive 3D label, and the percentage of projections of 3D labels within

a distance of d to the closest 2D label, as a function of d. 95% of positive annotations of each

type have a corresponding positive annotation of the other type within a distance of less than

three pixels, indicating the generally high consistency between the 2D annotations and the 3D

ones. Right : An estimate of the percentage of 2D projection annotations inconsistent across

different projections of the same volume. The bars represent the fraction of 2D annotations

that have a corresponding annotation in another view at a distance of at most d pixels, as

a function of the distance d. 20% of the annotations appear to be inconsistent, but almost

never by more than three pixels.

We have shown that the 2D projection annotations are roughly consistent

with the 3D annotations. However, since the 2D annotations are performed in-

dependently for different projections, inconsistencies may still occur between the

2D annotations of different projections of the same volume. More precisely, each

pair of projections of a 3D volume has one dimension in common. Annotations

of the two projections are consistent, if for a foreground voxel of the volume, the

corresponding foreground pixels in both projection annotations have the same

coordinate along the common dimension. The concept is illustrated in Fig. 9.

To quantify the inconsistency of the annotations resulting from our user study,

we build up on the fact that a pair of isolated, inconsistent 2D annotations, like

the ones presented in Fig. 9, creates an empty visual hull. Therefore, the num-

ber of inconsistent 2D annotations can be estimated by constructing a visual

hull from the 2D projection annotations, projecting the hull back to 2D and
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Figure 9: A pair of consistent (a) and inconsistent (b) MIP annotations. A single pixel has

been annotated as foreground in each of the two projections (in red and blue). Consistent

annotations co-occur along the common dimension (z), while the inconsistent annotations do

not. For inconsistent annotations, the gradient of our loss function is distributed over a larger

number of voxels. The analysis of consistency of annotations performed independently for

different projections is presented in section 4.2.

counting the number of positive labels that fall outside of the hull projection.

As in the case of the hull-based filtration introduced in section 3.2, projections

of the hull may fail to eliminate some inconsistent annotations, which means

that the resulting estimate is a lower bound. Additionally, we can estimate the

degree of inconsistency by verifying how much the position of the inconsistent

annotations differs along the common dimension. That is, we estimate how

many annotations are inconsistent by no more than a given distance d by dilat-

ing the annotations with a structuring element of radius d before constructing

the hull. The results are presented in Fig. 8. This procedure confirms that at

least 20% of the annotations are inconsistent, but almost never by more than 3

pixels. The effect of training on inconsistent annotations is that the error sig-

nal that is focused on a single voxel when the annotations are consistent, gets

distributed over a larger number of voxels. However, as demonstrated below,

the performance attained by training on MIP annotations in the experiments

appears not to be affected by this level of inconsistency.

4.2.3. Performance

We have asserted the high quality of 2D annotations, and we now confirm

their utility for training a Deep Net. As stated above, even though they are
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highly consistent with the 3D annotations, they do contain less information.

Moreover, as explained in section 3.1, the proposed 2D loss function (2) yields

very sparse gradients with respect to the 3D output of the network, with only a

single nonzero value in each row, column, or tube. It is not clear a priori that

such sparse error signals are equivalent to the dense gradients obtained on full

3D annotations. To verify this, we compared performance of networks trained

on the two types of annotations. We express the performance in terms of the

maximum Dice score—the harmonic mean between the precision and recall—a

standard metric for binary segmentation evaluation, also called the F1 score.

In Table 1, we report these scores when using either 3D annotations or 2D

annotations, in three, two, or only one MIP. For training with a single MIP,

we used the annotation of the z -projection, (the top-left images in the leftmost

column of Fig. 6), and added the y-projection (bottom images in the same fig-

ure) when training on two MIPs. When using three, or even only two MIPs,

there is virtually no performance loss for a reduction in annotation time of 36,

and 55%, respectively. This validates our claim that the level of inconsistency

in the annotations, exposed in section 4.2.2 does not affect the final perfor-

mance: a network trained on the partly inconsistent projection annotations

almost matches the network trained on full 3D annotations in terms of perfor-

mance. This surprisingly high performance in spite of the sparsity of gradients

our method yield can be explained by analogy to space carving as mentioned in

section 3.1. The method finds its limits when we annotate only one MIP, which

results in a severe performance drop. This makes intuitive sense because, for

reasonably simple shapes, space carving can yield informative estimates from

only two views but not from a single one.

4.3. Further Quantitative Evaluation

In the user study of Section 4.2 the 2D and 3D annotations were generated

independently. We demonstrated that they were roughly equivalent, yielding

networks of similar performance when used for training. To evaluate the pro-

posed approach more extensively, for various imaging modalities and specimens,
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Table 2: Performance and the corresponding time savings.

Dice score Time saveda [%]

Axons Retina Angiography Mouse

UNet/3D annot. 75.4 81.5 77.6 80.2 0

UNet/3 MIP per volume 78.1 78.2 75.9 82.2 35

UNet/2 MIP per volume 75.0 77.8 74.8 80.0 55

arbitrary projectionsc — 80.8 — — —

UNet/1 MIP per volume 72.3 39.0 57.7 50.1 70

Turetken et al. (2013) 58.8 77.1 22.7 18.1 100

Çiçek et al. (2016) 70.8 75.8 74.1 67.5 35b

Sironi et al. (2016) 68.5 62.6 50.3 53.6 0

a The perc. of time saved w.r.t. 3D annotation, as estimated in the user study.

b Slice annotation was assumed to be equally time-consuming as MIP annotation.

c Training on annotations of the two non-axial projections from Fig. 4.

we perform experiments on the three remaining data sets. Instead of performing

the 2D annotations from scratch, we now use projections of the 3D annotations

as the annotations of 2D projections. This is not what we would do in practice

but it guarantees that their quality is exactly the same, while still enabling to

test the basic concept of training on less informative 2D annotations, with a

loss function yielding extremely sparse gradients.

We report our results in Table 2. In the rightmost column, we give an esti-

mate of the time saved by generating the 2D annotations instead of the 3D ones

on the basis of the above user study. When training on 3 or 2 MIPs per volume,

we obtain roughly the same results as when training on full 3D annotations—

slightly better for the Axons and Brain, and slightly worse for the Retina and

Angiography datasets—while, as shown in section 4.2, the corresponding anno-

tation effort is decreased by 45 and 55 percent, respectively. Note that in the

Retina case, training on the annotations of the two less cluttered, non-axial pro-

jections of the Retina yields better results than training on the cluttered axial

projections. This demonstrates the utility of annotating well-chosen projections

of non-isotropic data.

In short, training on 2 MIP annotations per volume enables attaining the
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same precision as training on the full 3D annotations, but at half of the an-

notation cost. These results are fully consistent with the findings of the user

study presented above. While offering further time saving, the reduction of

the amount of annotations used to a single projection per volume leads to a

substantial performance drawback. We leave it for future work to investigate

possible methods of preventing this adverse effect.

Whether using 3D or 2D annotations, these results rely on the modified

U-Net architecture discussed in Section 3.5. For completeness, we also list in

Table 2 the performance of three earlier methods. One alternative method of

limiting annotation effort required to train a volumetric Deep Net is to anno-

tate a small subset of slices of the original volume (Çiçek et al., 2016). In our

experiments, the number of annotated slices used to train the network using

this approach exactly matched the number of projections used in our method.

We always annotated axis-aligned slices in the middle of the volumes. For a

fair comparison, we also used the same network architecture in the two sets of

experiments. While for the Retina and Angiography datasets the performance

of a network trained on slice annotations closely matched that of the network

trained on MIP annotations, the performance gap is larger for the two datasets

depicting neural tissue. Moreover, it is often the case that the topology of lin-

ear structures is more easily disambiguated in the projections than in isolated

slices, which makes annotating the projections easier. We also compare the per-

formance of our method to a hand-crafted tubular structures detector (Turetken

et al., 2013) that does not require any annotations. Not surprisingly, it performs

well on the Retina dataset, used by the authors to develop the technique, but

fails to generalize to the other datasets, not considered when designing the de-

tector. The last baseline used in the experiments is a regression-based approach

to delineation (Sironi et al., 2016), trained on the original set of 3D annotations,

which our approach also outperforms. Its inferior performance might stem from

the fact that the GradientBoost algorithm at the heart of the approach is less

powerful than our neural network.

24



5. Conclusion

We have proposed a method for training DNNs to segment 3D images of

linear structures using only annotations of 2D maximum intensity projections

of the training data instead of full 3D annotations. We demonstrated that this

results in decreased annotation requirements without loss of performance. To

this end, we have exploited properties of visual hulls that are not specific to lin-

ear structures. In future work, we therefore intend to show that the scope of this

technique is in fact much broader, for example by applying it to 3D membrane

extraction. We also plan to extend our approach by developing an automated

method for selecting projection directions resulting in best performance.
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