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Abstract

Alternative stress echocardiography protocols such as handgrip exercise are potentially more favorable to-
wards large-scale screening scenarios than those currently adopted in clinical practice. However, these are
still underexplored because the maximal exercise levels are not easily quantified and regulated, requiring
the analysis of the complete data sequences (thousands of images), which represents a challenging task
for the clinician. We propose a framework for the analysis of these complex datasets, and illustrate it on
a handgrip exercise dataset including complete acquisitions of 10 healthy controls and 5 ANT1 mutation
patients (1377 cardiac cycles). The framework is based on an unsupervised formulation of multiple kernel
learning, which is used to integrate information coming from myocardial velocity traces and heart rate to
obtain a lower-dimensional representation of the data. Such simplified representation is then explored to
discriminate groups of response and understand the underlying pathophysiological mechanisms. The anal-
ysis pipeline involves the reconstruction of population-specific signatures using multiscale kernel regression,
and the clustering of subjects based on the trajectories defined by their projected sequences. The results
confirm that the proposed framework is able to detect distinctive clusters of response and to provide insight
regarding the underlying pathophysiology.
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1. Introduction

1.1. Clinical Context and Motivation

Stress echocardiography can unveil early-stage
cardiovascular-pathology signatures that are not
expressed at baseline condition, thus being a valu-
able tool for screening purposes. Current stress
echocardiography protocols, based on exercise or
pharmacological stress (Voigt et al., 2003; Davidavi-
cius et al., 2003), are standardized, meaning that
the control of the stress levels over the test is very
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rigorous (based on dose, heart rate, time, etc.), al-
lowing the evaluation of response to stress to be per-
formed based on the comparison of measurements
collected at a few discrete timepoints (correspond-
ing to very precise stress levels). However, this
standardization comes at the cost of cumbersome
protocols, being time-consuming as well as requir-
ing highly-trained staff and specialized equipment.
All this translates into high costs, which limit the
application of current protocols to a fairly lesser ex-
tent than desired, and thus making them unsuited
for large-scale screening purposes. Moreover, by
getting data at pre-determined intervals and tim-
ings, one might be missing pertinent information,
as the disregarded dynamic data potentially con-
tain additional valuable information concerning the
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patient’s physiological state.

Other less standard forms of stress, such as the
cold pressor test (Velasco et al., 1997) and hand-
grip exercise (Strauss et al., 2013; Kivowitz et al.,
1971; Helfant et al., 1971), were already reported
to trigger cardiovascular responses that could un-
mask differential responses to stress by healthy and
pathological patients. These protocols are cheap
and practical, come with low risks to the patient,
and involve little patient motion, making imaging
an easier task. As such, they hold great poten-
tial for screening, overcoming the main limitations
of current protocols. Besides their potential for
screening, they also represent an alternative for pa-
tients that are physically unable to undergo a classi-
cal exercise test. However, there is one main draw-
back: the level of exercise is hard to quantify and
control, and the timings and magnitudes of events
are unpredictable; in other words, they are non-
standardizable. In practice, this implies continu-
ously analyzing the complete acquisition, and fo-
cusing on trends/patterns of response rather than
on a discrete set of values. The analysis, of these
long, dynamic, heterogeneous sequences, which also
implies integration of multiple features, is not triv-
ial, and clinicians lack tools to assist them in this
task. On the other hand, this type of analysis may
be advantageous: by allowing the identification of
variations in exercise performance throughout the
dynamic range (versus at discrete points in time), it
may be more informative of the patients physiolog-
ical state, and thus have a higher predictive value
of adverse outcomes.

Currently, machine learning is being established
as one of the preferred tools for the analysis of pat-
terns in functional and high-dimensional data, and
has become remarkably popular within the biomed-
ical field. It has already been applied to the study
of cardiac response to stress, based on multiple het-
erogeneous descriptors, such as the velocity profiles
of different myocardial segments and timings of key
events in the cardiac cycle (Sanchez-Martinez et al.,
2017, 2018). However, to the best of our knowledge,
it has not yet been used to explore nonstandardized
continuous echocardiographic recordings. In this
paper, we propose an analysis framework that ex-
plicitly addresses the practical challenges this kind
of sequences pose, and illustrate its potential in a
specific group of cardiac patients.

1.2. Technical Context

In biomedical research, there is an emergent need
for machine learning algorithms able to learn from
multiple concurrent data sources (e.g. imaging,
signal, patient metadata). This type of learn-
ing is commonly referred to as multiview learn-
ing (Xu et al., 2013). In the cardiac domain,
both supervised and unsupervised multiview learn-
ing algorithms have been recently applied in the
analysis of cardiac motion patterns for numer-
ous applications, e.g. in the identification of di-
lated cardiomyopathy (Puyol-Antón et al., 2019),
in cardiac resynchronisation therapy response pre-
diction (Peressutti et al., 2017) or in the study of
heart failure with preserved ejection fraction (HF-
PEF) (Sanchez-Martinez et al., 2017, 2018).

In this work, we integrate information coming
from multiple heterogeneous features (i.e., heart
rate and velocity traces from echocardiographic im-
ages) to evaluate patterns of response to stress.
Since nonstandardized sequences typically last 60-
120 cardiac cycles (equivalent to thousands of im-
ages), we propose unsupervised multiview dimen-
sionality reduction to obtain a compact represen-
tation of the patterns of response over time. This
low-dimensional representation can be used to ob-
tain the principal modes of variation – which de-
scribe how the features change – and the temporal
trajectories – which encode the timings and inten-
sity of such changes.

Unsupervised multiview dimensionality reduc-
tion is an active field of research, including canon-
ical correlation analysis (Hotelling, 1936), partial
least squares (Wold, 1985), multiple kernel learning
(MKL) (Lin et al., 2011) or multi-modal autoen-
coders (Li et al., 2018) as some of the most popu-
lar algorithms. Our choice for MKL was based on
(1) its ability to address inherent nonlinearities of
the data and any number of desired input features,
without strong assumptions on their correlations,
and (2) its good performance in similar applica-
tions, while providing a fairly simpler, very flexible,
potentially more intuitive/interpretable framework
than other types of machine learning.

Once a low-dimensional embedding is estimated,
the main modes of variation in the data can
be reconstructed using multiscale kernel regres-
sion (MKR) (Bermanis et al., 2013; Duchateau
et al., 2013). A combined analysis using MKL and
MKR was successfully explored before by Sanchez-
Martinez et al. (2017, 2018) to characterize func-
tional responses to semi-supine bicycle exercise of
controls and patients with heart failure with pre-
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served ejection fraction (HFPEF), based on left-
ventricular velocity patterns. This work dealt, how-
ever, with only two-timepoint (rest/stress) informa-
tion for each patient, acquired during a standard-
ized exercise stress test.

We propose a technical framework that extends
this analysis to the challenging context of nonstan-
dardized stress echo datasets.

1.3. Proposed Approach

Our framework uses MKL to project heteroge-
neous data collected at each cardiac cycle through-
out the stress test onto a low-dimensional space
where the main variations in the data are encoded.
In this space, the response to stress of each subject
can be seen as a trajectory and, based on the simi-
larity among trajectories, subjects can be grouped
in clusters that reflect differential patterns of re-
sponse. The physiological interpretation of the re-
sults is decoded through MKR, which allows recon-
structing the input signals along any path over the
low-dimensional output space.

A preliminary version of the framework was pre-
viously proposed (Nogueira et al., 2017). The
present paper extends the work in several aspects:
we test the framework against a real dataset includ-
ing healthy and pathological cases, whereas previ-
ously the cases had been generated synthetically;
we explore other physiological features, using ve-
locity traces at the basal septum of the left ven-
tricle instead of the global longitudinal strain; we
reformulate the clustering analysis in the trajectory
space by exploring a more sophisticated way of com-
puting distances among trajectories, involving Dy-
namic Time Warping (DTW) (Bemdt and Clifford,
1994). In addition, we enrich the analysis by ex-
ploring and interpreting the spatial configurations
of the distributions of the control and diseased pop-
ulation samples in the output space.

1.4. ANT1 mutation

To illustrate the framework, we apply it to the
discriminative analysis between the dynamics of
response to stress in patients with Adenine Nu-
cleotide Translocator-1 (ANT1) deficiency (due to
a mutation in an encoding gene) and controls, dur-
ing handgrip exercise challenges. In patients with
ANT1 mutation there is a lack of adenine nucleotide
transferase, which converts ADP to ATP. The de-
creased availability of ATP to the muscles causes
lactic acidosis. These patients present with short-
ness of breath with exercise at a very young age.

Within the scope of this paper, they can be consid-
ered as extreme cases of HFPEF.

2. Methods

A diagram illustrating the main blocks of the
framework is depicted in Figure 1. The first block
corresponds to the automated processing and ex-
traction of features from the sequence data (Sec-
tion 2.2). The second block refers to the application
of MKL to obtain a low-dimensional representation
of the data (Section 2.3). Finally, the third block
corresponds to the analysis of this low-dimensional
representation, focusing on the discrimination be-
tween groups of response and the understanding
of the underlying pathophysiological mechanisms
(Section 2.4).

2.1. Data

This study includes 15 subjects, 10 controls (av-
erage age 24± 14 years) and 5 ANT1 mutation pa-
tients (average age 21 ± 7 years). The echocardio-
graphic acquisitions were performed using a Vivid
Q system (GE Healthcare). For each subject,
a Doppler myocardial velocity imaging (DMI) se-
quence of the apical 4-chamber view was acquired
(average sampling rate 115 ± 43 Hz) during hand-
grip exercise. All sequences comprise the start of
exercise, a phase of sustained exercise and recov-
ery (average heart rate 92 ± 18 bpm for controls;
118±23 bpm for ANT1 patients). The durations of
each phase vary across subjects. When the 15 sub-
jects are considered, our dataset amounts to a to-
tal of 1377 cardiac cycles (average sequence length
92± 26 cardiac cycles).

2.2. Feature Extraction

In our dataset, we have an average of about 70
DMI frames per cardiac cycle. As such, 1377 cycles
contain a considerably large amount of data, calling
for integration and simplification. The first simplifi-
cation comes with feature extraction, i.e., collecting
relevant descriptors of cardiac function throughout
the acquisition, while ensuring their robustness to
noise and artifacts in the data (e.g. due to breath-
ing or transducer motion). Features should be easy
to obtain in clinical practice and, ideally, in an au-
tomated manner (manually processing these many
cardiac cycles would be impractical).

We selected the left-ventricular basal-septum ve-
locity profile and heart rate (HR) as the features
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Figure 1: Main stages of the proposed framework: i) automated cycle-wise feature extraction; ii) multiview dimensionality
reduction to project stress echo sequences onto a low-dimensional space; iii) physiological interpretation of the output-space
sample distributions and cluster analysis in the trajectory space. DMI=Doppler Myocardial Velocity Imaging. HR=Heart
Rate. MKL=Multiple Kernel Learning. DTW=Dynamic Time Warping. MKR=Multiscale Kernel Regression.

of interest to monitor during the stress protocol.
These were automatically extracted with the aid
of the ECG as temporal reference: the full-length
velocity traces were extracted from the DMI se-
quences using a commercial software (EchoPAC,
v.113, GE Healthcare), by manually placing a re-
gion of interest (default dimensions) at the basal
septal region (see Figure 2a; the actual trace is com-
puted and exported through the software). The
cycle-wise traces were obtained by slicing the full-
length profiles at the R-peak positions of the simul-
taneously acquired ECG and the HR was obtained
from the timings of the R peaks (whole process il-
lustrated in stage I of Figure 1). Examples of a
full-length velocity trace and sliced cycles (time-
normalized for cycle duration as explained in 2.3)
are featured in Figure 2b.

Finally, we fed a set of 1377 multiview samples
(corresponding to all cardiac cycles of all 15 sub-
jects) to the MKL algorithm, describing each car-
diac cycle of each patient by a velocity curve and a
HR value (see stage II of Figure 1).

2.3. Computation of the low-dimensional space us-
ing MKL

Given a high-dimensional dataset with N sam-
ples X = {xi ∈ Rd}Ni=1, graph embedding aims
at finding a low-dimensional projection Y = {yi ∈
Rk}Ni=1, k < d, that preserves the main topology
and variability of the data while removing noisy
contributions. To achieve this, a similarity matrix
W defined over the pairs of input samples is used to
weight the optimization problem which, under ap-
propriate constraints, can be generically expressed
as

min
Y

∑
ij

‖yi − yj‖2Wij . (1)

In this way, to minimize the product ‖yi −
yj‖2Wij , close samples in the input space (high
Wij) are enforced to remain close in the output
space (small ‖yi − yj‖), while distant samples have
little or no influence on each other’s optimal pro-
jection.
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(a) (b)

Figure 2: Extraction of velocity sequence data. (a) Example of a frame from a DTI sequence from an ANT1 patient. The
yellow circle over the basal septum is the region of interest used to monitor the velocity over the whole sequence. (b) Top:
example of a full-length velocity trace. Bottom: isolated rest (left), peak-stress (middle) and recovery (right) cycles, extracted
from the corresponding annotated regions in the top plot.

Based on this graph embedding framework, Lin
et al. (Lin et al., 2011) generalized the concept of
MKL, originally formulated within the support vec-
tor machine framework (Bach et al., 2004; Hearst
et al., 1998) for classification/regression, to (super-
vised and unsupervised) dimensionality reduction.
By combining multiple kernels, each one based on a
specific data descriptor, MKL fuses heterogeneous
information and provides the contribution of each
feature to the low-dimensional output representa-
tion. The unsupervised formulation, adopted in
this work, can be summarized as follows.

Let the input dataset, composed of N sam-
ples with M descriptors each, be defined as X =
{xi}Ni=1, xi = {xmi ∈ Rdm}Mm=1 where xmi repre-
sents the descriptor m associated with sample i and
of dimensionality dm. The projection of a sample
is parametrized by a projection matrix A ∈ RN×k

(where k refers to the selected dimensionality of the
output space, k ∈ [1, N − 1]) and a vector β ∈ RM
that determines the normalized weight of each fea-
ture in the mapping. A unified mapping based on
heterogeneous descriptors is made possible as A and
β operate on kernelized data rather than on their
raw content. For each feature, a kernel matrix Km

is defined, encoding the similarities over the pairs
of samples, based on kernel functions km, i.e.,

Km ∈ RN×N with Km(i, j) = km(xmi , x
m
j ) .

(2)
In this work, km is a Gaussian kernel (with Eu-
clidean distance) whose bandwidth σm is computed
as the average of the pairwise Euclidean distances
between each descriptor xmi and its K nearest
neighbors {xmij}Kj=1(Sanchez-Martinez et al., 2017).
The input descriptors we consider here are the HR
(i.e. x1i ∈ R) and the longitudinal velocity values
along each cycle. As the dimension of the latter
varies over cycles, all cycles were resampled along
the temporal axis so that x2i ∈ Rd2 (we set d2 = 65).

Based on {Km}Mm=1, a set of sample-wise matri-
ces {Ki}Ni=1 is defined. Each Ki encodes the simi-
larity of sample i to the other samples taking into
account the different descriptors. In practice, Ki
is built from stacking the ith columns of all ker-
nel matrices {Km}Mm=1. Formally, the projection of
sample i is expressed as

yi = ATKiβ . (3)

Plugging (3) into (1), the optimization problem
becomes
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min
A,β

∑
i,j

‖ATKiβ −ATKjβ‖2Wij (4)

s.t.
∑
i

‖ATKiβ‖2Dii = 1, (5)

βm ≥ 0,
∑
m

βm = 1 (6)

where W is the multiview generalization of W in
(1), a global affinity matrix computed by combin-
ing all the individual kernel matrices (in this pa-
per we used W = 1

M

∑
mKm, with kernel matrices

{Km}Mm=1 being normalized across features prior to
the summation through a variance-based method,
described by Sanchez-Martinez et al. (2017)). The
constraint in (5), with Dii =

∑
jWij , removes an

arbitrary scaling factor in the output embedding.
Minimizers A∗ and β∗ are obtained by an it-

erative two-step optimization strategy (Lin et al.,
2011). At each iteration, A and β are alternately
fixed to the value of last-step’s solution and the
problem is solved for the other. Iterations stop
once a convergence criterion is met (e.g. maximum
number of iterations or stable value of cost func-
tion). Solving (4) for A amounts to a generalized
eigenvalue problem: the columns of the optimal A
are the corresponding eigenvectors. Solving (4) for
β, on the other hand, corresponds to a nonconvex
quadratically constrained quadratic programming
problem. To obtain a low-dimensional representa-
tion, one can choose the columns of A associated
to the k lowest eigenvalues, yielding A ∈ RN×k and
thus yi ∈ Rk, i = 1, ..., N .

Once A and β have been learnt, the projections
of the training samples can be computed using (3).
Moreover, a new sample z can be mapped into the
low-dimensional space by

yz = ATKzβ , (7)

Kz ∈ RN×M and Kz(n,m) = km(xn, z).
Thus, the projection of new samples is deter-

mined by the similarities of their input-space fea-
tures with those of the samples in the training set.

2.4. Discriminative analysis and physiological in-
terpretation

In the low-dimensional space, the spatial distri-
bution of the projected cycles is learned in an unsu-
pervised way, solely based on their input-space sim-
ilarities and not taking into account any label (i.e.

control/ANT1) information. Our aim is to explore
this simplified representation towards the identifi-
cation of distinctive clusters of response by the two
populations, and the unraveling of the pathophysi-
ological mechanisms behind such differences.

We perform two levels of analysis (see stage III of
Figure 1): one that is based on the overall spatial
distribution of samples of each population in the
output space (i.e., not distinguishing subjects), and
another where we cluster the subjects based on the
trajectories defined by their sequences in the output
space.

2.4.1. Cycle-wise analysis: population signatures

To obtain the predominant patterns of response
of each population, we i) draw a path passing
through the regions of higher density of both
healthy and diseased populations, and ii) sample
the path at multiple points and adopt a multiscale
adaptation of kernel regression (MKR) (Bermanis
et al., 2013; Duchateau et al., 2013) to backproject
them to input-space patterns. We hypothesize that
analyzing the evolution of input features along this
path will highlight discriminative characteristics of
the diseased population.

Each such point q is backprojected based on an
interpolation/regression from the known Y and X.
A Gaussian kernel k is used to evaluate its similarity
k(q, yi) with each {yi}Ni=1 ∈ Y ; its reconstruction
in the space of feature m, here denoted as fm(q),
is based on the known input-space representations
Xm = {xmi }Ni=1 and weighted by such similarities:

fm(q) =

N∑
i

k(q, yi)bmi (8)

where bmi stands for the ith column of matrix

Bm =

(
K +

1

γm
I

)−1

Xm (9)

with K = [k(yi, yj)], γm a regularization weight
and I the identity matrix. A multiscale approach
is adopted where fm is updated in an iterative
coarse-to-fine process, with the kernel bandwidth
halved at each step, from the maximum to the
average output-space neighborhood size (details
in (Duchateau et al., 2013)).

2.4.2. Sequence-wise analysis: subjects’ trajectories

The idea behind the trajectory-based analysis is
that the trajectories defined by the projected cycles
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of each subject (in temporal order) can be consid-
ered physiological descriptors of response to stress,
and, as such, performing cluster analysis in the tra-
jectory space can help us identify how all the sub-
jects are organized in groups of response.

For each subject p, the trajectory defined by
the projected data consists of a multidimensional
Cp × k matrix, where Cp is the number of cycles
of subject p’s sequence. An element (c, dim), c =
1, ..., Cp, dim = 1, ..., k, tells us how the mode of
variation associated with dimension dim is being
expressed at cycle c. Intuitively, the whole trajec-
tory matrix encodes a weighted combination of the
k modes of variation at each cycle of the sequence.
Our hypothesis is that there will be differences in
the trajectory matrices of the two populations, spe-
cific to the ANT1 pathology.

To cluster trajectories, as each subject’s se-
quence has a different length, and different ratios
of baseline/stress/recovery durations, standard dis-
tance metrics cannot be applied. For that reason,
the DTW algorithm is used. This algorithm al-
lows aligning two multidimensional time series by
stretching sections in the temporal axis (one-to-
many correspondence) in such way that some dis-
tance metric (Euclidean in our case) between the
aligned time series is minimized (Bemdt and Clif-
ford, 1994). Prior to the DTW alignments, trajec-
tories are slightly smoothed using total variation
denoising (Rudin et al., 1992) (denoising weight λ
= 0.01), to reduce noisy oscillations while preserv-
ing sharp transitions corresponding to state changes
(rest-stress-recovery). Finally, a distance matrix is
built from the pairwise distances and fed to a hier-
archical clustering algorithm (Ward Jr., 1963), and
the results are compared with the known labels.

3. Experiments and Results

3.1. Parameterization

Experiments were ran with several parameteriza-
tions. Alternatively to the standard iterative opti-
mization process described in Section 2.3, having
β ∈ R2 and

∑
i βi = 1, βi > 0, we simply per-

formed a grid search on a discrete set of vectors
obeying β = [β1, 1− β1]T , 0 < β1 < 1, used them
for initialization, and solved the corresponding gen-
eralized eigenvalue problem for the projection ma-
trix A. In other words, we ran one single iteration
of the standard optimization process for different
initializations of the weight vector β .

Table 1 lists the parameterization corresponding
to the results shown and discussed in this section.
We denote by kσ and ksparse the number of neigh-
bors used in the estimation of the kernel band-
widths and in a sparsing step of the global affin-
ity matrix, respectively (refer to Sanchez-Martinez
et al. (2017), Nogueira et al. (2017) for further de-
tails).

From our experiments, we found that the results
presented a relatively low sensitivity to the values
of β, ksparse (except for very small values), and
higher sensitivity to the value of kσ. Lower kernel
bandwidths mean higher sensitivity to variations in
the data, and vice-versa. We heuristically tuned
the value of kσ having in sight a good trade-off be-
tween the spread and the spatial smoothness of the
output-space data distribution.

For the MKR, we decided to use the first 6 dimen-
sions of the projected data, since including further
dimensions had little influence in the reconstructed
modes (higher dimensions encode more noisy vari-
ability). The value of γm in (9) was tuned to min-
imize the average curve reconstruction error over
150 fixed samples (10 of each subject).

Table 1: Parameterization details. Feature weight vector
defined as β = [βHR, βvelocity ]T .

Data
N 1377
M 2

MKL
kσ 0.05×N
ksparse 0.25×N
β [0.5, 0.5]T

MKR
dimensionality k 6
γm 0.1

3.2. Population-wise analysis: representative sig-
natures

We computed the low-dimensional representation
of the data using MKL, with the parameterization
in Table 1.

Figure 3 displays the probability density func-
tions learned from the distributions of control
(blue) and ANT1 patient (red) samples, consider-
ing the pairwise combinations of dimensions 1-4,
obtained using the non-parametric method of ker-
nel density estimation (Epanechnikov, 1969). We
focused the analysis on the two first dimensions
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Figure 3: Probability density function for the control and ANT1 sample distributions, considering pairs of the first dimensions
of the projected data.

Figure 4: First two dimensions of projected data colored according to control (blue) and ANT1 (red) labeling (left). Separated
distributions of control (middle) and ANT1 patient (right) samples, colormapped according to a stress score, consisting of the
normalized HR sequence of each subject, mapped to the [0,1] interval.

(column 1), as including further dimensions did not
add any additional insight from a physiological per-
spective (see in Appendix A an analogous analysis
including dimension 3).

A scatter plot of the projected data, using the
first two dimensions, is shown in Figure 4-left. In
this plot, each point refers to a cardiac cycle of
a subject, and is colored according to the con-
trol/ANT1 (blue/red) label. In the middle and
right columns of the same Figure, we isolate each
population’s distribution of output-space samples

and color them according to a stress score (com-
puted as the HR value normalized by the mini-
mal and maximal HR values of the correspond-
ing patient). In both, the trend is to gradually
transition from white (baseline/recovery) to dark
blue/red (peak stress) in the counterclockwise di-
rection. In fact, there is a continuum of response
defined by the two distributions, where the ANT1
distribution is positively shifted in that same direc-
tion with respect to the control’s.

To interpret the physiological implications of this
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Figure 5: Distribution-based modes of variation. Left: Path over the distributions of control and ANT1 patients that were used
for the estimation of the distribution-based modes of variation. The plotted points were the inputs for MKR. Right: MKR
results, with color correspondence with the plotted path points in the left plot; the curves corresponding to the 4 annotated
points are plotted with thicker linewidths.

Figure 6: Systole dynamics. Left: velocity curves of Figure 5-right, non-normalized for HR. Middle: corresponding displacement
curves. A marker is plotted on the systolic peak for each curve. Right: analysis of the timing and total displacement at the
systolic peak, throughout the path drawn in Figure 5-left.

spatial shift between distributions, we drew a path
over the higher density regions and used MKR to re-
construct the velocity curves along such path. The
path and points to backproject are shown in Fig-
ure 5-left, whereas the reconstructed mode of vari-
ation is shown in Figure 5-right.

Focusing on the evolution of the velocity curves
from baseline to peak stress for the control pop-
ulation (see annotations in Figure 5-left), we ob-
serve a relative systolic lengthening, with the sys-
tolic peak happening later in the cycle, and a grad-
ually shorter diastole, reaching some degree of E-A
merging at peak stress. These are typical signatures
of a normal response to exercise. Looking at the ve-
locity patterns corresponding to the ANT1 baseline
region (annotated in Figure 5), it is evident that

ANT1 patients start off with some of these exer-
cise signatures (e.g. shorter diastole); on the other
hand, they also show a more accentuated augmen-
tation of these signatures at peak stress (e.g. reach-
ing complete E-A fusion), together with some ad-
ditional shape changes in the velocity profile (espe-
cially noticeable during systole). Focusing on sys-
tolic function in particular, we integrated the veloc-
ity curves to obtain the corresponding displacement
profiles (Figure 6-middle), and plotted the timing
of end-systole against the corresponding displace-
ment (Figure 6-right). In these plots, the timing is
not normalized for HR. It is observed that, as HR
goes up, controls increase the peak contraction and,
while the absolute ejection time reduces, the rela-
tive duration of systole with respect to the cycle
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length increases; on the contrary, ANT1 patients
fail to modulate timings of events and contractil-
ity in the same manner, as they reach peak stress.
The findings are in agreement with the results of
Sanchez-Martinez et al. (2017), that linked E-A fu-
sion and reduction of contractility to exercise re-
sponse in HFPEF, in a standard exercise context.

3.3. Sequence-wise analysis: subjects’ trajectories

The trajectory defined by the projected samples
of each particular subject in the output space (Fig-
ure 5-left) carries information regarding how that
subject responds in terms of the patterns recovered
in Figure 5-right. Thus, we took such trajectories
as descriptors of response to stress, and used them
to cluster the subjects into groups of response. For
that, we computed the pairwise distances among
all subject trajectories (using DTW, as described
in 2.4.2), and used them as inputs to a hierarchical
clustering algorithm. Other than this hard clus-
tering, we used multidimensional scaling (MDS) to
visualize a 2D scatter plot representation of the sub-
jects, based on the same pairwise distances. Good
clustering results were obtained even considering
only the first dimension of the trajectories – in Fig-
ure 7a, the two clusters are even linearly separable,
although there is a very subtle transition between
them (MDS distributions accounting for more di-
mensions can be found in Appendix A). In this
scenario, the hierarchical clustering had perfect ac-
curacy in the separation of healthy and diseased
subjects (Figure 7b).

4. Discussion

We proposed an analysis framework for com-
plex datasets composed of continuous multiview
data sequences extracted from stress echo acqui-
sitions, with the main objectives of i) discriminat-
ing healthy and pathological clusters of response
and ii) understanding the underlying pathophysi-
ological mechanisms. The framework extends the
previous work by Sanchez-Martinez et al. (2017) to
nonstandardized stress echocardiography. Transi-
tioning from standardized to nonstandardized data
implies that each subject is no longer represented
by a single point in the MKL output space, but
by a variable number of points (with an associ-
ated time order). The main contribution of the
proposed framework lies in the concept of studying

low-dimensional trajectories for clinical interpreta-
tion, an under-explored way to look at multiview
clinical time series.

The discriminative power of the framework was
first confirmed in Figure 3, where distinctive regions
of higher control/ANT1 sample density were iden-
tified. It was again confirmed in Figures 7a and
7b, where a cluster analysis based on the subject
trajectories in the output space accurately grouped
them according to the diagnostic label.

Although there were distinctive regions of higher
data density from the two populations, the two dis-
tributions were organized in a continuum of data.
Such continuum was observed to be correlated with
the stress level (Figure 4), and the ANT1 popu-
lation data seemed to be positively shifted in the
stress direction, when compared to the control dis-
tribution. In other words, the physiological pat-
terns of the ANT1 population, at baseline condi-
tions, are comparable to those found in controls
during mild exercise.

To provide an idea of the variability found in tra-
jectories (thus, signature intensities) within both
control and ANT1 populations, we display the
subject-wise projections in Figure C.12 in Ap-
pendix C.

While the studied populations used to illustrate
the framework are distinctively different and easy to
clinically discriminate based on heart failure symp-
toms at even the least exercise, our analysis can po-
tentially provide novel insight in the physiology of
this genetic mutation. However, the modest num-
ber of patients in the study precludes from any final
conclusion when it comes to more in-depth patho-
physiology analysis. On the other hand, the rar-
ity of this mutation impedes the gathering of large
datasets.

Among the main challenges of dealing with
nonstandardized echocardiography sequences were
those related to data processing and feature extrac-
tion, due to the complex nature of the data. Some
recurrent problems that were especially likely to
occur during stress were: noisy ECG, as in some
cases the R peak became indiscernible and auto-
mated segmentation was not possible; out-of-plane
heart motion resulting in an absence of Doppler sig-
nal, and significant breathing motion relative to the
defined region of interest. However, the final map-
ping to the low-dimensional space was found to be
fairly robust to outliers (i.e. the obtained modes of
variation/projections were not overfitting the out-
liers, e.g. cycles with saturation peaks, cycles with
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(a) (b)

Figure 7: Trajectory clustering based on DTW distance matrix (for these results, only the first dimension of the trajectories
was considered). (a) 2D scatter plot of the subjects with MDS. (b) Hierarchical clustering (subjects 0-9 correspond to controls
and subjects 10-14 correspond to ANT1 patients).

no velocity signal, badly segmented cycles due to
bad quality ECG regions – which also gave origin
to unphysiological values of HR, etc.), so there was
no need to perform a preselection of cardiac cycles
based on signal quality. This would probably not
be the case if we did not have a fairly large (≈ 1400
samples) dataset. The poor-quality cycles could be
in most cases recognized based on the projection
values in the output space (e.g. an overall poor-
quality acquisition of subject 13 explains its con-
siderable distance from the other subjects in the
MDS plot (Figure 7a).

A high correlation between HR and the first di-
mension of the output space was found (0.81). To
discard the possibility of HR strongly biasing the
results, we repeated the whole experiments with-
out feeding any HR information to the MKL algo-
rithm (i.e. using only the velocity feature). After
this, the correlation between HR and the first di-
mension of the output space remained high (0.67),
with the main configuration of the two distributions
and the corresponding modes of variation remain-
ing similar (Appendix B). While the need of a
multiview instead of a single-view dimensionality
reduction algorithm could be arguable for this par-
ticular case, we still believe that taking HR as a
feature to estimate the low-dimensional represen-
tation of the data can provide additional insight
regarding the physiological interpretation and, in a
scenario like ours, merging the two correlated fea-
tures can add robustness when compared to pursu-
ing a single-view approach on the velocity. Using

more input features (e.g. velocity traces at other
locations than the basal septum) would potentially
allow a more specific characterization of the ANT1
response. Moreover, besides extending this analy-
sis to velocity traces at other locations in the left
and right heart chambers, one could also consider
analyzing flow changes.

Despite the listed limitations, we demonstrated
that the proposed framework was able to reveal the
progression of the pattern of response from the con-
trol to the pathological domain. The size of the
dataset would not have permitted to come up with
this pattern by visual inspection of the data.

The proposed framework can be flexibly adapted
to the study of any given pathology, keeping in
mind that the definition of the relevant set of fea-
tures should be, naturally, carefully thought in a
pathology-dependent manner.

5. Conclusion

We have proposed a framework for the analysis of
nonstandardized stress echocardiography sequence
data. It uses unsupervised multiple kernel learning
to merge myocardial velocity and heart rate infor-
mation and obtain a low-dimensional representa-
tion of the data. The analysis is then performed
in the new space, with multiscale kernel regression
bridging the two spaces for interpretability. The
framework is illustrated on handgrip exercise se-
quences acquired on a population of healthy con-
trols and ANT1 mutation patients. The results
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show that the framework is able to detect distinc-
tive clusters of response and provide insight into the
underlying pathophysiological mechanisms, demon-
strating its ability to handle this complex type of
datasets, and the potential of nonstandardized pro-
tocols such as handgrip exercise for unmasking dif-
ferential response mechanisms.
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Appendix A. Results for other combina-
tions of output-space dimen-
sions

Here, we show the sample-wise analysis when
using dimensions 1 and 3 of the low-dimensional
representation (Figure A.8a), and 2 and 3 (Fig-
ure A.9a). We also show the clustering of trajec-
tories when using more than one dimension (Fig-
ure A.10, middle and right).

Appendix B. Experiments without HR

In this appendix we show the results of the
sample-wise analysis using only velocity data (i.e.
no HR data) as input to the MKL framework (Fig-
ure B.11).

Appendix C. Individual sequence lengths
and projections

Herein, we detail individual sequence lengths and
display the individual projections of the 15 subjects
onto the 2d MKL space (Figure C.12).
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Figure A.10: Changes in the MDS plots when considering more dimensions of the subject trajectories.

Figure B.11: Experiments without considering HR as input feature of MKL: projected data and reconstructed mode of variation
of the velocity feature.
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Figure C.12: 2D MKL projection of the full dataset (dark green), superimposed by each subject’s individual projection, color-
mapped based on label (blue - controls; red - ANT1) and color-coded based on stress score, as previously done in Figure 4.
Subject sequence lengths (from top left to bottom right): 74, 143, 64, 118, 64, 89, 63, 102, 67, 58, 95, 88, 110, 137, 105.
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