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Abstract Detection of early stages of Alzheimer's disease (AD) (i.e., mild cognitive impairment 

(MCI)) is important to maximize the chances to delay or prevent progression to AD. Brain connec-

tivity networks inferred from medical imaging data have been commonly used to distinguish MCI 

patients from normal controls (NC). However, existing methods still suffer from limited perfor-

mance, and classification remains mainly based on single modality data. This paper proposes a new 

model to automatically diagnosing MCI (early MCI (EMCI) and late MCI (LMCI)) and its earlier 

stages (i.e., significant memory concern (SMC)) by combining low-rank self-calibrated functional 

brain networks and structural brain networks for joint multi-task learning. Specifically, we first de-

velop a new functional brain network estimation method. We introduce data quality indicators for 

self-calibration, which can improve data quality while completing brain network estimation, and 

perform correlation analysis combined with low-rank structure. Second, functional and structural 

connected neuroimaging patterns are integrated into our multi-task learning model to select dis-

criminative and informative features for fine MCI analysis. Different modalities are best suited to 

undertake distinct classification tasks, and similarities and differences among multiple tasks are 

best determined through joint learning to determine most discriminative features. The learning pro-

cess is completed by non-convex regularizer, which effectively reduces the penalty bias of trace 

norm and approximates the original rank minimization problem. Finally, the most relevant disease 

features classified using a support vector machine (SVM) for MCI identification. Experimental re-

sults show that our method achieves promising performance with high classification accuracy and 

can effectively discriminate between different sub-stages of MCI. 
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1 Introduction 

AD is a common chronic neurodegenerative disease and the only disease in the world's ten most 

deadly diseases that cannot be prevented and cured (2018). AD accounts for about 60-70% of the caus-

es for dementia. AD not only brings suffering to patients, severely degrading their life quality, but also 

puts heavy mental and economic stress on the family and society. Therefore, detection of the early 

stage of AD and then intervention or even prevention for AD show important significance for the pa-

tients, family and society. According to some research, SMC and MCI may be the stages between nor-

mal aging and AD and have attracted much interest due to their close connection with the development 

of AD (Jessen et al., 2014; Lei et al., 2017; Lian et al., 2018; Peng et al., 2019; Shi et al., 2017; Zhou et 

al., 2018a; Zhou et al., 2019a; Zhou et al., 2019b; Zhu et al., 2014). Thus, developing methods to detect 

early stages of AD such as SMC and MCI is very necessary. There is a growing corpus of work on 

automatic diagnosis of MCI: the earlier the diagnosis of MCI, the more meaningful is to understand the 

affected brain connections to target prevention or slowing down disease progression. Hence, this paper 

studies the early AD stages, including SMC, EMCI and LMCI.  

Although SMC and MCI present mild symptoms, making it more difficult for the detection, many 

neuroimaging-based techniques such as magnetic resonance imaging (MRI) (Davatzikos et al., 2011), 

diffusion tensor imaging (DTI) (Cherubini et al., 2010), and resting state fMRI (rs-fMRI) (Teipel et al., 

2017), have proven to be powerful tools for the classification of AD and its early stages (Gao et al., 

2015; Lei et al., 2017; Wee et al., 2012; Yang et al., 2016; Zhu et al., 2018). Different neuroimaging 

techniques can obtain different brain information, such as structural and functional information. Among 

these imaging techniques, DTI provides local microscopic features of water diffusion, while rs-fMRI 

characterizes fluctuations in spontaneous blood oxygen level signals associated with disease-specific 

neural circuits, which can be used to assess structural separation and functionally specific brain-linked 

networks (Chen et al., 2011a; Lian et al., 2018). Often, it is advantageous to combine the information 



3 

obtained from multiple technologies to give more accurate and objective results. A large number of 

previous studies have shown that integrating multi-modal information can effectively improve classifi-

cation performance (Shi et al., 2017; Zhang et al., 2011). Therefore, the method based on multi-modal 

data is proposed for detection of the early stages of AD, including SMC, MCI, which contains EMCI 

and LMCI.  

There are a large number of studies on automatic diagnosis of MCI. For instance, Wee et al. (Wee et 

al., 2014a) proposed a group-constrained sparse network connectivity model and then used the mini-

mum redundancy and maximum relevance methods (mRMR) for feature selection for the MCI identifi-

cation. Such a group constrained sparse network can simultaneously make a common region of interest 

(ROI) selection across subjects and optimally estimate the ROI time series under consideration. Li et 

al. (Li et al., 2018) used a new sparse constrained connectivity inference method and an elastic multi-

layer perceptron classifier (MPC) to identify MCI. The topology of the network connection is effective-

ly identified by considering the weak derivative information of the data. Zhou et al. (Zhou et al., 

2018b) proposed a high-order functional brain network (FBN) connection with improved sparsity and 

modularity for MCI classification. Li et al. (Li et al., 2019) proposed a multi-modal super-connectivity 

functional network using functionally weighted LASSO for MCI identification. Both bold fMRI and 

ASL fMRI's hyper-connected network are integrated to simultaneously evaluate brain networks with 

high temporal resolution and low temporal resolution fMRI. These studies are devoted to the automated 

diagnosis of MCI, but in the estimation of brain networks, the effects of noise and artifacts are not con-

sidered, which may degrade classification performance. Most functional brain network estimation 

methods can be interpreted under the regularization framework (Qiao et al., 2016; Wee et al., 2014b), 

but such a framework requires an accurate estimation model to effectively encode brain prior infor-

mation while fitting data. The actual observation data is often affected by the noise of complex inter-

ference sources. Although the data is preprocessed, it is difficult to eliminate all noise, and new noise 

may be introduced in the preprocessing stage. Therefore, it is very important to improve the data quali-

ty before brain network estimation, which directly affects the accuracy of brain network estimation.  
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In this paper, we propose a framework for detection of MCI and its early stage. We first develop a 

new functional brain network estimation method, then introduce data quality indicators for self-

calibration, which can improve data quality while completing brain network estimation, and perform 

correlation analysis combined with low-rank module structure. Second, functional and structural con-

nected neuroimaging patterns are integrated into our multi-task learning model to select discriminative 

and informative features for MCI analysis. Different modalities are best suited to undertake different 

tasks, and similarities and differences among multiple tasks are determined through joint learning to 

determine the most discriminative features. The learning process is completed by non-convex regulari-

zation, which effectively reduces the penalty bias of trace norm and approximates the original rank 

minimization problem. Finally, the most relevant features of the disease are sent to the SVM classifier 

for MCI identification.  

In our experiments, different modalities perform different tasks but also contribute any shared in-

formation with other modalities. By exploring the relationships among different tasks, we select the 

most discriminative features. In details, the feature selection process obtains weights through a multi-

task learning method and then selects the most relevant discriminative features according to the 

weights. To reduce the penalty deviation of the tracking norm in the learning process, we use the joint 

non-convex regularization method to learn the subspace. Finally, the selected features are imported into 

the SVM model for early diagnosis. The contributions and main advantages of the proposed framework 

are as follows. 

1) A network construction method is proposed, which encodes the brain modular structure based on 

low rank constraints, and automatically calibrates the data quality to remove low quality data points 

and noise. 

2) A feature selection method based on multi-modal data is proposed. By using the multi-task learn-

ing framework, the most discriminative features are selected in the structural and functional infor-

mation. 

3) A joint non-convex regularizer is proposed for subspace learning, which learns the potential re-

lated information between multi-tasks and effectively approximates the original rank minimization 
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problem. 

To evaluate the performance of our method, we validate our method using the Alzheimer’s disease 

Neuroimaging Initiative (ADNI) (https://ida.loni.usc.edu/) public database (Jack Jr et al., 2008). The 

proposed framework is validated via a leave one out (LOO) strategy (Cawley and Talbot, 2003) using 

rs-fMRI and DTI data from 170 subjects, including NC, SMC, EMCI, and LMCI. The experimental 

results show that the model has higher classification accuracy for the diagnosis of MCI and SMC. 

Compared with the existing methods, this model has better performance, which detects brain abnormal-

ities more accurately and better pictures the pathological abnormalities of patients. 

The rest of this paper is organized as follows. In the second section, we introduce the process of data 

acquisition and preprocessing. A detailed description of the proposed method is provided in the third 

section. Details of experimental results and comparisons are given in the fourth section. Finally, in the 

discussion and conclusion sections, we discuss the strengths and limitations of our work, and future 

research directions. 

2 Methodology 
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Figure 1: Illustration of the proposed method. 

The flowchart of the proposed method is shown in Figure 1. First, the multi-modal image data (rs-

fMRI and DTI) are preprocessed via automatic anatomical landmark (AAL) template. Second, we con-

struct the brain function network using our proposed self-calibration method via low-rank learning. 

Third, the functional and structural networks are extracted as inputs, and the joint non-convex multi-

task learning model is used for feature selection. Finally, the selected features are sent into the SVM for 

classification. In the following, we will describe the proposed method.  
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2.1 Notations 

In this study, a bold uppercase letter is used to represent a matrix, bold lowercase letters are used to 

represent vectors, and ordinary italic letters to indicate scalars. For a matrix 𝐗, where    and    denote 

its i-th row and j-th column, respectively. The norm of vector is defined as ‖ ‖. 𝐗 , rank(X) and 𝐗   

denotes the transpose operator, the order and inverse of the matrix X, respectively. We summarize all 

the notations used in this paper in Table 1. 

Table 1: The summarization of notations. 

Notation Description 

d Feature dimension of data 

K The number of tasks, in this case K = 2 (two modalities) 𝑛  Number of subjects in task i 𝐗 ∈      Size of 𝑛    matrix ‖ ‖ The norm of vector x   ,    i-th row and j-th column of X    𝐗     The i-th singular value of 𝐗 𝜆  𝐗  𝜆  The i-th eigenvalue value of 𝐗    𝐗     The i-th left singular vector of 𝐗    𝐗     The i-th right singular vector of 𝐗                     -norm of vector x 

                    -norm of vector x                     -norm of vector x squared   𝐗        𝐗      Nuclear norm of 𝐗   𝐗                 Frobenius norm of 𝐗   𝐗        𝐗 𝐗   Frobenius norm of 𝐗 squared 

2.2 Brain network estimation 

There are many methods (i.e., Pearson's correlation (PC) and sparse representation (SR)) for FBN 

estimation, most of which can be explained in the regularization framework including data fitting terms 

and regularization terms. Commonly used regularization terms include sparsity (Lee et al., 2011), 

group sparsity (Wee et al., 2014a) and low rank (Liu et al., 2013), which can encode brain organization 
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and improve FBN estimation results. The data fitting term is also very important for the estimation of 

FBN, because the noise is difficult to eliminate in the preprocessing and the noise caused by the pre-

processing process itself will also affect the data quality, resulting in poor data fitting results. Here, we 

review several commonly used brain network construction methods, which will be compared with our 

proposed methods in our experiments. 

2.2.1 Pearson's correlation (PC) 

After data preprocessing, each subject's brain is divided into N ROI based on a template (commonly 

used AAL template). Each ROI corresponds to a time series   ∈    𝑖        𝑁, where m repre-

sents the number of time points in each time series. Then, the edge weights matrix is defined as fol-

lows: 

𝐖                                                             .                                      (1) 

After centralizing and normalizing the original    with   −     and     −         −     , Eq.(1) can 

be simply expressed as 𝐖            . It is can be solved via the following optimization problem:    𝐖   𝐖 − 𝐗 𝐗                                                                      (2) 

where 𝐗                  ∈     
 represents the data matrix, and 𝐖 ∈  𝑁 𝑁  represents the edge 

weight matrix. 

2.2.2 Partial correlation and sparse representation (SR) 

PC is the simplest completely correlated modeling method, which cannot exclude the hybrid prob-

lems caused by other brain regions. Therefore, some relevant methods are proposed to overcome the 

influence of confounding effect. Estimation based on the inverse covariance matrix has been widely 

used to calculate the partial correlation (Meinshausen and Bühlmann, 2006). However, the estimation 

is not appropriate when the number of network nodes is larger than the number of time point m. 

Therefore, the    regularization is introduced into the model. Here, we describe the SR because it is 

one of the methods compared with our method, which is denoted as:    𝐖      −  𝐖          𝜆  𝐖                                                (3) 
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Eq. (3) can be simplified into the following matrix form:    𝐖   𝐗 − 𝐗𝐖     𝜆  𝐖                                                    (4) 

Other regularizers can also be used in estimation models, for space limitation, we won't discuss 

them here. We can simply define the FBN of SR as: 𝐖     𝐖  𝐖   . 

2.2.3 Matrix-regularized FBN Estimation Framework 

Unlike estimates of PC that lack reasonable biological significance, the matrix regularization 

framework realizes the effective fitting of data and the effective coding of prior knowledge. Many 

FBN estimation models can be expressed by the regularization framework, which is defined as fol-

lows:    𝐖 𝑓 𝐗 𝐖  𝜆  𝐖                                                    (5) 

where 𝑓 𝐗 𝐖  are data fitting terms for capturing statistics of data and   𝐖  are matrix regulariza-

tion terms for encoding a prior information. 

2.2.4 The proposed method 

The fitting of the data and the encoding of the prior information are very important. The quality of 

the data has a great impact on the estimation of the FBN. Therefore, the learning task needs to meas-

ure the data quality. In this paper, we introduce a parameter    to control data quality under the regu-

larization framework, which improves data quality while estimating FBN, and completes self-

calibrated FBN estimation. The conventional method of encoding prior information through a regular-

ization term cannot control the quality of the rs-fMRI sequence time point. To this end, we propose a 

new method for controlling the quality of time points during FBN estimation, which eliminates the 

omission noise of the traditional preprocessing pipeline and the noise generated by the preprocessing 

itself, without excessive deletion. Based on the matrix regularization network estimation framework, 

we propose a new FBN estimation model that can estimate FBN more accurately through combining 

low rank and self-calibration. 

Let 𝐗 ∈      and 𝐏 ∈     
 denote the data matrix and a diagonal matrix of N ROI and T time 

points in each series, respectively. Our model is: 



9    𝐖   ∈         𝑓 𝐗    𝐖          𝜆     𝐖 −                                  (6) 

where 𝐗                  , 𝐏                  ,            are the indicators,   ∈      . When     , the t-th time point will be discarded and is not used for the estimation of FBN. If    is equal to 

1 at all times, Eq. (6) is reduced to Eq. (5). W is the edge weight matrix while λ and   are two regular-

ization parameters in the objective function. Most of the time points will be discarded when   has a 

small value close to 0. Conversely, when the value of   is large, most of the time points will be re-

tained. In other words, by controlling parameter  , the model can learn indicator   , measure data 

quality, remove poor quality data, and complete self- calibrated FBN estimation. 

Here, we use partial correlation method for data fitting, which is defined as    𝐖   ∈               −                        𝜆     𝐖 −                         (7) 

where      is the time point t corresponding to the i-th ROI. The abbreviated Eq. (7) becomes:  𝑖𝑛𝐖 𝐏   𝐏𝐗 − 𝐏𝐗𝐖    𝜆     𝐖 − ‖𝐏‖ .                                      (8) 

The low-rank constraint incorporates prior information, which makes the brain network have a 

modular structure and conform to the inherent structural FBN features. By controlling the parameter   

in the last term of the objective function, the indicator is learned from the data and then the quality of 

the data is controlled for self-calibration. The algorithm for solving Eq. (8) is summarized in Algorithm 

1. The network construction procedure is graphically illustrated in Figure 2. 

Algorithm 1 FBN estimation via self-calibration low rank regularization 

Input:  𝐗, 𝜆,   

Output: W, P 

1. Initialize P 

2. while not converged 

  Repeat 

W 𝐖−   − 𝐗 𝐏 𝐏𝐗  𝐗 𝐏 𝐏𝐗𝐖  
W              𝐖              −  𝜆             − 𝜆        

end 

3.             𝐗   − 𝐗   𝐖                                    𝑤𝑖𝑠   
4. end 

5. return W, P 

 

We initialize P to an identity matrix. For the two variables P and W in Eq. (8), we use the alternating 

convex search (ACS) (Sherali and Shetty, 2006) to complete. First, fix P, and we use the proximal 
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approach for optimization. According to the gradient descent criterion, the updating formula of data 

fitting term is: 𝐖    𝐖 −    𝐖𝑓 𝐗 𝐖  ,  𝐖𝑓 𝐗 𝐖   𝐗 𝐏 𝐏𝐗 −  𝐗 𝐏 𝐏𝐗𝐖. The proximal 

operator is defined:             𝐖              −  𝜆             − 𝜆                       (9) 

where             𝑛    is the singular value decomposition (SVD) of matrix W. 

After that, we fix W and update P. This is a linear programming problem that is easy to get the opti-

mal solution. If   𝐗   − 𝐗   𝐖     , the t-th time point will be labeled as 1 and will be retained, 

otherwise, the time-point will be labeled as 0. 

For the construction of the DTI structural brain network, the AAL template aligned to each subject's 

DTI fiber bundle imaging was converted to a common space as a node. The PANDA is used to calcu-

late the ROI and the structural connection between them as the total number of standardized connected 

fibers between the ROI pairs to construct a DTI network. The connection of white matter fiber bundles 

between each pair of brain regions is considered the edge of the brain structure network. The average 

FA of the connections between network nodes is defined as the connection weights in the DTI network. 

Finally, a 90 by 90 weighting matrix is obtained. 𝑤                    ∈                                                          (10) 

where 𝑖 𝑗 ∈ 𝑁             and 𝑖 ≠ 𝑗, 𝑛 𝑓  is the total number of fibers linking ROIs i and j, 𝑎𝑖 is 
the surface area of ROI i between gray matter and white matter.        is used to correct deviations in 

structural connection strength estimates caused by different ROI sizes. 
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min𝐖,𝐏 ||𝐏𝐗 − 𝐏𝐗𝐖||2 + 𝜆rank 𝐖 − ‖𝐏‖1 
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Figure 2: Illustration of the FBN construction procedure. 

2.3 Joint non-convex multi-task learning 

After completing the functional and structural brain network estimation, we treat different modal 

information as different tasks and multi-task learning method is used for feature selection. Specifical-

ly, we design a joint non-convex multi-task learning model, which can automatically learn the rela-

tionship between different modalities, reduce the influence of different noise levels of different modal 

information, and obtain the most stable and discriminative features. Multi-modal data have similarities 

and differences, the fusion of multi-modal information can enhance the expression of complementary 

information and useful features, improve generalization performance and classification performance. 

Therefore, we learn multiple modal data simultaneously in the framework and expect these tasks to 

work together to obtain useful features, which cannot be done in a single task model. 

We use a low-rank regularizer to perform subspace learning of samples to learn about potentially 

relevant information between different tasks. To facilitate optimization, the current commonly used 

method is to treat the rank norm as a trace norm. But the difference between the two norms and the 
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penalty bias caused by the trace norm will cause the algorithm to degenerate, and the low-rank struc-

ture of coefficient matrix cannot be learned well. We propose to use a joint non-convex regularizer for 

multi-task learning, the original rank minimization problem is approximated by non-convex 

regularizer. 𝐗          is the training set in K tasks,            is its associated label vector. In multi-task learn-

ing, the coefficient vector   ∈      in each task can be jointly learned, and all coefficient vectors 

form a coefficient matrix 𝐖 ∈     . In this case, n and d represent the number of subjects and fea-

ture dimensions, respectively.           is a matrix of all task labels, the least squares loss function is 

used to measure the relationship between X and Y.    𝐖  is the 𝑖-th singular value of W,   is a pa-

rameter balancing two terms. Our objective function is:    𝐖    𝐗𝑖 𝑖 −  𝑖                   𝐖                            (11) 

Here,          𝐖         is a new regularization, it is between the   -norm and the   -norm of   𝐖 , which can reduce the relaxation problem and the minimization problem of the original rank. 

Regarding the optimization of the objective function, we define a new function:   𝐖  𝐖𝐖 .Then the function can be reformulated as:    𝐖    𝐗𝑖 𝑖 −  𝑖             𝜆    𝐖                                 (12) 

where                 , 𝜆  is the eigenvalue of   𝐖 . Further, it can be written as:    𝐖   𝐖    𝐖     𝐖                                               (13) 

where   𝐖     𝐗𝐖 −          ,   𝐖     𝜆    𝐖       . Supposing 𝐖𝐖   𝜆           is the 

eigenvalue decomposition of   𝐖 , the derivative of   𝐖  is: 
   𝐖  𝐖     𝐖 , where   

    𝜆           is the weighted matrix. For   𝐖 , 
   𝐖  𝐖   𝐗  𝐗𝐖 −   , combining these two 

terms, we have:    𝐗   𝐗   −                                                             (14) 

We can obtain the optimal solution of    via solving the following problem: 𝐗   𝐗   −                                                               (15) 
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The calculation of D depends on the variable W, and D can be calculated when W is fixed. Each 

column of W is computed by solving Eq. (15). Hence, we utilize an iterative method to find the solu-

tion of Eq. (12). In      -th iteration, updating W equals solve the following problem:    𝐖   𝐖     𝐗   −                     𝐖𝐖                                (16) 

The entire iterative process is outlined in Algorithm 2. Figure 3 is a one-dimensional illustration of 

our proposed new regularization term, it is closer to the   -norm than the   -norm. Therefore, better 

sample subspace learning can be carried out in the low-rank feature selection process. 

min𝐖  ||𝐗𝑖 𝑖 −  𝑖||22𝐾
𝑖=1 +   log⁡( 𝑖 𝐖 + 1) 

𝑖=1  

0 1 2 3 4 5

1

2

3

4

5  1-norm  0-norm 

new regularizer

Subspace Learning

FC and SC Features Selected Features

Figure 3: Illustration of the feature selection procedure. 

 

Algorithm 2  

Input:  𝐗,   

Output: W 

Initialize          𝐗         

while not converged 

1. Eigenvalue decomposition:   𝐖       

2. Update       𝜆           

3. Update W by solving the Eq. (16) 

4. Until convergence, where the convergence condition is:    𝐖  −   𝐖        𝐖      −   

end 

2.4 Classification 

We do not perform classifier research in this paper, which is beyond the scope of our discussion. 

Therefore, we use the simplest classifier with linear SVM (c=1) with default parameters for classifica-
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tion. Complex classification pipelines may confuse the validation of the method, so a simple SVM is 

used to complete the classification in all our experiments. 

3 Experiments 

3.1 Dataset and pre-processing 

The data source in this article is the ADNI public database. Both rs-fMRI and DTI data are collected 

from the 3.0T Siemens MRI scanner. For rs-fMRI images, the data acquisition parameters are set as 

follows: Pulse Sequence = EP; imaging matrix =64×64 with 48 slices; 180 volumes; voxel thickness c= 

3.3 mm; flip angle=9 degree; TE=30 ms; TR=3000 ms. For DTI images, the data acquisition parame-

ters are set as follows: b=0 and 1000 s/   ; Pulse Sequence=EP; imaging matrix =64×64 with 48 

slices; 180 volumes; gradient directions =54; voxel thickness=3.3 mm; flip angle=90 degree; TE=56 

ms; TR=7200 ms. During the scan process, all subjects were instructed to open their eyes and stare at a 

fixed cross in the middle of the screen to prevent them from falling asleep and avoiding the saccade-

related activation caused by closing their eyes. 

126 MCI patients are obtained from the ADNI dataset, including 44 EMCI (22M/22F) and 38 LMCI 

(19M/19F), 44 SMC patients (17M/27F), and 44 demographically matched NCs (22M/22F). The total 

number of subjects was 170. Table 2 summarizes the demographic data of each group. 

Table 2: Demographic details of the used database. 

Group NC(44) SMC(44) EMCI(44) LMCI(38) 

Male/Female 22M/22F 17M/27F 22M/22F 19M/19F 

Age(mean±SD) 76.4±4.5 76.3±5.4 76.5±6.1 76.0±7.7 

For rs-fMRI data preprocessing, we use the widely used rs-fMRI data analysis software: statistical 

parameter mapping (SPM12) software package (Ashburner et al., 2014), rs-fMRI data processing assis-

tant (DPARSF) toolbox (Yan and Zang, 2010) and analysis toolkit (REST). The specific processing 

process is as follows: In the first step, to maintain magnetization balance, we discard the data of the 

first 10 time points of each subject. The second step is hierarchical correction, which corrects the scan-

ning layer section at all remaining time points to the intermediate layer, to solve the hierarchical disor-

der caused by the staggered sequence of odd layers in the data collection process. In the third step, head 
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movement correction was carried out to align the data at all time points of each subject with the data at 

the first time point, to remove the head movement artifact and solve the possible influence caused by 

each subject shaking their head during the scanning process. The fourth step is to register and register 

all the data of the subjects to the standard template. Here, the standard template of the Montreal Neuro-

logical Institute (MNI) is used, and the downsampled voxel size is 3 3 3   . The fifth step is spatial 

smoothing. A 4 mm full width half-maximum Gaussian kernel is adopted for smoothing, to eliminate 

noise interference. The sixth step performs a regression covariate on the smoothed data, i.e., removes 

the interfering signal from the time series of each voxel to reduce the effects of non-neuronal fluctua-

tions, including white matter signals, cerebrospinal fluid signals, and head motion signals. The seventh 

step of time filtering uses a band pass filter (0.01 Hz   f  0.08 Hz) to filter the time series, to mini-

mize the effects of low-frequency drift and high-frequency noise. Then, by aligning the AAL map 

(Craddock et al., 2012) with the rs-fMRI image, the brain space is divided into 90 ROIs (excluding 26 

ROIs from the cerebellum). Finally, we obtain the time series of each ROI of each subject through the 

time series of all voxels in that specific ROI. 

Preprocessing of DTI images uses the PANDA toolbox (Cui et al., 2013) based on the FMRIB soft-

ware library (FSL, https://fsl.fmrib.ox.ac.uk/fsl/), which generates global brain determinism fiber bun-

dle imaging by using the FACT algorithm (Kamal and Burk, 1996) with default parameters. First use 

the bet command to perform brain tissue extraction and eddy distortion correction, then use the dtifit 

command to calculate the diffusion tensor, and use the fact command in the FSL to perform determinis-

tic beam raying, thus in the assumed white matter tissue (fractional anisotropy (FA) > 0.2) generate all 

possible fibers with an angle threshold = 45° and two seeds per voxel. Each subject’s T1 image is first 

co-registered to its respective T2-weighted image and then spatially registered to the standard MNI 

space as the same as used for rs-fMRI registration. The resulting deformation field is applied to map 

the brain parcellation atlas from the MNI space to the native space of each individual. Finally, the brain 

space is divided into 90 ROIs by aligning AAL to each image, where each ROI represents a network 

node. Deterministic fiber bundle imaging is then performed to generate all possible fiber bundles with-
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in the white matter tissue. The average FA of links between network nodes is defined as the connection 

weight in the DTI network. 

3.2 Experimental setup 

The data imaging matrix used in our experiment is 64×64 with 48 slices, details are given in the data 

set and preprocessing section. After data preprocessing, rs-fMRI is 170×90 time series and DTI is 

90×90 structural brain network. After using the proposed method to construct functional brain network, 

rs-fMRI is 90×90 functional brain network. They are then used together as input for feature selection, 

and because of the symmetry of the matrix, the upper trigonometry of the join matrix is used. The 

90×90 network of each subject was taken as a column in the upper triangle and reshaped into a vector 

with 4005 elements, and the feature dimension was 4005× the number of subjects (Wang et al., 2018). 

After feature selection, we extract the top 50 features with the largest weight, obtain the feature dimen-

sion of 50× the number of subjects, and input them into the classifier for classification. 

In our study, we conduct six binary classification experiments: NC vs. SMC, NC vs. EMCI, NC vs. 

LMCI, SMC vs. EMCI, SMC vs. LMCI and EMCI vs. LMCI. Our experiments are conducted using 

LOO cross-validation algorithm to fairly assess the classification performance.used as . LOO cross-

validation algorithm is computationally expensive, the sample utilization rate is the highest and also 

suitable for small samples as in our tasks. 

Since the regularization parameters involved in the network estimation and feature selection process 

may affect the classification results, we select the optimal parameters by performing a grid search over 

a wide range. For each regularization parameter 𝜆 (including SR, LR and SLR), we use eleven candi-

date values in                        . For the regularization parameters 𝜆 and   in our method, 

the candidate values in range [                       and                    , respectively. For the 

fairness of comparison, we use eleven sparse levels as threshold parameters in the PC, levels from                      , where 100% means that all edges are preserved and 90% means that 10% 

of the weak edges in the FBN are filtered out. In the feature selection process, we also use eleven can-

didate values in                             . In the experiments, where the parameters are giv-
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en, the training samples are used to select features and train the classifier, and then the remaining 1 

sample is used to verify the classification performance. The average accuracy obtained from the inter-

nal LOO is used as the a good metric to verify the best performance. Since the optimal network param-

eters may vary with the training set, we re-select features and train the classifier based on the current 

training set of optimal network parameters. Finally, we classify the test samples using the selected fea-

tures and trained classifiers. 

3.3 Comparison methods 

To demonstrate the effectiveness of our proposed method, we perform experiments based on the 

ADNI3 database and compare it with other methods. Different network estimation methods and multi-

task feature selection methods are compared in the experiments. Specifically, network estimation 

methods include PC, low rank (LR), SR and sparse low rank (SLR), which have been described in the 

Methods section. Multi-task feature selection methods include least absolute shrinkage and selection 

operator method (LASSO) (Vorlíčková, 2017) clustered multi-task learning (CMTL) (Jacob et al., 

2009), and robust multi-task feature learning (rMTFL) (Chen et al., 2011b). LASSOLASSO is one of 

the most commonly used feature selection regularization techniques, but it does not perform multi-task 

feature selection process and selects all features for comparison. The other two comparison methods 

are commonly used multi-task learning methods, which can effectively learn multiple tasks simultane-

ously and complete the selection of high-dimensional features. 

3.4 Performance evaluation 

For the classification performance evaluation, we use classification accuracy (the disease state of the 

subject is correctly classified as the actual disease state of each category of subjects) (ACC), sensitivity 

(SEN), specificity (SPE) and area under the receiver operating characteristic (ROC) curve (AUC) de-

fined:                                                                    (17)                                                                      (18) 
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where   ,  𝑁,   , and  𝑁 denote the true positive, true negative, false positive, and false negative, 

respectively. 

3.5 Classification Performance 

Tables 3 and 4 respectively show the performance of different network estimation methods and dif-

ferent multi-task feature selection methods on the same dataset, including the classification results of 

NC vs. SMC, NC vs. EMCI, NC vs. LMCI, SMC vs. EMCI, SMC vs. LMCI, EMCI vs. LMCI. We 

include NC and the three sub-categories of MCI in our classification tasks. ROC curves for the above 

discussed binary classification problems are also compared and shown in Figure 4. The radar diagram 

in Figure 5 illustrates the classification performance compared with other feature selection methods. It 

can be seen that our method performs best in terms of all the four evaluation metrics. Through the ex-

perimental results, we have these findings. 

Table 3: Classification performance of various methods in NC vs. SMC, NC vs. EMCI and NC vs. LMCI. (Boldface denotes 

best performance.) 

 

BFCN Feature Selection 
NC vs. SMC NC vs. EMCI NC vs. LMCI 

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 

PC 

LASSO 60.23 68.18 52.27 64.45 59.09 45.45 72.73 72.31 65.85 68.42 63.64 71.83 

rMTFL 60.23 65.91 54.55 64.72 68.18 65.91 70.45 80.22 57.32 50.00 63.64 57.19 

CMTL 63.64 61.36 65.91 69.34 67.05 68.18 65.91 71.41 58.54 55.26 61.36 52.00 

Ours 73.86 72.73 75.00 80.81 69.32 65.91 72.73 81.16 67.07 76.32 59.09 79.26 

SR 

LASSO 76.14 77.27 75.00 84.92 65.50 63.64 61.36 70.40 73.17 81.58 65.91 70.75 

rMTFL 76.14 81.82 70.45 85.28 70.45 65.91 75.00 78.25 74.39 63.16 84.09 83.43 

CMTL 75.00 72.73 77.27 83.32 79.55 81.82 77.27 84.40 67.07 63.16 70.45 71.05 

Ours 78.41 75.00 81.82 86.11 82.95 84.09 81.82 86.05 84.15 84.21 84.09 89.89 

LR 

LASSO 73.86 65.91 81.82 74.48 65.91 68.18 63.64 73.66 68.29 71.05 65.91 72.19 

rMTFL 63.64 54.55 72.73 82.95 76.14 75.00 77.27 86.47 65.85 57.89 72.73 88.82 

CMTL 67.05 63.64 70.45 75.88 80.68 86.36 75.00 90.55 62.20 60.53 63.64 71.41 

Ours 77.27 72.73 81.82 84.14 81.82 79.55 84.09 93.60 74.39 73.68 75.00 90.73 

SLR 

LASSO 65.91 63.64 68.18 77.07 60.23 56.82 63.64 65.70 64.63 60.53 68.18 69.68 

rMTFL 72.73 63.64 81.82 84.19 77.27 75.00 79.55 87.04 70.73 73.68 68.18 77.57 

CMTL 70.45 63.64 77.27 78.62 80.68 77.27 84.09 91.63 70.73 68.42 72.73 86.30 

Ours 78.41 79.55 77.27 88.02 82.95 86.36 79.55 92.20 82.93 81.58 84.09 96.29 

Ours 

LASSO 77.27 79.55 75.00 84.71 79.55 81.82 77.27 87.04 79.27 81.58 77.27 86.78 

rMTFL 71.59 70.45 72.73 77.84 81.82 86.36 77.27 92.10 82.93 81.58 84.09 90.67 

CMTL 75.00 72.73 77.27 84.30 81.82 84.09 79.55 91.27 80.49 78.95 81.82 91.93 

Ours 82.95 88.64 77.27 89.82 85.23 86.36 84.09 93.54 87.80 84.21 90.91 98.86 
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(f) EMCI vs. LMCI  

 Figure 4: ROC plots comparison of competing methods on different classification tasks. 

 

Table 4: Classification performance of various methods in SMC vs. EMCI, SMC vs. LMCI and EMCI vs. LMCI. (Boldface 

denotes best performance.) 

BFCN 
Feature 

Selection 

SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI 

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 

PC 

LASSO 62.50 63.64 61.36 74.67 67.07 65.79 68.18 81.18 58.54 63.16 54.55 64.71 

rMTFL 64.77 65.91 63.64 75.26 54.88 60.53 50.00 79.42 54.88 57.89 52.27 82.78 

CMTL 62.50 65.91 59.09 77.27 67.07 57.89 75.00 81.10 52.44 55.26 50.00 82.06 

Ours 69.32 70.45 68.18 79.62 68.29 71.05 65.91 84.15 65.85 57.89 72.73 84.39 

SR 

LASSO 72.73 75.00 70.45 83.32 62.20 71.05 54.55 68.36 53.66 42.11 63.64 58.01 

rMTFL 78.41 77.27 79.55 89.05 63.41 60.53 65.91 71.23 64.63 65.79 63.64 74.88 

CMTL 76.14 81.82 70.45 84.35 65.85 65.79 65.91 88.40 56.10 57.89 54.55 77.87 

Ours 82.95 84.09 81.82 90.96 67.07 63.16 70.45 90.31 67.07 60.53 72.73 80.50 

LR 

LASSO 76.14 75.00 77.27 87.71 74.39 76.32 72.73 81.88 75.61 81.58 70.45 79.01 

rMTFL 77.27 81.82 72.73 84.87 78.05 84.21 72.73 85.59 76.83 71.05 81.82 84.93 

CMTL 73.86 63.64 84.09 84.45 79.27 76.32 81.82 87.98 75.61 78.95 72.73 83.73 

Ours 80.68 77.27 84.09 88.43 82.93 84.21 81.82 90.25 78.05 81.58 75.00 85.41 

SLR 
LASSO 65.91 61.36 70.45 74.23 60.98 57.89 63.64 75.90 60.98 57.89 63.64 83.07 

rMTFL 67.05 61.36 72.73 74.38 75.61 78.95 72.73 80.26 74.39 84.21 65.91 85.65 
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Table 5: Classification performance with related works in NC vs. MCI. (Boldface denotes best performance.) 

Method Modality Subjects 
FBN construc-

tion 

Feature 

selection 
ACC SEN SPE AUC 

Wee et al. (Wee 

et al., 2014a) 
fMRI 50 

Group-

constrained 

sparse 

mRMR 84.00 84.00 84.00 86.56 

Li et al.(Li et 

al., 2018) 
fMRI 73 

Ultra-group 

LASSO 
MPC 80.82 80.56 81.08 80.82 

Zhou et al. 

(Zhou et al., 

2018b) 

fMRI 137 
High-order 

FCN 
t-test 86.13 83.82 88.41 - 

Li et al. (Li et 

al., 2019) 

ASL+ BOLD 

fMRI 
61 

Ultra-

Weighted-

LASSO 

M2TFS 

(Jie et al., 

2015) 

86.90 82.10 90.90 90.00 

Proposed fMRI+ DTI 170 
Low Rank 

Self-calibrated 

Joint Non-

Convex  
87.80 84.21 90.91 98.86 

 

(a) NC vs. SMC (b) NC vs. EMCI (c) NC vs. LMCI

(d) SMC vs. EMCI (e) SMC vs. LMCI (f) EMCI vs. LMCI  

Figure 5: In six classification problems, the performance comparison of different feature selection methods after using our 

method to construct the network. 

Among the six classification problems, the proposed method is superior to the most commonly used 

comparison methods. Our model has classification accuracies of 82.95%, 85.23%, 87.80%, 84.09%, 

90.24% and 81.71% on the classification of NC vs. SMC, NC vs. EMCI, NC vs. LMCI, SMC vs. 

CMTL 73.86 72.73 75.00 77.43 79.27 81.58 77.27 80.80 68.29 71.05 65.91 82.42 

Ours 81.82 84.09 79.55 86.26 85.37 79.95 90.91 91.93 78.05 78.95 77.27 87.56 

Ours 

LASSO 78.41 77.27 79.55 87.76 79.27 78.95 79.55 89.77 74.39 68.42 79.55 88.76 

rMTFL 80.68 90.91 70.45 89.82 78.05 78.95 77.27 87.74 76.83 81.58 72.73 91.21 

CMTL 79.55 72.73 86.36 90.70 85.37 86.84 84.09 96.11 76.83 73.68 79.55 89.47 

Ours 84.09 81.82 86.36 91.27 90.24 89.47 90.91 96.65 81.71 78.95 84.09 92.11 
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EMCI, SMC vs. LMCI and EMCI vs. LMCI, respectively. This suggests that our proposed method can 

accurately classify MCI and SMC patients from NCs or in several subcategories. In addition, Tables 3 

and 4 show not only the classification accuracy obtained by the classification model, but also the sensi-

tivity, specificity, and AUC. Among the six classification problems, the sensitivity reaches 88.64%, 

86.36%, 84.21%, 81.82%, 89.47% and 78.95%, respectively. The specificity reaches 77.27%, 84.09%, 

90.91%, 86.36%, 90.91 and 84.09%, respectively. Higher specificity indicates a higher true negative 

rate, while higher sensitivity indicates a higher true positive rate.  

The results indicate that effective results can be achieved in the diagnosis of NCs and in the selection 

of all disease samples. The AUC reaches 89.82%, 93.54%, 98.86%, 91.27%, 96.65% and 92.11%, re-

spectively, in the six classification problems. The larger the AUC, the better the classification effect of 

the classifier. 

Comparing experiments with different network estimation methods using the same feature selection 

method reveals that PC is usually the worst performing method. Because the PC can only detect com-

plete correlation when modeling, it cannot rule out the confounding effects of other brain regions. 

Hence, some redundant and unimportant associations are included in modeling, which brings difficul-

ties to the brain network analysis. There are no significant differences when comparing to the perfor-

mance of the other three partial-correlation network estimation methods under this regularization 

framework (including SR, LR, and SLR), which all improve the confounding problems involved in PC, 

and incorporate prior information, which can be effectively constructed brain networks. Our method 

has superior performance when compared to other network estimation methods implemented herThe 

proposed method does not only effectively encode the prior information, but also identifies the data 

quality, reduces the amount of bad data points, and limits the impact of noise and artifacts during the 

network estimation process. The results prove that the improvement of the network estimation process 

enhances the classification accuracy rate and is more conducive to brain network analysis. 

A comparison of different feature selection methods using the same network estimation method re-

veals that LASSO is the worst performing method in most cases. The main reason is that other compar-

ison methods are multi-task feature selection methods, but LASSO is to select all features simultane-
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ously. LASSO only selects features with sparse regularization, which is not enough to correctly classify 

neuroimaging features. Observing the results of the comparative experiments, we find that our method 

is superior to several other multi-task feature selection methods. Among all classification problems, 

there is an increase on classification accuracy of 1.14%~10.22%. This indicates that the proposed mul-

ti-task joint non-convex feature selection method can indeed improve the performance of MCI clinical 

recognition. 

Table 5 shows the comparison between our method and the classification results of other MCI auto-

matic diagnosis studies, and our results are optimal in four classification measures. This is only a com-

parison of NC and MCI. Other studies of AD in earlier stages have been conducted in our experiments. 

In addition, we perform an ablation experiment to study the performance impact of the improved 

method. The results are shown in Table 6. In all classification problems, we study the effects of multi-

modal data learning, data quality indicators, low rank constraints and regularization terms of feature 

selection processes. But they do affect performance, and improvements to traditional solutions can 

improve the performance of the classification. 

 

Table 6: Comparison of ablation results in six classification problems.(Boldface denotes best performance). 

Modality 
NC vs. SMC NC vs. EMCI NC vs. LMCI 

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 

DTI 60.23 65.91 54.55 70.22 71.59 63.64 79.55 84.92 67.07 65.79 68.18 73.33 

fMRI 80.00 81.82 78.95 85.17 81.82 79.55 84.09 89.82 85.37 78.95 90.91 96.47      76.14 72.73 79.55 82.85 75.00 79.55 70.45 83.73 78.05 81.58 75.00 83.76 𝜆    77.27 79.55 75.00 83.99 76.14 84.09 68.18 86.57 79.27 81.58 77.27 88.70     78.41 79.55 77.27 85.80 77.27 75.00 79.55 85.43 82.93 84.21 81.82 87.38 

Ours 82.95 88.64 77.27 89.82 85.23 86.36 84.09 93.54 87.80 84.21 90.91 98.86 

Modality 
SMC vs. EMCI SMC vs. LMCI EMCI vs. LMCI 

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC 

DTI 54.14 54.55 47.73 62.23 70.73 71.05 70.45 81.28 53.66 57.89 50.00 52.60 

fMRI 80.68 77.27 84.09 90.55 85.37 81.58 88.64 93.24 78.05 73.68 81.82 85.71      67.05 72.73 61.36 80.00 69.51 73.68 65.91 89.54 63.41 71.05 56.82 82.48 𝜆    75.61 84.21 68.18 85.74 78.41 75.00 81.82 89.65 78.05 76.32 79.55 84.27     61.36 54.55 68.18 68.40 77.27 72.73 81.82 87.55 74.39 71.05 77.27 85.59 

Ours 84.09 81.82 86.36 91.27 90.24 89.47 90.91 96.65 81.71 78.95 84.09 92.11 



23 

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1  

0

20

40

60

80

100

λμ

 −𝟓  −𝟒  −𝟑  −   −𝟏 

 𝟓 

 𝟑 
   

 𝟏 
 𝟎 

 𝟒 

ACC 

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1  

0

20

40

60

80

100

λμ

 −𝟓  −𝟒  −𝟑  −   −𝟏 

 𝟓 

 𝟑 
   

 𝟏 
 𝟎 

 𝟒 

ACC 

(a) NC vs. SMC (c) NC vs. LMCI

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1  

0

20

40

60

80

100

λμ

(b) NC vs. EMCI

ACC 

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1  

0

20

40

60

80

100

λμ

 −𝟓  −𝟒  −𝟑  −   −𝟏 

 𝟓 

 𝟑 
   

 𝟏 
 𝟎 

 𝟒 

 −𝟓  −𝟒  −𝟑  −   −𝟏 

 𝟓 

 𝟑 
   

 𝟏 
 𝟎 

 𝟒 

(d) SMC vs. EMCI

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1  

0

20

40

60

80

100

λμ

 −𝟓  −𝟒  −𝟑  −   −𝟏 

 𝟓 

 𝟑 
   

 𝟏 
 𝟎 

 𝟒 

ACC ACC 

(e) SMC vs. LMCI

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1  

0

20

40

60

80

100

λμ

(f) EMCI vs. LMCI

ACC 

 −𝟓  −𝟒  −𝟑  −   −𝟏 

 𝟓 

 𝟑 
   

 𝟏 
 𝟎 

 𝟒 

 

Figure 6: The accuracy in all classification tasks based on the networks estimated by the proposed method with different regular-

ized parametric values in the interval. 
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Figure 7: The accuracy in all classification tasks based on feature selection by the proposed method with different regularized 

parametric values in the interval. 

 

 



24 

3.6 Results Summary 

Figure 6 is the sensitivity of the network model parameters in all classification problems, showing 

the classification accuracy of the proposed network construction method for different parameter selec-

tion combinations. It can be concluded that the choice of network model parameters has a great impact 

on the final classification accuracy. LOO test is performed on all subjects. Similarly, we perform sensi-

tivity experiments on all parameters in the feature selection process, and the classification results are 

shown in Figure 7. The selected connections and corresponding brain regions in each experiment are 

recorded. Although different parameter settings affect the selected connections and corresponding brain 

regions, some brain regions appear frequently in the same classification task. For example, in NC vs. 

LMCI, SOG.L and MOG.R appeared in all parameter selection, which provide new findings for disease 

detection. In Figure 8, we use five different methods to construct the edge weight matrix of the brain 

network for visualization. For SR, LR, and SLR, we uniformly set the regularized parameter to 𝜆   , 

and for our method, 𝜆    and      . From the results in Figure 8, our method removes weak con-

nections and noise while maintaining important connections. Figure 9 shows the functional connectivi-

ty networks of NC, SMC, EMCI and LMCI, respectively. Several functionally connected networks 

exhibit relatively different modes in terms of network topology and strength. In several subcategories 

of MCI, the three types are progressively distributed, and the degree of cognitive impairment is gradu-

ally increased. It can be found that some connections are destroyed and the number of connections is 

gradually reduced compared with the NC subjects. This follows previous research (Zhou et al., 2013). 

Figure 9 is created using the Matlab function circularGraph shared by Paul Kassebaum. The color of 

each arc in the graph is random and meaningless, and is allocated only for better visualization. 

(a) PC (b) SR (c) LR (d) SLR (e) Ours

Frontal

Subcortical

Parietal

Temporal

Occipital

 

 Figure 8: The FBN edge weight matrix of a subject estimated by 5 methods. 
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(b) SMC
(a) NC

(c) EMCI (d) LMCI

TemporalParietalFrontal Subcortical Occipital

 

 Figure 9: The structure of four networks for (a)NC ;(b)SMC; (c) EMCI; and (d)LMCI. 

 

 

Figure 10: Of the six classification questions, the top 10 most discriminative connections and associated ROI brain regions. 
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Table 7: Indices and names of recognized brain ROIs related to the top 10 connectivity from our classification tasks in NC vs. 

SMC, NC vs. EMCI and NC vs. LMCI using ALL template with 90 ROIs. 

 

 

 

 

NC vs. SMC  NC vs. EMCI  NC vs. LMCI 

ROIs index ROI names ROIs index ROI names  ROIs index ROI names 

9, 10 ORBmid.L,ORBmid.R 9, 24 ORBmid.L,SFGmed.R 3, 49 SFGdor.L, SOG.L 

21, 39 OLF.L, PHG.L 7, 22 MFG.L, OLF.R 5, 6 ORBsup.L,ORsup.R 

8, 21 MFG.R, OLF.L 32, 36 ACG.R, PCG.R 21, 52 OLF.L, MOG.R 

50, 57 SOG.R, PoCG.L 43, 50 CAL.L, SOG.R 62, 68 IPL.R, PCUN.R 

78, 79 THA.R, HES.L 56, 57 FFG.R, PoCG.L 7, 22 MFG.L, OLF.R 

34, 41 DCG.R, AMYG.L 74, 90 PUT.R, ITG.R 15, 34 ORBinf.L, DCG.R 

12, 67 IFGoperc.R, PCUN.L 45, 48 CUN.L, LING.R 12, 27 IFGoperc.R, REC.L 

74, 90 PUT.R, ITG.R 46, 54 CUN.R, IOG.R 3, 78 SFGdor.L, THA.R 

81, 90 STG.L, ITG.R 7, 50 MFG.L, SOG.R 50, 63 SOG.R, SMG.L 

1, 24 PreCG.L, SFGmed.R 42, 49 AMYG.R, SOG.L 1, 59 PreCG.L, SPG.L 

 

Table 8: Indices and names of recognized brain ROIs related to the top 10 connectivity from our classification tasks in SMC 

vs. EMCI, SMC vs. LMCI and EMCI vs. LMCI using ALL template with 90 ROIs. 

 

 

 

 

SMC vs. EMCI  SMC vs. LMCI  EMCI vs. LMCI 

ROIs index ROI names ROIs index ROI names  ROIs index ROI names 

1, 17 PreCG.L, ROL.L 22, 37 OLF.R, HIP.L 50, 55 SOG.R, FFG.L 

49, 52 
SOG.L, MOG.R 

3, 4 SFGdor.L, 

SFGdor.R 

39, 64 
PHG.L, SMG.R 

38, 67 HIP.R, PCUN.L 12, 28 IFGoperc.R, REC.R 37, 40 HIP.L, PHG.R 

39, 59 
PHG.L, SPG.L 

5, 16 ORBsup.L, 

ORBinf.R 

37, 66 
HIP.L, ANG.R 

2, 41 PreCG.R, AMYG.L 41, 57 AMYG.L, PoCG.L 5, 43 ORBsup.L, CAL.L 

29, 58 INS.L, PoCG.R 65, 76 ANG.L, PAL.R 12, 28 IFGoperc.R, REC.R 

49, 90 
SOG.L, ITG.R 

1, 12 PreCG.L, 

IFGoperc.R 

47, 54 
LING.L, IOG.R 

7, 17 MFG.L, ROL.L 62, 65 IPL.R, ANG.L 65, 79 ANG.L, HES.L 

21, 51 OLF.L, MOG.L 22, 28 OLF.R, REC.R 5, 27 ORBsup.L, REC.L 

58, 75 PoCG.R, PAL.L 12, 38 IFGoperc.R, HIP.R 52, 67 MOG.R, PCUN.L 

 

We use LOO cross-validation algorithm to evaluate the performance of the proposed framework and 

select different subsets of features for MCI classification. Therefore, the connection feature with the 

highest number of selected frequencies in LOO cross-validation is considered the most discriminative 

connection for MCI classification. Tables 7 and 8 list the top 10 most discriminative connections and 

related ROI brain regions in the six classification problems of the experiment and visualized using 

BrainNet Viewer (Xia et al., 2013), as shown in Figure 10. 

The brain regions are associated with the top ten connections selected by the NC vs. SMC classifica-

tions using our proposed method are middle frontal gyrus, orbital part (ORBmid.L and ORBmid.R), 

olfactory cortex (OLF.L), parahippocampal gyrus (PHG.L), middle frontal gyrus (MFG.R), superior 

occipital gyrus (SOG.R), postcentral gyrus (PoCG.L), thalamus (THA.R), heschl gyrus (HES.L), medi-

an cingulate and paracingulate gyri (DCG.R), amygdala (AMYG.L), inferior frontal gyrus, opercular 
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part (IFGoperc.R), precuneus (PCUN.L), lenticular nucleus, putamen (PUT.R), inferior temporal gyrus 

(ITG.R), superior temporal gyrus (STG.L), precentral gyrus (PreCG.L), and superior frontal gyrus, 

medial (SFGmed.R).  

The top ten connections related ROIs selected from NC vs. EMCI classification using our proposed 

method are ORBmid.L, SFGmed.R, middle frontal gyrus (MFG.L), olfactory cortex(OLF.R), anterior 

cingulate and paracingulate gyri (ACG.R), posterior cingulate gyrus (PCG.R), calcarine fissure and 

surrounding cortex (CAL.L), superior occipital gyrus (SOG.R, SOG.L), fusiform gyrus (FFG.R), 

PoCG.L, lenticular nucleus, putamen (PUT.R), ITG.R, cuneus (CUN.L, CUN.R), lingual gyrus 

(LING.R), inferior occipital gyrus (IOG.R), and amygdala (AMYG.R) . For NC vs. LMCI classifica-

tion, the most informative connections related ROIs are superior frontal gyrus, dorsolateral (SFGdor.L), 

SOG.L, superior frontal gyrus, orbital part (ORBsup.L, ORBsup.R), OLF.L, middle occipital gyrus 

(MOG.R), inferior parietal, but supramarginal and angular gyri (IPL.R), precuneus (PCUN.R), MFG.L, 

OLF.R, inferior frontal gyrus, orbital part (ORBinf.L), DCG.R, IFGoperc.R, gyrus rectus (REC.L), 

THA.R, SOG.R, supramarginal gyrus (SMG.L), PreCG.L, and superior parietal gyrus (SPG.L). For 

SMC vs. EMCI classification, the most informative connections related ROIs are precentral gyrus 

(PreCG.L, PreCG.R), rolandic operculum (ROL.L), SOG.L, MOG.R, hippocampus (HIP.R), PCUN.L, 

PHG.L, superior SPG.L, AMYG.L, insula (INS.L), postcentral gyrus (PoCG.R), ITG.R, MFG.L, 

ROL.L, OLF.L, middle occipital gyrus (MOG.L), and lenticular nucleus, pallidum (PAL.L). For the 

SMC vs. LMCI and EMCI vs. LMCI classification, the relevant brain regions are OLF.R, hippocampus 

(HIP.L), superior frontal gyrus, dorsolateral (SFGdor.L, SFGdor.R), IFGoperc.R, gyrus rectus 

(REC.R), ORBsup.L, inferior frontal gyrus, orbital part (ORBinf.R), AMYG.L, PoCG.L, angular gyrus 

(ANG.L), lenticular nucleus, pallidum (PAL.R), PreCG.L, IPL.R, ANG.L, HIP.R, and SOG.R, fusi-

form gyrus (FFG.L), PHG.L, supramarginal gyrus (SMG.R), HIP.L, PHG.R, angular gyrus (ANG.R), 

ORBsup.L, CAL.L, IFGoperc.R, REC.R, lingual gyrus  (LING.L), IOG.R, ANG.L, HES.L, REC.L, 

MOG.R, PCUN.L, respectively. 

In all classification tasks, there are many overlapping related brain regions, such as olfactory cortex, 

parahippocampal gyrus, superior occipital gyrus, postcentral gyrus, amygdala, precuneus, angular 
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gyrus, etc., which appear multiple times in different classifications. These areas are often reported to be 

highly correlated with AD / MCI pathology (Salvatore et al., 2015; Sun et al., 2012; Xu et al., 2016). 

For example, the olfactory cortex is the most frequently occurring brain region in the experiment, 

which follows previous studies (Vasavada et al., 2015). AD / MCI preferentially attacks the central 

olfactory structure, and the symptoms of olfactory defects usually precede clinical cognitive defects 

and memory defects. Parahippocampal gyrus plays an important role in memory function, where le-

sions often cause memory impairment, which is a highly relevant brain region of AD / MCI. It has been 

found that motor dysfunction is associated with MCI, and postcentral gyrus as a somatic sensory center 

is also an important brain area for disease. Areas such as superior occipital gyrus and posterior cingu-

late gyrus have been proven to be related to MCI. On the other hand, in our experiments, there are 

some newly discovered brain regions such as the lenticular nucleus, pallidum, fusiform gyrus, and 

supramarginal gyrus, which play an important role in the recognition of diseases, possibly in memory 

with MCI and SMC patients. It is related to cognitive impairment and compensation mechanisms. The 

connections in the brain provide a broader perspective for analyzing disease progression and provide 

new insights into disease research, which can help improve the effectiveness of computer-aided diag-

nosis. 

4 Discussion 

The typical brain network analysis framework mainly includes three steps: brain network construc-

tion, feature learning and classification prediction. Based on this, we propose a low-rank self-

calibration brain network estimation and joint non-convex multi-task learning in this paper for early 

MCI diagnosis. In the stage of functional brain network construction, a new model is proposed, which 

introduces self-calibrated indicators and completes brain network estimation while controlling data 

quality. It can be seen from the results of the comparison experiments that the method of controlling the 

data quality is superior to other methods because the removal of noise can improve the performance of 

the model. In the feature selection stage, non-convex regularizer is used to complete the subspace 

learning of samples. Different from the traditional optimization method, our method can reduce the 
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penalty deviation and learn the low-rank structure of the coefficient matrix well, which integrates the 

functional connection and structural connection for joint multi-task learning. 

The automatic diagnosis framework is based on multi-task learning to improve their performance, 

which leverages the useful information between multiple related learning tasks. The relationship be-

tween different modalities of the subjects is used to conduct multi-task learning, to obtain the most 

discriminating disease-related features to realize the automatic diagnosis of early MCI. In the classifi-

cation experiment, MCI and SMC are classified with better results, which is helpful for the auxiliary 

physician to improve the diagnostic accuracy. According to the connection relationship between brain 

regions, some biomarkers sensitive to diseases can be explored and biologically meaningful reliability 

measurements are added, which reveals potential application for biomarker recognition based on medi-

cal images. 

Although the framework proposed in this study has achieved classification satisfactory results, there 

are still deficiencies. In this paper, the structural and functional brain network are constructed separate-

ly, and the process is relatively independent. The information integration of different modalities is real-

ized in the feature learning process. Building a functional and structural connection network and inte-

grating the network-learning framework may obtain higher classification accuracy of MCI and SMC, 

which is the focus of our future research. In future research, we will increase the amount of data for the 

problem of the small number of subjects in this paper. In addition, the brain network functional 

connection analysis method used is based on a single subject, which fails to consider the relationship 

between subjects. Our future work will consider the relationship among different subjects. 

5 Conclusions 

In this study, we propose a framework for automated diagnosis of the early stages of AD to distin-

guish between MCI patients, earlier SMC patients and healthy subjects. The structural and functional 

brain networks are first constructed, and then the multi-modal features are selected based on the joint 

non-convex multi-task learning method. An SVM is used for classification to diagnose patients. The 

method uses multi-modal neuroimaging data to classify six dichotomous problems. The experiments on 
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the ADNI dataset demonstrate the effectiveness of the method compared with other methods. The re-

sults based on cross-validation show that our method obtains better results in classification perfor-

mance. The brain regions associated with disease also demonstrate the effectiveness of the method. It 

can be proved that the method can effectively integrate multi-modal data information for multi-task 

learning, which helps computer-aided diagnosis to determine the early stages of AD and predicts the 

progress of disease development. 
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