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Abstract

Acute lymphoblastic leukemia (ALL) is a pervasive pediatric white blood cell can-
cer across the globe. With the popularity of convolutional neural networks (CNNs),
computer-aided diagnosis of cancer has attracted considerable attention. Such tools are
easily deployable and are cost-effective. Hence, these can enable extensive coverage of
cancer diagnostic facilities. However, the development of such a tool for ALL cancer
was challenging so far due to the non-availability of a large training dataset. The visual
similarity between the malignant and normal cells adds to the complexity of the prob-
lem. This paper discusses the recent release of a large dataset and presents a novel deep
learning architecture for the classification of cell images of ALL cancer. The proposed
architecture, namely, SDCT-AuxNetθ is a 2-module framework that utilizes a compact
CNN as the main classifier in one module and a Kernel SVM as the auxiliary clas-
sifier in the other one. While CNN classifier uses features through bilinear-pooling,
spectral-averaged features are used by the auxiliary classifier. Further, this CNN is
trained on the stain deconvolved quantity images in the optical density domain instead
of the conventional RGB images. A novel test strategy is proposed that exploits both
the classifiers for decision making using the confidence scores of their predicted class
labels. Elaborate experiments have been carried out on our recently released public
dataset of 15114 images of ALL cancer and healthy cells to establish the validity of the
proposed methodology that is also robust to subject-level variability. A weighted F1
score of 94.8% is obtained that is best so far on this challenging dataset.

Keywords: Acute lymphoblastic leukemia, ALL diagnosis, cell classification,
convolutional neural network, deep learning

1. Introduction

Cancer is a condition of unrestricted cell growth in the human body and is among
the deadliest diseases of the world. In 2018, cancer claimed 9.6 million lives glob-
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ally, 70% of which are from low and middle-income countries (LMIC) (World Health
Organization, 2019). Of the different types of cancer, acute lymphoblastic leukemia
(ALL) is pervasive childhood cancer that occurs due to the excessive generation of
immature white blood cell (WBC) blasts in the bone marrow. Although prompt diag-
nosis is a critical factor in cancer survival, LMIC suffer on this account due to the lack
of costly infrastructure, trained human resources, and diagnostic tools at the required
scale. Hence, these countries experience higher fatality rates. For example, 84% of
cases of ALL are reported from LMIC (Asthana et al., 2018).

Preliminary diagnostic tests of ALL are based on the count and appearance of blood
cells. For example, complete blood count (CBC) makes a diagnosis based on cell count,
while peripheral blood smear test examines the appearance of cells in the blood. Bone
marrow based tests such as bone marrow biopsy and bone marrow aspiration are cru-
cial in ALL diagnosis and analyze bone marrow to evaluate the symptoms of leukemia.
Higher accuracy tests for the identification of leukemia include cytochemistry, immuno-
histochemistry, and flow cytometry that are based on the reaction of staining chemicals
with the proteins of blood cells. Imaging tests such as X-rays, computed tomography
(CT) scan, magnetic resonance imaging (MRI) scan, and ultrasound are not useful for
ALL detection, but they help with the analysis of the overall impact of cancer on the
body (American Cancer Society, 2019).

All these methods are time-intensive, require costly medical equipment, and trained
medical professionals. Owing to these requirements, these tools cannot be deployed
easily at a large scale, especially in rural areas. Computer-aided tools based on mi-
croscopic image analysis can overcome these limitations because these can be fully
automated and do not require highly trained medical professionals to run the tests.

Several machine learning-based computer-aided ALL diagnosis methods have been
presented over the last few years (Mohapatra et al., 2011; Madhukar et al., 2012; Joshi
et al., 2013; Putzu et al., 2014; Mohapatra et al., 2014; Chatap & Shibu, 2014; Neoh
et al., 2015; Reta et al., 2015; Vincent et al., 2015; Patel & Mishra, 2015; Kazemi et al.,
2015; Amin et al., 2016a,b; Singhal & Singh, 2016; Rawat et al., 2017a,b; Mishra et al.,
2017; Karthikeyan & Poornima, 2017; Mishra et al., 2019). All these methods utilize
a predefined set of features based on the structure of the nucleus or cytoplasm of the
cells to train classifiers such as naïve Bayes, decision tree, support vector machine
(SVM), random forest, and the ensemble of classifiers for the diagnosis of ALL. A
significant drawback of these methods is the use of tiny datasets (consisting of 19 to
267 images only) for building the classifiers. A classifier trained on a small dataset
is prone to overfitting and hence, may not perform satisfactorily on the prospective
subjects’ samples. Also, the performance reported on a small test set may be biased.
Another limitation of these methods stems from the utilization of predefined/hand-
crafted features that may not always be the optimized set of features. All these factors
can limit the performance of the classifier on deployment in a real-life setting. These
limitations can be overcome by using a larger dataset for building a classifier and by
utilizing an automated mechanism to extract the features.

Convolutional neural network (CNN) is a deep learning architecture consisting of
two-dimensional convolutional filters that can check the limitation of predefined fea-
tures by extracting task-specific features from the raw data through the minimization
of a targeted loss function. In medical applications, CNNs are frequently used for clas-
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sification (Rajpurkar et al., 2017), localization (Yan et al., 2015), detection (Sermanet
et al., 2013), segmentation (Ronneberger et al., 2015), and registration (Yang et al.,
2017). In the recent past, numerous works have utilized CNNs for cancer classifica-
tion. However, CNNs demand large training datasets that are generally not available in
medical applications.

Transfer learning (TL) is a common approach to counter the data deficiency prob-
lem. In TL, an architecture, pre-trained on a larger dataset for one application, is used
in another related but data-deficient task. Shin et al. (2016) have highlighted the lim-
itation of a small dataset in medical applications and the benefits of transfer learning
in computer-aided detection. A similar analysis has been presented by Bayramoglu &
Heikkilä (2016) for nuclei classification in colorectal adenocarcinoma histopathology
images. It is also emphasized that the depth of a pre-trained architecture and source
data distribution impact performance in transfer learning. Similarly, Phan et al. (2016)
and Lei et al. (2018) used transfer learning approach for the classification of HEp-2
cells, Jiang et al. (2017) for lesion detection in mammograms, Zhang et al. (2017) for
cervical cell image classification, Esteva et al. (2017) for skin cancer classification, and
Xu et al. (2015) for the classification of histopathology images of brain tumor.

On a similar note, Rehman et al. (2018) and Shafique & Tehsin (2018) employed
a pretrained AlexNet for the prediction of different subtypes of ALL. Vogado et al.
(2017) used a pretrained VGG-F architecture for feature extraction followed by PCA
for features selection, and an ensemble of classifiers for the diagnosis of ALL. A simi-
lar methodology is adapted by Vogado et al. (2018), wherein a pretrained CNN is used
as a feature extractor followed by a feature selection mechanism, and an SVM for the
classification of leukocytes. Again, a major downside of these methods is the utiliza-
tion of small datasets for fine-tuning or evaluation purposes. For example, the datasets
consist of only 310 images (Rehman et al., 2018), 330 images (Shafique & Tehsin,
2018), 108 images (Vogado et al., 2017), and 891 images (Vogado et al., 2018). Perfor-
mance with such small datasets cannot be considered as the true performance indicator
which can limit their deployment in practical scenarios. Also, the use of pre-trained
architectures in medical applications require resizing of input images to the predefined
input shape of these networks that may alter the morphology of input images impact-
ing the performance of classifiers. Also, these architecture are designed to perform
on a 1000-class ImageNet dataset of non-medical images. Such methods may not be
suitable in medical applications for two reasons: 1) these are not trained on medical
images, and 2) medical applications have, in general, relatively fewer classes.

In our previous work (Duggal et al., 2017), we used a large dataset with 13407 cell
images for ALL diagnosis and proposed a trainable stain deconvolutional layer (SD-
Layer) at the front end of the CNN. The input RGB images were first transformed to
the optical density (OD) space followed by stain color deconvolution to obtain stain
quantity images. It was envisaged that the texture of stain quantity images captures the
sub-microscopic cellular features, and hence, a CNN trained on these images would
perform better compared to the one trained on RGB images. Indeed this architecture
worked better with a CNN trained from scratch as compared to pre-trained architec-
tures.

However, one of the most significant drawbacks was that the training data was not
separated at the subject-level. The classifier was trained by pooling cell images of all
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the subjects into the respective normal and cancer class. This pooling limited the per-
formance of the classifier on prospective subjects’ data because subject-specific char-
acteristics also aid in class discrimination. Moreover, in real life, sample cell images of
new subjects are never available apriori for training. Thus, a realistic classifier would
require training on some subjects’ data and testing on completely unseen subjects’ data.

Hence, cell images were segmented again and the dataset was prepared in a cu-
rated manner by the expert oncologist at the subject-level with no intersection between
the training subject-set and testing subject-set data. This strategy ensured that none
of the cell images of a subject in the test data was used for training the classifier. This
dataset is named C-NMC 2019 dataset (Gupta & Gupta, 2019) and is publicly available
at The Cancer Imaging Archive (TCIA). The dataset consists of a total of 15114 im-
ages collected from 118 subjects. As compared to the existing ALL datasets, C-NMC
2019 dataset contains a significantly large number of images that can prove helpful for
developing a robust and deployable ALL diagnostic classifier.

In this paper, a novel deep learning architecture is proposed to differentiate malig-
nant (cancer) immature WBCs from normal (healthy) immature WBCs for computer-
aided diagnosis of ALL. Instead of using transfer learning with a CNN architecture
pre-trained on natural images, a CNN has been trained from scratch, as used by Bayra-
moglu et al. (2016); Dhungel et al. (2017); Gao et al. (2017); Zhao et al. (2017); Duggal
et al. (2017). Because cell image features may differ widely from those of the natural
images, a network trained from scratch on cell images may converge to a better solution
. Although C-NMC 2019 dataset is quite large compared to the existing ALL datasets,
still larger dataset would be required for training a very deep CNN architecture. Hence,
to curb this limitation, a compact CNN with fewer parameters is utilized. We have also
exploited discrete cosine transform (DCT) to improve the classification performance.
DCT finds use in numerous image processing applications including JPEG compres-
sion (Raid et al., 2014), brain tumor classification (Sridhar & Murali Krishna, 2013),
and face recognition (Zhengjun Pan et al., 2000). We have used DCT to capture inter-
class separability in the frequency domain because images of different classes in this
dataset are not visually differentiable in the spatial domain, as can be verified from
Fig. 1.

Figure 1: Sample images of different subjects from the cancer class (first row) and normal class (second
row). This figure shows that the cell images are not distinguishable across classes or across subjects.

Overall, the salient points of this work are as follows:

1. A novel deep learning architecture is proposed for the classification of cell im-
ages of ALL. The proposed architecture, namely, SDCT-AuxNetθ, is a 2-module
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framework and is end-to-end trainable. It consists of a compact CNN as the main
classifier in one module and a Kernel SVM as the auxiliary classifier in the other
one.

2. The input RGB images are first transformed to the OD space, and then stain
color is deconvolved using a trainable stain deconvolutional layer (SD-Layer) ap-
pended at the front-end of the CNN to obtain stain quantity images. The texture
of stain quantity images captures the sub-microscopic cellular features. Hence, a
compact CNN trained on stain-deconvolved images in the OD space is envisaged
to perform comparable or better than a deeper CNN trained on raw RGB images,
overcoming the need of a big training dataset.

3. A DCT layer is used immediately after the SD-layer in the proposed CNN. The
inspiration for training on the DCT features is derived from the fact that, con-
ventionally, the spectroscopy-based method, namely flow cytometry, is used for
ALL diagnosis.

4. While the CNN classifier utilizes features via bilinear pooling employed before
the fully connected layer, averaging across feature maps (spectral averaging) is
used to create features for the auxiliary classifier. Bilinear pooling (Lin et al.,
2015) helps in capturing fine-grained local feature interactions, whereas aver-
aging across feature maps on the same set of input helps in capturing spectral
counterpart that is used in parallel by the auxiliary classifier in the proposed
architecture. This strategy allows different features to be used by the two classi-
fiers.

5. A novel test strategy is proposed that exploits both the classifiers for decision
making using the confidence scores of their predicted class labels.

Training and testing are carried out on a recently released in-house dataset of ALL
cancer of 118 subjects (Gupta & Gupta, 2019). Benchmark in performance is achieved
by comparing the results with the highest performance recorded on the leaderboard of
the recently conducted challenge on this dataset at IEEE ISBI conference 2019 (Gupta
et al., 2019).

2. Materials
Microscopic images are captured from the bone marrow aspirate smears of subjects

in the raw BMP format with a size of 2560 × 1920 pixels. Before imaging, smears are
stained using Jenner-Giemsa stain for better visibility of B-type immature white blood
cells (WBCs) under the microscope. The images are first normalized for stain color
variability across images using the in-house pipeline (Gupta et al., 2017, 2018). Next,
cells of interest are marked by expert oncologists. These labeled cells are segmented
using the in-house segmentation pipeline (Duggal et al., 2016b,a). Normal cell images
are collected from subjects who did not suffer from cancer, while cancer cell images
are obtained from subjects who are initially diagnosed with cancer. A dataset of 118
subjects, 49 healthy and 69 cancer subjects, is prepared at Laboratory Oncology, AI-
IMS, New Delhi, India. A waiver for written informed consent is obtained from the
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Ethics Committee of AIIMS, New Delhi, on this dataset for research purposes. One of
the co-authors (RG) had access to the subject identifying information which is removed
entirely from the image dataset before sharing of data with the other co-authors.

This dataset is publicly available at The Cancer Imaging Archive (TCIA) (Gupta
& Gupta, 2019) and displayed according to TCIA standard protocols (Clark et al.,
2013). This dataset was also used in the medical imaging challenge, Classification
of Normal vs. Malignant Cells in B-ALL White Blood Cancer Microscopic Images
(C-NMC) 2019 (Gupta et al., 2019), organized at IEEE International Symposium on
Biomedical Imaging (ISBI), 2019 conference.

Data is prepared at the subject-level and is split into the training set and testing set.
Training set consists of 8491 cancer cell images collected from 60 cancer subjects and
4037 normal cell images collected from 41 healthy subjects, with a total of 12528 im-
ages (Gupta et al., 2019). This training data of 12528 cells is split into seven-folds for
cross-validation, where the splits are created such that each fold contains an approxi-
mately equal proportion of images of both the classes. Also, the folds are prepared at
the subject-level, i.e., all cells belonging to a subject are placed in the same fold.

Test data contains a total of 2586 cell images, collected from 9 cancer subjects
and 8 healthy subjects (Gupta et al., 2019). None of the cell images of these subjects
are used for training the classifier and hence, results of the test data are unbiased. A
detailed description of the training set and test set is provided in Table 1. Since original
cell images are of different sizes, all images are zero-padded such that the centroid of
every cell is at the center. After zero-padding, all cell images are made to the size of
350 × 350.

Table 1: Description of training and test data.
Training data is split in seven folds. All cells belonging to a subject are placed in the same fold and no two

folds have cell images belonging to the same subject.
Training Data

Fold Cancer Class Normal Class
No. of subjects No. of images No. of subjects No. of images

1 13 1234 9 529
2 9 1166 7 546
3 9 1269 6 516
4 6 1275 4 624
5 9 1135 6 618
6 6 1197 4 603
7 8 1215 5 601

Total 60 8491 41 4037
Total no. of subjects 101 Total no. of images 12528

Test Data
Cancer Subjects Healthy Subjects

9 8
Total no. of subjects 17

Total no. of cell images in the test data 2586
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Table 2: Comparison on the number of learnable parameters.
The number of parameters in the base network is significantly less as compared to existing architectures

used commonly in transfer learning approach.
Architecture AlexNet VGG16 ResNet-18 DenseNet-161 Inception-v3 Base Network
Parameters 61100840 138357544 11689512 28681000 27161264 95362

Note: Least number of parameters are specified in bold.

3. Methods

In this section, the proposed SDCT-AuxNetθ architecture and other variants are
presented in detail.

3.1. Base Network
The size of the input dataset is a crucial factor in designing a CNN because an ar-

chitecture with large learnable parameters is prone to overfitting, while a CNN with too
few learnable parameters tends to underfit. Hence, it is essential to design an architec-
ture with an adequate number of tunable parameters. Moreover, transfer learning is not
appropriate because all well-known architectures are trained on natural images, while
this dataset specifically contains blood cell images. Recently, a compact CNN with
fewer parameters was designed on this ALL dataset (Mourya et al., 2018) as shown
in Fig. 2. This architecture has a convolutional layer with stride two at the front-end
followed by five convolutional layers with batch-norm, maxpool, and ReLu. Lin et al.
(2015) introduced the idea of bilinear pooling, wherein the outer product of the feature
vectors obtained through two different CNNs is connected to a common output layer.
This idea is adopted in this base network, and the outer product of the feature vector
with itself is connected to the classification layer.

The output of bilinear pooling is passed through a linear layer followed by the log-
softmax layer. This network is referred to as the base network. Here, base network is
used as the building block in SD-Net architecture as well as in the following proposed
architectures. A comparison of the number of learnable parameters of the base network
with some well-known architectures used in the transfer learning approach is shown in
Table 2. It is evident that the base Network has fewer parameters compared to those
in the existing architectures. Hence, base network is suitable for this dataset that is,
although very large compared to existing public ALL datasets, is still relatively small
compared to the ImageNet dataset on which often-used architectures are trained.

3.2. SD-Net Architecture
In this architecture, SD-layer (Duggal et al., 2017) is stacked at the front-end of the

base network. It is, hereby, named as SD-Net (refer to Fig. 3). Images obtained from
the SD-layer are the stain deconvolved images in the optical density (OD) space that are
fed into the base network. The deconvolution of stain in the OD colorspace allows the
computation of pixel stain quantities that enable the network to see tissue-specific stain
absorption quantities. It has been shown by Duggal et al. (2017) that the introduction of
the SD-layer as the first layer leads to better performance of the classifier. Motivated by
this, SD-Net utilizes SD-layer at the front-end and hence, works in the OD-space rather
than the RGB space. SD-Net is also used as the baseline classifier in experiments.
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Figure 2: Base network. This network is used as the building block in SD-Net as well as in the proposed
architectures.
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Figure 3: SD-Net architecture. SD-layer deconvolves stain color vector in the OD space and provides stain
quantity images, i.e., images that contain the quantification of the absorbed stain, a characteristic of the

tissue.

3.3. Proposed SDCT-Net Architecture

We build upon the SD-Net to achieve better class discrimination capability. As seen
in Fig. 1, images of the two classes are visually indistinguishable. In such a scenario,
it is more intuitive to work in another domain that is more helpful in capturing class-
specific characteristics. The assumption is that each class would have some distinct
properties that can be highlighted by applying a specific transform. For images, one
such property is sparsity. A signal x is r− sparse if only r elements are non-zero. In
general, compressibility, which is less strict condition than sparsity, is used frequently.
The magnitude of sorted coefficients of a compressible signal decay quickly. Images
are generally compressible in the discrete cosine transform (DCT) domain. The fa-
mous JPEG compression uses a compression technique based on DCT. This property
of compressibility of DCT is used in many other applications, including denoising and
compressive sensing based reconstruction (Ansari & Gupta, 2017).

In general, images have different sparsification levels, depending upon their internal
structure. This understanding can be extended to images of different classes as well,
i.e., images of different classes will be sparsified differently. To analyze this effect, we
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Figure 4: Impact of DCT-layer on the output images of SD-layer. Normal cell images are sparsified more
compared to cancer cell images with the DCT-layer.

appended a DCT layer after the SD-layer. The output of the DCT-layer is given as:

D j = log10
(
I + |ψ(Z j)|

)
, j = 0, 1, 2, (1)

where ψ(.) denotes the 2D-DCT operator, Z j denotes the jth feature map input to the
DCT layer, and I denotes a matrix with ‘1’ at each position of the matrix. This ‘1’ is
added to the DCT output at every pixel before logarithm so that the resulting image D
contains only positive quantities. Since the dynamic range of the DCT output image
is broad, “log" acts as the normalization function and allows the contribution from all
pixels to be exploited by the following layers.

The feature maps/images obtained at the output of the SD-layer are passed to the
above explained DCT-layer. The impact of DCT-layer on these feature maps is shown
in Fig. 4. Interestingly, it is observed that the normal cell images are sparsified more by
DCT-layer compared to the cancer cell images. The dynamic range of DCT coefficients
of the two classes is also different. This observation can be exploited by the following
base network to enhance its classification performance. This architecture with DCT
layer between the SD-layer and the base network is shown in Fig. 5 and is, hereby,
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named as SDCT-Net. The size of the input image and feature maps at different layers
of SDCT-Net are shown in Table 3. This architecture is a sub-part of the proposed
architecture SDCT-AuxNetθ, described next.
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Figure 5: Proposed SDCT-Net. DCT layer is appended after SD-layer which helps to learn class
discriminative features by inducing different sparsity in cancer and normal cell images.

Table 3: Size of input image, filters, and output feature maps at different layers of SDCT-Net
Layer Layer Name Filter Size Input Size Size of Feature Map Output

SD-layer - - 3 × 350 × 350 3 × 350 × 350
DCT-layer - - 3 × 350 × 350 3 × 350 × 350

First Conv layer C1 5 × 5 3 × 350 × 350 16 × 174 × 174
Second Conv layer C2 3 × 3 16 × 174 × 174 16 × 174 × 174

First Pooling - 2 × 2 16 × 174 × 174 16 × 87 × 87
Third Conv layer C3 3 × 3 16 × 87 × 87 32 × 87 × 87
Second Pooling - 2 × 2 32 × 87 × 87 32 × 43 × 43

Fourth Conv layer C4 3 × 3 32 × 43 × 43 48 × 43 × 43
Third Pooling - 2 × 2 48 × 43 × 43 48 × 21 × 21

Fifth Conv layer C5 3 × 3 48 × 21 × 21 64 × 21 × 21
Fourth Pooling - 2 × 2 64 × 21 × 21 64 × 10 × 10

Sixth Conv layer C6 3 × 3 64 × 10 × 10 64 × 10 × 10
Bilinear Pooling - 64 × 10 × 10 4096 × 1

Linear - 4096 × 1 2 × 1

3.4. Proposed SDCT-AuxNetθ

Next, we propose a novel framework that consists of SDCT-Net and an additional
auxiliary classifier. An overview of this architecture is shown via a block diagram in
Fig. 6. SDCT-AuxNetθ has two sub-networks: i) features learning sub-network and ii)
classification sub-network. In general, learned features are applied to a neural network
after applying some transformations. But, SDCT-AuxNetθ processes the feature maps
obtained from the feature learning sub-network through two different transformations:
1) bilinear pooling that feeds to the neural network for decision making and 2) spectral
averaging that carries out averaging across all feature maps at every pixel position and
feeds the output to the auxiliary classifier.

10



3.4.1. Training Methodology for the proposed SDCT-AuxNetθ

The training procedure of SDCT-AuxNetθ is depicted with more clarity in Fig. 7.
Although two different classifiers are used (main CNN classifier and auxiliary clas-
sifier), they are not trained simultaneously. Let {Xtrain

i }i=1,2,...,K with size m × n × 3
represents a set of K input images and {ytrain

i }i=1,2,...,K represents true labels of the re-
spective images. In Step-1, SDCT-Net (feature learning sub-network + neural net-
work) is trained in an end-to-end fashion by minimizing the negative log likelihood
loss function. Let P(ŷtrain

i,0 ) and P(ŷtrain
i,1 ) denote the probabilities that the ith training

image belongs to normal class (label 0) and

Feature 
learning

sub-network Spectral 
Averaging

Layer

Bilinear 
pooling

Auxiliary
Classifier

Neural
Network

Feature learning Transformations Classification 
sub-network

Predictions

Input 
image

Figure 6: An overview of the proposed SDCT-AuxNetθ. The SDCT-AuxNetθ can be interpreted as feature
learning sub-network with two different classifiers, one classifier operating on the features obtained after

bilinear pooling, and other classifier using the features obtained through spectral averaging.
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Figure 7: Two-steps training of SDCT-AuxNetθ. In Step-1, SDCT-Net is trained in an end-to-end fashion on
the entire training set containing K training images with indices i = 1, 2, ...,K. In Step-2, correctly classified

training images by SDCT-Net are used to train an auxiliary classifier.
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cancer class (label 1), respectively. The predicted label is given as

xŷtrain
i = 1 if P(ŷtrain

i,1 ) > (ŷtrain
i,0 ),

= 0 Otherwise (2)

Once SDCT-Net is trained, we predict labels of all the training images using this trained
SDCT-Net. We define s as a set of indices of training images for which SDCT-Net made
the correct predictions, i.e.,

s := {i|ŷtrain
i = ytrain

i }, for i = 1, 2, ...,K. (3)

In Step-2, images {Xtrain
j } j∈s are utilized to train the auxiliary classifier. These im-

ages are first processed by the feature learning sub-network followed by the spectral
averaging layer (φ(·)). This is to note that only the images, whose labels are correctly
predicted by the main CNN classifier (SDCT-Net), are used to train the auxiliary clas-
sifier. Also, the auxiliary classifier is not used to update the parameters of the feature
learning sub-network. The strategy is to exploit two different classifiers and yet train
the architecture in an end-to-end fashion. The intuition behind this approach is simple.
Different transformations applied to learned features will capture different information
and hence, two different but coupled classifiers trained on two distinct sets of features
of the same images may perform better.

3.4.2. Testing Methodology for proposed SDCT-AuxNetθ

Once the SDCT-AuxNetθ is trained, we use the following strategy to predict the
label of an input test image Xtest. First, a prediction is made using the main CNN
classifier of the SDCT-AuxNetθ via (2). Let P(ŷtest

0 ) and P(ŷtest
1 ) denote the prediction

probabilities that the test image belongs to normal class (label 0) and cancer class
(label 1), respectively. These prediction probabilities on the test image represent the
confidence of the main CNN classifier in making the predictions for the respective
labels. We introduce a confidence probability θ ∈ [0, 1] as a user-defined variable.
We assume the prediction from the CNN classifier to be correct if its predicted label’s
probability is higher than θ. For more clarity, let us define

τ = max
(
P(ŷtest

0 ), P(ŷtest
1 )

)
. (4)

This parameter τ is compared with the user-defined confidence probability θ and the
decision is made as below:

ŷtest = c if τ > θ and P
(
ŷtest

c

)
> P

(
ŷtest

1−c

)
, where c = 0, 1. (5)

However, if τ less than θ, we use the auxiliary classifier to predict the label of that
image and consider that to be the final prediction.

To predict a label using the auxiliary classifier, features of the input image obtained
from feature learning sub-network are given to the spectral averaging layer, and the
output of this layer is fed to the auxiliary classifier. The prediction of the auxiliary
classifier is given as:

ŷtest = g(φ( f (Dtest))), (6)
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Figure 8: Testing strategy of the proposed SDCT-AuxNetθ. For each sample, probability of SDCT-Net
decision label is compared against the confidence probability. If the probability of the predicted label by

SDCT-Net is less than the confidence probability, it is predicted again using the auxiliary classifier.

where φ( f (Dtest)) is the output of spectral averaging layer and f (Dtest) are the feature
maps obtained from f (·). This process is demonstrated in Fig. 8. Using this approach,
we take into consideration the impact of two different classifiers, a compact CNN clas-
sifier and an auxiliary classifier. Since we are making predictions with two different
classifiers using different set of features, we hypothesize that the incorrect prediction
of one classifier can be corrected by the other classifier.

4. Results

In this section, we analyze all the above discussed architectures and also compare
their performances.

4.1. System Configuration

A forty core system with 126 GB RAM is used to train and test all the networks.
We have also used an Nvidia GTX 1080 Ti GPU to boost up the training and testing
process. Also, PyTorch deep learning library is used to implement all the architectures.
We have used stochastic gradient descent (SGD) optimizer with an initial learning rate
of 0.001 and a batch size of 64. A total of 130 epochs are used for training the networks,
during which the learning rate is dropped regularly by a factor of 10.

4.2. Performance Metrics

We have used F1 score, weighted F1 score and balanced accuracy to evaluate the
performance of classifiers. Weighted F1 score and balanced accuracy are reported to
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take into account the class imbalance problem of the data. Further, we report F1 score
on each class to show class-wise performance. F1 score is defined mathematically as

F1 = 2 ×
precision × recall
precision + recall

. (7)

For binary data, weighted F1 score is defined as

WF1 =

∑1
j=0 n(c j)F1(c j)

N
, (8)

where F1(c j) is the F1 score of jth class, n(c j) is the number of samples in jth class, and
N is total number of samples. Finally, balanced accuracy is defined as

BAC =
recall + speci f icity

2
. (9)

Precision is the ratio of correctly detected positive samples to all predicted positive
samples. Recall is defined as the ratio of correctly predicted positive samples to all
positive samples in the ground truth. Specificity denotes the ratio of correctly classi-
fied negative samples to all negative samples in the ground truth. Recall reflects the
classifier’s ability to correctly diagnose the disease, while specificity shows the classi-
fier’s effectiveness in discarding the healthy subjects. For an ideal classifier, the value
of precision, recall, and specificity is 1.

4.3. Classifiers’ Training and Testing Information
For training and testing the networks, we used seven-fold cross-validation strategy.

The training set is divided into seven-folds. At any time, six folds are used for training
and the remaining one fold is used for validation. Therefore, for every architecture
(SD-Net, SDCT-Net, or SDCT-AuxNetθ), we have a total of seven trained models: one
for each different validation fold. To make the final prediction on the new test sample
Xtest

i , we note the individual prediction from each model as

ŷtest,m
i = γm(Xtest

i ) m = 1, 2, ..., 7, and i = 1, 2, ...,N, (10)

where γm(.) represents the output of the model trained using the mth fold as the valida-
tion set and N denotes the total number of test samples. The final prediction for each
ith test sample is given by majority vote as:

ŷtest
i = mode{ŷtest,1

i , ŷtest,2
i , ..., ŷtest,7

i }. (11)

To summarize, the label predicted by the majority of the models for an architecture
(SD-Net, SDCT-Net, or SDCT-AuxNetθ) is chosen as its final prediction.

Another issue that needs to be addressed during the training is class imbalance
because training using an imbalanced dataset may result in a biased classifier. From
Table 1, it is noted that the training set is skewed towards the cancer class as the number
of cancer cell images is approximately twice the total number of normal cell images. To
resolve this, we have used the oversampling strategy in which images of the minority
class are duplicated, such that the total sample count of both the classes is the same.
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Further, to enhance the performance, we have used augmentation techniques that
simulate the conditions of real-life data preparation. In general, three types of augmen-
tations are natural for these cell images. First, it is observed that 3-dimensional cells
get sheared to some extent on the 2-dimensional slide when cells are pushed between
two glass slides during the microscopic slide preparation. Secondly, cells would fall
on the slide at varying orientations and hence, would be captured with different ro-
tated angles. Thirdly, there can be variations in the sharpness of the images because
the manual focusing of the microscope lens was carried out while capturing the im-
ages. Thus, to mimic these effects during the training process, shear augmentation is
used within a range of [-20, 20]; augmentation of random rotation, horizontal flip, and
vertical flip is used; and Gaussian blur augmentation is used within a range of [0.0,
0.75]. The same augmentations are used with all architectures: SD-Net, SDCT-Net,
and SDCT-AuxNetθ.

Training curves of SDCT-Net are shown in Fig. 9. Graphs show the accuracy and
loss of SDCT-Net trained with different folds as the validation sets. It is observed
from the graphs that SDCT-Net converged in 130 epochs. Also, SDCT-Net is able
to generalize well because the performance on training and validation sets is similar.
Similar observation is noted for SDCT-AuxNetθ.
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Figure 9: Training curves of SDCT-Net with three different folds as the validation sets.

4.4. Comparison of SD-Net and SDCT-Net

Performance comparison of SD-Net and SDCT-Net in terms of F1 score, WF1
score, and BAC is shown in Table 4. Results are tabulated using the individual models
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(Model1-Model7), i.e., models trained with a particular fold as the validation set and
also using the majority voting as discussed in Section 4.3. From Table 4, it is observed
that SDCT-Net performs better than SD-Net on all three metrics for most of the mod-
els (Model1-Model7). Finally, with a majority voting on the decision of Model1 to
Model7 SDCT-Net outperforms SD-Net with a good margin. The margin is maximum
for F1 score of normal class with SDCT-Net at 0.862 and SD-Net at 0.820. SDCT-Net
achieved WF1 score of 0.908 which is comparatively high compared to WF1 score of
0.873 with SD-Net. BAC with SDCT-Net and SD-Net is 0.911 and 0.885, respectively,
showing superior performance of SDCT-Net.

Table 4: Comparison of SD-Net and SDCT-Net. SDCT-Net outperforms SD-Net on all performance
metrics. Model1 represents the model trained with fold1 as the validation set and remaining folds as the
training set. Similar notation applies to Model2 to Model7. Results are tabulated on the test set of 2586

images. Best results are depicted in boldcase.
F1 Score for Normal Class

Architecture\Model Model1 Model2 Model3 Model4 Model5 Model6 Model7 Majority Voting
SD-Net 0.790 0.828 0.822 0.771 0.788 0.803 0.818 0.820

SDCT-Net 0.813 0.855 0.836 0.856 0.822 0.774 0.825 0.862
F1 Score for Cancer Class

Architecture\Model Model1 Model2 Model3 Model4 Model5 Model6 Model7 Majority Voting
SD-Net 0.877 0.908 0.904 0.872 0.875 0.885 0.891 0.8982

SDCT-Net 0.900 0.926 0.921 0.926 0.900 0.855 0.912 0.928
Weighted F1 (WF1) Score

Architecture\Model Model1 Model2 Model3 Model4 Model5 Model6 Model7 Majority Voting
SD-Net 0.849 0.883 0.879 0.840 0.848 0.859 0.868 0.873

SDCT-Net 0.873 0.904 0.894 0.904 0.875 0.829 0.885 0.908
Balanced Accuracy (BAC)

Architecture\Model Model1 Model2 Model3 Model4 Model5 Model6 Model7 Majority Voting
SD-Net 0.863 0.886 0.883 0.845 0.862 0.874 0.889 0.885

SDCT-Net 0.875 0.903 0.882 0.905 0.887 0.856 0.879 0.911

4.5. Experiments with SDCT-AuxNetθ

In this section, we analyze the performance of SDCT-AuxNetθ architecture ac-
cording to the testing strategy as discussed in Section 3.4.2. Support Vector Machine
(SVM) with radial basis function (RBF) kernel is used as the auxiliary classifier. We
analyze SDCT-AuxNetθ using different experiments: 1) by studying the impact of con-
fidence probability θ on the performance of SDCT-AuxNetθ, 2) by studying the per-
formance comparison of SDCT-AuxNetθ, SDCT-Net0, and SDCT-Net1, 3) by studying
the subject-level performance of SDCT-AuxNetθ.

4.5.1. Impact of Confidence Probability
We experiment with different values of the confidence probability (θ) to analyze

its effect on the performance of the model. Results are summarized in Fig. 10 and
Table 5. Fig. 10 shows the effect of confidence probability on individual class F1 score
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Figure 10: Performance of SDCT-AuxNetθ for different values of confidence probability (θ): (a) F1 score of
normal class, (b) F1 score of cancer class and (c) Balanced Accuracy. Model1 represents model trained

with fold1 as the validation set and remaining folds as training set. Similar notation applies to Model2 to
Model7. M.V is the score with majority voting on Model2 to Model7. Performance improves consistently
with the increasing value of θ until θ = 0.9, after which a decline in the performance is noted. Results are

presented on the test set of 2586 images.

Table 5: Weighted F1 score of SDCT-AuxNetθ for different values of confidence probability (θ). Model1
represents the model trained with fold1 as the validation set and remaining folds as training set. Similar
notation applies to Model2 to Model7. The weighted F1 (WF1) score improves with increasing θ until
θ = 0.9, beyond which the performance starts declining. Results are presented on the test set of 2586

images. Best results are indicated in bold case.
Weighted F1 (WF1) Score

Confidence
Probability (θ) \Models Model1 Model2 Model3 Model4 Model5 Model6 Model7 Majority Voting

0.6 0.886 0.915 0.900 0.910 0.895 0.848 0.905 0.920
0.65 0.894 0.917 0.904 0.911 0.899 0.856 0.912 0.924
0.7 0.900 0.922 0.909 0.912 0.906 0.862 0.915 0.928

0.75 0.906 0.925 0.912 0.916 0.907 0.872 0.920 0.933
0.8 0.913 0.927 0.917 0.917 0.907 0.880 0.924 0.937

0.85 0.919 0.932 0.923 0.919 0.907 0.888 0.926 0.943
0.9 0.920 0.937 0.928 0.917 0.907 0.890 0.925 0.948

0.95 0.921 0.926 0.920 0.848 0.907 0.873 0.909 0.943

and balanced accuracy. It is observed that for the most of the models, performance
improves with an increase of θ until θ = 0.9 after which a decline in performance is
observed. The final prediction, i.e., prediction with majority voting also improves until
θ = 0.9 and decreases thereafter. A similar pattern is observed for BAC, results for
which are also summarized in Table 5.

4.5.2. Comparison of SDCT-AuxNetθ, SDCT-Net0 and SDCT-Net1

We have compared the performance of SDCT-AuxNetθ for θ = 0.90, θ = 1, and
θ = 0 in Table 6. SDCT-AuxNet0 and SDCT-AuxNet1 correspond to the results with
θ = 0 and θ = 1, respectively, in SDCT-AuxNetθ. This is to note that SDCT-AuxNet0

is SDCT-AuxNetθ without auxiliary classifier and hence, SDCT-AuxNet0 is same as
SDCT-Net. Similarly, SDCT-AuxNet1 is SDCT-AuxNetθ with only auxiliary classifier.
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Table 6: Performance comparison of SDCT-AuxNet0, SDCT-AuxNet1, and SDCT-AuxNetθ for θ = 0.9.
SDCT-Net is is a special case of SDCT-AuxNetθ with θ = 0 and is represented as SDCT-AuxNet0.

Similarly, SDCT-AuxNet1 is a spacial case of SDCT-AuxNetθ with only the auxiliary classifier branch.
Model1 represents the model trained with fold1 as the validation set and remaining folds as training set.

Similar notation applies to Model2 to Model7. Best results are highlighted in black and equal performance
is highlighted in blue color. SDCT-AuxNetθ performed better than SDCT-AuxNet0 or SDCT-AuxNet1.

Results are presented on the test set of 2586 images.
F1 Score for Normal Class

Architecture\Model Model1 Model2 Model3 Model4 Model5 Model6 Model7 Majority Voting
SDCT-AuxNet0 0.813 0.855 0.836 0.856 0.822 0.774 0.825 0.862
SDCT-AuxNet1 0.878 0.882 0.865 0.868 0.860 0.794 0.849 0.915
SDCT-AuxNetθ 0.878 0.902 0.882 0.864 0.861 0.830 0.879 0.917

F1 Score for Cancer Class
Architecture\Model Model1 Model2 Model3 Model4 Model5 Model6 Model7 Majority Voting

SDCT-AuxNet0 0.900 0.926 0.921 0.926 0.900 0.855 0.912 0.928
SDCT-AuxNet1 0.940 0.946 0.945 0.936 0.928 0.908 0.936 0.961
SDCT-AuxNetθ 0.940 0.954 0.950 0.941 0.929 0.918 0.947 0.963

Weighted F1 (WF1) Score
Architecture\Model Model1 Model2 Model3 Model4 Model5 Model6 Model7 Majority Voting

SDCT-AuxNet0 0.873 0.904 0.894 0.904 0.875 0.829 0.885 0.908
SDCT-AuxNet1 0.920 0.925 0.919 0.915 0.907 0.872 0.908 0.947
SDCT-AuxNetθ 0.920 0.937 0.928 0.917 0.907 0.89 0.925 0.948

Balanced Accuracy (BAC)
Architecture\Model Model1 Model2 Model3 Model4 Model5 Model6 Model7 Majority Voting

SDCT-AuxNet0 0.875 0.903 0.882 0.905 0.887 0.856 0.879 0.911
SDCT-AuxNet1 0.916 0.910 0.885 0.906 0.908 0.845 0.879 0.932
SDCT-AuxNetθ 0.916 0.928 0.901 0.891 0.908 0.879 0.904 0.934

Table 6 shows the performance of SDCT-AuxNetθ that exploits two different classi-
fiers (SDCT-AuxNet0 and SDCT-AuxNet1 with different architectures) in a coupled
fashion. From the performance of individual models (Model1-Model7) of all these
architectures, it can be inferred that SDCT-AuxNetθ has achieved a significant gain
over SDCT-AuxNet0 and SDCT-AuxNet1 in terms of all three performance metrics.
Although majority voting is able to bridge the performance difference between SDCT-
AuxNetθ and SDCT-AuxNet1, the former is leading the later for most of the mod-
els (Model1-Model7), while the performance coincides in some cases. Compared to
SDCT-AuxNet0 (SDCT-Net), SDCT-AuxNetθ provides a gain of 5.5% for F1 score
of normal class, 3.5% for F1 score of cancer class, 4.0% for weighted F1 score, and
2.3% for balanced accuracy. The highest gain is observed for F1 score of normal class,
which is 0.917 with SDCT-AuxNetθ as compared to 0.862 with SDCT-AuxNet0. To
summarize, SDCT-AuxNetθ ensembles the performance of SDCT-AuxNet0 and SDCT-
AuxNet1 that results in significant performance improvement.

4.5.3. Subject-Level Performance of SDCT-AuxNetθ

We have also evaluated the performance of SDCT-AuxNetθ for individual subjects
in terms of accuracy. The subject-level accuracy and error rate for both the classes is
depicted in Fig. 11. SDCT-AuxNetθ performs consistently good for all the subjects.
These results are encouraging since it shows that the model is robust to subject-level
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Figure 11: Subject-level performance of SDCT-AuxNetθ is observed to be consistent across all the subjects
indicating that SDCT-AuxNetθ is robust to subject-level variations.

variability.

4.6. Comparison with the state-of-the-art Methods

This C-NMC 2019 dataset has recently been used by Prellberg & Kramer (2019)
and Liu & Long (2019). Prellberg & Kramer (2019) have used training set to fine-tune
a pretrained SE-ResNeXt50 architecture. Liu & Long (2019) have divided the larger
class samples into two subsets, which are then combined with other class samples
to train two different models initialized with pretrained Inception ResNets weights.
These two models are then fine-tuned jointly on whole training dataset to obtain the
final predictions. These methods are able to achieve a weighted F1 score of 87.6%
(Liu & Long, 2019), and 88.9% (Prellberg & Kramer, 2019) as compared to 94.8% of
the proposed method. Apart from these two approaches, other participants have used
methodologies based on VGGNet, AlexNet, InceptionV3, DenseNet and MobileNet
which have performed below the challenge winner’s best performance of 91%.

We also compared our results with the top entry at the final leaderboard of the
challenge (Gupta et al., 2019). The leaderboard shows the performance on final test
set in terms of weighted F1 score. It is observed from Table 7 that SDCT-AuxNetθ is
performing better than top entry method with a significant margin of 3.8%.

Table 7: Comparison of SDCT-Net and SDCT-AuxNetθ with the top entry of C-NMC 2019 Challenge. Best
results are depicted in bold case.

Metric\Architecture C-NMC SDCT-Net SDCT-AuxNetθ

Weighted F1 (WF1) 0.910 0.908 0.948

5. Discussion

In this section, we have analyzed SDCT-AuxNetθ from different perspectives. First,
we analyze SDCT-AuxNetθ as a generic architecture that can be modified to two dif-
ferent architectures through the setting of confidence probability (θ). As discussed in
above sections, confidence probability (θ) that lies in the range [0, 1], plays a crucial
role during the testing phase of SDCT-AuxNetθ. By setting the value of θ, we are de-
ciding the contribution of two different classifiers in decision making. However, with
two extreme values of θ, i.e. θ = 0 or θ = 1, we can also choose only one classifier. This
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Table 8: The number of samples predicted by different classifiers at θ = 0.9. Contribution of each classifier
is approximately the same in majority of the cases, indicating significant role of both the classifiers in

decision making.
Classifier/

Models Model1 Model2 Model3 Model4 Model5 Model6 Model7

Neural
Network 1634 1396 428 1885 1199 1544 1056

Auxiliary
Classifier 952 1190 2158 701 1387 1042 1530

Total Samples 2586

scenario is depicted in Fig. 12. By setting θ = 0, SDCT-AuxNetθ is reduced to SDCT-
AuxNet0 (SDCT-Net), which is the feature learning sub-network along with neural net-
work as the classifier that utilizes bilinear pooling. For θ = 1, SDCT-AuxNetθ becomes
SDCT-AuxNet1, which utilizes feature learning sub-network along with spectral aver-
aging and auxiliary classifier. Between these two extremes, SDCT-AuxNetθ exploits
bilinear pooling with neural network and spectral averaging with auxiliary classifier.
This methodology is an advantage of SDCT-AuxNetθ because it provides flexibility to
decide the contribution of the classifiers by simply setting the value of θ. This flexibility
is also the reason for the better performance of SDCT-AuxNetθ over SDCT-AuxNet0

(SDCT-Net) or SDCT-AuxNet1. In fact, the coupling of SDCT-AuxNet0 (SDCT-Net)
and SDCT-AuxNet1 in SDCT-AuxNetθ can also be interpreted as an ensemble of two
classifiers, with each classifier utilizing a different set of features. Results of Table 6
validates our hypothesis that an appropriate coupling of two different classifiers (work-
ing on different sets of features) may lead to better performance as compared to an
individual classifier utilizing a single set of features.

SDCT-
AuxNetθ

(0<θ<1)

SDCT-
AuxNet1

(θ=1)

SDCT-
AuxNet0

(θ=0)

Feature learning 
sub-network + 
neural network

Bilinear pooling +
spectral averaging

Feature learning 
sub-network  + 

neural network + 
auxiliary classifier

Feature learning
sub-network + 

auxiliary classifier

Bilinear pooling Spectral averaging

Figure 12: SDCT-AuxNetθ as a generic case utilizing two different classifiers in decision making.
SDCT-Net is same as SDCT-AuxNetθ for θ = 0 and utilizes only neural network. SDCT-AuxNet1 is

SDCT-AuxNetθ with θ = 1 and use only the auxiliary classifier. SDCT-AuxNetθ swings between
SDCT-AuxNet0 (SDCT-Net) and SDCT-AuxNet1 depending upon the value of confidence probability θ.

We have also analyzed the contribution of each classifier in the final prediction (Ta-
ble 8). It is observed that both the classifiers contribute approximately equally in most
of the cases. These results prove the hypothesis that both the classifiers are involved in
decision making, and the final outcome is not due to only one of the classifiers.

Next, we visualize the features of the second last convolutional layer and the final
convolutional layer of SDCT-AuxNetθ in order to understand if something different is
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learned by these layers. In Fig. 4, we visualized the sparsity of the normal cell images
and cancer cell images in the DCT domain. Normal cell images are observed to be
sparsified more as compared to cancer cell images. We claimed that the difference in
sparsity would help CNN to distinguish the two classes. This effect is propagated to the
deeper layers as visualized in Fig. 13, where it is again observed that the features for
the normal class are more sparse as compared to the cancer class. This observation im-
plies that different sparsification induced by the DCT-layer may be one of the essential
characteristics of class discrimination and hence, SDCT-AuxNetθ could separate the
two classes based on sparsity, even if the images of both classes are visually similar.
This property is crucial for images in medical applications such as ALL classification
because images are not visually differentiable. Hence, features like sparsity difference
may help to enhance the performance of the classifier.

We have also visualized class discrimination at different layers in Fig. 14. At the
first convolutional layer, majority of the samples of the two classes are overlapping.
However, as we go deeper into the network, the two classes start to diverge. Finally, at
the last convolutional layer, the two classes can be linearly separated. This points to an
intuitive understanding that difference in sparsity in SDCT-AuxNetθ may be one of the
significant causes of separability of the two classes. Although some samples still lie on
the opposite side of the boundary, majority of the samples can be classified correctly.
These observations establish the validity of DCT-layer in ALL classification.

(a) Features of Cancer Class (b) Features of normal Class (c) Features of Cancer Class (d) Features of normal Class

Figure 13: Feature maps of second last (C5) and last convolutional layer (C6) for cancer class (a,c) and
normal class (b,d). The features for normal class are more sparse as compared to the features of cancer

class. This difference in sparsity helps to improve the performance of the classifier.

Finally, samples in the medical domain are collected from different subjects, which
may induce subject-level variations. Robustness to subject-level variability is a crucial
factor for the practical implementation of the classifier. To mimic this effect, we trained
and tested the architectures on folds separated at subject level. Results summarized in
Fig. 11 prove the robustness of SDCT-AuxNetθ to subject-level variability. However,
error rate for normal class is high as compared to cancer class. This results imply that
classifier has relatively lower specificity as compared to recall. Hence, classifier yields
excellent performance in predicting the disease in unhealthy subjects, but relatively
poor performance in discarding the disease in healthy subjects.
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(a) First Convolutional Layer (C1) (b) Sixth Convolutional Layer (C6)

Figure 14: Class discrimination at first (C1) and last convolutional layers (C6). The samples are separated
as we progress deeper into the network. At the final layer, majority of the samples can be easily separated

even with a linear boundary.

6. Conclusion and Future Work

We proposed a novel framework, SDCT-AuxNetθ, for the challenging problem of
ALL classification. The framework utilizes two different classifiers operating on two
different set of features. SDCT-AuxNetθ use sparsity in DCT domain to learn class
discriminative features. In ALL classification, it is important to pool the data at subject-
level due to inter-subject variability in cell images. We have used this approach to make
SDCT-AuxNetθ robust to subject-level variations. However, there is some performance
margin between the performance for normal and cancer class. We will cover this issue
in our future work. We also plan to design a multi task framework for cancer diagnosis.
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