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Abstract

Statistical shape analysis is a powerful tool to assess organ morphologies and find shape changes associated
to a particular disease. However, imbalance in confounding factors, such as demographics might invalidate
the analysis if not taken into consideration. Despite the methodological advances in the field, providing
new methods that are able to capture complex and regional shape differences, the relationship between
non-imaging information and shape variability has been overlooked.

We present a linear statistical shape analysis framework that finds shape differences unassociated to
a controlled set of confounding variables. It includes two confounding correction methods: confounding
deflation and adjustment. We applied our framework to a cardiac magnetic resonance imaging dataset,
consisting of the cardiac ventricles of 89 triathletes and 77 controls, to identify cardiac remodelling due to
the practice of endurance exercise. To test robustness to confounders, subsets of this dataset were generated
by randomly removing controls with low body mass index, thus introducing imbalance.

The analysis of the whole dataset indicates an increase of ventricular volumes and myocardial mass in
athletes, which is consistent with the clinical literature. However, when confounders are not taken into
consideration no increase of myocardial mass is found. Using the downsampled datasets, we find that
confounder adjustment methods are needed to find the real remodelling patterns in imbalanced datasets.
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1. Introduction

Analysing the shapes of parts of biological organs
and organisms has been the object of extensive study
for over a century (Thompson|, 1942). This interest
in shape is also present in medicine: several stud-
ies have focused in the relationship between organ
morphology and illness. For instance, cardiac shape
remodels to improve cardiac pressure/volume output
under abnormal working conditions, and it is used to
assess the presence/evolution of illness (|Arts et all,
1994; Grossman et all, 1975). In a nutshell, pressure
overload produces concentric remodelling (thickening
of the myocardium without dilation of the ventri-
cle) to maintain wall stresses low, and volume over-
load dilates the ventricle without a myocardial mass
thickening. This is an oversimplication, as a volume
overload will also increase pressure, and the exact re-
modelling mechanisms and triggers at a cellular level
are still under research and discussion. The classi-
cal way of analysing shape in the clinical commu-
nity consists in manually extracting hand-crafted fea-
tures, and analysing these shape descriptors. These
measurements are usually standardised and defined
in guidelines (Lang et al), 2015), and usually refer
to global characteristics of the shape that carry little
regional information.

Nowadays, it is possible to acquire 3D images in
clinical routine. Furthermore, advances in comput-
ing permit to automatically segment the images and
to generate personalised 3D models of the organs
(Gonzélez Ballester et al., 2000; Mitchell et al., 2002;
Ecabert et al., 2006; Bernard et al., 2018). Statistical
shape analysis (SSA) is a set of techniques to repre-
sent both shapes and images and do the analysis di-
rectly with these objects, not being limited to only
analyse previously defined measurements. SSA is
used in the medical imaging field, in order to identify
and represent shape variability of those organs (Cer-
rolaza, et al), R015; Blanc et al., 2012; Rajamani et al.,
2007; Sierra et al), 2006). This allows expressing and
quantifying regional shape patterns in a robust and
objective manner, instead of working with a small
set of predefined measurements on the shapes (like
volumes and diameters). SSA can be used together
with statistical learning techniques to construct mod-

els that find regional differences in anatomy that are
associated to pathologies (Zhang et al., 2014a; Singh
et al), 2014; Varano et al), 017; Sarvari et al,, 2017),
based on a control and a pathological population.
Roughly, the typical framework consists of first using
SSA to construct an atlas of all shapes in the popula-
tion, then use principal components analysis (PCA)
or another dimensionality reduction (DR) technique
to find a low-rank representation of the shape space,
and finally use a classification algorithm on that space
to train a model that predicts the control/pathologic
status.

Beyond pathological variability, the shape of an
organ also exhibits variability due to other factors,
like lifestyle, gender, ethnicity, or size. The frame-
work described above uses the implicit hypothesis
that differences in shape are only due to the pathol-
ogy. In some cases the remodelling associated to
the pathology is prominent and easily identifiable.
However, in others, like subclinical or early-stage
studies, differences can often be very subtle and
less pronounced than demographic-related variabil-
ity. Given the difficulty to acquire medical data,
many imaging studies are cross-sectional and obser-
vational, and participants are recruited prospectively.
As imaging datasets have typically low sample sizes,
it is not always possible to obtain balanced sub-
datasets, and researchers are forced to analyse im-
balaced datasets. If left uncorrected this imbalance
in the population characteristics may result in wrong
conclusions/models (Cohen et al), 2018). Even in
cases where the pathological remodelling is signifi-
cant, and the populations are similar in terms of de-
mographics, demographic-related variability will add
noise to the analysis. A number of authors have ex-
plored the usage of non-imaging information. For
instance Singh et al. proposed a procedure similar
to partial correlation between shape and several clin-
ical variables while correcting for confounding vari-
ables(Singh et al., 2014). Zhang et al. adjusted by
demographics in their studies of cardiac remodelling
in myocardial infarction (Zhang et al), 2014b), and
Zhang et al. and Mauger at al. explored the re-
lationship between shape and classical clinical mea-
surements (Zhang et al), 2017, 2014b; Mauger et al.,
2019). However, not all authors include corrections



for confounders, and their effect in shape analysis
studies has not been yet quantitatively tested.

In this paper, we present a SSA framework to find
differences between control and pathological popu-
lations that outputs the most discriminating shape
pattern, that can be visualised for interpretability.
We quantitatively and qualitatively show the effect
an imbalance in the confounding variables has in the
analysis, and propose techniques to reduce that ef-
fect. The proposed model consists of the following
steps: (1) the construction of an atlas of the person-
alised 3D meshes automatically generated from im-
ages; (2) identification and removal of shape variabil-
ity due to confounding variables; (3) dimensionality
reduction and classification.

To illustrate the framework, we use a dataset of
cardiac magnetic resonance imaging (MRI) involv-
ing sedentary controls and triathlon athletes. This
dataset was collected to study the remodelling due
to the extended practice of endurance sport, which
produces a volume overload to the heart. This vol-
ume overload triggers compensatory mechanisms to
improve cardiac output and withstand the increased
pressure during exercise. The whole of this remod-
elling is called the Athlete’s Heart and involves sub-
stantial changes in function and geometry at both
rest and during exercise (D’Andrea et al), 2015; Schi-
ros et al., 2013). Although the remodelling is not
yet completely understood, researchers have estab-
lished a strong relationship between cardiopulmonary
performance during exercise and cardiac geometry at
rest (La Gerche et al,, 2012; Scharhag et al., 2002).

2. Methodology

The full process to compute the confounder invari-
ant most discriminating shape pattern between two
populations is summarised in Figure The pre-
sented framework consists of 3 main steps:

1. Compute the mean shape of the population, and
register all shapes to this template.

2. Identify and remove shape variability at-
tributable to confounding variables.

3. Train a classification model to obtain the most
discriminating shape pattern between both pop-

ulations and generate a visual representation of
the most discriminating shape pattern

2.1. Atlas construction

From the short axis (SA) MRI sequence, we use a
model-based automatic segmentation method to ob-
tain personalised meshes with point-to-point corre-
spondence (Ecabert et all, 2006). The method de-
forms a full heart (4 chambers) template mesh us-
ing a polyaffine deformation to match the myocardial
boundaries. The method includes slice correction to
remove misalignment between consecutive slices.

Since only the ventricles were visible in our images,
we discarded the atria and big vessels from each seg-
mented shape. Each resulting mesh has 4446 vertices
(the left ventricle (LV) has 3052 vertices and the right
ventricle (RV) has 1776 vertices, the right-most part
of the septum belongs to both ventricles) in point-
to-point correspondence, and 9004 triangles. Only
the end diastolic (ED) frame is selected for the anal-
ysis. Since meshes are in point-to-point correspon-
dence and share the same connectivity, they can be
analysed using the point distribution model (PDM)
(Cootes et all, 1995). In PDM, the shape of each pa-
tient j is associated to a vector with the concatenated
position (x,y,z) of its nodes, giving a shape vector:

(1)

A problem with this parametrisation is that it
does not avoid degenerate self-intersecting shapes.
More complex techniques have been developed, in
which meshes are represented by the action of dif-
feormophism to a given reference (Ashburner and
Friston, 2011; Miller et al., 2006; Durrleman et al.,
2014). These representations avoid self-intersections
and provide a more accurate shape representation,
but have a bigger computational cost. We chose PDM
over these representations since we have not observed
any of the non-diffeomorphic artefacts. In supple-
mentary material S1 we have compared the metric
induced by these methods with the PDM and found
only minor differences. We applied generalised Par-
tial Procrustes Analysis (Dryden and Mardia, 1998)
to align the meshes thus removing the positioning and
orientation variability. We maintained size during
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Figure 1: Schema of the framework and its different components. The input are the short axis MRI, and the demographics of
the population. From the image, we generate a personalised 3D mesh of the ventricles, and align them using Procrustes analysis.
Afterwards, we remove confounding-related shape variability using confounding deflation. This is followed by a dimensionality
reduction and a classification steps. The final step is to compute the most discriminative shape pattern from the classification

model coefficients.

this step, but differences in size due to anthropomet-
ric variables will be identified and removed in other
steps of the framework. This algorithm is an iterative
method, at each iteration computes an estimation of
the mean shape X/ and then rigidly registers each
shape to that estimated mean. This is repeated until
convergence, in order to obtain an unbiased mean.
Here we show a full iteration j of the algorithm:

Xf—lznle
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(2)

X = RIX: - 1) (4)

2.2. Confounding deflation

To identify and remove the shape variability re-
lated to the confounding variables (M), and not to
the studied condition, we use a procedure similar to
partial correlation, as done in (Singh et al., 2014) for
a regression problem. We assume that shape X can
be decomposed in the sum of the population mean
(ux) and some deformation from that mean that is

composed of noise (€), variability caused by the con-
founding variables (Xp) and variability from other
sources (X;). The last component includes remod-
elling due to pathology :

Xzﬂx+XM+X,'+E

()

The first step consists in estimating Xy, by building
a linear model (whose coefficients are wy,) that pre-
dicts the expected shape from the confounding vari-
ables M. The training data of this model is only one
population (the controls), to avoid introducing pos-
sible inter-population differences in the model. This
prediction will be our Xp;. Then, for the shape of
each individual, we subtract the predicted shape from
the actual shape obtaining the prediction residuals.
Residuals represent the part of the shape variability
that cannot be explained by the confounding vari-
ables. To maintain the residual vectors in the same
range as the original shape vectors, we summate the
original population shape mean. The final formula
reads:
Xres =X =Xy = (X —we - M) + px

(6)

The regression model coefficients w, are computed



using partial least squares (PLS) with the shapes
X and confounding variables M. PLS is a regres-
sion method that projects the input and output data
to two low-dimension subspaces (called embeddings)
that have maximal covariance (Wegelin, 200d). The
confounding variables are standardised to have 1
standard deviation and 0 mean, but shapes are only
standardised to have 0 mean. The full process is de-
scribed below, and consists in an iterative process
where at each iteration a new regression dimension
of the low-dimensional spaces is computed. The pre-
dicted part is then removed from the input and out-
put spaces, and the process is repeated until the de-
sired number of iterations is reached. Several ver-
sions of PLS exist, and we used Wold’s version. All
PLS versions agree in the first iteration, but give dif-
ferent result for embedding spaces of more than one
dimension. Here we show the algorithm for the r-th
iteration of a PLS associating an input space X with
some response Y, both being matrices. In our setting,
and only for this part X will be the confounding vari-
ables (M in the rest of the paper) and Y the shape
vectors (X in the rest of the paper).

First, we compute the new dimensions of the em-
bedding spaces by solving an eigenvector problem:

(7)
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We compute the rank one approximations (hat
variables), and the regression coefficient w,; for OLS
refers to the classical ordinary least squares.

Xr = OLSprediczion(Xrur, Yrvr)
XYV

Wr — Vr(ur)l( u ) v
Xu",

?r = OLSprediction(Yrur, err)

(8)

These rank one optimisations are used to update
the input X and its output Y by removing the part
that is already predicted.

Xr+1 =X _Xr
Yr+1 -y - f/r

(9)

The final result of the algorithm is the regression
coefficients w from X to Y; and it is obtained by sum-

ming all the one-rank approximation regression coef-
ficients.
w= Z w"
r

The coefficients w; of the prediction model, asso-
ciated to confounder variable M, of this model can
also be visualised and interpreted. We can consider
the partial determination coefficient, and visualise
the shape pattern most associated to a certain con-
founder, as if it were a discriminating shape (see sub-

section @) .

2.2.1. Dimensionality reduction

Given the high dimensionality of the shape vectors
and low number of samples, we use a DR method
to find a subspace that contains the most relevant
shape patterns. We choose linear methods over non-
linear alternatives due to their higher interpretabil-
ity, as the projection function is computed exactly.
Additionally, an initial exploration of a non-linear
appraoch (see supplementary material S2) did not
lead to different results The general linear DR model
reads:

(10)

Xorig =ux t KXred te€

(11)

Each shape X,,;, is expressed as the population
mean(u,) plus some shape-specific associated low-
dimensionality vector X,.; and a noise term €. The
embedding matrix K is constructed depending on the
dimensionality reduction method, and contains the
most interesting shape directions according to a cer-
tain metric.

We use three different methods of linear DR: PCA,
PLS and a combination of both. PCA and PLS have
been reported to be used in conjunction to classifi-
cation methods, and in particular logistic regression
(Bastien, 2005). We have described the regression
modality of PLS in subsection .2, but PLS also com-
putes a DR space. The difference is that we discard
the regression coefficients w and only use embedding
vectors u” in equation [ of the input space. These
vectors define a vector subspace, but are not guaran-
teed to be orthogonal, so we use QR decomposition
(Lord et al., 1999) to obtain an orthonormal base.
The combined method is based on prefiltering the



shape using PCA, keeping a high number of compo-
nents (> 90% of the variance), to then use as input
to a PLS. This decreases the computation time, and
adds stability by denoising the data. Contrary to the
typical procedure in machine learning, we chose not
to standardise the PCA modes by variance before ap-
plying PLS, as the variance of each PCA mode carries
important information of the signal-to-noise-ratio.

2.3. Classification

In this section, we present the method used to train
the classifier model and use the model coefficients to
obtain the most discriminating shape. The shape fea-
tures obtained from the DR are combined with the
confounding variables in a logistic regression model.
We choose logistic regression because we expect not
to have a complete separation between both popula-
tions, and we want the model to be simple and in-
terpretable. The logistic model gives a probability
that an individual j with shape X; and confounding
variables M; belongs to the pathological or control
populations.

Pr(y; = control |X;, M;) = logit({(X;,wx) + (M jwy) + b)
(12)
Logit refers to the logistic function x — 1/(1 +
exp(—x)). wx and wy, are the logistic regression co-
efficients for the shape and confounding variables re-
spectively, and are chosen to minimize the log-loss of
the probability of the training data X. The log-loss
is the logarithm of the probability that the model is
inconsistent with the observed data:

n
Ly o (b - Privy = 1 M) (13)

The logistic regression coeflicients associated to the
shape wy, can be mapped from the reduced shape
space to the full space by using the pseudoinverse of
the dimensionality reduction matrix. Let wy,,, be the
coefficients associated to the reduced shape models,
and Kpcy and Kprs the projection matrices of PCA
and PLS respectively. Then the coefficients associ-
ated with the full shape are:

Wx = K;’CAK;LS WX, ea (14)

Then, we can visualise and interpret the shape pat-
tern. Analogously to multivariate regression, where
the coefficients are indexed by the standard devia-
tion to allow comparison among them, we need to
adjust for differences in variance of the different co-
ordinates. Since node coordinates carry no meaning
on their own, we treat shape as an object itself and do
PCA whitening of the shape, as is typically done with
other multidimensional signals (Kessy et al., 2018).
Since we are only interested in the remodelling direc-
tion, we normalise the vector to be unitary in the L,
norm. With these corrections, all the shape features
are correctly scaled by their importance in predic-
tion. The full process to find the standardised shape
pattern w reads:

21/2WX

— 15
2! 2wxll (15)

W=
Where X is the covariance matrix estimated using
PCA. For visualisation, we can generate shapes that
are representative of that shape pattern by adding the
remodelling shape pattern, scaled with a parameter
A, to the mean shape. To keep the shapes within the
original range, we impose that A has to be within 3
standard deviations of the variance associated to the
shape pattern.

Xrepr(A) = px + AW (16)

We can quantify the presence of remodelling in
each shape, obtaining a scalar score for each individ-
ual, by computing the dot product of the shape vec-
tors with the raw logistic regression coefficients asso-
ciated to the shape only. The previous PCA whiten-
ing is only done for visualisation and comparison of
modes. If the shape pattern needs to be quantified
in a population, the original one without standard-
ization needs to be used.

score; = (wy, X; — ux) (17)

The shape patterns can be compared using the
L, dot product between standardised shape vectors,
which coincides with the correlation of the scores as-
sociated to each pattern.



3. Experimental setup

3.1. Clinical dataset

The study comprises 77 controls and 89 athletes
that underwent a MRI, to study the cardiac remod-
elling triggered by the practice of endurance sport.
The study was approved by a local ethical board, and
all participants gave written informed consent for the
handling of their data. Recruited athletes had been
training an endurance sport, triathlon, over 10h a
week during the last 5 years. All the study partici-
pants were Caucasian and none had previous cardio-
vascular disease, nor were any detected during the
study. More details on the recruitment protocol are
found in Bernardino et al| (2020). Table?ﬂ shows the
demographics of both populations.

The controls and athletes come from different stud-
ies, and the demographics of both populations did not
match exactly in age, but roughly represent the same
general population in age and gender. The study pro-
tocol and radiologist were the same for both cases.
Age is statistically different between athletes and
controls, but the difference is very small (2 years).
We do not expect big differences due to this imbal-
ance, since both athletes and controls are middle-
aged. There are also statistically significant differ-
ences in both weight and body surface area (BSA),
but these correspond to physiological remodelling
since endurance athletes are obviously fitter than the
general population. We used as possible confounders
age, BSA and gender, the typical adjustment vari-
ables in cardiology studies.

The MRI acquisition was ECG-gated from the R-
peak during breath-hold. The MRI machines were
Siemens Aereo and Siemens Magnetom, with an in-
plane spatial resolution ranging from 0.5mm to 1mm.
The spacing between slices range between 8mm and
10.4mm, and the slice thickness was 8mm. MRI se-
quences were acquired with 25 frames per cardiac cy-
cle. The ventricular contours (epicardium and endo-
cardium in the case of the LV, and only epicardium
of the RV ) were automatically segmented from the
MRI SA using the automatic procedure described in
the methodology. ED images were selected as the
ones with maximal LV volume, and the rest of the
cardiac cycle was discarded.

The quality of the automatic segmentations was
assessed by one of our experts, but no manual refine-
ment was performed in order to preserve point-wise
correspondences. Cases where errors could not be
considered to be small were discarded: two individ-
uals (both of them athletes) were discarded because
the segmentation was inconsistent with the image.
The segmentation and registration errors are han-
dled as noise in our study. The meshes were very
uniform and we found no self-intersecting artefacts.
As a consequence of the thick slices, the apex was
not correctly imaged and presented much more noise
than the basal part of the ventricles. No extra pro-
cessing was done to correct for potential apex arte-
facts. We decided to leave the apex in the study to
avoid boundary effects.

3.2. Automatic measurements

We computed automatic measurements of the 3D
shapes that are analogous to the classical clinical
measurements, using the point-to-point correspon-
dence and labelling coming from the model-based
registration and segmentation. This allowed a bet-
ter understanding of the discriminative shape pat-
terns by assessing how these measurements vary in
response to the remodelling score A on the syntheti-
cally generated meshes according to equation [L§. We
computed the ED volumes of both ventricles, as well
as the myocardial mass of the LV.

3.3. BMI-based downsampling

Obesity (defined as body mass index (BMI) > 30)
and overweight (defined as BMI > 25) have been re-
ported as risk factors to cardiovascular illnesses in
the literature and have a clear influence in cardiac
shape and function (Alpert et al,, 2018). Surpris-
ingly, overweight and athletic remodelling share sim-
ilarities. Even if one might expect them to be oppo-
site, as endurance athletes and overweight body fat
are in the opposite sides of the spectrum, both re-
modellings are triggered by an increase of the heart’s
loading. In the case of the athletes, it is the increase
of cardiac output (CO) during exercise that produces
a volume overload, and in the obese it is a mix of in-
creased CO needs at rest to account for the bigger



Table 1:

Population demographics of the study participants. Athletes have a lower heart rate and weight than controls. The

age is significantly different, but both cohorts are middle-aged and we do not expect major age-related differences. The p-values

are obtained using a Mann-Whitney test.

Athletes Controls p-value
Age [y] 35.4(6.1)  33.4(3.8) 0.013
BSA [m?] 1.78(0.19) 1.86(0.20) 0.005
Weight [ke] 66.8(11.3) 73.5(15.1)  0.001
Height [m)] 1.71(0.09) 1.73(0.08) 0.151
Women [%)] 0.48 0.44 0.938
Resting HR [bpm] 57.2(8.4)  65.8(10.6) <0.001

body size (Lavie et al), 2007) and a ventricular pres-
sure overload due to an increase of arterial pressure
(Messerli et alJ, 1982).

To study the effect of an imbalance in a shape-
affecting variable between the control and case pop-
ulations, we biased our population to increase the
BMI of the controls, as overweight has a well known
effect on the heart. To generate the imbalance, the
control class was downsampled to maintain only 25%
of its controls, favouring keeping the ones with higher
BMI. The individuals to remove were selected ran-
domly among the controls, with a probability of be-
ing kept proportional to the rank of its BMI in the
control population. Athletes were not downsampled.
This procedure was repeated with 100 different seeds
to obtain different imbalanced datasets and add ro-
bustness to the results.

We analysed how this imbalance affected the re-
modelling pattern found, and to which extent could
confounding adjustment and confounding deflation
correct this effect. To study the stability of the
shape pattern, we computed the L, product between
the discriminative shape patterns obtained with the
downsampled datasets and the results obtained with
the full dataset, that serves as groundtruth. This was
performed for the different DR methods. We also
tested the L, product of the discriminative patterns
with the BMI-shape pattern, obtained with an adap-
tation of our framework to the regression problem.
Additionally, we compared qualitatively the auto-
matic measurement response to the remodelling score
of both the downsampled and original dataset. We
tested both the covariate adjustment, and the con-

founding deflation. For the confounding deflation,
we also evaluated how different choices during the
training of the shape prediction model affected the
obtained most discriminative shape pattern.

4. Results

4.1. Dimensionality reduction

To choose the best configuration of parameters for
the DR method, we used 10-fold cross validation
(CV) and computed the mean log-loss of all the vali-
dation set, defined in equation %%over a wide combi-
nation of parameters. In table P we find the log-loss
of the best parameter choice for the 3 different DR
methods (PCA, PLS and PCA + PLS). They corre-
spond to a PCA with 5 modes, a PLS with 3 and the
PCA + PLS with 20 PCA modes and 3 PLS modes.
In the supplementary material S3, Table 3 shows the
results of all the parameter combinations tested. This
experiment also provided an overview of how the use
of demographics affected the classification metrics:
there is a considerable improvement in terms of log-
loss when the confounding variables are used in the
model, and a minor improvement when using PLS in-
stead of PCA. When using PCA + PLS, the metric
is very similar to PLS. Confounding deflation gave a
worse result than the raw (non-deflated) shapes when
adjustment is used. However, confounding deflation
improved the resulting classification metric with re-
spect to the raw when confounders are not added to
the logistic regression model.



Table 2: 10-fold CV log-loss scores of the best choice for each DR method.

No deflation

No deflation

Method No adj. Confounders adj. No adj. Confounders adj.
PCAs 0.58 0.46 0.48 046 T
PLS; 0.59 0.44 0.52 0.48
PCAy + PLS; 0.59 0.43 0.50 0.46

4.2. Athletic model

We applied our framework to identify the athletic
remodelling in our dataset, and compared the effect
of using the different DR method and confounding-
bias correction methods (confounding deflation and
adjustment). We used the DR parameters found in
the previous section via CV. Figure P shows the L,
product between all combinations of DR methods and
the adjustment or not by confounding variables. For
the original (no confounding deflated) shapes (left),
we found big differences due the inclusion or not of
the confounding variables. The DR choice gave only
minor differences in this dataset: the resulting most
discriminating modes of the DR were very similar.
When the confounding deflation was applied (Figure

), the use of the confounding adjustment became
redundant and did not influence the resulting shape.

Figure § depicts the most discriminative shape pat-
terns, expressed as mean + 2 STD, obtained by the
PCA model with and without adjustment. Figure
shows their asociated measurement response. Both
the adjusted and unadjusted models found an in-
crease of the ventricular volumes that is the same for
both LV and RV. Both models found shape changes
in the RV: the outflow region dilated more than the
inlet base and apex. Regarding myocardial mass,
however, the models gave different results. After con-
founder adjustment, we observed a large increase of
LV myocardial mass similar to ventricular dilation,
while the unadjusted model found no difference in the
mass. The increase of mass of the adjusted model is
concentrated in the base and lower in the apex: the
base of the LV is flatter and is exposed to bigger me-
chanical stress, so it is more prone to compensatory
myocardial thickening. Finally, the increase of ven-
tricular volume in the adjusted model is more pro-
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nounced than in the unadjusted model.

The adjustment or not by confounders resulted
in big differences between the remodelling patterns
found. On the other hand, differences due to DR
were smaller, yet noteworthy. Figure f shows the re-
modelling patterns found for the different DR tech-
niques, with a colormap showing the local amount of
remodelling: reed indicates substantial changes and
blue no remodelling. The figure shows a view of the
RV free wall, which is the region that experienced
more shape changes. All 3 shape patterns were simi-
lar and followed the same global trends, but they pre-
sented regional differences. We observed that both
PLS and PCA + PLS found a remodelling that was
localised in the RV outlet and , at a lower degree,
in the apex, while PCA showed a more spatially dis-
tributed remodelling that also affected the base and
had a smoother transition between the affected and
unaffected areas.

4.3. BMI model

To have a better understanding of the effect of an
elevated BMI in the ventricles, we constructed a re-
gression model that predicts BMI from the cardiac
shape. As athletes and controls had different ranges
of BMI, and to avoid finding any interference with
the remodelling due to endurance sport, we only use
the controls to build the BMI model. Also, since
BMI and body size are related, we did not use the
confounding variables in this model. The model was
built using a PLS in its original regression mode, us-
ing 3 dimensions. To evaluate the model prediction
capability, we computed the determination coefficient
R? using 5-fold CV, which was 0.44. Similar to classi-
fication, we obtained synthetic representative shapes
(%p) associated with certain BMI value b. The syn-
thetic mesh associated with a certain BMI was the
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(a) Original shapes. (b) Confounding deflation.

Figure 2: L, product between the most discriminative shape pattern(the L, product between the most discriminative shape
coincides with the correlation between scores) obtained using different combinations of DR techniques and using or not the
confounding adjustment in the logistic model. In subfigure Ral, we can see that differences due to the DR method were secondary
to the adjustment when the shapes are not deflated. In subfigure @, we can see that the differences due to adjustment disappear
after the shapes are corrected using confounding deflation.

Extreme athlete Extreme athlete Mean control
(Adjusted) Mitral (No adjustement)
itra

Tricuspid

Figure 3: The picture depicts the mean shape of the population (right), and that mean shape after applying 2STD of the
athletic remodelling obtained after adjusting by confounding (left) and the same remodelling without the adjustment (center).
Both remodelling patterns show a dilation of the ventricles, with a bigger dilation of the RV outlet, but the one adjusted
by confounders has a more pronounced dilation, and also a clear increase of the basal LV wall thickness. The different rows
correspond to two different views: the top row depicts a longitudinal view of the anterior wall of both ventricles and the bottom
corresponds to a short axis view of the base, with the observer located in the atria.
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Figure 4: The plot shows the measurement response to the remodelling: for each of the synthetic meshes generated by adding
the shape remodelling pattern to the mean shape with different magnitude, we compute classical measurements and show the

variation ratio with respect to the mean shape.

PCA

Pulmonary
valve

Tricuspid

PCA + PLS

PLS

Figure 5: Close-up on the right ventricular free wall of the different models predicting the athletic remodelling shape pattern.
The red-blue color map encodes the regional amount of remodelling: red means big differences compared to the control
population, and blue small/ no remodelling. We can see that PCA remodelling is smoothly distributed through the whole
ventricle, while the results obtained with PLS and PCA + PLS present a more localized remodelling with a sharper red-blue

transition: the remodelling is concentrated in the outflow.

one having minimal-distance to the mean shape (us-
ing the Mahalanobis distance), constrained to having
the required predicted BMI.

The representative shapes associated to BMI val-
ues of 17.5 and 30, which are very extreme val-
ues, can be seen in Figure f, and Figure [ shows
the measurement response of the remodelling. The
BMI-associated remodelling consists of a moderate
increase of ventricular size and a bigger increment of
the myocardial mass.
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4.4. Confounding adjustment

Figure Q depicts the L, products between the ath-
letic remodelling shape pattern (normalised to be a
unitary vector) derived from the full population, and
the shape pattern derived from the BMI-imbalanced
populations. We found that without adjustment the
imbalance confused the method, and it mixed the
differences due to BMI with the ones related to en-
durance training. The adjustment by confounding
variables resulted in a better agreement between the



BMI =17.5

BMI = 30

Figure 6: Synthetic representative shapes of a patient with BMI of 17.5 and another with BMI 30 according to the BMI
predicting model. The remodelling consisted of an increase of volume (specially in the axial directions) and LV myocardial

mass.
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Figure 7: Measurement response of the BMI-related shape changes. As seen in the visual representation of the shapes, its main
component is an increase of the myocardial mass, complemented with a smaller increase of volumes.

downsampled-derived remodelling patterns and the
full-population pattern than the unadjusted model,
as can be seen in Figure Pa. Figure Bh shows the dot
product between the most discriminating shape pat-
tern obtained with the downsampled (boxplot) and
full (thick solid lines) datasets, and also the shape
pattern associated to BMI, computed as described in
section #.3. There, we can see that in the downsam-
pled datasets, the BMI-associated remodelling and
the athletic one had lower correlation. This drop of
correlation was larger for the models unadjusted by
confounder variables.
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Figure @ shows the measurement response to the
athletic remodelling of several models trained with
a downsampled population. It shows different DR
methods with confounding adjustment (upper row)
and without confounding adjustment (lower row).
We can see that when no confounding correction is
used, the remodelling found is associated with lower
myocardial mass, contrary to what is observed with
the full dataset experiment in which myocardial mass
was maintained. When the shape is adjusted by con-
founders, athletic remodelling was again associated
with an increase of myocardial mass, consistent with



the full population model. Figure @ shows the dis-
criminating shape patterns for a randomly selected
downsampled dataset. There, we can observe that
the model associates athletic remodelling with a de-
crease of the wall thickness in the septum and apical
regions of the LV when confounders are not consid-
ered.

Resulting shape patterns were affected by the DR
methods, PLS was more unstable than PCA and
PCA + PLS, who had a better correlation to their
full-population discriminating shape. In Figure Pa,
we can see that PLS was not able to recover the in-
crease of myocardial mass, and its mode presented
no variation in the myocardial mass while both PCA
and PCA + PLS could.

4.5. Confounding deflation

In this subsection we analyze the effect of the
confounding deflation. As stated above, the shape
prediction model of the confounding deflation was
trained using only the controls. We tested two possi-
ble scenarios: the case in which the athletes popula-
tion was downsampled, and therefore the building of
the shape residual model was not affected; and when
the controls were downsampled (as in the previous
subsection). The former was the most appropriate
situation to apply confounding deflation, since there
would not be extra unstability /bias introduced dur-
ing the confounding deflation step, while the latter
could introduce the bias in the dataset during the
confounding deflation process. Finally, we show the
potential danger of training the residual model using
both populations and how the confounding deflation
could even increment bias.

When controls were not downsampled, the popula-
tion used to train the shape prediction model was rel-
atively unbiased. Instead of downsampling the con-
trols, we downsampled the athletes, removing ath-
letes with high BMI analogously to the procedure
used to downsample the controls. Figure @ and [L1b
depict the same experiments as in the previous sec-
tion: the dot product between the most discriminat-
ing shape obtained with the downsampled data and
the remodelling obtained considering the whole pop-
ulation, and also the dot product with the BMI mode.
Results showed a considerable decrease in variability
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and a higher correlation with the full-dataset-derived
remodelling than the confounder adjustment exper-
iments (Figure Ba). Adding confounder adjustment
on top of confounding deflation did not produce an
increase of accuracy.

Figure shows the results when the population
in which the residual is trained is downsampled. We
downsampled the controls based on their BMI. Re-
sults were much worse than when athletes were down-
sampled, and even worse than a simple confounder
adjustment. Adding confounding adjustment on top
of confounding deflation had a beneficial effect. Fig-
ure [13b shows the effect of using both athletes and
controls in the training of the shape-prediction model
for confounding deflation: there was a drop in sta-
bility compared to the use of a single population
when PLS and PCA + PLS were used (Figure @)
Strangely there was an improvement compared to the
baseline (where confounders are completely ignored).

Therefore we observed that using both populations
in the training of the shape prediction model during
the confounding deflation step resulted in worse re-
sults. We explored the reason why using both popu-
lations can create a confounding effect, associating an
imbalance in a variable to the inter-class shape differ-
ences. This can happen even when the variable is not
associated to any shape remodelling. To illustrate
this effect, we created a dummy synthetic variable
which is just the athlete label plus Gaussian noise.
Obviously, by generation we knew that this variable
did not have any direct relationship to shape. To
evaluate this effect, we computed the L, dot product
with the most discriminating shape between athletes
and controls and the shape pattern associated to the
dummy variable in the shape-prediction model. We
repeated this full variable generation and L, products
computation process 100 times to remove randomness
of the analysis. Figure [L4 (left) shows the distribution
of this dummy variable for a certain seed. We con-
structed two residual models one only with the con-
trols, and the other with both populations. Figure

(right) shows the distribution of the dot product
of the shape prediction model coefficients associated
to the dummy variable when both populations are
used, and when only the controls are used. The shape
associated to the dummy variable is independent to
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Figure 8: Effect of using confounding adjustment in the stability of the models derived from the imbalanced datasets for the 3
different DR methods. a) agreement of the model trained on downsampled data with the one on full data, measured via its dot
product. b) The thick solid lines correspond to the dot product between the BMI shape remodelling pattern, and the athletic
shape remodelling derived from the full population. The boxplots show the dot product between the downsampled derived
shape patterns and the BMI shape remodelling pattern. When adjustment is used, the athletic and BMI mode have a positive
relation (ie, they have remodelling partially in the same direction), due to both partially responding to an increase of pressure;
however, that relation can become negative after downsampling, since the controls become more overweight.
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(a) Measurement response with confounder adjustment.
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(b) Measurement response without confounder adjustment.

Figure 9: Measurement response of the downsampled population with and without adjustment. We can see that the unadjusted
methods find a negative relationship between athletic remodelling and LV mass, but the adjusted methods find a positive
relationship. Figure E shows the equivalent plots for the models trained with the full population, which we use as groundtruth.
The adjusted models are more similar to the groundtruth than the unadjusted.

the athletic remodelling when only one population is due to confounding effect.
used, but becomes very similar to the control-athlete
difference when both populations are used in training
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Figure 10: Mean shape (right), and mean shape + 2STD of the athletic shape remodelling pattern(left), derived from a BMI-
imbalanced population. The pattern in the center column was obtained without adjustment, while the one on the right was
adjusted. We can that the unadjusted model finds a decrease of myocardial mass in the apical and septal walls, while the
adjusted finds an increase of mass
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Figure 11: Stability analysis of the confounding deflation method when the athletes (that are not used in the construction of
the residual model) are downsampled.

5. Discussion mostly a concentric remodelling, both the LV mass
and LV EDV increased, increasing more the mass

The shape models corresponding to the athletic than the volume: this coincides with the hypothesis
and overweight remodelling corroborated the current that remodelling is concentric to cope with elevated
clinical literature. The BMI remodelling consisted in PresSure (increase of myocardial mass) and CO de-
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Figure 12: Measurements response of the shape pattern found with the athlete-downsampled data. There were very small
differences between the different DR methods, and all methods were able to recover the original shape pattern.
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Figure 13: Effect of the population used to train the confounder deflation model on the discriminative pattern stability, assessed
via its L product with the result obtained using the full population. Subfigure a) shows when the training of the shape prediction
model in the confounder deflation step is trained using the downsampled class, and subfigure b) shows when both controls and

athletes are used for training.

Dummy Variable distribution
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Figure 14: This figure shows the distribution of the dummy variable used as a confounder, and the dot product between the
regression coefficients associated to the dummy variable in the residual model and the athletic remodelling shape pattern.

mands (increase of volume). Another hint that the
remodelling was mostly pressure driven is that the
septum of the mesh representing a high BMI individ-
ual presents a bulge below the aorta, that has been
described as an early indicator of elevated pressure
(IBaltaeva et al.‘, }2007|; k}audron et al., bOld). The
athletic remodelling consisted of a predominant in-
crease of volume, and if confounder adjustment was
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performed, an increase of myocardial mass. There is
some controversy if endurance athletes remodelling
is more eccentric ( they increase their volume more
than their mass) or concentric (they increase their
mass more than their volume), but there is a consen-
sus that there is both an increase of mass and volume
(IScharhag et a1.|, lZOOQI), and therefore we considered
the adjusted model more accurate. The increase of




ventricular volume in the confounder adjusted model
is considerably larger than the unadjusted. These
differences between the adjusted and not adjusted
models can be explained because the variability in
size and myocardial mass can come also from the pa-
tients morphometrics: big persons have big hearts.
Without considering this extra non-imaging informa-
tion, it is not possible to discern when the size of the
heart is due to the patient being big, or the heart had
a dilation as a remodelling reaction to exercise.

The artificially generated imbalanced sets allowed
us to validate our hypothesis: without any correction,
the athletic remodelling presented a reduction in LV
myocardial mass. This is obviously false, since all
studies have found that endurance exercise provokes
an increase of myocardial mass. The downsampled
control population had a high percentage of over-
weight, who had a concentric remodelling and caus-
ing the previous association with controls and higher
myocardial mass in the unadjusted model. The sta-
bility analysis, also showed a bigger match between
the downsampled-derived remodelling and the full-
dataset one when confounding adjustment was used.

We also studied another strategy: confounding de-
flation. Confounding deflation consists of generating
a model that predicts shape from the confounders,
and working with the residual of that prediction. Our
results showed that this strategy worked well when
there was access to a good population to train the
shape prediction model: otherwise it can actually in-
crease bias. This was shown when training on the
downsampled population, or when both the case and
control were used simultaneously.

Finally, we compared different linear methods for
DR: PCA and PLS. In the original dataset, we ob-
tained a better classification accuracy using PLS. We
also showed that PLS was able to capture more lo-
calised remodelling than PCA, that was limited to
smooth and global remodelling. However, PCA out-
performed PLS in stability tested during the down-
sampling analysis. Both models could be combined
by using a coarse PCA, that only removes the modes
encoding very little variance, with a PLS. With this
method we were able to capture both localised re-
modelling and have high stability to imbalances. In
our work, we have focused on linear DR methods,
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but the same results are obtained using non-linear
methods: an experiment using U-MAP can be found
in supplementary material S2 and we observed the
same confounding effect that was partially corrected
after using confounding adjustment.

A limitation of our work is that only shape features
were considered. It remains to be seen if intensity-
based features, such as radiomics (Cetin et al., 2018),
can provide added value to the classification prob-
lem. Another limitation is that only ED was anal-
ysed using this technique, which might be enough
for studying athletic remodelling. For other condi-
tions that primarily affect the systolic phase, the full
cardiac dynamics should be analysed using spatio-
temporal atlases. Furthermore, since only SA im-
ages were used for constructing the model, the apical
region could not be analysed accurately: for assess-
ing apical remodelling, 3D-echocardiography might
be better suited.

6. Conclusion

We have presented a SSA framework to find re-
gional shape differences between two populations,
taking special care to correct for any potential bias
related to demographics parameters. The frame-
work is fully linear: it used a PCA sequentially com-
bined with a PLS as dimensionality reduction of the
shapes, followed by a logistic regression model. The
linearity allows to easily interpret and visualise the
model and build synthetic representative shapes of
the model. To correct for confounding effects, it in-
corporates adjustment, where the confounding vari-
ables are added to the logistic model and confound-
ing deflation, which consists of building a regression
model that predicts shape from confounding vari-
ables, and we used it to remove the shape variability
associated to these variables.

We applied our framework to a real dataset consist-
ing of athletes and controls to find the remodelling
due to the practice of endurance exercise. Our results
confirmed the current literature on endurance-sport
remodelling in the LV: ventricular dilation and incre-
ment of myocardial mass, specially in the basal area.
In the RV, we found that the volume increase was
not homogeneous but concentrated in the outflow.



In the controls, we used an adaptation of our clas-
sification framework to regression to explore obesity
remodelling and found it to be mainly an increase of
myocardial mass.

In this population, we analysed the effect of con-
founders in a semi-synthetic dataset obtained by
downsampling the control population non-uniformly,
keeping individuals with high BMI. Even if athletic
remodelling is very prominent, we were able to bias
the model to output that athletes have lower myocar-
dial mass than controls. This was corrected when ad-
justment was used. However, we found that we could
only use confounding deflation when the control pop-
ulation was relatively big and balanced, and if that is
not the case using confounding deflation can actually
increment bias. Here, we presented an example of a
cardiology application, but the proposed method is
not unique for the heart. Future studies could iden-
tify which demographic variables influence the shape
of other organs, based on the same methodology.

In our work we have tested only linear SSA meth-
ods, but this confounder-related problems might ap-
pear even more with the use of more complex frame-
works, able to capture non-linear shape patterns to
capture subtler morphology differences in popula-
tions that are almost indistinguishable from controls
and differences cannot be found through traditional
means.
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