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Abstract

Lung cancer follow-up is a complex, error prone, and time consuming task for clinical radiologists. Several lung CT
scan images taken at different time points of a given patient need to be individually inspected, looking for possible
cancerogenous nodules. Radiologists mainly focus their attention in nodule size, density, and growth to assess the
existence of malignancy. In this study, we present a novel method based on a 3D siamese neural network, for the
re-identification of nodules in a pair of CT scans of the same patient without the need for image registration. The
network was integrated into a two-stage automatic pipeline to detect, match, and predict nodule growth given pairs of
CT scans. Results on an independent test set reported a nodule detection sensitivity of 94.7%, an accuracy for temporal
nodule matching of 88.8%, and a sensitivity of 92.0% with a precision of 88.4% for nodule growth detection.
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1. Introduction

Lung cancer is the leading cause of cancer death, re-
gardless of gender or ethnicity. Only 19% of all people
diagnosed with lung cancer will survive after 5 years, but
this percentage improves dramatically when the disease is
diagnosed at early stages (Noone et al., 2018).

Small lung nodules are the most common expression
of early lung cancer. Their variability in size, texture, and
morphology make it difficult to detect them even for clin-
ical specialists. The use of thin-slice helical chest com-
puted tomography (CT) together with the recommenda-
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tions established by clinical guidelines, such as those of
the Fleischner Society (MacMahon et al., 2017), have al-
lowed improving nodule detection rates as well as better
identifying the malignancy of incidental nodules. How-
ever, recommendations for borderline and complex cases
are still vague and open to the judgment and experience
of the clinicians.

Current clinical criteria for assessing pulmonary nod-
ule changes are based on visual comparison and diam-
eter measurements from the axial slices of the initial
and follow-up CT images (Larici et al., 2017). Three-
dimensional assessment provides more accurate and pre-
cise nodule measurements, especially for small nodules
(Ko et al., 2012). However, it requires the segmentation of
the nodule, which is a time-consuming process and highly
subjected to intra- and inter- observer variability. This is
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why it is rarely used in a typical clinical workflow.
Computer-assisted diagnosis (CAD) systems are ex-

pected to assist in clinical decision by providing rele-
vant information such as accurate growth rates, increase
in solid component, or change in density of the nodules.
This information could help specialists to reduce the num-
ber of studies for a problematic nodule, decreasing the di-
agnostic time and, hopefully, reducing the classification
of the neoplasm, which should lead to a reduction in mor-
bid mortality (American College of Radiology, 2014).

Recent advances in deep neural networks (Goodfel-
low et al., 2016) have allowed increasing substantially the
performances reported by conventional image processing
methods in nodule detection (Setio et al., 2017), segmen-
tation (Messay et al., 2015), and malignancy classification
(Ciompi et al., 2017). Some of the main advantages of us-
ing deep neural networks rely in their ability to learn and
extract, in a very effective way, intricate patterns from the
raw data without any previous feature engineering, reuse
these patterns in different locations of the image, and even
transfer them to different domains (Weiss et al., 2016).
Despite the recent explosion of methods based on deep
neural networks in the lung cancer domain, most of them
are focused on the analysis of a single CT scan.

Few CAD systems (Ardila et al., 2019) have been pro-
posed for the automatic support of lung cancer follow-up.
Major developments in the field are mainly limited by the
lack of open datasets with annotated series of CTs. To an-
alyze series of CT scans, prior and follow-up lung exams
have to be initially registered to facilitate, for instance,
the correct re-identification of pulmonary nodules. Sev-
eral factors compromise the effectiveness of the registra-
tion process, such as the variability in the image size and
resolution originated by the use of different CT scans, and
the variability in the position and breath cycle of the pa-
tients when performing the scanning.

Although current medical image registration methods
(Song et al., 2017), especially non-linear (Rühaak et al.,
2017), report accurate CT alignments, they are still slow
and introduce some distortions in the intrinsic struc-
ture of the lung, hindering their wide clinical acceptance
(Viergever et al., 2016). In addition, other complexities
must be addressed, regardless of the quality of the image
registration, to enable a proper nodule re-identification,
such as the existence of several nodules close to each
other, and/or the alteration in texture, size, and even loca-

tion of the nodules due to disease progression. Therefore,
more research is still needed to reliably include the nod-
ule re-identification in different CT scans, in automated
tools to support physicians in the analysis of longitudinal
studies of lung cancer.

This work aims to take a step in this direction, and pro-
poses a novel approach for the re-identification of pul-
monary nodules. In particular, we propose a 3D Siamese
neural network Koch (2015) to predict the most likely
matching nodules from a series of lung CT scans of the
same patient. This approach does not require prior regis-
tration of the CT scans, avoiding some of the shortcom-
ings that it entails. In addition, to demonstrate the value of
this approach, we integrate it into an automated pipeline
aimed to detect the growth of pulmonary nodules over
time.

The contributions of this paper with respect to previous
works is two-fold. First, we investigate and provide sev-
eral models for re-identifying lung nodules in CT scans
series, relying directly on 3D volumetric data, transfer
learning, and siamese neural networks. In this sense, to
the best of our knowledge, this would be the first time that
the problem of pulmonary nodule re-identification is ad-
dressed through deep learning techniques. Secondly, we
build and evaluate an automatic pipeline that integrates
the proposed models to predict nodule growth from logi-
tudinal CTs.

2. Related work

2.1. Automated nodule re-identification
Lung nodule re-identification (i.e. matching) between

current and former CT examinations is necessary for as-
sessing nodule growth or shrinkage. While the majority
of lung cancer CAD systems found in the literature fo-
cus on the nodule detection task (Loyman and Greenspan,
2019), relatively few automated nodule matching systems
have been proposed (partly because of the limited avail-
ability of follow up datasets).

An early CAD system for nodule re-identification in
series of lung CT scans was proposed in (Ko and Betke,
2001). They reported high performances (86% nodules
re-identified) using 8 patients (310 nodules), although
some parts of the system required manual intervention
(lung apex identification) and no train/test split was re-
ported. In Lee et al. (2007) a commercial CAD system
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was evaluated for nodule re-identification for 30 patients
(210 nodules) with lung metastasis, reaching a matching
rate of 67%. In a cohort of 54 pairs of low-dose multi de-
tector CT screening, a CAD system successfully matched
91.3% of nodules ≥4mm (Beigelman-Aubry et al., 2007).
In another commercial CAD evaluation study (Tao et al.,
2009) a matching rate of 92.7% was achieved in three
serial CT scans from 40 subjects with 143 nodules from
the NLST1. Another CAD system evaluation (Koo et al.,
2012) for automated lung nodule matching using annota-
tions from 4 experts in 57 patients reported between 79%
and 92% of accuracy scores. Deep learning-based CAD
systems for analysis of longitudinal lung cancer studies
are practically nonexistent in literature. An exception is
in (Ardila et al., 2019), where a CAD system for end-to-
end lung cancer screening is proposed. However, nodule
matching was not directly tackled in the study.

All these CAD systems rely on registration of the lungs
in the different CT examinations. Performing an accu-
rate registration of lung images is particularly challeng-
ing (Murphy et al., 2010) due to the high deformabil-
ity of the lung tissue and the volume changes during the
breathing cycle. Previous studies (Hong et al., 2008; Sun
et al., 2007) evaluated methods for rigid and non-rigid
registration for matching lung nodules on sequential chest
CT scans. Murphy et al. (2011) presented the results of
the EMPIRE10 pulmonary image registration challenge,
which comprised a comprehensive evaluation and com-
parison of more than 20 algorithms on 30 thoracic CT
pairs. Top-5 algorithms were using different non-rigid
transformations. Although non-rigid registration is usu-
ally more accurate than rigid registration, rigid registra-
tion is substantially more computationally efficient, po-
tentially making it more useful in a busy clinical setting
in which real-time processing is necessary. A more recent
and complete review of registration methods for medical
image series analysis can be found in (Song et al., 2017).
The choice of the right registration method and of the cor-
rect evaluation metric to assess its performance are of cru-
cial importance as they can affect the results of the analy-
sis.

1https://www.cancer.gov/types/lung/research/nlst

2.2. Siamese Neural Networks

The problem of nodule re-identification can be closely
related to the one of recognizing the same object in differ-
ent images. This type of problems has been successfully
addressed by siamese neural networks (Bromley et al.,
1994) (SNNs). They are designed as two sibling net-
works, connected by a distance layer at the top, trained
to predict matching or mismatching between two input
images. The original architecture, first introduced for the
problem of signature verification, was later extended by
Koch (2015) using convolutional layers and adjusting the
optimization metric with a weighted L1 distance between
the twin feature vectors of both networks.

SNNs have been extensively used in computer vision
matching problems such as tracking objects in videos (Tao
et al., 2016), matching pedestrians across multiple camera
views (Varior et al., 2016), and matching corresponding
patches in satellite images (Hughes et al., 2018).

In the medical image domain, SNNs have been used
primarily to extract a latent representation for content-
based image retrieval. For instance, Chung and Weng
(2017) proposed a SNN, pre-trained on the ImageNet
dataset and using a contrastive loss function (Hadsell
et al., 2006) to retrieve similar images to the query, using
a publicly available dataset of diabetic retinopathy fundus
images. Another example is the work by Cai et al. (2019),
which applied SNNs to retrieve similar images from sev-
eral medical image databases of lung, pancreas, and brain.
As far as we know, SNNs have not yet been applied to re-
identify nodules in a series of lung CT scans.

3. Method

3.1. Nodule re-identification

To solve the problem of nodule re-identification in a
pair of CTs of the same patient taken at different time
points, we propose building a SNN (Koch, 2015). An
appealing characteristic of SNNs is that they rely on
a distance metric computed on features extracted auto-
matically by a deep learning network. This should al-
low greatly accelerating and simplifying the nodule re-
identification process avoiding to introduce a registration
technique as source of variability and error in the analysis.

Siamese neural networks are composed of a feature
extraction component in which two subnetworks (with

3



shared architecture and weights) process a pair of images
at a time to produce two embedding feature vectors di-
rectly from the images. A second component (i.e. the
head of the network) aims to classify whether the two em-
bedding feature arrays are similar or not. To assess this,
the features are passed to a pairwise distance layer that
computes a similarity score.

In a previous study (Bonavita et al., 2019), we trained a
deep convolution neural network (CNN) for nodule clas-
sification able to effectively reduce the number of false
positives in the nodule detection problem. In the present
work, we have adjusted that network improving its final
performance. In particular, we propose a 3D CNN based
on a ResNet-34 architecture that expects nodule patches
of 32x32x32. As described in the original paper, the
patches are pre-processed crops done around the center
of the annotated nodules of the lung CT. The nodule clas-
sification network was trained from scratch using a large
amount of nodule candidates (> 750K) from the LUNA-
16 challenge dataset (Setio et al., 2017). Further details
on its architecture and performance are shown in the sup-
plementary material (S1).

In the current study, we removed the fully connected
layers of the nodule classification network to use it as the
backbone of the sibling networks of the feature extrac-
tion component of the SNNs. Figure-1 shows the SNN
architecture for the nodule re-identification problem. In
this figure, we can observe the two components. First, the
feature extraction component, which pre-processes the in-
put nodule patches (i.e. taken at different time points, T1
and T2) and uses the sibling network to extract the corre-
sponding feature maps. Second, the classification compo-
nent composed of the head of the network that predicts if
both feature maps are similar or not. These feature maps
(solid arrows in Figure-1) come from different levels of
the pre-trained sibling networks. Further details about the
feature maps and the network heads are described in Sub-
section 3.1.2 and 3.1.3, respectively.

Different SNNs configurations were proposed (Table-
1) to gain further insights into the best parameteriza-
tions. To allow a fair comparison of the configurations, we
trained the SNNs with the same parameter values. Con-
cisely, the number of epochs was set to 150, the learning
rate to 1e-4, the batch size to 8, dropout to 0.3, the early
stopping at 10 epochs without any significant improve-
ment, and Adam (Kingma and Ba, 2014) was used for op-

Figure 1: Siamese network proposed for lung nodule re-identification.
The network is composed of a feature extraction and a basic head net-
work to perform the prediction.

Figure 2: Alternative head networks to configure different siamese net-
works.

timization. Finally, random rotation, flip, and zoom were
applied for data augmentation.

Pre-trained Feature maps Head Loss
FIBC Frozen Individual Basic Contrastive
UIBC Unfrozen Individual Basic Contrastive
FIFB Frozen Individual FC BCE
UIFB Unfrozen Individual FC BCE
FICB Frozen Individual CNN BCE
UICB Unfrozen Individual CNN BCE
FCMB Frozen Combined MFC BCE
UCMB Unfrozen Combined MFC BCE

Table 1: List of the different siamese network configurations. The index
column contains the acronyms of the networks, resulting from joining
the first letter of the options placed in the next 4 columns.

Below we describe in more detail the main configura-
tions and parameters used in the experiments.

3.1.1. Pre-trained network weights
Two configuration values were proposed for this set-

ting: frozen and unfrozen. Usually, the weights of the pre-
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trained networks in a SNN remain frozen. In this study
the pre-trained network had a related but slightly different
learning goal than the target (siamese) network. Thus, we
allowed also the option of unfreezing the weights of the
pre-trained network and updating them during the back-
propagation steps of the siamese network training pro-
cess. To un/freeze the networks, we dis/abled the option
to update all the weights and biases of the pre-trained lay-
ers during training.

3.1.2. Feature maps
We propose two options: using the feature maps indi-

vidually and combining the feature maps together. Fea-
ture maps extracted from the first layers of a CNN refer
to low-level and less domain-specific representations (e.g
lines, circles, spikes), whereas features extracted from
deeper layers are generally more high level and domain-
related representation (e.g. morphology, texture). To ana-
lyze the potential of both general and more specific nod-
ule features, we used features from different depths of the
network (i.e., from the last layer of each of the 4 convolu-
tion blocks that holds the pre-trained Resnet-34 network).
The resulting feature maps were obtained after a forward-
passing through the network for each of the nodule images
of the whole dataset. Table-2 shows the layer name, the
number of filters per layer, the output dimension of each
filter, and the total number of parameters for each of the
selected feature maps.

Layer Filters Dimension Total params
layer1 64 [16,8,8] 65536
layer2 128 [8,4,4] 16384
layer3 256 [4,2,2] 4096
avgpool 1 [1,1,512] 512

Table 2: Layers selected from the pre-trained part of the SNNs.

We designed experiments to evaluate each of the possi-
ble feature maps, i.e. 4 individual features maps - one per
layer - and 11 feature maps resulting from combinations -
(4 over 2) + (4 over 3) + (4 over 4).

3.1.3. Siamese heads
We proposed four different head networks, one meant

to follow a more conventional siamese architecture and

the others with more exploratory purposes, more pre-
cisely:

1. A basic head network (Figure-1) composed of a flat-
ten (to homogenize all features to one dimension)
and a pairwise distance (i.e. L1) layer, just after the
feature extraction part of the network.

2. A fully connected (FC) head network (Figure-2b)
composed of a pairwise distance, a flatten, and a FC
block layer. The FC block comprises a FC layer
(with 64 units), a batch norm, a ReLU, a dropout
layer and a final FC layer (with one unit). This clas-
sifier head aims at finding non-linear patterns among
the merged features (from both sibling networks).

3. A CNN head network (Figure-2c) composed of a
pairwise distance layer and a clean (without pre-
trained weights) ResNet-34 CNN. Several arrows
connect the pairwise distance layer with this clean
ResNet-34. There are as many arrows as pre-trained
layers used to extract the features. The arrows
redirect the features to a specific part of the clean
ResNet-34. The redirection had to make compatible
the dimensions of the output from the previous layer
with the layers of the input. For instance, features
extracted from last layer of block1 were linked to the
initial layer of the block2, features from layer2 were
linked to the initial layer of the block3 and so on.
This head network aimed at exploring non-linear pat-
terns between features but without loosing the space
dimension (i.e. no flattening of the features was done
between the pairwise layer and the clean ResNet-34).

4. A multi-features combined (MFC) head network
(Figure-2d) composed of a pairwise distance layer,
a flatten layer, a concatenation layer (to merge all
features), and a FC (already described above). This
head network aimed at exploring combination of fea-
tures from different parts of the network.

It is important to note that in the basic head network,
the pairwise distance layer not only computes the batch-
wise L1-distance between each component of the previ-
ously flattened input vectors, but also it sums the com-
ponents up to eventually generate an output of size bs ×
shape (where bs is the batch size). This is done to accom-
modate the expected inputs of the contrastive loss func-
tion with which the basic head network is configured. For
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the rest of the head networks, the pairwise distance layer
does not perform any reducing sum operation, leaving its
input and output with the same size bs × 1 × z × y × x, and
therefore, allowing its output to be exploited more deeply
with additional layers (for example, convolutional or fully
connected).

3.1.4. Loss functions
We explored two options: a contrastive loss and a bi-

nary cross entropy (BCE) loss function. Traditionally,
SNNs are trained using a contrastive loss (Hadsell et al.,
2006) function. This function encodes both similarity and
dissimilarity (between the feature maps) independently in
a loss function. It ensures that semantically similar pairs
are embedded close together while forcing the dissimi-
lar pairs to be apart from each other. Another option to
train these networks is through a prediction error-based
approach. For our case we adopted the binary cross en-
tropy loss. This implied to apply a sigmoid function on
the outputs to transform them into probability values (be-
tween 0 and 1).

3.2. Nodule growth detection pipeline

A valuable application of nodule re-identification is to
predict nodule growth between current and follow-up CT
scans of a patient. This is a crucial, complex, and time-
consuming task for lung cancer assessment since nodule
growth has a clear predictive importance for benignity and
malignancy (Gurney et al., 1993). Thus, further efforts are
required to support clinicians to increase the precision and
effectiveness of such endeavour.

To this end, we propose an end-to-end pipeline (Figure-
3) comprised of two different components: 1) a nodule
detector that, given a pair of CTs of the same patient but
taken at different time points, generates a list of nodule
candidates per each CT, and 2) a nodule matching com-
ponent (embedding the siamese networks) that, given the
list of nodule candidates of the CTs, matches the nodules
and computes the difference in diameter between them.

3.2.1. Nodule detector
To build the nodule detector, we followed the work of

Liao et al. (2019), with which they won the Data Science

Figure 3: Nodule growth detection pipeline.

Bowl lung cancer challenge2. The authors proposed a 3D
Faster-RCNN (Ren et al., 2015) scheme for nodule detec-
tion. The backbone of the network was similar to the U-
net (Ronneberger et al., 2015) architecture, in which the
information flows not only in a classical bottom-up way
but also between the encoder and decoder parts of the net-
work thanks to some symmetric links (or short-cuts) that
bound both parts of the network. The output of this net-
work were probability feature maps, useful for the lung
cancer classification problem.

To the original network, we proposed attaching a dou-
ble CNN head as in (Ren et al., 2015). One head was
used for regression and the other for classification. The
regression branch infers the center (x,y,z locations) and
the diameter of the nodule, while the classification branch
predicts the probability of being a nodule.

The input lung CT was pre-processed before entering
the nodule detection network. The image was resampled
to an isotropic resolution (1 × 1 × 1mm), pixel intensi-
ties clipped between [-1000, 600] HU and normalized be-
tween 0 and 1. The full lung image, without any previous
lung segmentation, was then split in overlapping patches
(due to memory constraints) of 128 × 128 × 128 with an
overlap of 32 pixels per dimension. Since the location
of the patch may influence the decision of whether it is
a nodule and whether it is malignant, we also introduce
the location information in the network as in (Liao et al.,
2019). Thus, each patch was fed to the network together
with its corresponding location crop of size 32 × 32 × 32
× 3, which contains the location of the patch image with
respect to the whole lung image. The final network ar-
chitecture used for nodule detection as well as the perfor-

2https://www.kaggle.com/c/data-science-bowl-2017
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mance obtained in LUNA-16 (Setio et al., 2017) dataset
can be found in the supplementary material (S2).

3.2.2. Nodule matching
This component performs the re-identification of the

nodules among all CT pairs. To do this, for each pair of
CTs, we took each candidate found at T1 and we paired
with each of the candidates found at T2. The pairs were
pre-processed following the specifications described in
Section 4.1, and then they were fed to the SNN. The net-
work, trained off-line, provided a matching probability for
each pair of candidates. The pairs with the highest proba-
bility were selected as the matching ones.

To assess the performance of this process, we computed
for each pair of CTs, whether the candidate at T2 pre-
dicted with highest probability by the SNN, matched with
the annotated nodule at T2. Additionally, we computed
the time required for finding the matching nodules. We
repeated this process for each of the SNN configurations.

Once having predicted all matching nodules for each
pair of CTs, the pipeline returns the nodule growth along
with the location and diameter of the matching nodules.
The nodule growth is calculated directly by the difference
between the predicted nodule diameters at T1 and T2 for
each pair of lung CTs.

To evaluate the nodule growth detection, we selected
all the correctly matched CT pairs and compared whether
the nodule growth difference was of the same sign in both
ground truth and predicted. True positive (TP) and false
negative (FN) cases were those that had (in both ground
truth and predicted) positive and negative growth differ-
ences, respectively. A false positive (FP) case was con-
sidered when the predicted growth difference was positive
and the ground truth one was negative; and a false nega-
tive (FN) was considered in the opposite case.

4. Experiments and results

4.1. Evaluation datasets
4.1.1. LUNA-16

In this work we used an updated version of the LIDC
dataset (Armato III et al., 2015) provided in the LUNA-16
challenge (Setio et al., 2017), which includes only scans
with at least one lesion of size ≥ 3 mm marked as a nod-
ule by at least three of the four radiologists. The LUNA-
16 dataset consists of 888 CT scans comprising a total

of 1186 nodules. Annotations with coordinates of each
nodule in the three spatial axes inferred from the original
LIDC annotations are also provided.

4.1.2. VH-Lung
This dataset was designed specifically to identify and

follow up suspicious lung nodules in time. Ethics
approval was obtained from the Medication Research
Ethics Committee of Vall d’Hebrón University Hospital
(Barcelona) with reference number PR(AG)111/2019 pre-
sented on 01/03/2019.

Inclusion criteria were patients without a previous neo-
plasia, with a confirmed diagnosis, and with visible nod-
ules (≥ 5 mm) in at least two consecutive CT scans. The
interval between current and previous CT examinations
ranged from 32 to 2464 days. These nodules were located
in the three spatial axes by two different specialists at each
time point and quantified by another experienced radiol-
ogist. The size mean of annotated nodules was 11.08 ±
5.35 at T1 and 13.49 ± 5.18 at T2, and the growth size
mean is 2.41 ± 4.38 mm.

The chest helical CT studies were performed using
different scanners: Phillips (Brilliance 16/64, iCT 256),
Siemens (SOMATOM Perspective/ Definition) and Gen-
eral Electrics (LightSpeed16). Acquisition and recon-
struction protocols were set according to subject biomet-
rics and clinical inquiry: 100–120 kV, 33-196 mAs and
exposure time 439-1170 ms. Each image had 512 × 512
pixels with 16-bit gray resolution, spacing between slices
0.75-1.5 mm and slice thickness 1-5 mm.

In total the dataset contains 151 patients with two tho-
racic CT scans. For each patient, the clinicians annotated
only one relevant nodule in both CT scans. We randomly
divided the dataset into two subsets, one for training (113
patients) with 70 cancers and 43 benign cases, and other
for testing (38 patients) with 25 cancers and 13 benign
cases.

4.2. Nodule re-identification
In this paper we propose the use of SNNs for nodule

re-identification. In order to train the SNNs, we first iden-
tified positive cases, i.e. pairs of the same nodule from the
same patient taken at different time points (T1 and T2), as
well as negative cases made up of pairs of mismatched
nodules. In the VH-Lung dataset we had already anno-
tated (N=151) positive cases. To create the negative cases
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we used the nodule locations of the VH-Lung dataset at
T1 together with a random nodule location of the anno-
tated nodule locations at T2 (avoiding to select correct
nodule location). In total, we build a balanced dataset
(N=302) composed of 226 CT pairs in the training set and
76 CT pairs in the test set, thus respecting the initial train-
ing/test (75% / 25%) partition of the VH-Lung dataset.

We optimized the different SNNs (Table-1) with the
training data using a stratified 10-fold cross-validation,
and we tested them with the testing set. Results of the
best SNNs configurations are shown in Table-3. Addi-
tional SNNs configuration results can be found in Table-
S4 (supplementary material).

In addition, we investigated the nodule re-identification
performance in terms of nodule growth. In total we found
14 cases (CT pairs) with an increase in nodule diame-
ter > 9 mm (aprox. Mean + 1.5*std), and 4 cases with
a decrease in nodule diameter > 4 mm (aprox. Mean –
1.5*std). We labeled these cases as large growth changes
(Other similar studies (Koo et al., 2012) defined large
nodules as > 10 mm). We also found 50 cases with a
nodule change ± 1 mm, labeling them as small growth
changes, and the remaining 87 cases were labeled as
medium growth changes. The results for our best method
(FIFB) can be found in the Table-S5 of the supplementary
material.

4.3. Nodule growth detection pipeline

For the evaluation of the initial stage of the pipeline de-
scribed in Section 3.2, we first computed the performance
of the pipeline to detect the annotated nodules (one per
CT). To do this, we proposed different thresholds (1, 4,
8, 16, 32, and 64) or number of nodule candidates, and
we computed per each CT whether the annotated nodule
was in each subset of predicted nodule candidates (ranked
by probability). To have a better estimation of the nod-
ule detection performance, we repeated this process on 10
random train-test partitions (respecting the proposed size
of the initial partitions of the dataset) of the VH-Lung.
Results are plotted in Figure-4. This FROC curve (Setio
et al., 2017), shows the sensitivity, in average, of finding
the (only) annotated nodule per scan at different nodule
candidate rates. As we can observe, in training the detec-
tor reaches a sensitivity of 0.951 with 32 nodule candi-
dates (missing 10.5 ± 1.02 annotated nodules in 226 dif-

ferent CTs), and in test set a sensitivity of 0.973 with the
same threshold (missing 2.5 ± 1.02 nodules in 76 CTs).

We therefore configured the nodule detection compo-
nent of the pipeline with a threshold of 32 candidates per
CT, since it empirically showed a good balance between
sensitivity (real nodules detected) and precision (number
of nodule candidates not really targeted by the clinicians)
both in training and test.

Figure 4: FROC-curve of the malignant nodule detection algorithm for
training and test partition.

To gain insight into the complexity of the re-
identification problem, we computed how many candi-
dates were located within a chosen Euclidean distance
from the nodule ground truth position (Figure-5). We de-
fined 5 different distance thresholds: radius squared Eu-
clidean distance (as used in the LUNA-16 challenge to ac-
cept a nodule detection as correct) and 4 fixed Euclidean
distances (30, 20, 15, and 10 mm). For every distance, we
computed the number of CTs in which 0, 1, 2, 5 or more
than 10 candidates fell within the distance. Moreover,
we computed an accuracy of detection for every distance
choice by dividing the number of CTs for which only one
candidate is within the distance by the total number of
CTs. Results are shown in Table-4.

Next, we evaluated the performance of the best SNN
(Table-3) for nodule re-identification using the location
of the nodule candidates provided by the nodule detector.
The best results were achieved by the FIFB network with
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Configuration Layer tr acc val acc test acc test prec test rec
FIBC layer2 0.790 ± 0.013 0.775 ± 0.051 0.709 ± 0.003 0.806 ± 0.002 0.550 ± 0.007
UIBC layer3 0.891 ± 0.009 0.864 ± 0.044 0.798 ± 0.018 0.765 ± 0.024 0.863 ± 0.036
FIFB layer1 0.939 ± 0.025 0.899 ± 0.039 0.921 ± 0.036 0.905 ± 0.054 0.944 ± 0.038
UIFB layer2 0.918 ± 0.037 0.890 ± 0.039 0.896 ± 0.028 0.871 ± 0.050 0.934 ± 0.017
FICB layer1 0.867 ± 0.039 0.857 ± 0.060 0.831 ± 0.041 0.824 ± 0.075 0.860 ± 0.061
UICB layer1 0.868 ± 0.063 0.888 ± 0.049 0.859 ± 0.070 0.842 ± 0.093 0.900 ± 0.046
FCMB layer1, layer2 0.938 ± 0.034 0.882 ± 0.037 0.918 ± 0.017 0.907 ± 0.029 0.934 ± 0.035
UCMB layer1, layer2, avgpool 0.954 ± 0.023 0.897 ± 0.045 0.925 ± 0.025 0.904 ± 0.040 0.952 ± 0.032

Table 3: Performance results (accuracy (acc), precision (prec) and recall (rec)) obtained on training (tr), validation (val) and test for the different
SNN configurations. The meaning of the configured methods is detailed in Table1.

Figure 5: Candidates predicted (yellow marks) at a maximum distance
from the ground truth centroid (red circle).

Distance N=0 N=1 N=2 N=5 N>=10 Acc
radius2 0 18 6 2 3 0.500
30 mm 1 22 7 1 0 0.611
20 mm 1 26 6 0 0 0.722
15 mm 1 32 3 0 0 0.888
10 mm 1 34 1 0 0 0.944
5 mm 3 33 0 0 0 0.916
3 mm 5 31 0 0 0 0.861
1.5 mm 18 18 0 0 0 0.500

Table 4: Number of CTs (in T2) containing N candidates located within
a chosen euclidean distance from the actual nodule centroid. The ac-
curacy score represents the number of CTs at N=1 respect the total of
CTs.

only 4 CT-pairs incorrectly matched and an accuracy of
0.888. All results are presented in Table-5.

As in the standalone evaluation of our method, we
also conducted some experiments with the best pipeline
(FIFB) to investigate nodule re-identification performance
in terms of nodule growth. Results are shown in Table-S6
of the supplementary material.

Configuration Correct Incorrect Accuracy Time(s)
FIBC 25 11 0.694 18.71
UIBC 27 9 0.750 36.01
FIFB 32 4 0.888 9.36
UIFB 30 6 0.834 12.73
FICB 30 6 0.834 20.12
UICB 28 8 0.777 20.16
FCMB 31 5 0.861 12.41
UCMB 31 5 0.861 19.10

Table 5: Results of the different nodule re-identification pipelines. The
meaning of the configured methods is detailed in Table1.

Then, we evaluated the performance of the best pipeline
(i.e. the pipeline configured with the FIFB network) for
the nodule growth detection task. As explained in Sec-
tion 4.2.2, a correct prediction was achieved when the dif-
ference on diameters between predicted and ground truth
nodules had both the same sign. In this way, having 32
correctly identified cases (out of 36), we obtained a 0.92
of recall, a 0.88 of precision and a 0.90 of F1-score. The
confusion matrix is shown in Figure-6.

Additionally, we assessed the precision in the mea-
surement of the nodule growth prediction. Agreement
between the predicted and ground-truth nodule growth
vectors was assessed with a Bland-Altman (Altman and
Bland, 1983; jaketmp, 2018) plot (Figure-7). The mean
difference between the two measurements was 0.17 mm
with a 95% confidence interval (from -3.35 to 3.70 mm).
Predicted and ground-truth nodule growth vectors were
not found statistically different on the basis of a 1-sample
t-test (p-value = 0.99). Also, we computed the mean ab-
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solute error of the predicted nodule growths (1.38 ± 1.17
mm), their mean squared error (3.26 ± 5.30 mm) and its
coefficient of determination (r2=0.71). Finally, Figure-8
shows the predicted and real difference of diameters for
all CT pairs of the test dataset. To support the interpreta-
tion of this figure, we have included the axial slice with
major diameter taken at time points T1 and T2 of an illus-
trative subset of nodules.

Figure 6: Confusion matrix for nodule growth prediction.

Figure 7: Bland–Altman plot for agreement between ground truth and
predicted nodule growth.

4.4. Automatic lung CTs registration

We also computed lung nodule re-identification using
conventional image registration methods. To do this, we
aligned the CT pairs of the VH-Lung dataset and we com-
puted how far apart were the nodule centroids, annotated

by the radiologists, at T2 with the warped locations ob-
tained after applying the transformation-fitted function on
the nodule centroids at T1. To do this, we used two well-
established methods for image alignment, one for rigid
and other for non-rigid registration. Rather than exploring
and fine-tunning new registration setups, we leveraged the
Elastix (Klein et al., 2009) database3 of published regis-
tration configurations. This is a publicly-available reposi-
tory of configurations aimed at promoting research repro-
ducibility. Therefore, for the rigid approach we selected
a recent configuration already applied for CT images on
(Al-Dhamari et al., 2017), and for the non-rigid approach
we used an affine registration (Qiao et al., 2015) previ-
ously applied for lung CTs.

Table-6 shows the nodule re-identification perfor-
mances obtained for the two registration methods on the
train, test and the whole dataset. Correct cases were
those in which the Euclidean distances between the lo-
cation of the centroids at T2 and the warped locations
of the centroids at T1 were less than the nodule’ radius
squared (same threshold as proposed in LUNA-16 chal-
lenge). Accuracy was obtained after summing all correct
alignments divided by the total of CT pairs in the dataset.
We also computed mean absolute errors (MAE) between
the ground truth and the warped centroids and the average
time required for performing the alignments.

5. Discussion

In this article, we provide a novel way to address the
nodule re-identification problem. In particular, we pro-
pose a deep SNN that can directly re-identify nodules lo-
cated in a series of pairs of CT scans without the need for
any image registration.

The SNN allows matching pulmonary nodules in differ-
ent CTs in a single stage by outputting a similarity score
(i.e. the probability of being the same nodule). In con-
trast, standard techniques require at least two stages: first
registering the image and then identifying matching nod-
ules with some distance function. Moreover, with the pro-
posed solution, no additional deformations/perturbations
of the lung scan are performed, so that nodule measure-
ments can be done directly from the image itself. Another

3http://elastix.bigr.nl/wiki
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Figure 8: Comparison between real and predicted cases. Upper panel: diameter differences for all test set.
Lower panel: axial slices at two time points of different nodules.

Rigid Non-Rigid
Accuracy MAE (mm) Time (s) Accuracy MAE (mm) Time

Train (113 CT pairs) 0.672 30.8±44.2 52.6±10.0 0.761 23.8±39.7 82.2±12.5
Test (38 CT pairs) 0.684 29.6±38.7 52.9±7.7 0.605 30.2±44.3 82.8±9.5
All (151 pairs) 0.675 29.5±43.0 52.7±9.4 0.721 25.4±41.0 82.3±11.8

Table 6: Results after applying automatic registration using rigid and non-rigid approaches.

advantage is that the re-identification process is fast since
all weights of the network have already been calculated
during the training phase.

We designed and tested several SNN architectures in
order to fully understand the complexities of the problem
and find the best network configuration. To this end, we
collected a longitudinal cohort of two CT scans per patient
taken at different time-points. In each of the CT scans of

the patients, the most suspicious nodule was annotated ac-
cording to two different radiologists. Despite the richness
of the cohort in terms of heterogeneity in the parameters
that affect the image acquisition (e.g. scanners, protocols
and setups), in the selected nodules (e.g. size, growth,
malignancy), and in the temporal differences between CT
studies, the total number of cases to test our approach was
limited (38 patients, 25% of the total). Thus, the test set
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may not be representative enough of the whole nodule
spectrum. To mitigate this issue, despite having presented
two different evaluation scenarios, more and diverse num-
ber of pulmonary nodules (with different morphologies,
locations, sizes, growth rates, or degrees of malignancy)
are recommended to collect for a more exhaustive valida-
tion of the present work.

As previously mentioned, we have provided two dif-
ferent evaluation scenarios with the intention of showing
reliability and usefulness of our approach. In the first
evaluation scenario, we trained the models with previous
localized fixed image patches from 226 CTs pairs (dou-
bling the original training partition with random negative
cases) and we evaluated them using 10-fold cross valida-
tion as well as with image patches from 76 CT pairs from
the independent test partition (doubling the original test
partition with random negative cases). Results (Table-3)
showed that, in general (7 out of 8 experiments), the net-
works obtained high accuracy scores, above 85% in vali-
dation and 80% in test. Indeed, several of the SNN con-
figurations (e.g. FIFB, UCMB) achieved accuracy scores
in test above 92%. Also, as shown in Table–3 there is
no relevant performance gap between training, validation
and test sets, which suggests that there is no overfitting.

Regarding the ability to re-identify matching nodules
according to their growth (Table-S5 supplementary ma-
terial), the best SNN (FIFB) obtained a high accuracy
score both in training (99.1%) and in test (97.3%), and
no significant differences in performance were found de-
spite their nodule growth rates. However, the performance
for identifying non-matching nodules was lower than that
of the matching cases. In particular, the performance in
training was 96.4% and in test 86.8%. This slight drop
in test performance was due to errors for predicting non-
matching nodules with moderate (2 out of 6 errors) to
large change in size (3 out of 6 errors) between time-
points. Beyond growth factor, other visual aspects, such
as the density and size of the nodules at T0, were not rel-
evant as they were equally distributed among the 6 mis-
matched pulmonary nodules in the test set. However, 4 of
them were found in the left lung and 2 of them in the supe-
rior lobe. Also, 3 of these nodules were attached to blood
vessels, 2 were close to or attached to the lung wall, and
1 of them was difficult to distinguish from the surround-
ing lung tissue at T0, whereas at T1 it was clearly visible.
The usual appearance of the edges of these nodules was

irregular (4 out of 6).
One of the main factors contributing to the good perfor-

mance is the use of transfer learning, namely initializing
the backbone of the different SNNs with the weights of
a previously trained 3D network. This can be noted by
the fact that the simplest network configuration (FIBC),
which it mainly performs a direct forward-pass mecha-
nism of the input through the network, initialized with the
weights of the transferred network, reaches, in our opin-
ion, a considerable performance of 77.5% in validation
and 71% in tests.

Regarding the loss functions configured in the differ-
ent experiments, the methods using the BCE loss (which
are based on probabilities) slightly outperformed the ones
using the contrastive loss (which is based on distances).
This can be seen in the difference in accuracy (3.5% in
validation and 12% in test) obtained by the best network
configured with probability-based loss function (FIFB)
compared to the best network configured with loss func-
tion based on distance (UIBC).

Another finding was that unfreezing the weights of
the pre-trained networks usually allowed for better per-
formances. This is particularly evident in the UIBC
case, which exceeded of almost 10% in validation and
testing the corresponding frozen configuration (FIBC).
Somehow, this finding was expected as weights were
transferred from networks trained in a different, although
closely related, domain.

With respect to the features used by the networks, we
can observe (Table-3) that, in almost all the methods,
the best performance was achieved by using features ex-
tracted by layer1 and/or layer2, while only for two meth-
ods it was achieved using features from layer3 and avg-
pool (i.e. the global average pooling). This may suggest
that features encoding simple patterns (from earlier lay-
ers) are preferred for this problem, whereas layers that
contains more specific features (from the last layers) are
less useful. It is also worth noticing that networks com-
bining features from different layers did not clearly out-
perform networks using features from a single layer. This
is the case of UCMB in which the reported validation
performances are just a bit lower (0.2%) than the perfor-
mances reported by the FIFB configuration, although in
test, UCMB outperformed by 0.4% the performance of
FIFB.

Concerning the type of heads with which the networks
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were configured, the best option was using fully con-
nected layers (FC head). Surprisingly, networks with ex-
tra convolution layers before the fully connected layers
(CNN head) achieved worse performances (1% and 6%
less in validation and test, respectively) than networks
with FC heads. This might suggest that adding extra con-
volution layers to find patterns between locally connected
features increases the complexity of the model, leading to
more weights to adjust but with the same amount of train-
ing data.

In the second evaluation scenario, more ambitious and
practical, we integrated the SSNs into automatic pipelines
intended first for the detection and re-identification of
nodules, and then for the prediction of nodule growth
given series of CTs of the same patient. This evaluation
was done for both training (113 CT pairs) and testing (38
CT pairs) random partitions of the VH-Lung dataset.

The nodule detector component of the pipeline was
configured to provide only the top-32 scored nodule can-
didates per CT. This threshold was empirically set based
on the good balance between precision and recall in terms
of nodule detection obtained in both training and test par-
titions of the VH-Lung dataset. In test, this component
reported a nodule detection sensitivity of 97% in 32 nod-
ule candidates (FP) per CT in average. This performance
is far from 81.7% sensitivity in 0.125 FP per CT scan
in (Huang et al., 2019) and from the results we obtained
when training the nodule detector standalone (0.84 sen-
sitivity with 1 FP, in average) in the LUNA-16 dataset.
However the comparison is not fair since the nodule de-
tector was not trained to find the most questionable nodule
per patient according to radiologist but for detecting any
nodule in the lungs, that is why more nodule candidates
were needed to find the annotated nodules in the VH-Lung
dataset.

Regarding the nodule re-identification step of the
pipeline, the performances obtained by the different SSNs
networks (Table-5) were lower than when evaluating the
models standalone. This was expected since, as op-
posed to in training, where the patched images were
cropped around the ground truth centroid of the nodules,
in the pipeline the patches were cropped around the posi-
tion predicted by the nodule detector, making its correct
matching more difficult if the centroid position was not as
precise. However, 5 out of 8 networks reached a nodule
matching accuracy score above 80%, and the best network

(FIFB) reached an accuracy of 88.8%.
In Table-S6 (supplementary material), we reported the

performance of the different sub-processes of the best
pipeline (FIFB) according to the growth of the nod-
ules. Looking at the results, we can highlight that nod-
ule detection and re-identification steps had high per-
formances both in training (>92%, >85%) and testing
(>94%, >88%). However, the training performance for
growth detection in small nodules dropped down to 47%.
This was not the case for moderate and large nodule
changes in neither training nor testing. Different inter-
related factors may explain this limitation. One reason-
able factor could be the different data proportions between
training and test set for this type of nodules. A second
factor could be the errors in the ground truth annotations.
Another factor could be the limitations from the nodule
detector when out-coming the diameter for these nodules.
More experiments and tests are required to improve this
particular case.

Independently of the growth of the nodules, some com-
mon visual appearances were found along with the nod-
ules incorrectly re-identified by the pipeline. In particular,
from the 2 non-detected nodules at T0, we would high-
light that both were solid and difficult to distinguish from
the lung parenchyma (< 9 mm of diameter). From the 4
non-re-identified pair of nodules, 3 of them were malig-
nant and greater than 10 mm at T0. Also, they were lo-
cated on the right lung and close to or attached to the wall
of the lung with irregular edges. Among the 5 pairs of
nodules with incorrect growth classification, all of them
were solid, 4 of them were malignant and 3 had sub-
centimeter diameters at T0. Moreover, 3 of them were in
the lower right lobe of the lungs, whereas the others were
in the upper left lobe. Furthermore, 3 of them were close
to the lung wall, 2 had an attached vessel whereas another
was close to the mediastinum. Regarding the characteris-
tics of its edges, 2 were irregular and the other 3 smooth.

In terms of computational time, our approach achieved
satisfactory performances being able to re-identify the
nodules of the complete test set in times ranging from half
a minute (in the worst case, UIBC) to less than 10 seconds
(for the best configuration, FIFB), as can be seen in Table-
5. This is a particularly appealing feature of our method,
since even the most recent techniques for registration of
lung CT images, necessary by any standard pipeline for
nodule re-identification, require significantly more time,
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for instance 5 minutes according to Rühaak et al. (2017)
or approximately 1 minute by Zikri et al. (2019) per case.
These processing times fluctuate substantially depending
on the technique and the quality of the image registration.

To have a better intuition of the performances obtained
using the proposed pipelines for the automatic nodule
re-identification problem, we compared them with two
conventional methods for lung image registration (Table-
6). Both registration mechanisms were slower and did
not outperform the performances reported by any of the
configured pipelines. The accuracy differences using the
worst (FIBC) and best (FIFB) pipelines compared with
the rigid alignment were between 1% and 20.4%, and
with the non-rigid alignment between 8.9% and 28.3%.
Despite these differences in performance, more advanced
registration techniques and further fine-tunning of its pa-
rameters would lead to greater re-identification perfor-
mances. For example, in (Gu et al., 2011), the authors
compared rigid and non-rigid registration methods for
matching 60 diverse nodules in 60 lung CT pairs obtaining
average registration errors (Euclidean distances between
baseline and follow-up after alignment) between 9.5 and
10 mm. Also, in Jo et al. (2014), the authors using a rigid
registration along with a rib based adjustment mechanism
reported a registration errors of 17 ± 7mm for 69 lung
nodules in 50 subjects with series of two CTs.

Compared to the latest CAD systems providing nod-
ule re-identification (Tao et al., 2009; Koo et al., 2012),
our method reports similar performances ( 92% accuracy)
when evaluated standalone, but slightly below when in-
tegrated in pipelines. A number of factors may explain
this difference. First, our approach is fully automated,
whereas in those systems the position of the reference
nodule, to match with, was given by the radiologists. Sec-
ond, in those systems the data they used for evaluation
was from lung cancer screening population, which makes
the underlying lung tissue structure more consistent when
compared to patients with lung metastases or from in-
cidental cases like ours. Third, in our study, the total
number of patients was more than double the number of
patients used in these studies (40 and 53), which makes
re-identification more difficult since the similarity of the
lung structures between nodules is less plausible. In an-
other related study (Jo et al., 2014) for lung nodule re-
identification, they reported rates from 29% to 100% in 69
nodules from 50 different patients. However, in their ex-

perimental dataset, no severe lesions were reported (e.g.
14 nodules had no changes in diameter between corre-
sponding nodules), and their method was evaluated using
the entire cohort, making it difficult to know their ability
to generalize to new cases.

Although the focus of the paper is the nodule re-
identification, we also quantified and assessed nodule
growth. To do this, we selected the best network for nod-
ule re-identification (FIFB) and integrated it in the nodule-
growth pipeline. In total, nodule growth was correctly de-
tected in 27 cases and erroneously in 5 cases. However,
only 2 of these errors were false negatives (that is, the
pipeline failed to predict growth); one of them was on a
benign nodule (B01) with growth difference of less than 1
mm, whereas the other was on a malignant nodule (C50)
with growth difference of 1.8 mm. As shown in Figure-
7, there is an agreement when comparing predicted and
real nodule growths as most of the measures fall between
the two standard deviations of the mean, there is a non-
significant difference between them (p=0.99), and they
show a good correlation score (r2=0.71). Despite this
positive results, the values obtained for the 95% limits of
agreement (> 3mm) are still high. This was somehow ex-
pected as quantifying lung nodules is complex and subject
to multiple variability factors (Li et al., 2015) (e.g slice
thickness, reconstruction kernel algorithms, attachment of
vessels, patient inspiration depth). An example of this was
shown in a previous study (de Hoop et al., 2009), in which
up to six different open software packages measured the
volumetry of solid lung nodules, and reported large nod-
ule inter-variabilities (from 16.4% to 22.3%) on repeated
CTs of the same patient in a cohort of 20 patients.

In our case, as we can see in the BA plot (Figure-7),
the cases that experiment higher disagreements are those
nodules with larger mean nodule growth (i.e. observations
located in the right part). A reason that could explain it is
that the nodule detector (which reports the nodule diame-
ter) was trained in a database (LUNA-16) with a smaller
nodule size distribution (8.30 ± 4.75 mm) than the one
used for the evaluation of the pipeline (VH-Lung dataset
with 12.45 ± 4.32 mm). Alternatives to address this is-
sue could range from gathering more annotated data, in-
creasing the distribution of large nodules by applying fur-
ther data augmentation, implementing more sophisticated
mechanisms (e.g. attention networks (Schlemper et al.,
2019)) in the nodule detector, or instead of using the pre-
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dicted diameter and centroid of the nodule detector, im-
plementing deep nodule segmentation networks.

From a clinical point of view, the majority of the nodule
differences were correctly classified (growth, no-growth)
as shown in Figure-6. Indeed, we reported a mean abso-
lute error of 1.38 ± 1.17mm in diameter with respect to
the ground truth, which is slightly less than the 1.73 and
2.2mm of the variability error reported in different ret-
rospective analysis (Revel et al., 2004; Kim et al., 2016)
measuring changes in solid and subsolid nodules (<2cm)
using only their diameter.

This study, however, is subject to several limitations.
First, the limited number of cases to build our models.
In the medical domain, longitudinal data is scarce, and
much more complex to collect and manage than single
time-point studies. Specially for lung cancer assessment,
gathering large quantities of samples is even more difficult
for different reasons. First, the disease in the early stages
is asymptomatic and very aggressive, so when patients are
explored, their pulmonary nodules often have clear signs
of malignity, and radiologists do not require further stud-
ies for its diagnosis. Second, data is usually incomplete or
missing, which suppose a real challenge in evolutionary
studies. Although there are different initiatives that aim to
screen large populations at risk (e.g. NLST), the access
to these assets is not publicly open. Thus, having an in-
sufficiently large dataset can negatively impact the perfor-
mance of deep learning-based models. This is even more
concerning for re-identification of lung nodules, since for
each patient, twice as many images and annotations are
needed. Another main limitation of the study is that the
only expert annotation provided for nodule quantification
was the major axial diameter. Although the diameter is the
most common radiological measure used in practice for
nodule growth assessment, using 3D measurements could
lead to a more accurate quantification. In addition, if we
would have had nodule measurements from more experts,
we could have better explained the clinical variability, re-
porting more accurately the performance of our pipeline
with respect to nodule growth prediction. Another limi-
tation of our method could be on re-identifying structures
with strong size variations. Some actions may be done to
amend this aspect. First, retraining the model with larger
input patch sizes. Second, making further data augmen-
tation especially on image pairs with large size variation
or collecting more cases of this typology. However, ac-

cording to radiologists’ recommendations, clinical guide-
lines (American College of Radiology, 2014), and litera-
ture (Larici et al., 2017), the challenge is to provide auto-
matic support for growth detection at small/medium nod-
ule change sizes, since larger nodules are easier to identify
and substantial differences in growth ratio indicate a clear
symptom of either malignancy (Siegelman et al., 1986) or
benignity (Gurney et al., 1993). Finally, in this work, we
focus on training and evaluating several SNNs to explore
different configurations. Finer tuning of hyperparameters
(e.g. the learning rates, batch sizes or dropout values) may
lead to improved results.

Nevertheless, the automated re-identification of regions
of interest in medical images over time, without the need
to warp the inherent image structure, could be an appeal-
ing application beyond lung cancer assessment such as
therapy follow-up as well as for different diseases located
at different organs (e.g. prostate, breast cancer) in the
body.

Several future works have been described in the paper,
and some others are envisaged to extend the research pre-
sented in this paper. For example, it would be interesting
to longitudinally evaluate the pipeline for more than one
nodule per patient, or exploring the nodule spatial local-
ization for the re-identification problem. Also, applying
different feature fusion techniques, introducing different
manners to weigh the feature maps, applying new tech-
niques to reduce the dimensionality of the problem, as
well as the use of segmentation could be some other re-
search lines that would be worth exploring beyond this
paper.

6. Conclusions

In this paper, we address the problem of automatic
re-identification of pulmonary nodules in lung cancer
follow-up studies, using siamese neural networks (SNNs)
to rank similarity between nodules, which overpasses the
need of image registration. This change of paradigm
avoids possible image disturbances and provides compu-
tationally faster results. Different configurations of the
conventional SNN were examined, ranging from the ap-
plication of transfer learning, using different loss func-
tions, to the combination of several feature maps of dif-
ferent network levels. The best results during the off-line
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training of the SNNs reached accuracies (0.89 in cross-
validation and 0.92 in test) similar to those reported by
state of the art registration mechanisms. Finally, we em-
bedded the best SNN into a two-stage nodule growth de-
tection pipeline. Nodule re-identification results reported
by the pipeline in an independent test set were fast (<10
seconds, matching 38 pairs of CTs) and precise (0.88 ac-
curacy score). Nodule growth predictions were also ac-
curate (0.92 sensitivity score), and both the predicted and
the ground truth measurements were not significantly dif-
ferent (p=0.99).
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Ribas, V., González Ballester, M.A., 2019. Integra-
tion of convolutional neural networks for pulmonary
nodule malignancy assessment in a lung cancer clas-
sification pipeline. Computer Methods and Programs
in Biomedicine 185, 1–9.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah,
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