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A B S T R A C T

We propose a dictionary-matching-free pipeline for multi-parametric quantitative MRI
image computing. Our approach has two stages based on compressed sensing recon-
struction and deep learned quantitative inference. The reconstruction phase is convex
and incorporates efficient spatiotemporal regularisations within an accelerated iterative
shrinkage algorithm. This minimises the under-sampling (aliasing) artefacts from ag-
gressively short scan times. The learned quantitative inference phase is purely trained
on physical simulations (Bloch equations) that are flexible for producing rich train-
ing samples. We propose a deep and compact encoder-decoder network with residual
blocks in order to embed Bloch manifold projections through multi-scale piecewise
affine approximations, and to replace the non-scalable dictionary-matching baseline.
Tested on a number of datasets we demonstrate effectiveness of the proposed scheme
for recovering accurate and consistent quantitative information from novel and aggres-
sively subsampled 2D/3D quantitative MRI acquisition protocols.

c© 2020 Elsevier B. V. All rights reserved.

1. Introduction

Quantification of the intrinsic nuclear magnetic resonance
(NMR) characteristics (Tofts, 2005) has proven powerful for
tissue identification and tracking pathological changes. De-
spite many potentials, standard quantitative MRI (QMRI) ap-
proaches have very long acquisition times and for this rea-
son, are not widely applicable in clinical setups. Magnetic
Resonance Fingerprinting (MRF) has emerged to overcome
this challenge (Ma et al., 2013). MRF uses short excitation
sequences capable of simultaneously encoding multitudes of
NMR properties and further adopts Compressed Sensing (CS)

∗Corresponding author e-mail: m.golbabaee@bath.ac.uk

to subsample a tiny fraction of the spatiotemporal k-space infor-
mation (Jiang Y et al., 2015; Rieger et al., 2017; Wright et al.,
2018; Jiang et al., 2017; Lustig et al., 2007). Estimating the un-
derlying quantitative maps therefore becomes a highly ill-posed
inverse problem.

Baseline approaches to solve the MRF inverse problem rely
on dictionary matching (DM), primarily for parameter infer-
ence i.e. estimating quantitative maps from back-projected im-
ages, or further for promoting temporal-domain priors within
model-based MRF reconstructions (Davies et al., 2014). How-
ever DM’s complexity (storage/runtime) does not scale well
to the emerging multi-parametric QMRI applications. Deep
learning MRF approaches recently emerged to address this is-
sue (Hoppe et al., 2017; Cohen et al., 2018; Virtue et al., 2017;
Golbabaee et al., 2019a). Back-projected images are fed into

http://www.sciencedirect.com
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a compact neural network that temporally processes voxel-wise
MRF signal evolutions, so-called fingerprints, and replaces DM
for quantitative inference. Trained with independently cor-
rupted noisy fingerprints, such networks are unable to correct
for dominant spatially-correlated (aliasing) artefacts appearing
in heavily undersampled aquisitions. While larger convolu-
tional models (Balsiger et al., 2018; Fang et al., 2019a) cap-
ture spatiotemporal information to resolve aliasing artefacts,
labelled QMRI datasets (i.e. ground truth multi-parametric
anatomical maps) that are necessary to train these models
particularly in novel applications are scarce and hence place
adaption of these models at the risk of overfitted predictions.
Further, current approaches along this line build customised
de-noisers (de-aliasing) and require expensive re-training by
changing sampling parameters i.e. the forward model.

This work aims to address these shortcomings through a
two-stage DM-free pipeline: First, we take a CS approach to
spatiotemporally process the k-space data and minimise un-
dersampling artefacts in the reconstructed image time-series,
and second we feed the resulted sequence to a deep and com-
pact encoder-decoder network with residual blocks for per-
voxel quantitative inference. We cast our spatiotemporally reg-
ularised reconstruction as a convex optimisation problem which
enjoys reproducible global solutions regardless of initialisation
and can be implemented with a momentum-accelerated algo-
rithm with fast convergence. We further provide geometrical
insights to the mechanism behind the proposed deep inference
approach. We show that the network provides a multi-resolution
piecewise affine approximation to the Bloch response manifold
projection. Rather than memorising a large MRF dictionary,
the network hierarchically clusters this manifold through deep
layers and learns a compact set of deep regressing filters for
parameter inference. The proposed pipeline is validated on a
number of experiments using a novel multi-parametric acquisi-
tion sequence for 2D and 3D quantitative brain imaging. Our
approach can flexibly apply and report consistent predictions
for different k-space readouts and further outperforms shallow
learned inference models related to the Gaussian kernel fitting.

Paper organisation: We review related works in section 2.
Section 3 presents the inverse imaging problem model. Sec-
tion 4 presents our reconstruction and quantitive inference
pipeline. Section 5 presents our geometrical insight to the net-
work’s performance for deep quantitative inference. In Sec-
tion 6 we present and discuss our experimental results, and fi-
nally we conclude in section 7.

Notations: Throughout ‖.‖ denotes the Euclidean norm of
a vector or a matrix, ‖.‖TV denotes the Total Variation (TV) of
a 2D or 3D spatial image defined by the sums of its gradient
magnitudes (Rudin et al., 1992). Matrix rows and columns are
denoted by X(i,.) and Xi respectively.

2. Related works

Multi-parametric quantification based on fingerprinting, DM
and its low-rank singular value decomposition (SVD) com-
pressed variant were proposed in (Ma et al., 2013; McGivney
et al., 2014). Reconstructing image time-series from k-space

data was non-iterative and used zero-filling (ZF). Inspired by
CS, later studies adopted model-based reconstructions to re-
duce subsampling (aliasing) artefacts and to pave the path for
aggressively shorter scan times (Davies et al., 2014; Assländer
et al., 2018). These methods are based on non-convex optimi-
sation (iterative) without momentum-acceleration, and require
DM per iteration in order to promote temporal-domain Bloch
dynamic priors. While fast search schemes (Cauley et al., 2015;
Cline et al., 2017; Golbabaee et al., 2019b) could partly im-
prove the runtime, DM remains a computational/storage bottle-
neck for multi-dimensional imaging problems involving multi-
parametric dictionaries. Further, for some k-space subsampling
patterns, including those adopted in our experiments, using only
a temporal-domain prior is insufficient to produce artefact-free
reconstructions (see e.g. (Cline et al., 2017; Golbabaee et al.,
2019b)). Spatial domain regularisations were integrated into
DM (Cline et al., 2017; Arberet et al., 2019; Gómez et al.,
2015, 2016), however these methods require costly DM per
iteration, are nonconvex and without momentum-acceleration.
DM-free convex reconstructions based on low-rank priors were
proposed, some (Zhao et al., 2018; Mazor et al., 2018; Song
et al., 2019) with no spatial regularisations hence prone to arte-
facts in highly ill-posed problems, some (Mazor et al., 2018;
Song et al., 2019) without temporal dimensionality reduction
and long runtimes, and some using patch-based spatiotemporal
low-rank regularisation (Bustin et al., 2019; Jaubert et al., 2020)
but encountering long runtimes due to non-accelerated itera-
tions and per-iteration costly SVD decompositions. Our work
mitigates these issues: we propose an alternative convex for-
mulation for the MRF reconstruction problem (our preliminary
results appeared in (Golbabaee et al., 2019c)). We add spatial
TV regularisation for the dimension-reduced image time-series
while enforcing temporal-domain priors through a (low-rank)
subspace representation of the dictionary instead of DM. This
optimisation can be solved with momentum-accelerated itera-
tive algorithms with fast global convergence.

On the other hand, deep learning MRF approaches recently
emerged to address the non-scalability of DM. Many works use
non-iterative baselines (Ma et al., 2013; McGivney et al., 2014)
for reconstruction, and for quantitative inference they replace
DM with a neural network. These methods broadly divide in
two camps: the first group learns temporal-domain dynamics
from simulating Bloch equations; hence is rich with training
data (see e.g. (Cohen et al., 2018; Virtue et al., 2017; Gol-
babaee et al., 2019a; Oksuz et al., 2019) and also a kernel ma-
chine approach for shallow learning (Nataraj et al., 2018)). The
second group use convolutional layers to also learn spatial do-
main regularities, see e.g. (Hoppe et al., 2017, 2019; Balsiger
et al., 2018, 2019; Fang et al., 2019a,b), but they require train-
ing on ground truth quantitative anatomical maps that may not
be largely available as for the mainstream qualitative MRI. Our
quantitative inference approach belongs to the first camp. We
provide a geometrical interpretation for our deep inference ap-
proach. Importantly, we replace ZF by our DM-free spatiotem-
porally regularised (model-based) reconstruction to remove un-
dersampling artefacts before being fed to the network. This en-
ables aggressively short-time 2D/3D quantitative imaging pro-
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tocols produce consistent results using a fast and non memory-
intensive computational pipeline.

3. Compressive QMRI acquisition model

The compressed sensing approach adopted by MRF for ac-
quiring quantitative information follows a linear spatiotemporal
model (Ma et al., 2013):

Y = A(X) + ξ, (1)

where Y ∈ CT×m is the multi-coil k-space measurements col-
lected at t = 1, . . . ,T temporal frames and corrupted by some
noise ξ. The Time-Series of Magnetisation Images (TSMI)
—to be reconstructed—is an image sequence represented by a
complex-valued matrix X of spatiotemporal resolution T ×n i.e.
n spatial voxels across T temporal frames. The forward oper-
ator A := FΩS models the multi-coil sensitivities operator S ,
and the Fourier transform F subsampled according to a set of
temporally-varying k-space locations Ω.

The tissues’ quantitative properties in each voxel are encoded
in a temporal signal at the corresponding column of the TSMI
matrix. This signal records the magnetisation response of pro-
ton dipoles to dynamic excitations in the form a sequence of
flip angles FA (magnetic field rotations) applying with cer-
tain repetition (TR) and echo (TE) times. Tissues with dif-
ferent NMR characteristics respond distinctively to excitations.
QMRI/MRF rely on this principle to estimate quantitative char-
acteristics from the (computed) TSMI. Per-voxel v magnetisa-
tion responses of the TSMI scaled by the proton density γv are
modelled as

Xv ≈ γvB (Θv; FA, TR, TE) ∀v ∈ 1, . . . , n (2)

where the Bloch response (in short-hand notation) B(Θv) :
Rp → CT is a nonlinear mapping from per-voxel intrinsic
NMR properties Θv to the corresponding (discrete-time) solu-
tion of the Bloch differential equations which captures the over-
all transient-state macroscopic dynamics of a voxel (Jaynes,
1955). Our experiments use sequences that simultaneously en-
code p = 2 characteristics in each voxel i.e. the longitudinal
T1 and transverse T2 relaxation times. This could be further
extended to include other properties e.g. off resonance frequen-
cies, T2∗, diffusion and perfusion (Rieger et al., 2017; Wright
et al., 2018; Jiang et al., 2017).

3.1. Low-dimensional manifold and subspace models
Estimating Θ (i.e. quantification) requires long enough se-

quences T > p to create contrast between different tissues’ re-
sponses. As such the Bloch responses despite their high am-
bient dimension live on a low p-dimensional (nonlinear) sub-
manifold of CT . Further it is observed that for certain ex-
citation sequences, including those used in our experiments,
this manifold is approximately embedded in a low-rank sub-
space Range(V) ⊂ CT represented by an orthonormal matrix
V ∈ CT×s where p < s � T . Hence the following dimension-
reduced alternatives for models (1) and (2) can be deduced:

Y ≈ A(VX) (3)

Xv ≈ γvVHB(Θv) (4)

where X ∈ Cs×n is the dimension-reduced TSMI. This compact
representation is the basis for the subspace compression meth-
ods (Assländer et al., 2018; Zhao et al., 2018) and is proven
beneficial to the runtime and accuracy (by noise trimming) of
the reconstructions.

3.2. Model-fitting for parameter inference
Fitting computed TSMIs to the Bloch response model is cen-

tral to QMRI. Per-voxel model-fitting according to (4) for ob-
taining the NMR characteristics and proton density reads (see
e.g. (McGivney et al., 2014; Davies et al., 2014)):

Θ̂v = PB(X̂v) := argminΘ ‖X̂v − VHB(Θ)‖ (5)

γ̂v = 〈X̂v,VHB(Θ̂v)〉 (6)

We assumed without losing generality having normalised Bloch
responses. We refer to PB(.) as the Bloch response manifold
projection. This projection is nonconvex and oftentimes in-
tractable for the generally complicated Bloch responses adopted
by the MRF sequences. The MRF framework instead approxi-
mates (5) by dictionary matching (DM). A fingerprint dictio-
nary D = {D j} is constructed for sampling the manifold of
Bloch responses through a fine-grid discretesation of the param-
eter space [Θ] = [T1] × [T2] × . . . and exhaustively simulating
the Bloch responses D j := B([Θ j]) for all combinations of the
quantised parameters. The DM step identifies the most corre-
lated fingerprint (and the underlying NMR parameters) for each
voxel of the reconstructed TSMI:

PB(X̂v) ≈ argmin j ‖X̂v − VH D j‖ (7)

through a nearest neighbour search that is itself a projection
onto the discrete set of fingerprints i.e. a point-wise approxima-
tion to the (continuous) Bloch response manifold.

Viewing fingerprints as training samples, the dictionary can
be factorised through principal component analysis (PCA) (Mc-
Givney et al., 2014):

DDH ≈ VΛVH (8)

for unsupervisedly learning the low-rank subspace representa-
tion of the Bloch responses. This representation helps to re-
duce temporal dimension and can be coupled with fast search
schemes (Cauley et al., 2015; Golbabaee et al., 2019b; Cline
et al., 2017) to accelerate DM runtime. However any form of
DM (fast or exhaustive search) remains non-scalable and cre-
ates storage overhead in multi-parametric QMRI applications
because the number of dictionary atoms exponentially grows
with p.

4. DM-free image reconstruction and parameter inference
pipeline

Our DM-free image computing pipeline consists of two
stages: i) reconstructing TSMIs from undersampled k-space
measurements and then ii) approximate model-fitting accord-
ing to (4) for parameter inference. A set of simulated finger-
prints (could be MRF dictionary) sample the Bloch response
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model and are used only for training (pre-processing) in order
to learn three temporal-domain models: i) a dimension-reduced
(low-rank) subspace representation for the Bloch responses, ii)
an encoder network to map noisy fingerprints to the NMR pa-
rameters, and iii) a decoder network to generate clean Bloch
responses from the NMR parameters.

4.1. Convex TSMI reconstruction with LRTV algorithm

The (McGivney et al., 2014)’s baseline backprojects k-space
data to form dimension-reduced TSMI using the adjoint ofAV:

X̂ = VHAH(Y) ∈ Cs×n (9)

prior to the DM inference. Modern QMRI/MRF acquisi-
tions aggressively curtail the scan times by using short ex-
citation sequences and severe spatial (k-space) subsampling.
As such the inverse problem (1) becomes highly ill-posed and
ZF/backprojection (which is not an inversion) results in aliasing
artefacts in the reconstructed TSMI. Errors made at this stage
can be indeed significant (see experiment results), they propa-
gate to the parameter inference step and deteriorate the overall
quantification accuracy.

To address this issue, we propose the following convex and
DM-free optimisation dubbed as Low-Rank and Total-Variation
(LRTV) reconstruction to compute dimension-reduced TSMIs
using joint spatiotemporal regularisations:

X̂ = argminX∈Cs×n ‖Y −A(VX)‖2 +

s∑
i=1

λi‖X(i,.)‖TV (10)

The first term minimises discrepancies between the k-space
measurements and the solutions through the factorised forward
model Y ≈ A(VX). As such LRTV adopts a temporal-domain
prior through the subspace model (i.e. the low-rank factorisa-
tion X ≈ VX) which provides a compact and convex (in fact
linear) relaxed representation for the Bloch response model in-
stead of using the MRF dictionary. LRTV additionally adopts
Total-Variation (TV) regularisation. Each component of the
TSMI corresponds to a spatial 2D or 3D volumetric image X(i,.)
(matrix row), where penalising its TV norm promotes spatial-
domain regularities via sparse image gradients. λi > 0 control
per (subspace) component regularisation levels.

Our LRTV formulation (10) can be efficiently solved using
Fast Iterative Shrinkage Algorithm with Nesterov momentum
acceleration and backtracking step-size (Beck and Teboulle,
2009; Nesterov, 1983). The pseudo-code is available in sup-
plementary section SI. In nutshell, each iteration k computes:

∇ = Xk − µkVHAH
(
A(VXk) − Y

)
Zk

(i,.) = Proxλiµk (∇(i,.)) ∀i = 1, . . . s
Xk+1 = Zk +

(
k−1
k+2

)
(Zk − Zk−1)

(11)

The first and third lines are the gradient and momentum-
acceleration updates, respectively. The second line computes
a small number s � T of shrinkage operations for the 2D/3D
images in each subspace component Proxα(x) := argminu

1
2 ‖x−

u‖2 +α‖u‖TV , which can be efficiently done on a GPU using the
Primal-Dual algorithm (Chambolle and Pock, 2011).

With an all-zero initialisation, the first line of (11) recov-
ers ZF (McGivney et al., 2014) in the first iteration. Setting
λ = 0 recovers the LR formulation in (Zhao et al., 2018). LR
is a convex relaxed alternative to DM-based models (Davies
et al., 2014; Assländer et al., 2018), wherein temporal-only pri-
ors based on the MRF dictionary are replaced by the low-rank
subspace. Note that the size of V is independent of the num-
ber of fingerprints (used for training). Hence the solver does
not face a memory bottleneck and the slow progress of com-
puting DM per iteration. While for certain (Cartesian) sam-
pling schemes this temporal model can decently regularise the
inversion (Benjamin et al., 2019), for other important sampling
patterns e.g. non-cartesian spiral and radial readouts used in
our experiments, it turns out to be inadequate and fails to out-
put artefact-free TSMIs (see section 6). Multi-prior CS solvers
are proven effective for highly undersampled systems by fur-
ther restricting degrees of freedom of data (Golbabaee and Van-
dergheynst, 2012a,b). The LRTV uses this fact by setting λ > 0
and adding spatial priors to sufficiently regularise the problem.
Besides being DM-free, the LRTV has other advantages over
its non-convex spatiotemporal alternatives (Cline et al., 2017;
Arberet et al., 2019), including a tractable way to incorporate
multiple priors1, momentum-acceleration for fast convergence
and reproducible global solutions regardless of initialisation.

4.2. MRFResnet for parameter inference
Instead of using a large-size dictionary for DM, we propose

training and using a compact network coined as MRFResnet
in the form of an encoder-decoder with deep residual blocks,
shown in Figure 1. Encoder-decoders family have proven pow-
erful in denoising tasks through creating an information bot-
tleneck which corresponds to learning a low-dimensional man-
ifold model for capturing (nonlinear) intrinsic signal struc-
tures (Vincent et al., 2010). In our task computed TSMI voxels
are processed by such a model to create clean magnetisation re-
sponses as well as estimating the intrinsic NMR parameters in a
computably efficient manner. The p = 2 neurons bottleneck (in
Figure 1) has a physical interpretation: fitting noisy temporal
trajectories to the nonlinear Bloch model with limited p � T
degrees of freedom determined by the T1 and T2 quantities.

4.2.1. Encoder
This network learns to approximate Bloch manifold projec-

tions through a continuous mapping R : X̂v → Θv parametrised
by the network’s weights and biases {W, β}:

R(x) ≡ h(N+1)(x) = ϕ
(
W (N+1)h(N)(x) + β(N+1)

)
(12)

where h(i) the outputs of i = 1, . . . ,N residual blocks are

h(i)(x) = ϕ
(
h(i−1)(x) + g(i)(x)

)
,

and g(i)(x) = W (i,2)ϕ
(
W (i,1)h(i−1)(x) + β(i,1)

)
+ β(i,2),

1In non-convex (e.g. DM-based) approaches incorporating extra priors such
as spatial regularity constraints is not always algorithmically tractable e.g. se-
quential projections on two sets where one is non-convex may not result in
projecting onto the intersection.
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h(0)(x) = x and the ReLU activations ϕ(x) = max(x, 0) are used
throughout. The inputs are the normalised temporal voxels of
the dimension-reduced TSMI. The network is trained on sim-
ulated noisy Bloch responses (see section 6.2) so that the ap-
proximate projection holds

R(x) ≈ PB(x) (13)

in a neighbourhood of the (compressed) Bloch manifold.

4.2.2. Decoder
The proton density (PD) is a scaling factor that amplifies the

Bloch responses in each voxel. Hence after estimating other
nonlinear NMR parameters (e.g. T1/T2) using the encoder part,
PD can be explicitly estimated by 〈X̂v,VHB(Θ̂v)〉 in (6). This
would however require either storing a dense dictionary or eval-
uating Bloch responses for all voxels’ parameters, which can be
computationally intensive. Instead we train a decoder network
G(.) which for given NMR parameters it approximately gener-
ates

G(Θv) ≈ VHB(Θv) (14)

the corresponding compressed Bloch responses (clean finger-
prints) in short runtimes. This allows (6) to be easily applied
without significant computations. For the sequence design used
in our experiments, it turns out that a fully-connected shallow
network with one hidden layer and ReLU activations can ap-
proximate well this step.2 Unit dimensions are customised to
a sequence used in our experiments encoding T1/T2 relaxation
times, with reduced subspace dimension s = 10. Encoder has
N = 6 residual blocks of 10 neurons width, and decoder has
300 neurons in its single hidden layer.

The subspace compression helps reduce model sizes in both
networks (hence reducing risk of overfitted predictions) and
also reduce required training resources compared to uncom-
pressed deep MRF approaches (Cohen et al., 2018; Virtue et al.,
2017). Further to avoid losing discrimination between finger-
prints —e.g. by a magnitude-only data processing (Cohen et al.,
2018) —we adopt a practical phase-correction step (Golbabaee
et al., 2019b; Cline et al., 2017) to align phases of the complex-
valued TSMIs and training samples before being fed to the MR-
FResnet. Complex-valued phases estimated from the first prin-
cipal components of the dimension-reduced TSMI pixels and
the training samples are used for phase-alignment. This treate-
ment allows the network without losing generality have real-
valued parameters and approximate real-valued mappings.

5. Hierarchical partitioning of the Bloch response manifold

In this part we show that the MRFResnet provides a multi-
scale piecewise affine approximation to the Bloch response

2We also observed a similar network complexity for generating responses
to the well-known FISP sequence (Jiang Y et al., 2015). However, we did not
achieved accurate predictions using shallow architectures of comparable sizes
for R (two layer were needed at least however with larger model than MRFRes-
net (Golbabaee et al., 2019a,c)). This suggests that generating clean responses
(decoding) was easier than projecting noisy fingerprints to their generative pa-
rameters (encoding), and the latter requires deep processing (see section 5).

Linear layer
Nonlinearity

Skip connectionResidual block

2

300

1010

MRFResnetR (encoder) Decoder G

880 880

10 10 10 10 10 10 10 10 10 10 10 10

𝑉 "𝑋$

"𝑋$

%Θ$

≈B(%Θ$)
Noisy input
(uncompressed)

Clean response
(uncompressed)

Fig. 1: MRFResnet (encoder) for T1/T2 inference, the Bloch response gen-
erative network G (decoder), and the implicit linear dimensionality reduc-
tion/expansion (first/last) layers using the subspace model VH/V .

manifold projection (5). Hierarchical partitioning and multi-
scale approximations are also central to the fast search schemes
proposed for the DM-based MRF (see illustrations in (Gol-
babaee et al., 2019b, 2017)). However unlike any form of DM
(fast or exhaustive) that creates point-wise approximations for
(7), MRFResnet does not memorise a dictionary and rather uses
it to learn and efficiently encode a compact set of partitions and
deep matched-filters for affine regression of the NMR quanti-
ties.

5.1. Affine spline function approximation
The MRFResnet encoder (also its decoder network) is com-

posed of linear connections and piecewise linear ReLU acti-
vations. This results in piecewise affine functions h(i)(x) after
each residual block as well as the end-to-end mapping R(x) (see
e.g. (Balestriero and Baraniuk, 2018; Montufar et al., 2014)).
Further, R is Lipschitz continuous for continuous activation
functions as above and for bounded {W (i), β(i), i}.

Theorem 1. Denote by z : Rs → Rp

z(x) := W (N+1)h(N)(x) + β(N+1) (15)

the weighted outputs in (12) before the last non-linearity.3 The
following affine spline representation holds for MRFResnet:

z(x) = A[x]x + b[x] :=
∑

r

(Ar x + br) ιΩr (x), (16)

where ιΩr (x) is the indicator function with respect to a segment
(set) Ωr ∈ Rs, returning x if it belongs to the segment and 0
otherwise —segments form a disjoint partitioning of the input
space with affine boundaries. Matrices Ar ∈ Rp×s and vec-
tors br ∈ Rp define the corresponding slopes and offsets for
the input-output affine mapping in each segment. Shorthands
A[x] : Rs → Rp and b[x] : Rs → Rp represent the input-
dependent (piece-wise affine) mapping of z(x). b[x] represents
p input-dependent offsets. Similarly, A[x] is an input-dependent
p × s matrix where each row is a deep matched-filter returning
its correlation with x for each output.

Proof can be found in (Balestriero and Baraniuk, 2018) for
general feedforward networks with fully-connected, convolu-
tional, pooling and/or residual layers and using any piecewise-
linear activations. During training, MRFResnet encoder learns

3The last ReLU layer in R is for imposing the positivity of T1/T2 values,
and therefore the prediction task is mainly done by the preceding layers.
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Fig. 2: Coarse-to-fine partitioning of the Bloch manifold (top row—manifold data is visualised using PCA) sampled by a dense fingerprinting dictionary, and their
generative T1/T2 parameters (bottom row) using MRFResnet. From left to right figures illustrate learned colour-coded partitions after each residual block.
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(a) The average magnetic response
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(b) Centred magnetic responses
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(c) T1 deep matched filter
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(d) T2 deep matched filter

Fig. 3: (a) The mean and (b) centred Bloch responses within the range (T1, T2)
∈ [1000− 1200]× [80− 110] (ms). (c)-(d) The end-to-end match filters learned
by the MRFResnet to regress T1/T2 values are shown across the original (non-
compressed) temporal dimension.

{W (i), β(i)} or equivalently {A[x],b[x]} to provide a continuous
and piece-wise affine approximation for (5). The universal ap-
proximation theorem (Cybenko, 1989) states that a shallow net-
work with one but very wide hidden layer can do this. Deeper
networks are however more practical to efficiently reduce the
number of hidden units (Delalleau and Bengio, 2011). In-
deed, we experimentally observe this (section 6.3) by compar-
ing MRFResnet to a shallow learning scheme related to (Nataraj
et al., 2018) based on Kernel Machines (KM) and random fea-
tures (Wilson et al., 2016).

5.2. Visualising MRFResnet segments on Bloch manifold

Remark 1. Continuity of z(x) implies that adjacent segments
Ωr,Ωr′ correspond to distinct Ar, Ar′ . Indeed, if Ar = Ar′ and
the only difference is in the offsets br , br′ , then Ωr,Ωr′ won’t
intersect on boundaries. Therefore they are not adjacent seg-
ments unless contradicting the continuity assumption.

This remark gives an idea for visualizing the input space seg-
ments. For densely sampled input signals x, we compute deriva-
tives of the weighted outputs (15) with respect to inputs using
back propagation. These will determine the input-dependant
slopes in the affine spline formulation (16) i.e. rows of A[x] at

a point x are populated as follows ∀ j = 1, 2, . . . , p:

A[x]( j,.) =

[
∂z j(x)
∂x1

,
∂z j(x)
∂x2

, . . . ,
∂z j(x)
∂xs

]
. (17)

By vector quantisation (e.g. k-means clustering) we cluster re-
gions of x that output distinct slopes Ar and identify the seg-
ments Ωr. Similar routine could apply to compute input space
partitions by clustering back-propagated output derivates after
each residual block (Theorem 1 and Remark 1 also hold for the
intermediate blocks of R).

According to (Balestriero and Baraniuk, 2018) as we
progress into deeper layers, partitions will be subdivided into
smaller segments in a hierarchal fashion. This can be observed
in Figure 2 where we adopted the above routine for the T1/T2
encoding MRF sequence used in our experiments and visu-
alised multi-scale (from coarse-to-fine) partitions obtained af-
ter each residual layer. The Bloch response manifold is sam-
pled across fine-gridded T1/T2 values (i.e. MRF dictionary)
to visualise the intersection of the input space segments with
this manifold (results are visualised across the three dominant
principal component axes). MRFResnet encoder learns about a
thousand partitions for its end-to-end mapping z(x). In the light
of (16) we know that for each partition Ωr the network implic-
itly encodes p = 2 deep matched-filters (the rows of A[x] or
alternatively Ar) and an offset term to locally linearly regress
the T1/T2 outputs in that segment. As such instead of memo-
rising >100K dictionary atoms used for training, the network
learns a compact piece-wise affine approximation to the Bloch
manifold projection (5) as a rapid and memory-efficient alter-
native to DM’s point-wise approximation (7). The total number
of parameters used by the MRFResnet (Table 1) are two hun-
dreds times less than the size of the dimension-reduced MRF
dictionary. Figure 3 shows the Bloch responses for a range of
T1/T2 values, as well as deep matched-filters learned by MR-
FResnet to predict each of these quantities in this range from
noisy inputs. Computed through (17), match-filters are one-
dimensional analogues of the saliency maps a.k.a. deep dream
images (Simonyan and Zisserman, 2014), measuring sensitivi-
ties of the T1/T2 output neurons with respect to the inputs.
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6. Numerical experiments and discussions

In the spirit of reproducible research, the source codes of the
proposed algorithms are available at https://github.com/
mgolbabaee/LRTV-MRFResnet-for-MRFingerprinting.

6.1. Datasets and 2D/3D acquisition parameters

Methods are tested on the Brainweb in-silico phantom (see
supplementary materials), a EUROSPIN TO5 phantom (in-
vitro) (Lerski and De Certaines, 1993), and in-vivo acquisitions
of a healthy volunteer and a glioma patient. In-vitro and in-vivo
volunteer data were acquired on a 1.5T GE HDxT scanner us-
ing 8-channel receive-only head RF coil. For glioma patient,
data were acquired on a 3T GE MR750 system. In both cases,
the excitation sequence has T = 880 repetitions and jointly en-
codes T1/T2 values using an inversion pulse followed by a flip
angle schedule that linearly ramps up from 1◦ to 70◦ in rep-
etitions 1-400, ramps down to 1◦ in repetitions 400-600, and
then stays constant to 1◦ for repetitions 600-880 (see details
in (Gómez et al., 2020)). Three non-Cartesian readout trajec-
tories were tested: 2D/3D variable density spiral and 2D radial
k-space subsampling patterns. Throughout we used inversion
time=18 ms, fixed TR=12/7.8ms for the volunteer/patient ac-
quisitions, and TE = 0.46/2.08 ms for spiral/radial acquisitions,
respectively. For the 2D/3D acquisitions we had 2002/2003

(mm2/mm3) FOV and 2002/2003 voxels image/tensor size, re-
spectively. Further, the total number of interleaves for the
2D/3D spiral and 2D radial readouts were 377/48’400 and 967,
respectively. Only one radial spoke (or spiral arm) was sam-
pled at each of the 880 timeframes, resulting in aggressive ac-
celeration (undersampling) factors 62×, 252× and 262× with
respect to a fully sampled 2D spiral, 2D radial and 3D spiral ac-
quisitions, correspondingly. The total acquisition times for the
2D scans were 10:56 seconds, and for the 3D volunteer/patient
scans were 9:51/6:25 minutes, respectively. For all cases coil
sensitivities were computed from undersampled data using an
adaptive coil combination scheme (Walsh et al., 2000).

6.2. Tested algorithms

For TSMI reconstruction we compare model-based iterative
methods: LRTV, LR (Zhao et al., 2018) and FLOR (Mazor
et al., 2018) which are convex and DM-free, and the non-
convex DM-based AIR-MRF (Cline et al., 2017). LRTV and
LR solve (10) with spatiotemporal (λ > 0) and temporal-only
(λ = 0) regularisations, respectively. Note that the latter solves
the same problem as (Zhao et al., 2018) but with Nesterov ac-
celeration. Here, AIR-MRF uses Gaussian low-pass filtering
(to avoid Gibbs artefacts) to regularise the spatial domain. It
further uses MATLAB’s in-build kd-tree searches for fast DM
per-iteration. The maximum number of iterations for these
algorithms were set to 30, but each stops earlier if the rela-
tive change in their objectives is below tolerance 10−4 (con-
vergence). Further we compare against reconstruction non-
iterative baselines ZF (9) (McGivney et al., 2014) and View-
Sharing (VS) (Buonincontri and Sawiak, 2016). VS aggregates
spatial k-space data within neighbouring temporal frames to in-
crease per-frame samples and enhance spatial resolutions in a

Total #
params.

T1 (ms)
MAE

T1 (%)
MAPE

T2 (ms)
MAE

T2 (%)
MAPE

B (%)
NRMSE

MRFResnet 5.2k 7.19 0.91 1.91 1.05 0.86

KM fitting 44k 29.93 3.97 15.84 9.68 12.88

Table 1: Prediction performances of MRFResnet and KM.

non model-based fashion. For quantitative inference and be-
sides DM baseline, we compare various deep learning MRF
models including the proposed MRFResnet, and also a shallow
learning method based on Gaussian Kernel Machines (KM) re-
lated to (Nataraj et al., 2018).4

6.2.1. Learned models
Except FLOR which does not use dimensionality reduction,

other methods use a s = 10 dimensional subspace model a-
priori learned from Bloch response simulations following the
SVD analysis of (McGivney et al., 2014) (the NRMSE differ-
ence between the subspace and original dictionaries were less
than 7.16 × 10−7). For this, a dictionary of d = 113781 atoms
sampling the T1=[100:10:4000] (ms) and T2=[20:2:600] (ms)
grid was simulated using the Extended Phase Graph formal-
ism (Weigel, 2015). This subspace-compressed dictionary was
directly used in DM, whereas for learning-based inference it
was only used for model training and validation. Clean finger-
prints were used for training MRFResnet decoder G i.e. Bloch
response generation network. Noisy fingerprints each corrupted
with i.i.d. noise ∼ N(0, 0.01) were used to train the MRFResnet
encoder R. We created fifty noisy realisation of each fingerprint
(i.e. data augmentation), and for each we performed dictio-
nary search to find correct T1/T2 (closest match) training labels
and not those that originally generated the fingerprints. Noisy
data augmentation creates a tube around the finely-sampled
Bloch response manifold, and the label-search procedure en-
ables learning a Euclidean projection mapping (rather than a
possible overfitted denoiser) onto this manifold. Trainings used
Adam optimiser with MSE loss for 20 epochs, 0.01 initial learn-
ing rate with decay factors 0.8/0.95 and mini-batch sizes 500/20
for R and G, respectively, and per epoch 10% of the train-
ing samples were held out for validation. The same datasets
were used for training KM’s encoder and decoder models using
LBFGS optimiser.

6.3. Deep vs. shallow learning models’ prediction results
To test the prediction performances of the learned models

MRFResnet and KM, 500K out-of-sample noisy fingerprints
were randomly generated and fed to the corresponding en-
coder models to estimate the T1/T2 parameters. Predicted

4Used hyperparameters: KM used optimised kernel scales by the MAT-
LAB’s fitrkernel function and 1000/500 random features (Wilson et al., 2016)
per output index for the encoder/decoder models, respectively. VS used 880
shared views as in (Gómez et al., 2020). LRTV used the TV norm weight-
ing ∀i, λi = λ = 0.2/0.04 for the 2D/3D brain scans, respectively. AIRMRF
used 2D/3D gaussian filters with spreads σ = 1/0.5 for the 2D/3D brain scans.
FLOR used the nuclear norm weighting λ = 10 for 2D brain scans. Parameters
were adjusted experimentally according to the visual impression of the results
and where ground-truth was available (e.g. for the phantom or retrospective
experiments) they were grid-searched to minimise the reconstruction errors.

https://github.com/mgolbabaee/LRTV-MRFResnet-for-MRFingerprinting
https://github.com/mgolbabaee/LRTV-MRFResnet-for-MRFingerprinting
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2D spiral 2D radial 3D spiral

MAPE (%) T1 T2 T1 T2 T1 T2

ZF-DM 7.36 12.80 9.93 15.46 6.69 16.29
*-MRFResnet 7.49 13.42 9.89 15.79 6.54 16.88

VS-DM 31.46 19.53 28.54 16.04 8.47 14.43
*-MRFResnet 33.65 19.85 30.67 16.48 8.53 14.90

LR-DM 10.65 15.99 10.75 16.67 6.18 15.04
*-MRFResnet 11.15 16.27 10.94 17.05 5.99 15.25

LRTV-DM 5.60 11.44 5.54 9.76 5.87 15.29
*-MRFResnet 6.03 11.96 5.85 10.69 5.68 15.44

Table 2: Average errors for predicting the T1/T2 values of the in-vitro phantom
ROIs using DM-free reconstruction algorithms ZF, VS, LR and LRTV (ours),
followed by DM and MRFResnet (ours) for quantitative inference.

T1/T2s were then fed to the decoder models for generating the
corresponding noise-free Bloch responses. The ground-truth
(GT) T1/T2s from DM were used to measure encoders’ per-
formances based on Mean Absolute (Percentage) Errors MAE
= E[|T̂1 − T1GT|] and MAPE = E[ |T̂1−T1GT |

T1GT ] (similarly for T2).
Corresponding clean fingerprints were used as GT to measure
generative model (decoder) predictions based on Normalised-
RMSE = E ‖G(Θ̂)−B(ΘGT)‖

‖B(ΘGT)‖ . Table 1 summarises our results.

6.3.1. Discussion
MRFResnet outperforms KM and achieves reliable predic-

tions for T1/T2 values and Bloch response generation, with
about or less than 1% average difference with the DM base-
line. KM reports poor T2 and Bloch response estimations for
the number of random features used. By increasing this num-
ber KM’s expressive capacity can improve (e.g. we observed
by doubling random features KM’s T2 error reduces to about
7%), however by comparing both model sizes at their current
configurations, we can deduce the advantage of depth in MR-
FResnet to embed DM more efficiently compared to its shallow
alternative KM for the adopted acquisition sequence.

6.4. In-vitro phantom experiment

The 2D (spiral/radial) and 3D (spiral) acquisition schemes
were tested for measuring quantitative parameters in twelve
tubes of the EUROSPIN TO5 phantom. Table 2 shows the
MAPE errors averaged over all region of interests (ROIs/tubes)
for predicting the T1/T2 values using different DM-free recon-
structions algorithms ZF, LR, VS and the proposed LRTV, all
cascaded to DM or the proposed MRFResent for quantitative
inference. The gold standard T1/T2 values reported in the phan-
tom’s manual were used as reference. DM and MRFResent
score very similar quantitative inference accuracies regardless
of the reconstruction scheme, which shows that the MRFRes-
net accurately embeds DM. In addition, Figure 4 displays the
mean and standard deviation of the predicted T1/T2 values in
each ROI. For compactness we only display ZF-DM, LR-DM
and VS-DM baselines, and the proposed LRTV-MRFResnet
predictions. Computed parameter map images are also shown
in the supplementary materials (Figure S5). Figure 5 displays
the Bland-Altman plots of the percentage differences between
T1/T2 values of the phantom ROIs in spiral and radial scans,
estimated using the ZF-DM and LRTV-MRFResnet.

0

200

400

600

800

1000

1200

1400

1600

T
1

 (
m

s
)

GT

ZF-DM

VS-DM

LR-DM

LRTV-MRFResnet

0

50

100

150

200

250

300

T
2
 (

m
s
)

GT

ZF-DM

VS-DM

LR-DM

LRTV-MRFResnet

0

500

1000

1500

T
1

 (
m

s
)

GT

ZF-DM

VS-DM

LR-DM

LRTV-MRFResnet

0

50

100

150

200

250

300

T
2
 (

m
s
)

GT

ZF-DM

VS-DM

LR-DM

LRTV-MRFResnet

0

500

1000

1500

T
1

 (
m

s
)

GT

ZF-DM

VS-DM

LR-DM

LRTV-MRFResnet

0

50

100

150

200

250

T
2
 (

m
s
)

GT

ZF-DM

VS-DM

LR-DM

LRTV-MRFResnet

Fig. 4: The mean T1 (left column) and T2 (right column) values in millisec-
onds and their standard deviations (error bars) estimated via using four recon-
struction methods compared to the reference values (GT) in 12 phantom ROIs.
Results are compared for 2D spiral (top row), 2D radial (middle row) and 3D
spiral acquisitions (bottom row).
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Fig. 5: Confidence intervals (CIs) for the percentage differences between pre-
dicted T1/T2 values of the phantom ROIs in 2D spiral and radial scans, using
ZF-DM (top) and the LRTV-MRFResnet (bottom) reconstructions. The 0.95%-
CIs are -33.9% to 32.3% for T1 and -38.5% to 37.4% for T2 using ZF, whereas
using LRTV CIs are tighter -10.2% to 7.8% for T1 and -17.0% to 10.4% for T2.

6.4.1. Discussion
From Figure 4 we observe that tested methods (except VS for

2D) report comparable predictions for the mean T1/T2 values
in each ROI.5 T1 values are comparable to the GT (although ZF,
LR and VS slightly underestimate T1). The predicted T2 val-
ues, especially in high T2 regimes, are under-estimated (nega-

5We observe VS generally trades off image smoothness against overesti-
mated T2s and underestimated T1s. This compromise is strongly unfavourable
in 2D acquisitions. Larger k-space neighbourhood information was avail-
able/shared in 3D (than 2D) acquisitions, which made 3D VS competitive.
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tive bias). We hypothesise this is due to physical effects e.g. flip
angle calibration errors, diffusion or magnetisation transfer that
are currently un-modelled in the reconstruction schemes. Over-
all, the proposed LRTV predicts least biased T1/T2s. Notably,
LRTV has the least variations around the estimated values (see
the error bars in Figure 4). For all experiments and averaged
over all ROIs, the LRTV’s standard deviation is 1.5/2.5 times
less than its closest competitor for predicting T1/T2, respec-
tively. This leads the LRTV to have the least (or close to least)
predication errors in all tested acquisitions (see Table 2). From
Figures 5 and images shown in Figure S5 we observe that LRTV
enables highly consistent predictions across radial and spiral
sampling protocols i.e. per-pixel estimated T1/T2 values in all
ROIs obtained from 2D radial and spiral measurements are 2 to
3 times more consistent with each other than those computed
via ZF. We did not observed similar consistency level in other
tested algorithms as the readout-dependent undersampling arte-
facts in images were not fully removed by them.

6.5. In-vivo experiments

Three sets of experiments were conducted: First, we used the
2D and 3D acquisitions for scanning a healthy volunteer’s brain
(real-world scans at 1.5T). Figures 6 and S6 display the para-
metric maps reconstructed from the 2D spiral and radial read-
outs. We computed the T1, T2 and proton density (PD) maps
using baseline reconstruction algorithms ZF, VS, LR, FLOR,
AIR-MRF and our proposed LRTV. While baselines use DM
either for quantitative inference or also during reconstruction
(i.e. AIR-MRF), we further compare the DM-free LRTV’s
performance when cascaded to DM, KM and MRFResnet for
quantitative inference. For the 3D spiral acquisitions we com-
pared LRTV and its closest competitor VS in Figure 7. Out-
comes from other tested algorithm are displayed in the sup-
plementary materials (Figure S7). Since FLOR does not use
dimensionality-reduction, our system ran out of memory dur-
ing 3D reconstruction; hence results are not reported in this
case. Second, we used a 3D spiral acquisition at a 3T scan-
ner for imaging a glioma patient, where the LRTV-MRFResnet
maps was compared to its closest competitor VS-DM in Fig-
ure 9, in addition to ZF-DM in Figure S8. Figure S9 also plots
the small differences made in paramtric maps by replacing MR-
FResnet with DM, after LRTV reconstruction. Further, we per-
formed ROI comparisons on in-vivo data: For the healthy sub-
ject, we obtained brain tissue segmentation maps (RIOs) using
the (Zhang et al., 2001) algorithm, and for the glioma patient,
ROIs were manually segmented by a trained neuroradiologist
(Figure 8). The ROI-based predicted T1/T2 values of the pro-
posed LRTV-MRFResnet were then compared to the LRTV-
DM, as well as the baseline VS-DM (also ZF-DM) which for
the used acquisition protocols, it was previously validated and
shown consistent with the literature values (Gómez et al., 2020;
Pirkl et al., 2020; Fujita et al.). Table 3 shows that the dif-
ferences made by the LRTV-MRFResnet versus MRFResnet-
DM and a previously validated baseline VS-DM are small (less
than %5/%8 for the T1/T2 values, respectively) across all ROIs
and field strengths, indicating methods’ reliable quantification
for the healthy tissues (white/grey matter) as well as unhealthy

Z
F-

D
M

L
R

-D
M

V
S-

D
M

FL
O

R
A

IR
-M

R
F

L
R

T
V

-D
M

L
R

T
V

-K
M

L
R

T
V

-M
R

FR
es

ne
t

T1(s) T2 (s) PD (a.u.)

Fig. 6: Reconstructed T1, T2 and PD maps of a healthy volunteer brain from
a 2D spiral acquisition using different reconstruction and inference algorithms
(real-world scan at 1.5T).
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T1(s) T2 (s) PD (a.u.)
Fig. 7: Reconstructed T1, T2 and PD maps of a healthy volunteer brain using 3D acquisition with spiral readouts (real-world scan at 1.5T). The (zoomed) 3D maps
are computed using LRTV-MRFResnet (left sub-column) and the VS-DM (right sub-column) algorithms.

Fig. 8: 3D segmented tissues for the healthy (top) and patient (bottom) subjects:
cerebrospinal fluid (light blue), white matter (yellow), grey matter (cyan), peri-
tumoral edema (dark red), solid tumour (light red), background (dark blue).

tissues (peritumoral edema, solid tumour) where substantial
changes in the brain occur.

Due to the lack of ground truth in the two first experiments,
we conducted a third experiment with retrospective validations
against the ground-truth anatomical maps. Here the gold stan-
dard anatomical maps were acquired from a separate volunteer
using MAGIC quantitative imaging protocol (Marcel, 2015).
Figure S2 shows these ground truth parameter maps. From
these parametric maps we then constructed the corresponding
TSMIs and noisy MRF measurements. We used the same exci-
tation sequence and the 2D spiral and radial k-space sampling
patterns as in our real-world scans to construct a single-coil ac-
quisition where the k-space measurements were corrupted by
additive Gaussian noise with 35 dB SNR. Table 4 compares the
reconstruction accuracies of the baselines against our proposed
algorithm for the T1, T2, and PD maps as well as the TSMI
images. Accuracies were measured by the MAE and MAPE er-
rors, reconstruction SNRs, and the Structural Similarity Index
Metric (SSIM) (Wang et al., 2004). Reconstructed maps and
their differences with respect to the ground-truth can be found
in supplementary Figures S3 and S4.

White matter Grey matter Edema Tumour

diff. (%) T1 T2 T1 T2 T1 T2 T1 T2

Healthy subject

ZF-DM 5.47 10.15 1.80 1.24 — — — —
VS-DM 4.66 7.85 0.59 2.00 — — — —

LRTV-DM 0.33 0.59 1.83 1.15 — — — —

Glioma patient

ZF-DM 1.72 8.24 0.99 4.72 0.26 3.32 0.29 3.96
VS-DM 0.82 5.94 0.94 2.54 0.12 2.52 0.29 2.48

LRTV-DM 0.51 5.83 0.39 6.69 0.38 1.07 0.96 2.72

Table 3: The ROI-based difference (%) between the average T1 and T2 val-
ues obtained from LRTV-MRFResnet and the methods ZF-DM, VS-DM and
LRTV-DM for the healthy (1.5T scan) and glioma patient (3T scan) subjects.

6.5.1. Discussion

The LRTV-DM and LRTV-MRFResnet perform on par, and
both outperform all tested baselines for reconstructing T1, T2
and PD maps in all acquisition schemes. This can be observed
both visually in Figures 6, S6, 7,9, S3 and S3, and quantitatively
in Table 4 across all tested metrics. Other baselines were unable
to successfully remove the under-sampling artefacts in TSMIs,
and these errors propagated to the parameter inference phase
and resulted in inaccurate maps. Temporal-only priors incorpo-
rated within LR are shown insufficient to regularise the inverse
problem and LR sometimes (e.g. 2D spiral acquisitions) can
admit solutions with even stronger artefacts than the model-free
ZF baseline. This issue was previously studied for other non-
Cartesian MRF readouts that similar to our spiral/radial trajec-
tories, miss to sample the corners of the k-space in all time-
frames (see section 2.2.2 and figure 2 in (Cline et al., 2017)).
In the absence of reference for the k-space corners information,
the LR iterations despite minimising the objective ‖Y−A(VX)‖2

can converge to solutions with high-frequency artefacts, as vis-
ible in the computed maps. This highlights the need for adding
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T1(s) T2 (s) PD (a.u.)
Fig. 9: Reconstructed T1, T2 and PD maps of a glioma patient’s brain using 3D acquisition with spiral readouts (real-world scan at 3T). The (zoomed) 3D maps are
computed using LRTV-MRFResnet (left sub-column) and the VS-DM (right sub-column) algorithms.

2D spiral acquisition 2D radial acquisition

MAPE (%) MAE (ms) SNR (dB) SSIM MAPE (%) MAE (ms) SNR (dB) SSIM

T1 T2 T1 T2 PD TSMI T1 T2 PD T1 T2 T1 T2 PD TSMI T1 T2 PD

ZF-DM 6.58 14.87 64.2 14.7 14.45 14.62 95.59 95.56 88.34 9.90 27.52 97.6 28.1 14.84 11.65 90.34 87.43 89.01

VS-DM 9.19 23.74 99.2 23.8 17.02 19.16 94.40 93.58 90.08 9.32 23.63 99.1 23.8 16.52 18.28 93.40 93.09 89.87

LR-DM 9.96 19.39 98.6 19.5 17.72 13.26 90.15 93.13 90.76 7.49 13.46 82.2 14.1 19.97 15.83 92.96 96.23 95.90

AIRMRF 10.64 15.38 126.1 17.5 15.08 10.98 90.43 94.59 94.99 10.87 16.28 128.7 18.5 14.93 10.72 90.12 93.96 94.72

FLOR 7.69 17.97 86.0 16.8 18.32 21.61 94.98 96.80 97.75 9.85 24.80 115.3 22.7 16.26 19.91 93.72 95.31 96.48

LRTV-DM 4.06 7.52 42.3 8.3 26.59 25.36 97.21 98.61 98.93 4.90 8.73 52.8 10.0 25.15 23.79 96.32 97.91 98.64
*-KM 4.52 16.81 46.5 15.6 15.55 –”– 96.34 95.40 96.53 5.15 18.32 55.0 17.5 15.21 –”– 97.79 94.75 96.33

*-MRFResnet 4.11 7.94 42.9 8.6 26.23 –”– 97.27 98.53 98.87 4.96 9.13 53.5 10.2 24.82 –”– 96.42 97.83 98.59

Table 4: The T1, T2, PD and TSMI reconstruction accuracies (measured by the MAE and MAPE errors, reconstruction SNR, and SSIM metrics) of the baselines
and our proposed LRTV-MRFResnet algorithm, validated retrospectively against ground-truth anatomical maps (simulated MRF scan).

an appropriate spatial-domain regularisation. FLOR reduces
the LR’s artefacts but this improvement is limited because the
suggested nuclear norm penalty does not incorporate an explicit
spatial regularisation. Further for reducing artefacts, FLOR can
introduce an undesirable bias in the computed T1/T2 maps e.g.
see error maps in Figures S3 and S3. The non model-based VS
baseline incorporates spatial regularisation and results in spa-
tially smoother maps than ZF and LR, but it is unable to output
artefact-free images. The model-based AIR-MRF adds spatial
regularisation through 2D/3D low-pass Gaussian filters how-
ever this trades off the sharpness of the computed maps and can
increase the errors at the tissue boundaries (we searched Gaus-
sian spreads that keep the blurs and high-frequency artefacts
minimal). For our acquisition readouts, Gaussian filters per-
formed better than disk filters of (Cline et al., 2017) for avoid-
ing strong Gibbs artefacts. On the other hand, the spatiotempo-
rally regularised LRTV greatly improves the TSMI reconstruc-
tions i.e. 4 dB enhancement compared to the closest competi-
tor baseline (Table 4). This enables computing accurate and
aliased-free multi-parametric inference using DM or the DM-
free learning-based alternative MRFResnet as visible in Fig-

ures 6, S6, 7, 9, S3 and S4. MRResnet and DM score com-
petitive quantitative inference results i.e. T1 and T2 MAPE less
than 5% and 9%, respectively (Table 4). KM also outputs com-
parably accurate T1 maps, however this shallow learning model
despite having a model size larger than MRFResnet, is unable
to learn accurate T2/PD quantification and results in poor esti-
mated maps, consistent with observations in section 6.3.

6.6. An ablation study on deep inference models

While MRFResnet is not an integral part of the reconstruc-
tion i.e. it can be ablated and replaced by DM or other deep
learning baselines, here we show that it is indeed an accurate
and efficient method of inference, and it performs on-par with
the DM. Here we use the LRTV algorithm for TSMI reconstruc-
tion, and compare differences (NRMSE) between the T1 and
T2 maps obtained from DM and deep learning inference base-
lines for the in-vitro and in-vivo real-world scans. Results are
reported in Table 5 and for the in-vivo 2D spiral scan are illus-
trated in Figure S1. The MRFResnet is compared against: the
fully-connected neural network (FNN) of (Cohen et al., 2018),
the time-domain convolutional network (CNN) of (Hoppe et al.,
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NRMSE (%) T1 T2 T1 T2

Models #params. 2D/3D volunteer scans 2D/3D phantom scans

MRFResnet (enc.) 1.3k 3.25 / 1.28 7.15 / 2.68 0.08 / 0.13 0.12 / 0.13
FNN 355.2k 4.12 / 2.91 9.17 / 3.60 0.63 / 0.60 1.82 / 1.05
CNN 58.4k 8.29/ 11.94 36.88 / 28.64 0.65 / 0.74 2.73 / 2.34

CNN* 58.4k 6.65 / 5.14 19.46 / 10.38 1.23 / 1.31 2.01 / 2.13
Residual CNN 3.9M 12.16 / 13.33 31.75 / 16.85 0.99 / 1.30 1.87 / 2.18

Residual CNN* 3.9M 7.53 / 2.60 14.01 / 8.51 1.21 / 0.98 6.22 / 1.85
Subspace FNN 8.3k 2.05 / 1.64 7.19 / 3.07 0.08 / 0.09 0.13 / 0.13

Table 5: Differences (NRMSE) between the T1/T2 maps obtained from dic-
tionary matching (DM) and deep learning methods, after LRTV reconstruc-
tion (real-world scans). Deep models are the MRFResnet encoder (posposed),
FNN (Cohen et al., 2018), CNN (Hoppe et al., 2017), Residual CNN (Song
et al., 2019) and Subspace FNN (Golbabaee et al., 2019a). CNN/ResidualCNN
are trained on clean dictionary, and (*) indicate same models trained on noisy
dictionary. The number of learnable params (i.e. model-sizes) are also reported.

reconstruction times (s) inference times (s)

ZF VS LRTV AIRMRF FLOR DM MRFResnet

2D 2.0 1.2e1 2.9e1 1.1e2 6.2e4 8.5 < 0.5
3D 1.5e2 9.1e2 2.2e3 4.7e4 — 1.6e3 54

Table 6: Tested runtimes for quantitative brain image computing (8-coil scans).

2017), the time-domain residual convolutional network (Resid-
ual CNN) of (Song et al., 2019), and the Subspace FNN net-
work of (Golbabaee et al., 2019a). Baselines, unlike MRFRes-
net, estimate only the T1/T2 values and not the PD (the PD con-
sistency of MRFResnet with DM is separately reported in sup-
plementary Table S1). While CNN/ResidualCNN were origi-
nally proposed to train on clean MRF dictionaries, for enhanc-
ing their robustness on real-world data, we also compared the
same models (*) trained on noisy dictionary. Other baselines
are trained with noisy dictionary by following the model struc-
tures and training instructions provided in the corresponding
articles. Except MRFResnet and Subspace FNN that enjoy the
subspace dimensionality-reduction, other baselines operate in
full temporal dimension which result in much larger and also
less accurate models (Table 5, Figure S1). Consistent with sec-
tion 6.3, we also observe very small differences between DM
and MRFResnet’s parametric inference. Owning to the sub-
space dimensionality reduction and its residual structure that
enable going layer-wise deep and hierarchically segment the
Bloch manifold, MRFResnet achieves similar or better approx-
imation for T1/T2 mapping with a much more compact model
(i.e. small number of learnable parameters) compared to the
tested deep learning baselines.

6.7. Runtimes
Computations were conducted on a 16-core Intel Xeon Gold

CPU, 32 GB RAM and a NVIDIA 2080Ti GPU. Where par-
allel computing was feasible, we adopted GPU implementa-
tion for speedup i.e. in forward/adjoint NUFFT operations6,
the TV shrinkage operator7, VS, MRFResnet and DM. Ta-
ble 6 includes computation times of the tested methods for the
2D/3D in-vivo experiments. LRTV benefits from momentum-
acceleration and takes 7-11 iterations to converge, and its run-
time faster than tested iterative schemes i.e. about an order of

6https://www.opensourceimaging.org/project/gpunufft/
7https://epfl-lts2.github.io/unlocbox-html/

magnitude faster than the DM-based iterative AIR-MRF with
fast kd-tree searches. FLOR has the slowest runtime due to not
using the subspace dimensionality-reduction, which makes it
also memory-wise non-scalable for our 3D reconstruction ex-
periment. We also observed that the LR method without spa-
tial regularisation makes very slow progress towards its (inac-
curate) solution and does not converge within our limit of 30 it-
erations. This indicates that exploiting additional (spatial) solu-
tion structure, despite introducing TV shrinkage computations,
has an overall runtime advantage (see e.g.(Chandrasekaran and
Jordan, 2013; Tang et al., 2017)) by avoiding extra costly for-
ward/adjoint iterations. The LRTV runs 2-3 times slower than
its non-iterative competitor VS for achieving better predictions.
DM-based inference methods are order(s) of magnitudes slower
than MRFResnet, and therefore the great prediction consistency
in both approaches suggests adopting neural inference in favour
of runtime.

7. Conclusions

We proposed a two-stage DM-free approach for multi-
parametric QMRI image computing based on compressed sens-
ing reconstruction and deep learning. The reconstruction is
convex and incorporates efficient spatiotemporal regularisations
within an accelerated iterative shrinkage algorithm to min-
imise undersampling artefacts in the computed TSMI. We pro-
posed MRFResnet, a compact encoder-decoder network with
deep residual blocks, in order to embed Bloch manifold pro-
jections through multi-scale piecewise affine approximations,
and to replace the non-scalable DM baseline for quantitative
inference. We demonstrated the effectiveness of the proposed
scheme through validations on a novel 2D/3D multi-parametric
quantitative acquisition sequence. Further in-vivo validations
(e.g. cohort data) are required to confirm repeatably of the re-
sults and their usage for clinical applications. Future extensions
could address limitations such as motion-artefacts and multi-
compartment voxel quantification (Cruz et al., 2019; Duarte
et al., 2018) that are currently un-modelled in our pipeline.
Further accelerations could be studied through stochastic gra-
dients (Tang et al., 2019) and/or learned proximity opera-
tions (Tang et al., 2018) where the proposed scheme could com-
plementarily be adopted for creating accurate labelled paramet-
ric maps for training.
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Supplementary Materials

SI. Fast iterative shrinkage algorithm with adaptive step-size to solve LRTV reconstruction (pseudo code)

Algorithm 1 for solving LRTV (10)
1: Inputs: k-space data Y , forward/adjoint operatorsA/AH , subspace V , initial step-size µ, regularisation parameters {λi}

s
i=1.

2: Initialization: k = 1, X1 = 0, µk = µ ∀k = 1, 2, . . .
3: while stopping criterion = false do
4: G = VHAH

(
A(VXk) − Y

)
#(subspace gradient)

5: ∇ = Xk − µkG #(gradient update)
6: Zk

(i,.) = Proxλiµk (∇(i,.)) ∀i = 1, . . . s #(total variation shrinkage with threshold λµk)
7: if ‖Y −A(VZk)‖2 > ‖Y −A(VXk)‖2 + 2Re〈G,Zk − Xk〉 + µ−1

k ‖Z
k − Xk‖2 then

8: µk = µk/2 #(adaptive step-size shrinkage)
9: go back to line 6

10: else
11: Xk+1 = Zk +

(
k−1
k+2

)
(Zk − Zk−1) #(momentum acceleration)

12: k = k + 1
return reconstructed subspace MRF image Xk+1

SII. Comparison between DM and deep learning inference methods
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Fig. S1: The computed T1, T2 maps using deep learning baselines and their differences with the maps obtained form dictionary matching (DM), after LRTV
reconstruction (healthy subject, real-world in-vivo 2D spiral scan at 1.5T). The proposed MRFResnet is compared against the fully-connected neural network (FNN)
of (Cohen et al., 2018), the time-domain convolutional network (CNN) of (Hoppe et al., 2017), residual convolutional network (Residual CNN) of (Song et al.,
2019), and the (dimension-reduced) Subspace FNN network of (Golbabaee et al., 2019a). CNN/ResidualCNN are trained on clean dictionary, whereas (*) indicate
same models trained on noisy dictionary.
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SIII. Reconstructed parameter maps for the retrospective experiment

The gold standard anatomical maps were acquired from a volunteer using the MAGIC quantisation protocol (Marcel, 2015),
using the 1.5T GE HDxT scanner with 8-channel receive-only head RF coil. Figure S2 shows these ground truth parameter maps.
From these parametric maps we constructed the corresponding TSMIs and MRF measurements. A single-coil acquisition with eight
times less measurements were considered i.e. S (X̄) = X̄ identity sensitivity map. We used the same excitation sequence and the 2D
spiral and radial k-space sampling patterns as in our real-world scans (Section 6). The k-space measurements were corrupted by
additive i.i.d. Gaussian noise with 35 dB SNR. Figures S3 and S3 show the reconstructed maps and their errors with respect to the
ground-truth using various baselines and our proposed LRTV-MRFResnet algorithm.

Results are consistent with those obtained in previous experiments. KM despite great T1 accuracy outputs inaccurate T2/PD
predictions i.e. overestimated T2 and underestimated PD maps. Due to the extremely low single coil k-space data for view
sharing, VS introduces strong bias on the T1/T2 maps. Further, temporal priors used by LR and FLOR are insufficient to reject
under-sampling artefacts, and FLOR can introduce bias in the estimated maps. AIR-MRF’s spatial low-pass filtering trades off

the sharpness of the computed maps meanwhile unsuccessful to fully remove aliasing artefacts (Figure S3). On the other hand,
the spatiotemporally regularised LRTV significantly improves TSMI reconstructions (e.g. 4 dB improvement with respect to the
closest competitor baseline, Table 4) through successfully removing strong aliasing artefacts (see Figure S3 and S4). This enables
accurate parameter inference in the next stage using DM or the DM-free alternative MRFResnet.

. T1(s) T2 (s) PD (a.u.)

Fig. S2: The T1, T2 and PD maps of a healthy subject brain acquired by the gold standard MAGIC quantitative acquisition protocol.
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Fig. S3: The computed T1, T2, PD maps of a healthy subject brain and their corresponding errors (with respect to MAGIC gold-standard) using 2D spiral k-space
sampling, different reconstruction baselines and our proposed LRTV-MRFResnet algorithm.
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Fig. S4: The computed T1, T2, PD maps of a healthy subject brain and their corresponding errors (with respect to MAGIC gold-standard) using 2D radial k-space
sampling, different reconstruction baselines and our proposed LRTV-MRFResnet algorithm.
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Fig. S5: Reconstructed T1 (3 left columns) and T2 (3 right columns) maps of EUROSPIN TO5 phantom, imaged using the 2D spiral (1st sub-column), 2D radial
(2nd sub-column) and 3D spiral (3rd sub-column) k-space acquisitions. Tested methods from top to the bottom row are ZF-DM, LR-DM, VS-DM and the proposed
LRTV-MRFResnet algorithm.

SIV. in-vitro Phantom reconstructed maps

In Figure S5 we display the computed T1, T2 and PD maps for our in-vitro phantom experiments in section VI-D. Tested
reconstruction methods are ZF, LR, VS and the proposed LRTV, all fed to the MRFResnet for quantitative inference. Methods ZF
and LR result in noisy predictions. It can be observed that for the 2D acquisitions (spiral/radial) VS strongly compromises between
outputting smoother images and overestimated T2 values (bias). This issue is also present in in-vivo and in-silico experiments, where
less k-space neighbourhood information are available to share (compared to the 3D acquisitions) and make the VS noncompetitive,
and further the overall quantifications inconsistent across 2D/3D acquisitions. The proposed LRTV overcomes this issue through a
model-based compressed sensing reconstruction.
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SV. Reconstructed maps for the 2D radial in-vivo scan
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Fig. S6: Reconstructed T1, T2 and PD maps of healthy brain from a 2D radial acquisition using different reconstruction and inference algorithms (real-world scan
at 1.5T).
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SVI. Supplementary results for the in-vivo experiments
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Fig. S7: Reconstructed T1, T2 and PD maps of a healthy brain subject using a 3D scan with spiral readouts (real-world scan at 1.5T). The (zoomed) 3D maps are
computed using ZF-DM, LR-DM and AIR-MRF baselines.

T1 (s) T2 (s) PD (a.u.)
Fig. S8: Reconstructed T1, T2 and PD maps of a glioma patient brain using 3D spiral acquisition and ZF-DM baseline (real-world scan at 3T).

. diff T1(s) diff T2 (s) diff PD (a.u.) diff T1(s) diff T2 (s) diff PD (a.u.)

Fig. S9: Differences in the T1, T2 and PD maps between MRFResnet and DM, post LRTV reconstruction: real-world scans of a healthy subject at 1.5T (left) and a
glioma patient at 3T (right).

NRMSE (%) T1 T2 PD

2D/3D phantom scans 0.08 / 0.13 0.12 / 0.13 0.78 / 1.43
2D/3D volunteer scans 3.25 / 1.28 7.15 / 2.68 4.34 / 6.04

Table S1: The NRMSE between the T1, T2 and PD maps obtained from MRFResnet and DM, after LRTV reconstruction (real-world scans).
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