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A B S T R A C T

Precise characterization and analysis of anterior chamber angle (ACA) are of great

importance in facilitating clinical examination and diagnosis of angle-closure disease.

Currently, the gold standard for diagnostic angle assessment is observation of ACA by

gonioscopy. However, gonioscopy requires direct contact between the gonioscope and

patients’ eye, which is uncomfortable for patients and may deform the ACA, leading to
false results. To this end, in this paper, we explore a potential way for grading ACAs

into open-, appositional- and synechial angles by Anterior Segment Optical Coherence

Tomography (AS-OCT), rather than the conventional gonioscopic examination.The

proposed classification schema can be beneficial to clinicians who seek to better under-

stand the progression of the spectrum of angle-closure disease types, so as to further

assist the assessment and required treatment at different stages of angle-closure disease.

To be more specific, we first use an image alignment method to generate sequences

of AS-OCT images. The ACA region is then localized automatically by segmenting

an important biomarker - the iris - as this is a primary structural cue in identifying

angle-closure disease. Finally, the AS-OCT images acquired in both dark and bright

illumination conditions are fed into our Multi-Sequence Deep Network (MSDN) archi-

tecture, in which a convolutional neural network (CNN) module is applied to extract

feature representations, and a novel ConvLSTM-TC module is employed to study the

spatial state of these representations. In addition, a novel time-weighted cross-entropy

loss (TC) is proposed to optimize the output of the ConvLSTM, and the extracted fea-

tures are further aggregated for the purposes of classification. The proposed method

is evaluated across 66 eyes, which include 1,584 AS-OCT sequences, and a total of

16,896 images. The experimental results show that the proposed method outperforms

existing state-of-the-art methods in applicability, effectiveness, and accuracy. 
© 2021 Elsevier B. V. All rights reserved. 
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Drawing on epidemiological research (Foster et al., 2002),

clinicians have suggested that PACD may be further di-

vided into different sub-stages: primary angle closure suspect

(PACS), primary angle-closure (PAC), and PACG. The com-

mon representation of PACD is contacting between trabecular

meshwork and peripheral iris. PACS is appositional but non-

adhesive angle-closure, which does not permanently contact

yet, as shown in Fig. 1 (c-1). In contrast, PAC and PACG

are adhesive angle-closure, which represents peripheral ante-

rior synechial contact (synechial angle-closure, PAS), leading

to an occludable anterior chamber angle (ACA) with high in-

traocular pressure (Foster et al., 2004) , as shown in Fig. 1

(c-2), while PACG has optical neuropathy. Interventions such

as laser peripheral iridotomy and lens extraction can alleviate

angle-closure at PACS, the earliest stage of PACD, to reduce

the risk of progressing to PAS, and to remain the aqueous hu-

mor outflow function and vision loss (Shang et al., 2019). The

detection of synechiae are crucial because they upgrade the di-

agnosis of PACS to PAC, a clinical state that is at higher risk

for PACG. On the other hand, the secondary level of grading

(PACS and PAC/PACG) will benefit clinicians in better un-

derstanding the progression of the spectrum of angle-closure

disease types. Therefore, distinguishing appositional angle-

closure from synechial angle-closure is primarily important for 
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1. Introduction

Glaucoma is one of the leading causes of irreversible blind-

ness worldwide (Tham et al., 2014), and by the identification

of gonioscopy accompanied by biometric examination, cases

of glaucoma may be classified into two subtypes: primary

open angle glaucoma (POAG), and primary angle-closure glau-

coma (PACG) (Sawaguchi et al., 2012). PACG is the most se-

vere stage of primary angle-closure disease (PACD), and PACG

in particular is a major cause of blindness in Asian popula-

tions (Foster and Johnson, 2001).

clinicians to formulate a plan for further treatment.

Currently, the gold standard for diagnostic angle assessment

is the observation of ACA by manual gonioscopy. Careful

gonioscopy accompanied by biometric examination can lead

to the correct diagnosis and individualized management in

these cases. Fig. 2 (a) shows normal structures seen under

gonioscopy. Gonioscopy has two type examinations, static-

and dynamic- gonioscopic ones. Static gonioscopy examines

whether the angle is occludable or not without the exposure of

light and any pressure on the eye (He et al., 2006). Dynamic

examination, by contrast, refers to the deliberate application

of a controlled degree of pressure and exposed light power to

distinguish the appositional and synechial angle status (Casson

et al., 2007). Ophthalmologists move the gonioscope counter- 

clockwise, making an annotation every 15◦. This annotation

accurately describes degree of closure of the ACA in this 15◦ 

region (Matsuo et al., 2020). An example is shown in the left

row of Fig. 2 (c), where the red and blue radiant regions indicate

that the manual annotation of these ACAs are synechial and ap-

positional angle-closure, respectively, for instances, while the

remaining ACAs are open-angle. However, gonioscopy is sub-

jective and relies on the examiner’s experience and also time-

consuming. Gonioscopy requires direct contact on the patient’s

eye, which is uncomfortable for the patient and may deform the

ACA, leading to false results. 

Fig. 1: Illustration of different types of angle-closure disease. (a) A sample AS-

OCT image: the selected region indicates the region of interest for ACA classi-

fication; (b) open-angle; (c-1) appositional-angle; (c-2) synechial-angle. Note,

the diagnosis of angle-closure disease usually be made based on gonioscopy

examination, we here use AS-OCT images for illustration purpose.

Anterior segment optical coherence tomography (AS-OCT)

is by contrast a non-contact and non-invasive technology for

cross-sectional viewing of the anterior segment structures (Rad-

hakrishnan et al., 2005) such as the iris and the ACA. This
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Fig. 2: (a) Illustration of normal structures seen under gonioscopy. a: Schwalbe’s line; b: anterior and posterior trabecular meshwork; c: scleral spur; d: cilary body

face and iris root. (b) Illustration of scanning mode of AS-OCT image acquired by instrument. (c) Illustration of manual annotation by gonioscopy examination 
and a sequence of AS-OCT images in a 15◦ region. Left: visual demonstration of manual annotations by gonioscopic examination - ACA angles in the 3-4 o’clock 
region (red) viewed with fully closed ACAs, and 12-1 o’clock (blue) viewed with appositional ACAs. Middle: 3-dimensional reconstruction images of an anterior 
chamber. Right: a sequence of AS-OCT images in a 15◦ region, and the alignment of these images to produce a 3D visualization. 

is shown in Fig. 1 (a). Figs. 1 (b) and (c) demonstrate an

ACA with open angle, occudable (appositional- and synechial-

) angle-closure, respectively. Nevertheless, manual annotations

based either on gonioscopy or AS-OCT is a tedious task and

vulnerable to human errors (Xu et al., 2019). The automated

classification of glaucoma subtypes into open angle and angle-

closure using AS-OCT has been studied in recent years, and an

accurate assessment of angle anatomy could provide a rapid di-

agnostic tool to guide clinical management at different stages of

glaucoma (Fu et al., 2019). For example, as evidenced by the

leader board of a recent grand-challenge - Angle closure Glau- 

coma Evaluation Challenge (AGE)1 (Fu et al., 2020) - the task 

of open angle and angle-closure classification by means of AS-

OCT has attained a remarkably high standard of performance

by using state-of-the-art deep learning-based classification net-

works, with a total of 4800 AS-OCT images (1600 training im-

ages, 1600 validation images, and 1600 testing images). And an

area under ROC curve (AUC) score over the AGE dataset are

higher than 0.98, when compared with gonioscopy annotation. 

However, all existing automatic methods based on AS-OCT

make use of the binary classification of open angle and angle-

closure (see Section 2 for literature review), automated classi-

fication of open-angle, appositional-angle, and synechiae based

on AS-OCT imaging has rarely been explored, despite its po-

tential significance in understanding disease progression. This

is because it is difficult to distinguish appositional angle from 

fully closed angle based solely on a single static AS-OCT im-

age. In this work, we intend to explore a potential way for

the grading of ACAs into open-, appositional-, and synechial-

angles by AS-OCT imagery, rather than the conventional gonio-

scopic examination, so as to guide the classification of POAG,

PACS and PAC/PACG. 

Inspired by the example of the dynamic gonioscopy examina-

tion, we introduce a Multi-Sequence Deep Network (MSDN),

which learns to identify discriminative representations from a

sequence of AS-OCT images, especially with a view to im-

proving performance in separating appositional-angle from its

occludable angle forms. By means of AS-OCT imaging tech-

nology, such as provided by the CASIA-2 AS-OCT machine

(Tomey Inc., Japan), which scans counter clockwise from the 

180◦-0◦ cross-section, as shown in Fig. 2 (b). This technique 

captures a series of sequence of AS-OCT images. A total of 128 

cross-sections are obtained by repeated 1.4◦ interval scanning

so that eleven continuous scans are captured in a 15◦region. 

We can analyze this portion of the complete 3D volume as a

sequence of 2D images. The center image of Fig. 2 (c) illus-

trates a 3D reconstruction image of an anterior chamber, while

the final image of Fig. 2 (c) shows the AS-OCT image se- 

quence in this 15◦region. (It should be noted that we modified 

these AS-OCT images to improve 3D visualization of the ante-

rior structures, by such procedures as background removal and 

alignment.) 

This work is a substantial extension to our previous 1https://age.grand-challenge.org/ 
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work (Hao et al., 2019) where features extracted from only proposed a distance measure method for ordering and classi- 

a single image were used for angle-closure disease classifica- fying anterior chamber optical coherence tomography (OCT)

tion. In this work, we have developed a deep learning based images. 

Based on advances in discriminative representations and method for discriminating the spatial state of features from AS- 

OCT image sequences, rather than from a single image. To our large-scale data analysis, deep learning has recently demon-

knowledge, this work is the first attempt to classify ACAs into strated its superiority in distinguishing open angle from angle-

open, appositional- and synechial- angle-closure, using AS- closure. For example, Convolutional Neural Networks (CNNs)

OCT data. In addition, we have constructed a AS-OCT dataset have led to improved performance in medical image classifica-

for which the AS-OCT of each eye were acquired under both tion (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014;

dark and bright illumination conditions. Imaging of each pa- He et al., 2016), medical image segmentation (Zheng et al.,

tients was performed first in dark condition, and then under 2015; Badrinarayanan et al., 2017; Gu et al., 2019) and object

bright condition using a measured standardized light source: detection (Girshick et al., 2014; Redmon et al., 2016; Girshick,

dark (0.4 lux) and bright (104 lux) illumination. We take ad- 2015; Ren et al., 2015). 

vantage of the resulting changes in pupil size to simulate the 
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pressure of the goniolens, which can push the angle open and

help determine the true angle configuration.

2. Related work

In the last decade, various approaches have been proposed to

the identification of open angle and angle-closure disease from

AS-OCT imaging automatically, based on the representations

of ACA.

Console et al. (Console et al., 2008) introduced a semi-

automated system to produce various anterior segment clinical

measurements. It requires the user to identify the position of the

scleral spurs, making it unable to form the basis of automatic

analysis on a lager-scale dataset. Tian et al. (Tian et al., 2011)

provided a segmentation, edge detection and linear regression-

based approach for High-Definition OCT (HD-OCT) to com-

pute ACA measurements. Ni et al. (Ni Ni et al., 2014) assessed

the angle structure by mean of continuous measurement of the

angle opening distance centered on the Schwalbe’s line and the

area of the anterior chamber on swept source OCT images. Xu

et al. first localized the ACA region, and then classified ACA

into open angle and angle-closure-based visual features in the

AS-OCT images (Xu et al., 2012),(Xu et al., 2013). Fu et al. (Fu

et al., 2017) proposed a data-driven approach which is inte-

grated by AS-OCT segmentation, clinical parameters measure-

ment, and glaucoma screening. Amil et al. (Amil et al., 2019)

For anterior chamber angles classification, there have also

been several recent works (Fu et al., 2018; Xu et al., 2019)

achieving promising performance for glaucoma type classifi-

cation in AS-OCT images, as deep learning techniques have

learned discriminative representations directly from the images.

In (Fu et al., 2018), Fu et al. proposed a Multi-Context Deep

Network architecture, in which parallel Convolutional Neu-

ral Networks are applied to ACA regions and corresponding

scales that are known to be informative for clinically diagnos-

ing angle-closure glaucoma. Fu et al. (Fu et al., 2019) further

introduced a Multi-Level Deep Network, which includes mul-

tiple parallel sub-networks to learn multi-level representations

from the multiple regions known to be informative for angle-

closure detection in each AS-OCT image. Xu et al. (Xu et al.,

2019) employed deep learning classifiers for automated detec-

tion of gonioscopic angle closure and primary angle closure

disease (PACD). In our previous work (Hao et al., 2019), we

proposed a multi-scale regions convolutional neural networks

for glaucoma type classification of POAG, PACS and PACG,

which include three parallel convolutional neural networks to

extract feature representations, and utilize a weighted ensemble

to stack feature representations for classification.

3. Methodology

In this section, we detail the proposed classification frame-

work. We first utilize a global B-scan alignment method to align
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In this framework, a global AS-OCT alignment is used to 

tion, where the iris could provide the primary structural image overcome the misalignment. Denote a translation (∆x, ∆y) in-

cue; finally, our MSDN classified the ACA types by learning the cludes both vertical and horizontal directions, and is applied to 

spatial representations from AS-OCT data acquired under two all consecutive OCT scans. For instance, if Bi is the reference 

different illumination conditions (bright and dark). The pupil scan, Bi is aligned to its prior B-scan Bi−1, and the alignment

exhibits different responses under various illumination condi- (∆xi, ∆yi) can be checked between the scans Bi and Bi−1, so as 

tions, and the changing of the pupil size may stretch the iris to minimize their difference (Cheng et al., 2016). A full search 

and lead to the morphological changes of ACA. It may clearly of alignment may also be applied, but is time-consuming. Di-

be seen that the appositional-angle presents different appear- amond pattern algorithm is proposed by (Zhu and Ma, 2000)

ances when the pupil size changes, while synechiae maintains to solve motion offset between image sequences. It not only

a relatively consistent appearance. In consequence, discrimina- achieves good performance in small-motion and large-motion

tive representations may be derived from both local appearance content datasets, but also requires less computation and is easy

features and global geometry under various illumination con- to implement compared with other alignment methods. In addi-

ditions. Fig. 3 illustrates the overview of the proposed frame- tion, the diamond search strategy is employed by (Cheng et al., 

2016) to OCT image alignment. It is appropriate to apply the

diamond search strategy for AS-OCT image alignment. Image

alignment based on the diamond search algorithm is carried out 

in each 15◦ region AS-OCT image sequence. Since an AS- 

OCT slice is captured by the instrument per 0.02s, the angle 

offset caused by the eye axis offset in the 15◦ region is rela- 

tively subtle. Therefore, considering the algorithm complexity

and the influence of position deviation on LSTM, we employ

the diamond search algorithm for translation alignment without 

Fig. 3: Overview of the proposed framework for ACA subtypes classification. (a) Three sample AS-OCT images selected from a 15◦ region. (b) Image alignment of

(a). (c) Iris segmentation of (b) using U-Net. (d) ACA detection. (e) Aligned ACA image sequence. (f) ACA subtypes classification by using the proposed MSDN

network.

the AS-OCT scans, and then localize ACA by iris segmenta-

work.

3.1. Image alignment

The possibility of involuntary eye movement and improper

placement of the optical axis of the eye could cause misalign-

ment between 2D scans, which will lead to the resulting image

sequence being unreliable (Williams et al., 2016). To this end,

an image alignment method is required to align these scans so

as to improve the accuracy of subsequent processes.
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rotation alignment of AS-OCT sequences. The diamond search 

strategy iteratively searches for the alignment between Bi and 

Bi−1 from neighbor points, until the difference between Bi and 

Bi−1 reaches a stable value. To be more specific, assuming an 

alignment (∆x, ∆y) which minimizes the objective function as 

follows: 

6

min
∆x,∆y

∑

x,y

|Bi (x, y) − Bi−1 (x + ∆x, y + ∆y)| (1)

In line with the work proposed in (Cheng et al., 2016), two

searching patterns are used by the diamond search algorithm.

The first pattern is a large diamond search pattern (LDSP),

which consists of 9 checking points forming a diamond shape.

The second pattern is a small diamond search pattern (SDSP)

which consists of 5 checking points, also forming a diamond

shape. LDSP is firstly applied until the difference between Bi

and Bi−1 reaches a minimum value. Then SDSP is used to de-

termine the best matching between Bi and Bi−1 i.e., the position

of minimum difference. Fig. 3 (b) demonstrates examples of

image alignment from a randomly selected image sequences.

3.2. Iris segmentation and ACA detection

ACA region localization is an important step for discrimina-

tive feature learning in the subsequent deep learning network.

Various methods have been proposed to detect the ACA region

by utilizing geometric properties. Xu et al. (Xu et al., 2012)

proposed a geometric method for ACA region detection based

on edge detection and shape properties. Tian et al. (Tian et al.,

2011) detected the ACA in High-Definition OCT (HD-OCT)

images by localizing of the Schwalbe’s line. Fu et al. (Fu et al.,

2017) proposed an automated AS-OCT structure segmentation

approach, which transfers manually marked labels to the target

image for guiding segmentation, so as to determine the ACA

region. However, the quality of images will greatly affect the

performance of these methods (Xu et al., 2012) (Tian et al.,

2011). The pixel segmentation method (Fu et al., 2017) is obvi-

ously more accurate than coarse ACA localization and clinical

parameter measurement, but it is time consuming.

In this work we propose an effective ACA localization

method by accurately segmenting the iris from AS-OCT using

on a deep learning algorithm. The iris root is a salient landmark

to locate the coarse ACA region, and in this work we use the

iris root as the centroid of the ACA region (with two different

sizes of bounding box). It should be noted that, we constructed

a sub-dataset for the iris segmentation task: a total of 100 AS-

OCT images from an aligned image sequence were selected to

compose this dataset. As there are two irises in each AS-OCT

image, we split each compound image into two distinct iris im-

ages, as shown in Fig. 4 (b-1) yielding a total of 200 split iris

images, of which 40 images are examples of open angles and

160 images contain instances of appositional and fully closed

angles. We further asked two graders to annotate the iris re-

gions of each image manually. Iris contours were firstly delin-

eated and the contours were filled to obtain the iris regions as

pixel level annotation. Two annotators formulated two consis-

tency principles before annotation: 1) keep the iris region intact

according to the iris edge in AS-OCT image, and 2) determine

the unclear iris root contour according to the previous and sub-

sequent slices in the volume. Finally, a consensus between the

two graders was used as the reference standard. It is worth not-

ing that in practice, the inter-annotator agreement is higher than

0.90 in terms of pixel-level, and no image was discarded in this

100 AS-OCT subset. 

Fig. 4: Outline of the preprocessing steps. (a-1)-(a-3): Input AS-OCT images.

(b-1)-(b-3): Split images. (c-1)-(c-3): Iris segmentation by U-Net, and the red

dot indicates the iris root. (d-1)-(d-3): ACA regions with two different scales.

Red and green bounding boxes are of sizes 224×224 and 448×448, respectively.

The fully automatic iris segmentation is carried out by a U-

Net-based convolutional neural network (Ronneberger et al.,

2015). This network is made up of a contracting-encoder and an

expanding-decoder part, which permits the user to obtain a label
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The network architecture of our MSDN is shown in Fig. 5. 

Two streams of aligned ACA images are fed to our MSDN 
Finally, the ACA region may be determined by the position model to obtain a joint representation, combining images cap-

of the iris root (Fig. 4 (c)), where the iris root may be localized tured in both dark and bright illumination environments (see

by the left- or rightmost pixel of the segmented iris region. In more details in the Section 4.1). Then a multi-layer ConvLSTM

the experimental work, we obtained two scales of ACA region is employed to explore the spatial state of features in the last

(Fig. 4 (d)): two bounding boxes with sizes of 224 × 224 and output layer of the CNN Encoder module. Finally, dynamic

448×448, centered at the iris root. The effectiveness of the size features from the dark and bright datasets are aggregated for 

Fig. 5: Architecture of our MSDN for anterior chamber angles classification on Dark & Bright dataset.

classification for every single pixel. We train the U-Net on an

iris image set comprising a randomly sampled 80% of our full

iris image set, leaving out 20% of this dataset as a testing set.

We use a 5-fold method to train the model in order to achieve

the best results, and the Mean Square Error (MSE) loss is used.

The resulting iris segmentation performance attain an accuracy

of 0.99. However, we will not provide qualitative and quanti-

tative evaluations of iris segmentation in this paper, as it is not

the main contribution of this work. Fig. 4 (c) demonstrates an

iris segmentation performance.

of ACA regions will be discussed in Section 5.2.

3.3. ACA classification

By learning discriminative representations from an AS-OCT

image sequence, a deep learning based method is capable of si-

multaneously modeling both motion and appearance changes,

thereby improving performance in separating appositional an-

gle and fully closed angle. In consequence, we introduce

a Multi-Sequence Deep Network (MSDN) for ACA subtypes

classification. The proposed MSDN consists of two sub-

networks to generate representations for ACA subtypes clas-

sification: a Convolutional Neural Network (CNN) encoder

module and a modified Convolutional Long Short Term Mem-

ory (ConvLSTM) module. This is in light of the success of

CNN for image representation (Krizhevsky et al., 2012) and of

LSTM (Greff et al., 2016) for extraction of changes in sequen-

tial data.

glaucoma classification.

CNN encoder module. Taking into consideration the prob-

lems of overfitting and parameter cost, we employ ResNet-

34 (Fu et al., 2018) in the feature encoder module as our

baseline. This retains the first four feature extracting blocks,

without the average pooling layer and the fully connected lay-

ers. ResNet has a shortcut mechanism to prevent the gradi-

ent vanishing and accelerate the network convergence. The in-
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itate data reconstruction by preserving the spatial information. 

In this paper, we first process the AS-OCT sequence into a spe- 

cial time sequence, and we then employ the ConvLSTM to ex- with long distance dependence in AS-OCT sequences. In or-

plicitly deal with sequential AS-OCT images, and propose a der to enhance the memory ability of ConvLSTM for AS-OCT

new loss, Time-weighted Cross-entropy loss (TC loss), to en- slices at different time steps in the sequence, especially the pre- 

vious frames of a sequence, we define a new TC loss instead of 

minimizing the loss on the final time step, which can obtain and 

optimize all the intermediate outputs of every time step. 

(5) 

In our paper, we utilize unidirectional ConvLSTM to deal 

Ideally, ConvLSTM is expected to learn that the longer the 

image sequence and the more classification information it pro- 
Ct = ft ◦ Ct−1 + it ◦ tanh (Wxc ∗ Xt + Whc ∗ Ht−1 + bc) , (2) 

cesses then the higher the confidence of classification of the 

ACA type can be achieved (Zhang et al., 2019). Inspired by the

principle, a weighted ensemble method based time step is ap-

plied to the TC loss. Therefore, the proposed TC loss is defined 

Fig. 6: Illustration of the ConvLSTM unit architecture. 

put sequential data to the CNN encoder module are resized to 

where Xt and Ht are the input and output of the ConvLSTM- 

TC at time step t (t indicates the tth frame in a image sequence), 
as: 

and it, ft and ot indicate the input, forget and output gates, re- 

spectively. A memory cell Ct stores the historical information. 

∗ represents the convolution operation, ◦ denotes the element- 

wise multiplication, and σ is the sigmoid activation function. 

Wmn denotes the weight of convolution function and bn denotes 

bias, where m and n represent input and output of the convo- 

lution layer, respectively. Fig. 6 shows the ConvLSTM unit 

224 × 224 pixels, taken from the same patient under two differ-

ent illumination conditions.

ConvLSTM-TC module. LSTM has demonstrated its supe-

riority in modeling motion features for anomaly detection and

activity recognition (Malhotra et al., 2016). Recently, a novel

ConvLSTM (Xingjian et al., 2015) has been proposed to facil-

code appearance and change of appearance motion.

The formulations of the ConvLSTM may be defined as:

it = σ (Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi) ,

ft = σ
(

Wx f ∗ Xt +Wh f ∗ Ht−1 +Wc f ◦ Ct−1 + b f

)

,

ot = σ (Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct + bo) ,

Ht = ot ◦ tanh (Ct) ,

architecture.

As illustrated in Fig. 5, the encoded features of each frame

from the dark and bright illumination image sequences are fed

into separate layers of a 2-layer ConvLSTM-TC, which mem-

orizes all historic frames. In order to maintain consistency

with clinical diagnostic outcome, we integrate the outputs of

the ConvLSTM-TC and use a 1 × 1 convolution kernel to fuse

the features, so as to reduce the dimension of weights and

computational cost. We define Ld and Ll as the output of the

ConvLSTM-TC at time step t, which is accumulative after feed-

ing t deep features fd and fl into it:

Lt
d = ConvLSTM − TC

(

f 1
d , f 2

d , . . . , f T
d

)

(3)

Lt
l = ConvLSTM − TC

(

f 1
l , f 2

l , . . . , f T
l

)

(4)

The output It of feature fusion is connected to the fully con-

nected (FC) layer to classify the glaucoma type.

It = f
(

Lt
d, L

t
l

)

LTC =
1

n

n
∑

t=1

K
∑

k=1

−wt

[

yk log
(

C
(

It
)

k

)]

(6)

where C and k denote the classifier and classification label,

respectively. n denotes the number of images in a sequence.

C
(

It
)

k indicates the classifier C correctly identifies the final out-

put I at time step t, and yk ∈ {0, 1, 2} are the values of ground

truth (GT), and K=3 denotes the total number of label. wt is the

weight of each frame in a sequence. Taking into account this



H. Hao et al. / Medical Image Analysis (2021) 

same effect. Therefore, we intend to use the resulting changes 

in pupil size to simulate the pressure by the goniolens, which 

can push the angle open and help determine the true angle con- 

figuration. We raised our hypothesis based on previous stud- 

ies (Gazzard et al., 2004; Nolan et al., 2007; Lee et al., 2016) 

indicate morphological change in the iris and anterior chamber 

between different light conditions. 

9 

A senior professor with more than 30 years’ experiences on 

glaucoma diagnosis and analysis made an annotation from go- 

nioscopic examination of on every 15◦ ACAs of an eye, yielding 

24 annotations for a single eye, resulting in total of 1584 anno- 

tations for each dataset. In light of this, we ordered the AS-OCT 

slices (T = 11 slices) in each 15◦ region into a sequence, gen- 

erating 24 sequences for each eye, for a total of 1584 image 

sequences in each of the two Dark and Bright datasets. In par- 

ticular, 504 sequences were annotated with open ACA, 742 se- 

quences were instances of appositional ACA and 338 sequences 

present examples of fully closed ACA. Dynamic gonioscopy 
A clinical dataset was constructed by Zhongshan Ophthalmic was performed with corneal indentation. The ophthalmologists

Center, China. All the AS-OCT images were captured along imposed pressure on the gonioscopy lens, which can help de- 

Fig. 7: Example AS-OCT images acquired under dark and bright illumination

conditions. 

TC loss ensures that the features of one AS-OCT image used 

with the appearance feature of another image can be decoded to

the latter AS-OCT scan. In our paper, our sequence length n is 

11 and we set wt = t after a series of experiments. 

4. Experiments

4.1. Dataset 

the of the eye’s optical axis by a CASIA-2 machine (Tomey termine if an angle is anatomically synechial or appositional.

Inc., Japan) from 66 eyes of 60 subjects with POAG, PACS or In our experiments, we use 5-fold cross-validation to train 
PAC/PACG (annotated by dynamic gonioscopic examinations), and test our model on Dark, Bright and merged datasets at a pa-

and the structure of the anterior chamber appears at a relatively tient level, which ensures that the ACA images from one patient

consistent position among the AS-OCT images in practice. In fall into the same training or test set. In each dataset, we sample

particular, 21 eyes (POAG) are with open ACA, 13 eyes (PACS) at the same category ratio in the subset of the cross-validation 
are with appositional ACA, and 32 eyes (PAC/PACG) are with experiment.

appositional ACA and closed ACA images. Each image set 

contains 128 AS-OCTs, and the resultant image has an area of 

2144 × 1876 pixels. 

4.2. Evaluation Metrics 

Following the standard performance assessment protocol for

multi-class classification, we use macro sensitivity (Se), speci- It is important to reiterate that this clinical dataset has two 

sub-sets, referred as Dark and Bright sets in this paper. Fig 
ficity (Sp), accuracy (Acc), and balanced accuracy (B-Acc): 

7 demonstrates two ACAs under different illumination condi- 

tions. We intend to use the resulting changes in pupil size to 

simulate the pressure by the goniolens. The reason of pupil 

changes caused by bright and dark environments is the miosis 

effect (iris dilation) (Hirose et al., 2013), which can open the 

appositional but non-adhesive anterior chamber angle (ACA) 

(Aptel et al., 2012). The pressure under gonioscopy also has the 

1 
Se = 

∑

Nc 
TPi 

Nc i=1

∑

Nc 

1 
, Sp = 

TPi + FNi 

∑

Nc 
TNi 

Nc i=1 TNi + FPi 

1 
Acc = TPi + TNi 

Nc i=1 
, B-Acc = (Se+Sp)/2. 

TPi + FNi + FPi + TNi 

where TPi indicates true positives, TNi true negatives, FPi false 

positives, FNi false negatives for the i-th classification label. 
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Table 1: Different classification approaches for the grading of ACAs into open-, appositional-, and synechial-angles on Dark and Bright datasets.

Dark Dataset Bright Dataset

Methods kappa F1 Acc B-Acc Se Sp Kappa F1 Acc B-Acc Se Sp

HOG+SVM 0.6505 0.6748 0.8622 0.7849 0.6952 0.8747 0.6420 0.6284 0.8611 0.7732 0.6767 0.8698

HOG+KNN 0.5856 0.7134 0.8207 0.7921 0.7194 0.8647 0.5806 0.7046 0.8207 0.7841 0.7066 0.8616

HOG+AdaBoost 0.6237 0.7242 0.8422 0.7984 0.7231 0.8738 0.6295 0.7261 0.8451 0.7999 0.7246 0.8752

HOG+Random Forest 0.6696 0.7324 0.8657 0.8075 0.7305 0.8845 0.6557 0.7310 0.8594 0.8065 0.7288 0.8842

HOG+Naive Bayes 0.6073 0.7266 0.8291 0.8109 0.7455 0.8763 0.6854 0.7752 0.8666 0.8362 0.7765 0.8958

MLDN 0.6749 0.7233 0.8695 0.8047 0.7249 0.8846 0.6851 0.7377 0.8729 0.8122 0.7358 0.8885

MSCNN 0.6773 0.7498 0.8673 0.8171 0.7455 0.8887 0.7156 0.7731 0.8840 0.8328 0.7657 0.8998

Alexnet 0.6856 0.7522 0.8713 0.8191 0.7475 0.8907 0.6949 0.7772 0.8718 0.8364 0.7754 0.8975

VGG-16 0.7012 0.7731 0.8763 0.8325 0.7677 0.8974 0.6974 0.7751 0.8738 0.8343 0.7713 0.8973

ResNet-34 0.6650 0.7484 0.8632 0.8139 0.7401 0.8878 0.6778 0.7786 0.8720 0.8408 0.7806 0.9011

Inception-V3 0.7295 0.7941 0.8881 0.8468 0.7870 0.9065 0.6951 0.7749 0.8725 0.8343 0.7717 0.8969

Xception 0.7248 0.7834 0.8874 0.8392 0.7749 0.9034 0.7004 0.7805 0.8743 0.8386 0.7781 0.8991

C3D 0.7489 0.8115 0.8956 0.8592 0.8048 0.9136 0.7379 0.7992 0.8918 0.8500 0.7911 0.9089

I3D 0.7662 0.8171 0.9019 0.8619 0.8073 0.9166 0.7487 0.8038 0.8969 0.8527 0.7938 0.9115

S3D 0.7431 0.8007 0.8931 0.8567 0.8016 0.9119 0.7593 0.8154 0.9007 0.8609 0.8059 0.9158

ResNet+ConvLSTM 0.7689 0.8281 0.9036 0.8714 0.8220 0.9208 0.7920 0.8450 0.9133 0.8829 0.8377 0.9282

ResNet+Bi-ConvLSTM 0.7815 0.8319 0.9099 0.8717 0.8206 0.9229 0.7800 0.8294 0.9095 0.8697 0.8175 0.9219

MSDN (224 × 224) 0.7920 0.8382 0.9146 0.8754 0.8250 0.9257 0.7826 0.8304 0.9108 0.8704 0.8181 0.9227

In order to reflect the trade-offs between the sensitivity and

specificity and evaluate the quality of our classification results

more reliably, the kappa analysis2 and F-measure (F1 score)3

are further provided. These two measures are more robust than

other percentage agreement measure, as they take into account

the possibility of the agreement occurring by chance. The kappa

values between 0.81 to 1.00 indicate almost perfect agreement,

values between 0.61-0.80 exhibit substantial agreement, values

of 0.41-0.60 exhibit moderate agreement and values less than

0.40 exhibit poor to fair agreement. F1 score reaches its best

value at 1 and worst at 0.

4.3. Implementation details

The proposed method was implemented by the publicly

available Pytorch Library. Each stream is fine-tuned from an

initialization with the pre-trained ResNet-34 deep model (He

et al., 2016) in the CNN Encoder module. The classification

part is a stacked 2-layer ConvLSTM, which has 512 hidden

units in each of cell. In the training phase, we employed an

Adam optimizer to optimize the deep model. We used a grad-

ually decreasing learning rate, starting from 0.0001, and a mo-

In this subsection, we report the classification performance

over the Dark, Bright, and merged datasets, respectively. In or-

der to demonstrate conclusively the superiority of the proposed

method over the the following state-of-the-art methods: (1) 2D

deep models with 2D input: conventional classifiers, 2D deep

learning networks, and those models are specifically designed

for ACA classification; (2) 3D deep learning models with 3D

input. We carry out a comprehensive comparison between the

proposed method and these methods in classifying the ACA 

2https://en.wikipedia.org/wiki/Cohen%27s_kappa
3https://en.wikipedia.org/wiki/F1_score

mentum of 0.9. In addition, online data enhancement is em-

ployed to enlarge the training sequence data. The same level of

data enhancement is used for all images in a sequence, which

includes brightness, color, contrast and sharpness transforma-

tion, and we set a random seed from 1 to 4 for enhancement.

4.4. Classification performance

subtypes.

(1) Conventional classifiers. We obtain the Histogram of

Oriented Gradients (HOG) feature, and five classic classifiers

are employed to grade the ACA types: Support Vector Machine

(SVM) (Suykens and Vandewalle, 1999), K-Nearest Neighbor

(KNN) (Keller et al., 1985), AdaBoost (Li et al., 2008), Naive

Bayes (McCallum and Nigam, 1998) and Random Forest (Pal,
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2005). In order to maintain consistency between comparable network. Overall, our MSDN outperforms the other networks 

experiments, the HOG features are extracted from a 224 × 224 in terms of all metrics by significant margins, and with kappas

of 0.7920 and 0.7826 in the Dark and Bright datasets, respec- 

(3) 2D and 3D deep learning models. As our model uses

the image sequence information, which may be considered to 

be 3D data, the following 2D and 3D architectures were used

as baselines. 2D networks: AlexNet (Krizhevsky et al., 2012),

VGG-16 (Simonyan and Zisserman, 2014), Inception-V3 (Xia

et al., 2017), ResNet50 (He et al., 2016), and Xception (Chollet,

2017). 3D networks: C3D (Tran et al., 2015), I3D (Carreira and

Zisserman, 2017), S3D (Xie et al., 2018), ResNet+ConvLSTM,

and ResNet+ Bidirectional ConvLSTM (Bi-ConvLSTM) (Han- 

We also validate these methods on the merged dataset, which

combines the Dark and Bright datasets into a single set. The

results are illustrated in TABLE 2. It can be clearly seen that

all the networks demonstrate significant improvements in this

dataset when compared with their classification performance

using the Dark or Bright dataset alone. In addition, Fig. 8

shows the confusion matrices of ResNet-34, Xception, C3D,

and our method over three datasets. These results further indi-

cate the superiority of the performance on the merged dataset.

This scenario is consistent with the suggestion for AS-OCT

screening in clinical practice (Xu et al., 2019): a more precise

glaucoma type diagnosis can be achieved by using the AS-OCT

data acquired under both dark and bright environments. A small

ACA may be sufficient to open up an angle that would be closed

under brighter illumination. This also suggests that the illumi-

nation conditions may be an important factor in the discrepan-

cies between gonioscopic examination and AS-OCT screening. 

son et al., 2018). 

carefully designed loss functions module -TC loss. To evaluate 

By contrast, 3D networks achieves relatively higher per- the effectiveness of each module, we report the results of differ- 

formance than 2D networks. For example, the S3D model ent combinations of these modules over three datasets, and the

yielded kappas of 0.7431 and 0.7593 in the Dark and Bright results are reported in TABLE 3. They demonstrate that when

datasets respectively. In addition, we also validate the applying the same modules to the Dark and Bright datasets, the

ResNet+ConvLSTM and ResNet+Bi-ConvLSTM methods on classification results are relatively similar, and that classifica-

dark, bright and merged dataset. The results show that the over- tion on the merged dataset obtains the best performance overall. 
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patch centered on the ACA region. 

(2) Glaucoma classification models. Two specifically des- tively. The possible reason for this is that the proposed networks

gined ACA type classification networks are also compared in can learn rich and discriminative representation from both local 

this work: Multi-Scale Regions Convolutional Neural Net- features (2D image features) and global geometry (image se- 

works (MSCNN) (Hao et al., 2019), and Multi-Level Deep Net- quence). 

work (MLDN) (Fu et al., 2019). 

It may be observed from TABLE 1 and TABLE 2 that the

deep learning-based methods yield better classification perfor-

mance than the HOG-based classifiers, since they can learn rich

discriminative representations that are more powerful than vi-

sual features by using the multiple CNN layers. In the Dark

and Bright datasets, the Xception model exhibits better perfor-

mance than the other 2D models (with kappa score of 0.7248

and 0.7004, respectively). A possible explanation is that its 

4.5. Ablation Study 

Our MSDN employs three blocks to form the classification 
deeper architectures requires larger-scale datasets for effective framework: a ResNet-34 module, a ConvLSTM module and a 
fine-tuning. 

all performances of the two methods are similar on three dataset To be more specific, it can be seen that the 

and better than the other 3D networks. Therefore, considering ResNet+ConvLSTM method clearly outperformed the ResNet

the computational complexity and classification performance, alone, with improvement of about 10.39% and 11.42% in kappa

we choose ResNet+ConvLSTM as the baseline of our proposed over the Dark and Bright datasets, respectively. This shows 
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Table 2: Different classification approaches for the grading of ACAs into open-, appositional-, and synechial-angles on merged datasets.

Dark & Bright Dataset

Methods kappa F1 Acc B-Acc Se Sp

MLDN 0.7210 0.7780 0.8861 0.8358 0.7700 0.9017

MSDNN 0.7249 0.7874 0.8868 0.8420 0.7797 0.9043

Alexnet 0.6869 0.7657 0.8697 0.8276 0.7617 0.8935

VGG-16 0.7100 0.7710 0.8814 0.8313 0.7641 0.8985

Resnet-34 0.7067 0.7658 0.8804 0.8281 0.7593 0.8970

Inception-V3 0.7386 0.8008 0.8919 0.8512 0.7931 0.9094

Xception 0.7352 0.7907 0.8917 0.8440 0.7814 0.9065

C3D 0.7770 0.8300 0.9078 0.8710 0.8200 0.9219

I3D 0.7777 0.8244 0.9091 0.8657 0.8111 0.9203

S3D 0.7607 0.8062 0.9028 0.8537 0.7937 0.9137

ResNet+ConvLSTM 0.8025 0.8536 0.9175 0.8895 0.8470 0.9320

ResNet+Bi-ConvLSTM 0.8037 0.8547 0.9179 0.8895 0.8470 0.9320

MSDN 0.8098 0.8551 0.9213 0.8877 0.8430 0.9324

Choosing a suitable ACA region size is usually empiric 

proximately 2.31%, -0.94%, and 0.73% in kappa over the Dark, and case-specific for most angle-closure detection methods (Fu 

Bright, and merged datasets, respectively, when compared with et al., 2019, 2018; Xu et al., 2013). On one hand, too large

the ResNet+ConvLSTM method. The possible reason is that the ACA size leads to over-intensive computation. On the other

with the TC loss, the ConvLSTM explores the spatial state of hand, too small an ACA region results in loss of the appearance

appearance features of a AS-OCT sequence, and these features features. In the experiment, we compared two sizes of ACA 

regions: 224 × 224, and 448 × 448 pixels. As may be observed 

in TABLE 3, methods using ACA region of 224 × 224 pixels 

performed better than those using ACA regions of 448 × 448 

pixels. This implies that when sized of 224 × 224 pixels, the 
In this subsection, we analyze and discuss the network under ACA patch focuses on the most highly relevant details, such as

different scenarios: the effectiveness of different size of ACA the iris and trabecular. By contrast, when the ACA patch is en- 

that the ConvLSTM learn discriminative representations from

an AS-OCT image sequence, and is capable of preserving the

spatial information, so memorizing the change in appearance

that corresponds to motion information (neighboring B-scans),

thereby improving performance in separating appositional

angle and fully closed angle.

TABLE 3 also reveals that after TC loss is applied, giving

the combination (ResNet+ConvLSTM+TC), classification per-

formance improves significantly, with an improvement of ap-

are further aggregated for classification purposes.

5. Discussion

region and the effectiveness of image alignment.

5.1. The effectiveness of image alignment

We report the results obtained in the absence of the the image

alignment step (MSDN w/o alignment). As may be observed,

image alignment clearly assists classification in yielding higher

performance in terms of all the metrics by significant margins,

with improvements of 0.82%, 1.62%, and 4.15% in kappa, sen-

sitivity, and specificity over the Dark dataset, respectively, when

compared with the direct application of the proposed network

to the original images (w/o alignment). This finding shows that

image alignment is a crucial preprocessing step in improving

the accuracy of subsequent classification.

5.2. The effectiveness of the size of the ACA region

larged to 448 × 448 pixels, the larger region may contain more

unrelated local features, which may disturb the deep network.

5.3. Classification of appositional- and synechial- angle

As we claimed in Section I, the classification of ACAs into

two subtypes, i.e., open angle and angle-closure, is relatively

straightforward and easy, and recent works have demonstrated
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remarkable performance (AUC ≥ 0.98). In our experiment, ac- merged datasets.

cording to confusion matrices in Fig. 8, we also receive an 
By contrast, deep neural networks obtained much higher 

ACC=1.000 using the proposed MSDN for open angle and 
AUC scores than the conventional classifiers over all the

angle-closure classification, and the other state-of-the-art net- 
datasets, as shown in Fig. 10. However, we can observe that

works also obtained similar performance. Nevertheless, we 
the proposed method still produces the best performance on

intend in this subsection to report only the performance in clas- 
the Dark, Bright, and merged datasets with AUCs of 0.8158, 

Fig. 8: Confusion matrices of some state-of-the-art 2D and 3D deep networks and our method in classifying appositional, and synechial ACA over three AS-OCT

datasets. The numbers in the confusion matrices denote the percentage of the predicted class.

sification of appositional and synechial angles.

Fig. 9 demonstrates the classification performance of five

classic conventional classifiers. It can be seen clearly that these

classifiers exhibit poor performance in separating appositional-

and synechial- angles, and the Naive Bayes classifier perform

the best in these classifiers, where AUCs are only of 0.6183,

0.6648, and 0.6376, respectively over the Dark, Bright, and

0.8005, and 0.8444. In addition, most of the deep learning-

based approaches are able to generate the higher classification

results on merged dataset, and this finding tends to confirm that

the use of images captured under both dark and bright illumina-

tion conditions could improve the diagnostic accuracy.

Fig. 11 reveals the classification performance in distinguish-

ing appositional and synechial angles under different scenar-
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Table 3: Performance of different module combinations for the grading of ACAs into open-, appositional-, and synechial-angles.

Dark Dataset Bright Dataset Dark & Bright Dataset

Methods kappa F1 Se Sp kappa F1 Se Sp kappa F1 Se Sp

ResNet (448 × 448) 0.7042 0.7660 0.7596 0.8965 0.6901 0.7530 0.7481 0.8917 0.7114 0.7730 0.7669 0.8979

ResNet (224 × 224) 0.6650 0.7484 0.7401 0.8878 0.6778 0.7786 0.7806 0.9011 0.7067 0.7658 0.7593 0.8970

ResNet+ConvLSTM (448 × 448) 0.7629 0.8256 0.8215 0.9195 0.7496 0.8092 0.8009 0.9130 0.7779 0.8347 0.8281 0.9237

ResNet+ConvLSTM (224 × 224) 0.7689 0.8281 0.8220 0.9208 0.7920 0.8450 0.8377 0.9282 0.8025 0.8536 0.8470 0.9320

ResNet+ConvLSTM+TC (448 × 448) 0.7730 0.8291 0.8210 0.9213 0.7747 0.8310 0.8236 0.9221 0.8045 0.8508 0.8386 0.9306

ResNet+ConvLSTM+TC (224 × 224) 0.7920 0.8382 0.8250 0.9257 0.7826 0.8304 0.8181 0.9227 0.8098 0.8551 0.8430 0.9324

MSDN (448 × 448) w/o alignment 0.7697 0.8240 0.8142 0.9194 0.7667 0.8218 0.8123 0.9185 0.7825 0.8361 0.8326 0.9267

ResNet+ConvLSTM+TC (448 × 448) 0.7730 0.8291 0.8210 0.9213 0.7744 0.8310 0.8236 0.9221 0.8045 0.8508 0.8386 0.9306

MSDN (224 × 224) w/o alignment 0.7838 0.8342 0.8231 0.9238 0.7664 0.8152 0.8030 0.9166 0.7683 0.8321 0.8239 0.9183

ResNet+ConvLSTM+TC (224 × 224) 0.7920 0.8382 0.8250 0.9257 0.7826 0.8304 0.8181 0.9227 0.8098 0.8551 0.8430 0.9324

Dark Bright Dark & Bright

Fig. 9: Comparison of conventional classifiers and our method in classifying appositional, and synechial ACA over three AS-OCT datasets.

ios: different module combinations, different ACA region sizes,

and with and without image alignment. The results demon-

strate that the combination of the proposed network architec-

ture (ResNet+ConvLSTM+TC), the application of image align-

ment, and the selection of an ACA region with size of 224×224

pixels, are the important factors in obtaining better classifica-

tion results of appositional and synechial angles.

6. Conclusion

Various methods have recently been proposed to identify

gonioscopic angle-closure from AS-OCT imaging. However,

most of the existing automated methods are only able to clas-

sify the anterior chamber angles as either open or angle-closure.

In this paper, we have proposed an image sequence-based deep

network that is able to classify the anterior chamber angles in

AS-OCT imagery into three types - open-angle, appositional-

angle, and synechial-angle, so as to further guide clinical man-

agement at different stages of glaucoma.

The proposed method consists of image alignment, iris seg-

mentation, ACA localization and ACA classification. In the

deep learning part, we have proposed a novel loss - TC loss -

with a view to learning discriminative representations over two

different illumination condition datasets. We have reported that

the proposed method is able to accurately classify ACAs into

our three groups, with an Acc of 0.9146, when compared with

the gonioscopic annotation. The results show that our method

achieves better performance when compared with other state-

of-the-art 2D and 3D deep networks.

We have constructed an AS-OCT dataset containing images

from 66 eyes, and the AS-OCT of these eyes were acquired

under both dark and bright lightness conditions. Such data con-

struction is potentially able to simulate the pressure of the go-

niolens, which can push the angle open and help determine the

true angle configuration. It may be expected that the ability of
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BrightDark Dark & Bright

Fig. 10: Comparison of state-of-the-art 2D and 3D deep networks and our method in classifying appositional, and synechial ACA over three AS-OCT datasets.

Dark Bright Dark & Bright

the proposed model to learn discriminating features from these References

datasets could be a powerful tool for diagnosing the presence, 

and analyzing the progression of angle-closure diseases. In ad- 

dition, we believe this work has the potential to be applied to 

other 3D image modalities such as MRI, CT and OCT, which 

however is not the focus of the paper. In the future, we will try 

to extend the proposed method to other medical image datasets 

to solve similar problems. 

Fig. 11: Classification of appositional and synechial angles under different scenarios: different module combination, different ACA region size, and with and without

image alignment over three AS-OCT datasets.
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