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Diffusion tensor imaging provides increased sensitivity to microstructural tissue changes compared
to conventional anatomical imaging but also presents limited specificity. To tackle this problem,
the DTIAMOND model subdivides the voxel content into diffusion compartments and draws from
diffusion-weighted data to estimate compartmental non-central matrix-variate Gamma distribution
of diffusion tensors, thereby resolving crossing fascicles while accounting for their respective het-
erogeneity. Alternatively, tensor-valued diffusion encoding defines new acquisition schemes tagging
specific features of the intra-voxel diffusion tensor distribution directly from the outcome of the
measurement. However, the impact of such schemes on estimating brain microstructural features
has only been studied in a handful of parametric single-fascicle models. In this work, we derive a
general Laplace transform for the non-central matrix-variate Gamma distribution, which enables the
extension of DTAMOND to tensor-valued encoded data. We then evaluate this "Magic DIAMOND"
model in silico and in vivo on various combinations of tensor-valued encoded data. Assessing un-
certainty on parameter estimation wvia stratified bootstrap, we investigate both voxel-based and
fixel-based metrics by carrying out multi-peak tractography. We show that our estimated metrics
can be mapped along tracks robustly across regions of fiber crossing, which opens new perspectives

for tractometry and microstructure mapping along specific white-matter tracts.

Abbreviations used: MRI, magnetic resonance
imaging; DWI, diffusion-weighted MRI; DW, diffusion-
weighted; DTI, diffusion tensor imaging; DIAMOND,
distribution of anisotropic microstructural environments
in diffusion compartment imaging; CHARMED, compos-
ite hindered and restricted model of diffusion; NODDI,
neurite orientation dispersion and density imaging; ADC,
apparent diffusion coefficient; FW, free-water; fMD,
fascicle mean diffusivity; fAD, fascicle axial diffusiv-
ity; fRD, fascicle radial diffusivity; fFA, fascicle frac-
tional anisotropy; PGSE, pulsed gradient spin echo; AIC,
Akaike information criterion; SNR, signal-to-noise ratio;
IQR, interquartile range; LL, linear-linear diffusion en-
coding combination; LP, linear-planar diffusion encoding
combination; LS, linear-spherical diffusion encoding com-
bination.

I. INTRODUCTION

Measuring water diffusion with diffusion-weighted MRI
(DWI) enables the non-invasive characterization of bi-
ological tissues in wivo. In particular, diffusion tensor
imaging (DTI)!, a very common DWI technique, has
proven sensitive to microstructural tissue changes but
only provides a voxel-scale average of the intra-voxel
diffusion profile. Indeed, DTI considers the DW sig-
nal S(b,n) acquired during a typical Stejskal-Tanner se-
quence? with b-value b and unit orientation n for the
diffusion-probing magnetic field gradient, and interprets

it as the following monoexponential:

S(b,n)
So

— exp(~bn" - (D) -n) = exp(—bDn), (1)

where Sp is the non-DW signal, (D) is the voxel-scale
averaged diffusion tensor, D, is the effective diffusiv-
ity along orientation n, "-" denotes the vector/tensor
multiplication, and the superscript "T" indicates vec-
tor/tensor transposition. As a result, DTI shows poor
specificity in depicting the precise nature of microstruc-
tural tissue changes®®, especially in voxels of crossing
fascicles”®, which make up 60 to 90% of the brain®. Fig. 1
illustrates a few archetypal voxels where DTT’s lack of
specificity may arise.

DTT’s lack of specificity stems from the inherent het-
erogeneity of typical DWI voxels, whose volume of a
few cubic millimeters encompasses multiple cell types,
sizes, geometries and orientations, and the extra-cellular
space'% 13, In other words, the measured DW signal is
a combination of signals arising from a variety of mi-
crostructural environments. Approximating that diffu-
sion is a Gaussian process within these environments and
that no exchange occurs between them'?4, which usually
holds in healthy tissues for typical acquisition times'® '&,
intra-voxel heterogeneity can be accounted for by consid-
ering a weighted sum of all microstructural signals, thus
obtaining the following DW signal:

S(f;n) ~ [ P(O) exp(-tn™ D mydD,  (2)
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Figure 1. Illustration of archetypal voxel contents in terms
of colored microscopic diffusion tensors. While the voxel con-
tents typically associated to a white-matter (WM) fiber (a)
and to WM crossing fibers (b) would for instance correspond
to the healthy corpus callosum and its crossing with the cin-
gulum, respectively, the contents typically associated to de-
myelination (¢) and WM inflammation (d) usually correspond
to unhealthy white matter. DTI would typically yield com-
parable voxel-averaged diffusion tensors for the three voxels
on the right.

where the intra-voxel diffusion tensor distribution P(D)
weighs the different microstructural contributions'® and
the integral covers the space Sym™(3) of 3x3 symmetric
positive-definite tensors. To better capture intra-voxel
heterogeneity and thus overcome DTT’s limitations, one
can either attempt to improve the interpretation of the
diffusion signal post-acquisition, via an appropriate sig-
nal representation or model, or to enhance the specificity
of the set of acquired signals itself.

In this work, we combine two techniques that respec-
tively target these two solutions: tensor-valued diffu-
sion encoding?® 2" and the Distribution of anisotropic
microstructural environments in diffusion compartment
imaging (DTAMOND) model®®2??| that has shown great
promise in mapping the Meyers loop®?, imaging the
preterm human cortex®', characterizing mild traumatic
brain injuries®? and studying infantile autism?®3. After
introducing these techniques in sections ITA and IIB,
we extend DIAMOND to tensor-valued encoded data in
section 11 C and obtain the "Magic DIAMOND" model,
named in homage to the magic-angle spinning DW acqui-
sitions of Ref. 23 and its physical chemistry inspiration3?.
This new approach, first to draw from tensor-valued dif-
fusion encoding to estimate compartmental distributions
of diffusion tensors, is designed to tackle various problems
such as edema, neuroinflammation or axonal degradation
in voxels of crossing fascicles, all relevant to the major-
ity of the brain and to the study and understanding of
neurodegenerative diseases. In section III, we describe
the methods used to evaluate Magic DTAMOND on in
silico signals and in vivo human data. In particular, we
address how to select the appropriate number of intra-
voxel fascicles, estimate parameters, acquire the in silico
and in vivo datasets, and compare our model with the
original DTAMOND model on these datasets using strat-

ified bootstrap (in silico and in vivo), cost function com-
putation (in wvivo) and tractography (in wvivo). Results
reporting on various combinations of diffusion encodings
are presented in section IV and discussed in section V.
While the in silico signals enable preliminary quantifica-
tion of the accuracy and precision of Magic DIAMOND’s
estimations, the in vivo data offers a proof of principle of
Magic DIAMOND’s potential.

II. THEORY
A. The DIAMOND model

Mathematical models enable a direct translation from
the diffusion signal’s features to metrics that should de-
scribe the biological properties of the voxel content, as
discussed in®*37. Among them, diffusion compartment
imaging (DCI) reflects the presence of intra-voxel tis-
sue compartments and relates compartmental features to
microstructural tissue properties at sub-voxel resolution,
effectively providing insight into microstructural tissue
changes with critically improved sensitivity and speci-
ficity. A brief review of major DCI techniques includes
the Composite hindered and restricted model of diffu-
sion (CHARMED)?89 its extension AxCaliber®®, and
the Neurite orientation dispersion and density imaging
(NODDI) model*'. However, these methods consider
key assumptions that are inconsistent with the known
tissue microstructure*?4°. As a solution, fitting either
compartment-specific distributions of apparent diffusion
coefficients (ADCs)*6 or one-dimensional Gamma distri-
butions of ADCs in the ball-and-stick model*” was pro-
posed. However, while the former could not characterize
the 3D anisotropy of diffusion observed in the brain*®,
the latter only implemented a Gamma distribution with
same shape and scale parameters for all compartments.
Finally, none of the previous models estimates crossing
anisotropic compartments.

A recent DCI model has been proposed to circum-
vent these limitations: the Distribution of anisotropic
microstructural environments in diffusion compartment
imaging (DIAMOND) model?®2?°. Tllustrated in Fig. 2,
DIAMOND considers a free-water (FW) compartment
and a series of anisotropic compartments per voxel.
In the brain, these anisotropic compartments are usu-
ally referred to as "fascicles," as anisotropic diffusion
is conventionally recognized to arise from the presence
of white matter fascicles at the mesoscale. The signal
arising from each fascicle is described by a distinct uni-
modal non-central matrix-variate Gamma distribution
Pr(D, s, ¥, 0) of 3x3 symmetric positive-definite diffu-

sion tensors®:



_ Det(D)<2
Pr(D, k, ¥,0) = Det(¥)" T'5(k)

where T'3(k) = 73/2 Hsmzl I'(k — (m —1)/2) is the mul-
tivariate Gamma function, Fy; is the hypergeometric
(Bessel) function of matrix argument of order (0,1),
k > 1 is the shape parameter, ¥ € Sym™ (3) is the scale
tensor and ® € Sym(3) is the noncentrality parameter
(Sym(3) denotes the space of 3x3 symmetric tensors).
Consequently, the overall modeled signal writes

S(b, n) Sfj(b, n)
- —bD oLy
So Jrw exp( FW) +zj:fy S, (4)
with
w _ /PF(D,Hj,\I/j,Qj) exp(—bnT D -n)dD,
0

()
where frw, f; € [0,1] are compartmental signal frac-
tions, normalized so that frw + Zj f; =1, and Dpw =
3 pm? /ms.

The mean diffusion tensor of the distribution is given
as a function of the distribution parameters by

(D) = ¥ - (kI3 + ©). (6)

The "width" of the peak-shaped tensor distribution is in-
terpreted in terms of "tissue heterogeneity", since a very
heterogeneous compartment should be described using a
variety of distinct diffusion tensors. While the shape pa-
rameter k relates to the isotropic component of tissue
heterogeneity, the noncentrality parameter @ allows to
squeeze the distribution in order to capture anisotropic
tissue heterogeneity. Indeed, this effect of ® on any fit of
Eq. (4) is ensured by the choice of parametrization made
for ©® in Ref. 29: if one expresses (D) and © using the
transfer matrix V from the laboratory frame of reference
to the compartment’s eigenbasis and to insert this result
into Eq. (6), one then obtains

(D) = V- Diag(A*, A+ Al - V7T (7)
where Al > )\L, and
© =V - Diag(0,0,+") - VT, (8)

Note that the FW signal in Eq. (4) corresponds to
a non-central matrix-variate Gamma distribution with
Kk — 400, k' = 400 and isotropic (D).

DIAMOND thus effectively allows the evaluation of
compartment-specific diffusion features, such as fas-
cicle mean diffusivity (fMD), fascicle axial diffusivity
(fAD), fascicle radial diffusivity (fRD) and fascicle frac-
tional anisotropy (fFA), while also accounting for intra-
compartment heterogeneity, especially in voxels of cross-
ing fascicles. However, extracting compartment-specific

exp(—Tr(® + ¥~ - D)) x Fo1(k,©-¥1.D), (3)

(

features from conventional DWI data is known to be a
difficult inversion problem, involving functionals with nu-
merous local minima. Besides, even if intra-compartment
heterogeneity is accounted for by the use of a compart-
mental diffusion tensor distribution - a mathematical
achievement in itself - properly quantifying this hetero-
geneity remains a challenge to this day. Indeed, analyti-
cally tractable definitions for such heterogeneity metrics
have, to our knowledge, not yet been derived from para-
metric tensor distributions.
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Figure 2. Illustration of the way a complex voxel content
(crossing fibers and free water, left panel) is depicted with-
ing the DTAMOND model (right panel). Each anisotropic
diffusion compartment is described in terms of a non-central
matrix-variate Gamma distribution Pr(D,x, ¥, 0) Eq. (3)
whose mean diffusion tensor is associated to various fascicle
metrics, such as the fascicle mean diffusivity (fMD), the fasci-
cle axial diffusivity (fAD), the fascicle radial diffusivity (fRD)
and the fascicle fractional anisotropy (fFA). Each overall dis-
tribution is also given a total signal fraction f.

B. Tensor-valued diffusion encoding

An alternative way to enhance the specificity of the
information provided by diffusion MRI is to obtain com-
plementary pieces of diffusion information at the acquisi-
tion stage. The most commonly used diffusion sequence,
the pulsed gradient spin echo (PGSE) sequence?, cor-
responds to applying a linear (unidirectional) diffusion
gradient g(t) = g¢(t)n. Such a sequence is character-
ized by a spin-dephasing vector (or g-vector) q(t) =
’yfot g(t')dt’" = ¢(t)n that grows and vanishes through
time along a unique direction given by the unit vector n.
The time-dependent norm of this g-vector yields the b-
value b = [ ¢*(t) dt, where 7 is the total encoding time.
Instead, tensor-valued diffusion encoding (or b-tensor en-
coding)?*27 has introduced g-trajectories in which the



g-vector q(t) =~ fot g(t') dt’ = q(¢) n(t) follows a contin-
uous and non-trivial trajectory through time?326. The
name "b-tensor encoding" comes from the fact that the
time-dependency of the g-vector’s orientation n(t) does
not encode diffusion weighting in a vector, but rather in
a 3x3 symmetric positive-semidefinite tensor,

b= / T ¢*(t)n(t)-n"(t)dt € Sym™(3),  (9)
0

where Sym(*)(3) denotes the space of symmetric
positive-semidefinite tensors. Note that this b-tensor was
introduced in earlier works as a b-matrix accounting for
cross terms between diffusion gradient pulses'°°.

While the shape of the b-tensor’s glyph gives its name
to the corresponding diffusion encoding (linear or spheri-
cal encoding for instance), its trace defines the associated
b-value b = Tr(b). In this general b-tensor formalism, the
specific tagging of a given diffusion pattern is achieved

through the expression of the overall DW signal®#:26:
S(b
é ) = /P(D) exp(—b:D)dD, (10)
0

where

b:D=Y by;Dy = / AW nT(#)-D-n(t)dt (1)
0

ij

is the Frobenius inner product, a generalized scalar prod-
uct that "projects" the diffusion tensor onto the b-tensor,
thereby effectively selecting a certain diffusion pattern to
probe. For instance, the signal Eq. (2), associated to
the PGSE g-vector q(t) = ¢(t)n, actually maps back

to the linear (stick-like) b-tensor b = b n - n' that
|

4

was already introduced in'®. Also, the spherical encod-
ing yielded by a spherical b-tensor allows for the spe-
cific encoding of isotropic diffusion during the acquisition
process?! 23, Combinations of these two encodings, cou-
pled to the fitting of a Gamma distribution of ADCs on
powder-averaged data, have already enabled the extrac-
tion of novel diffusion metrics?>°! that may be used to
measure the microscopic diffusion anisotropy of healthy
brain tissues®?, as well as to probe diffusional variance in

tumors®3.

Even though the opportunity to measure non-
conventional pieces of diffusion information dates back
almost 30 years, with the double diffusion encoding of
Ref. 20 and the triple diffusion encoding of Refs. 21 and
22, it is only within the last decade that non-trivial dif-
fusion encoding has drawn much attention®* %%, From a
modeling standpoint, the main interest lies in assessing
whether the estimation of microstructural features ben-
efits from these non-trivial diffusion encodings or not.
The impact of planar and spherical encodings has already
been investigated in ball-and-stick-like models such as the
white matter Standard Model%” and NODDI*!, focusing
mainly on accuracy**, precision®® and degeneracy®’ !
in parameter estimation. Also, a generalized cumulant
approach implicitly assuming a normal distribution of
diffusion tensors has already been implemented in the
framework of b-tensor encoding?®. However, these mod-
els do not separately characterize crossing fascicles. One
exception lies in the Monte-Carlo inversion of Refs. 72—
74 that shows impressive results in teasing apart intra-
voxel populations in the diffusion-relaxation space but
can unfortunately be significantly time-consuming and
noise-sensitive.

C. The Magic DIAMOND model

Extending the DTAMOND model to tensor-valued encoded diffusion data, a procedure illustrated in Fig. 3, consists
in merging Egs. (4) and (10) to yield the following Magic DIAMOND signal:

S(b)
So

J

= fFVV eXp(—prw) =+ Z fj /PF(D, K,j, \I’j, @J) exp(—b : D) dD, (12)

St.i(b)/So

whose fascicle part gf, ;(b)/Sp remains to be analytically computed. This fascicle part is the general Laplace transform
of the non-central matrix-variate Gamma distribution Eq. (3).

1. General Laplace transform of the non-central matriz-variate Gamma distribution

Let us define the general Laplace transform of an arbitrary diffusion tensor distribution P(D) from Eq. (10) as

Tp(b) = /P(D) exp(—b:D)dD, (13)
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Figure 3. Diffusion compartement imaging (DCI) techniques subdivide the voxel content into diffusion compartments (left
panel). In particular, the DIAMOND model estimates a non-central matrix-variate Gamma distribution of diffusion tensors
Pr(D) for each compartment (top center panel). Alternatively, tensor-valued encoding (bottom center panel) establishes novel
sequences that yield for instance spherical encoding, which specifically tags isotropic diffusion patterns (Djso, in purple) of any
diffusion tensor (grey glyph), contrary to the conventional linear encoding that only probes diffusion along single directions
n (Dy, in orange). The spherically encoded sequence used throughout this paper (gradient waveform g(t), spin-dephasing
vector q(t) and g-trajectory) is presented as an example in the right panel, where color codes for orientation. In this work, we
incorporate tensor-valued encoding in the DIAMOND fitting procedure at two key steps (dashed arrow lines): 1) during the
acquisition process, 2) in the estimation of Pr(D) for each compartment.

where 7 denotes the Laplace transformation. To compute this Laplace transform, let us introduce the moment-

generating function for any distribution P of symmetric tensors*’:

Mp(2) = [P(D) exp(1x(2 - D)) dD. (14)
where Z € Sym(3). By choosing the symmetric tensor

Z=-b=— /qu(t) n(t) -nT(t)dt (15)
0

T

from Eq. (9) and by using the trace property Tr(u-vT) = v . u and the definition of the Frobenius inner product

Eq. (11), we prove that the Laplace transform Eq. (13) equals
To(b) = Mp(~b). (16)

In the particular case of the non-central matrix-variate Gamma distribution Pr Eq. (3), it can be shown*’ that its
moment-generating function is given by

Mp.(Z) = [Det(Is — Z - ®)] 7" exp [Tr([(Ig, ~Z-9)" 13- @)] , (17)

with Z such that (I3 — Z - ¥) € Sym™(3). Since the choice Z = —b Eq. (15) satisfies this last condition, the general
Laplace transform of the non-central matrix-variate Gamma distribution writes

Tpp(b) = /PF(D,R,\II, ®) exp(—b : D)dD

= MPF(_b)
= [Det(I3 + b ¥)] " exp[Tr([(I3+ b - ¥)~!' —I3] - ©)] . (18)

This expression for 7p.(b) can be rewritten by considering the Woodbury matrix identity to simplify the previous
trace: given a square invertible n X n matrix A, an n X m matrix U and an m X n matrix V, assuming that
(I, + V-A~1.U) is invertible, one has (A+U- V)1 = A"l - A-1.U.(I,,+V -A71.U)"!. V. A"l Taking
A=1I3,U=band V =¥, we yield

Tpe(b) = [Det(I3 + b - ¥)] “exp[-b: [(I3+ ¥ -b)~' - ¥.O]], (19)

which is valid for any arbitrary b-tensor.



2. Diffusion signal within the Magic DIAMOND model

Returning to Eq. (12), using Egs. (18) and (19), and omitting the compartmental index j, we obtain the Magic
DIAMOND fascicle signal

St (b)

= [Det(I3 + b )] " exp[Tr([(Is + b ¥) ! —I3] - O)]
= [Det(I3 +b- )] exp[~b: [l + ¥ -b)~- . O (20)

for any arbitrary b-tensor. Let us render that signal expression more explicit in the case of an axisymmetric b-tensor.
Using the previous expressions Eqgs. (6) and (8) for ¥ and ©, the Magic DIAMOND fascicle signal writes

Sf(b[an)ﬁ) _ —K / .f(b[anaﬁ) [1_fL(bS)]_1

SO 17, (b) Plonbs, 9] exp (|14 Lo R OS2 (1)
with the dimensionless quantities
bg All-+
f|\,L(bs):1+§sm, (22)
f(bL,bs, B) =1+ % sin® B, (23)
Al A bg AlIAE

F(bL,bs, B) = fi (bs) F1(bs) + b (m cos? B4~ sin? B4 M) . (24)

Here, sl = k + k” and k1 = k are the axial and radial shape parameters, respectively, § is the angle separating the
axes of revolution of the diffusion and b- tensors, and by, = bba and bs = b(1 — ba) are two shape parameters drawn
from Ref. 75 for the b-tensor. These parameters both depends on the normalized anisotropy parameter ba € [—0.5, 1]
introduced in Ref. 76, so that Sf(bL, bs, B) = Sf(b7 ba, ). In particular, b = 1 yields the linear signal

Sf(lin')(ba B) bl = kH) Al cos? B

€L
Al AL "
= |14+b( = cos? B+ Z—sin?p exp
kl Kkt

So ] ) (25)
&l +b ()\” cos? B + T At sin? 6)
K
ba = 0 yields the spherical signal
—_rt
SEPR () b AL\’ b Al —b(kl — kL) Al
ot W (122 (122 Al K 2
S0 ( +:’WL) < +3nl) eXp{ ZP Y } (26)
and bp = —0.5 yields the planar signal
Sl 3y bty b /Al AL - —b (sl = k1) Alsin? 8
£ 14 14+ = (= sin?B+ = cos’p3 exp
So 2 k't 2 \ kl K+ . o,
260 +0 (Alsin® 8+ —7 A" cos? 8
(27)

This new set of equations satisfies two key conditions. First, the linear signal Eq. (25) directly translates back to the
original DIAMOND signal of Ref. 29. Second, this set of equations obeys the relationship linking linear, planar and
spherical diffusion encodings for a purely homogeneous fascicle (k — 400 and k' — +00):

tim [0 (3.6) S0 0] s[5 (2], (2)
—+o0




III. MATERIAL AND METHODS
A. Model selection

As shown in Eq. (12), Magic DIAMOND considers at
each voxel a single free water (FW) compartment and a
series of Ny fascicles (anisotropic compartments):

S(b)
So

N &
= frw exp(—bDrw) + Z i 54(b) (29)
J

So

with St ;(b)/Sy given by Eq. (21). Notice that with this
choice, intra-axonal restricted diffusion and extra-axonal
hindered diffusion arising from a fascicle are both mod-
eled using one tensor distribution. In order to set the
number of intra-voxel fascicles (Ny € {0,1,2,3} in this
work), model selection was performed using the Akaike
information criterion (AIC)”", promoting the model of

J

lowest index

AIC = 2nparam — 2In(L) , (30)
with 7param the number of estimated model parameters
and £ the maximum value of the model likelihood func-
tion. This criterion favors the goodness of fit while dis-
couraging overfitting, but is not entirely impervious to
noise in the data®”. To ensure a fast and robust model
selection, the Akaike model selection was performed on
ball-and-stick models.

B. Parameter estimation

The parameters of any evaluated diffusion tensor dis-
tribution were estimated within each voxel using a max-
imum a posteriori approach where no prior correlation
between the expectations (D), fractions f and shape pa-
rameters is assumed. To ensure positive-definiteness
of the diffusion tensors, we parametrized them using
L = In((D)). The optimal map of parameters was then
obtained through the Bayes maximization

{Lopt; Kopt fopt } = argmax [P(I|L, s, f) P(f|L, x) P(x|L) P(L)], 81)

o, f

where I denotes the set of acquired images. While the
probability P(I|L,,f) was assumed to obey a normal
distribution, P(f|L, k) and P(x|L) were taken as uniform
densities and P(L) was submitted to spatial regulariza-
tion?®78, merely reflecting the fact that the brain is a
continuous diffusion medium that does not contain ac-
tual voxels.

C. In vivo acquisitions

MRI acquisitions were performed on a clinical 3T sys-
tem with 45 mT/m maximum gradient amplitude (In-
genia, Philips Healthcare, Best, the Netherlands) us-
ing a 32-channel head coil. Imaging was performed on
two healthy young male volunteers using a prototype
diffusion-weighted spin-echo EPI sequence with numeri-
cally optimized”™ Maxwell-compensated® spherical, pla-
nar and linear encoding waveforms. We also attempted
to match their respective frequency contents®', but did
not sacrifice encoding efficiency to do so.

Acquisition parameters were: TR=6500 ms, TE=121
ms, spatial resolution—=2.5x2.5x2.5 mm?>, 48 slices,
in-plane acceleration factor=1.9, multiband factor
(SENSE)=2, FoV=240x240 mm?, echo spacing=0.82
ms, multi-shell scheme of 45 signal samples at 1xb = 0,
6xb = 0.1, 6xb = 0.7, 12xb = 1.4 and 20xb = 2
(ms/pm?) following the scheme suggested in Ref. 82,

(

and encoding times of 41 ms (pre), 41 ms (post), 16
ms (pause) for linear gradient waveforms, and 45.33 ms
(pre), 41.33 ms (post), 16 ms (pause) for planar and
spherical gradient waveforms. All waveforms (including
the spherical ones) were rotated via a rotation scheme
similar to the one used in Ref. 83. The acquired images
were corrected for motion and Eddy currents by apply-
ing an in-house topup-eddy procedure based on a com-
mon averaged b = 0 image for the linear, planar and
spherical parts of the dataset independently. They were
then resampled to 2x2x2 mm? using linear interpola-
tion. Other topup-eddy strategies for tensor-valued dif-
fusion encoded data can be found in the literature®*. The
signal-to-noise ratio (SNR) of the in vivo dataset was
estimated to around 40 in the corona radiata using the
method described in the Supplemental Material of Ref. 82
on our b = 0.7 ms/pm? spherical data. Finally, in order
to evaluate the impact of introducing tensor-valued dif-
fusion encoding within Magic DIAMOND, the acquired
volumes were combined so as to create the three following
encoding combinations:

e LL: 45 linear + 45 linear b-tensors,
e LP: 45 linear + 45 planar b-tensors,

e LS: 45 linear + 45 spherical b-tensors.



D. Numerical simulations

Numerical simulations were performed using a modi-
fied version of Fiberfox® that allows for tensor-valued
diffusion encoding. We generated a medium composed
of three partially crossing fascicles surrounded by wa-
ter, described by the free isotropic diffusivity Dew =
3 nm?/ms. Two fascicles span along the z- and y- axes,
respectively, and the third fascicle crosses with them at
a 45° angle between the y- and z- axes. FEach fasci-
cle is composed of 900000 fibers characterized by the
axial and radial diffusivities D) = 1.7 pm?/ms and
D) = 0.4 pm?/ms, respectively”®6. The radial distri-
bution of these fibers follows a normal distribution and
the remaining extra-fiber space is filled up with free wa-
ter. Our Fiberfox phantom is illustrated in Fig. 4.

Datasets were simulated for linear, planar and spheri-
cal diffusion encodings at two SNRs, namely the SNR =
40 of our in vivo dataset and the ideal infinite SNR. The
Rician noise of the SNR = 40 dataset was generated as
follows:

- Strue (b) v ? V' ’
Snmsy(b) = So,truc\/< So,true + SNR + SNR s

(2)
where Sirue and Sptrue = Strue(b = 0) come from the
infinite-SNR (noise-free) dataset, and v and v’ are drawn
from a normal distribution with zero mean and unit stan-
dard deviation. We set the same acquisition parameters
and considered the same encoding combinations as those
described in section III C. To assess whether or not two
encoding combinations yield distinct estimated values for
a given metric, we used non-parametric Mann-Whitney
U-tests®7, equivalent to two-sided Wilcoxon rank sum
tests.

E. Precision on parameter estimation with
stratified bootstrap

The evaluation of diffusion models with in vivo data is
challenging because the underlying ground truth is not
known. We compared the various encoding strategies by
evaluating their precision on parameter estimation. In-
tuitively, the precision is high when multiple acquisitions
of the same object leads to similar results and does not
depend on noise realizations. Assessing estimation un-
certainty allowed us to test whether the additional infor-
mation provided by the tensor-valued diffusion encoding
better constrains the estimation problem, while keeping
a constant number of DW images.

The typical way to compute estimation uncertainty is
to repeat the measurement of the same object, estimate
parameters for each and assess the variance in parame-
ters. This would unfortunately lead to unrealistic scan
time in DW-MRI. We instead used stratified bootstrap,
which amounts to 1) acquire two repetitions of the same
DW-MRI experiment, and 2) create a large number of

Figure 4. Illustration of the Fiberfox numerical phantom
described in section IIID and used to evaluate Magic DI-
AMOND in section IV A. The phantom is made out of three
fascicles: one along the z-axis (red), one along the y-axis
(green), and one crossing with them at a 45° angle between
the y- and z- axes (blue). Each fascicle is composed of 900
000 fibers characterized by the axial and radial diffusivities
Dy =17 nm?/ms and D) = 0.4 pm?/ms, respectively. The
radial distribution of these fibers follows a normal distribu-
tion and the remaining extra-fiber space is filled up with free
water of isotropic diffusivity Dpw = 3 pm?/ms.

"virtual" acquisitions by randomly choosing, for each dif-
fusion gradient direction, one of the two repetitions. Un-
like wild bootstrap® and repetition bootstrap®’, strati-
fied bootstrap allows for the creation of a large number
of noise realizations without any explicit noise model-
ing. Specifically, we acquired twice each of the datasets
described in section IIT C, namely four sets of 45 linear b-
tensors (L1, L2, L3, L4), two sets of 45 planar b-tensors
(P1, P2), and two sets of 45 spherical b-tensors (S1, S2),
giving the following combinations:

e LL: [L1 +— L2| + [L3 +— L4|,
e LP: [L1 +— L2] + [P1 +— P2],
e LS: [L1 +— L2] + [S1 «— S2],

where «— denotes random choice between two datasets
on each acquired direction and + denotes dataset con-
catenation. We generated 100 realizations of each of
these combinations. Medians and interquartile ranges
(IQRs) of estimated parameters across these realizations
were then computed within a white-matter mask to quan-
tify their average value and variance, respectively. We
compared the results from only linear b-tensors (LL,
equivalent to the original DIAMOND formulation) to
those arising from combinations of linear, planar and
spherical b-tensors (LP and LS).



F. Visualization of the optimization landscape with
in vivo data

The estimation of a DCI model is known to be a
challenging inversion problem involving multidimensional
functionals with numerous local minima. We evaluated
the optimization landscape by investigating the shape of
the cost function used for parameter estimation®? in the
parameter space. This investigation was carried out in
two voxels of interest, a typical one-fiber voxel in the
corpus callosum and a typical three-fiber voxel in the
centrum semiovale, after evaluating Magic DIAMOND
on the following sets of 180 b-tensors (covering all our
acquired signals, see section III E):

e LL: L1 + L2 4+ L3 + L4,
e LP: L1 + L2 + P1 + P2,
e LS: L1 + L2 + S1 + S2,

where + denotes dataset concatenation. Finally, we com-
pared the different cost function shapes extracted from
the LL, LP and LS acquisition schemes.

G. Tractography and fascicle-metric mapping

While computing whole-brain maps is the most com-
mon approach with single-fascicle models, the lack of
one-to-one correspondence between neighbouring voxels
with multi-fascicle models makes them more challenging
to evaluate. For instance, there may be fascicles that are
not present in all voxels (one-to-zero correspondence) or
fascicles that are represented by different number of com-
partments in different voxels (one-to-many correspon-
dence). We therefore evaluated the impact of tensor-
valued diffusion encoding using a fixel-based (fascicle-
element based) analysis®!, by delineating tract stream-
lines with tractography and by extracting quantities re-
lated to the most aligned fascicle compartment along the
streamlines.

Multi-peak tractography”? was performed on the fFA-
weighted peaks extracted from Magic-DIAMOND evalu-
ation on the datasets defined in section IITF. To obtain
dense tractograms, we upsampled our peaks to 1x1x1
mm? using nearest-neighbor interpolation, used ten seeds
per voxel and generated an ensemble tractogram®® for
each dataset with three separate tractography runs with
acceptance angles of 45°, 60° and 75°. The output tracks
were finally filtered using the recent "Recobundles" algo-
rithm®* that relies on shape analysis and anatomical pri-
ors to recognize and extract bundles of interest, namely
the corpus callosum, the arcuate fasciculus and the cor-
ticospinal tract, three tracts that intersect in the cen-
trum semiovale, making them difficult to reconstruct in
their full extent?. Each bundle tractogram was then
used as a skeleton onto which metrics associated to the
Magic-DIAMOND fascicle most aligned with any given

local track orientation (sub-voxel tract segment) can be
color-mapped. Performing this process across all boot-
strap realizations described in section I1I E enabled color-
mapping of the median and interquartile range of any
metric along streamlines.

IV. RESULTS

A. In silico data

Fig. 5 compares physical quantities generated within
a mask corresponding to the fascicle aligned with z in
our Fiberfox phantom (see Fig. 4) with their Magic-
DIAMOND estimations for the encoding combinations
LL, LP and LS at infinite SNR and at the finite SNR =
40 characterizing the in vivo dataset described in sec-
tion IIT C. These physical quantities comprise the fasci-
cle axial diffusivity (fAD), the fascicle radial diffusivity
(fRD), the FW signal fraction frw, and the angular de-
viation A®. This last quantity is defined voxel-wise as
the average of the angles between each Magic-DIAMOND
estimated fascicle and its closest Fiberfox fiber bundle.

B. Precision on parameter estimation by stratified
bootstrap on in vivo data

A typical map of local orientations in a coronal slice
is presented in Fig. 6, featuring orientations that are
consistent with the known anatomy, from the one-fiber
corpus callosum to the three-way crossing of the cen-
trum semiovale. To assess the uncertainty on estima-
tion for these orientations within white matter, Fig. 7
presents the distribution of the median angular devia-
tion Med(AO(Max[fFA])) for the orientation of the intra-
voxel fascicle with maximal fFA, chosen as a proxy to
evaluate the same fascicle orientation, across 100 strati-
fied bootstrap runs of Magic DIAMOND for LL, LP and
LS.

Figs. 8-9-10 report on the white-matter distributions of
three scalar metrics estimated throughout the stratified
bootstrap experiment: the FW signal fraction frw, the
maximal fascicle axial diffusivity Max[fAD] and the max-
imal fascicle radial diffusivity Max|[fRD], respectively.
The Max|-| operator was used for fAD and fRD as a
proxy to identify between each bootstrap realization the
same fascicle and to show a single whole-brain map of
Max|[fAD] and Max[fRD] in Figs. 9-10.

C. Fascicle metric mapping on tractograms

Fig. 11 shows tractograms where we color-mapped the
median and interquartile range of fFA across all boot-
strap realizations along the corpus callosum, the arcuate
fasciculus and the corticospinal tract.
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Figure 5. In silico evaluation of Magic DIAMOND within a
mask corresponding to the fascicle aligned with x in the Fiber-
fox phantom illustrated in Fig. 4 for LL (red), LP (green)
and LS (blue) at infinite SNR and SNR=40. The estimated
metrics are the fascicle axial diffusivity (fAD, panel (a)), the
fascicle radial diffusivity (fRD, panel (b)), the FW signal frac-
tion frw (panel (c)), and the angular deviation A© (panel
(d)). AO is defined voxel-wise as the average of the an-
gles between each Magic-DIAMOND estimated fascicle and
its closest Fiberfox fiber bundle. Results of non-parametric
Mann-Whitney U-tests applied between metric distributions
are reported in order to assess whether or not two Magic-
DIAMOND estimations yield statistically distinct metrics.
Such tests consider the null hypothesis Ho that data in two
Magic-DIAMOND evaluations are sampled from identically
shaped non-median-shifted continuous distributions, against
the alternative that they are not. The p-values resulting from
these tests inform on the acceptance or rejection of Ho at a
certain significance level: * = 0.01 < p < 0.05, *x = 0.05 <
p<O01,x+xx=0.1<p<0.15, x*x%xx = 0.15 < p < 0.2, and
*=0.6<p<O0.7.

D. Visualization of the optimization landscape
with in vivo data

Figs. 12-13-14-15 provide visualizations of the mini-
mization space with LL, LP and LS. Specifically, they
show the three-dimensional subspace of parameters cov-
ering various axial diffusivities A, radial diffusivities A+
and signal fractions f for the intra-voxel Max[fFA] fasci-
cle (Figs. 12-13), and two-dimensional cuts of this sub-
space (Figs. 14-15), in two different voxels of interest:
one in the corpus callosum (CC, single fiber), the other
in the centrum semiovale (CS, three-way crossing). Note
that the Magic-DIAMOND minimization was in fact per-
formed in a six-dimensional space for the corpus callosum
and in a sixteen-dimensional space for the centrum semio-
vale (one parameter for the free-water compartment, five
parameters for each of the three fascicles).

Figure 6. Local orientations of the fascicles estimated by
Magic DIAMOND for our LP in vivo dataset in a white-
matter masked coronal slice. These orientations, consistent
with the expected anatomy, were computed after one strati-
fied bootstrap signal realization. Inset: Zoom on the three-
way crossing of the centrum semiovale.

V. DISCUSSION

The in silico results presented at finite SNR=40 and
infinite SNR in Fig. 5 report on the accuracy and pre-
cision of Magic DIAMOND’s estimations for various en-
coding combinations (LL, LP and LS, described in sec-
tion II1 C) within a numerical phantom that matches DI-
AMOND’s compartmental assumptions (see section 111D
and Fig. 4). The LL encoding combination yields the
most accurate and precise Magic-DIAMOND estima-
tions, both at infinite and finite SNRs. At constant
SNR, precision decreases when going from LL to LP, and
from LP to LS. In terms of accuracy, LP and LS present
infinite-SNR, biases that are absent in LL. While LS’s
accuracy improves at finite SNR when estimating non-
orientational information, highlighting an acute effect of
noise in the data, LP’s accuracy exhibits a resilience to
noise comparable to that of LL’s. Our non-parametric
Mann-Whitney U-tests indicate that there is no statis-
tical difference between the estimations yielded by LL
and LS, in contrast with those yielded by LP for most
metrics.

In vivo, uncertainty on parameter estimation is eval-
uated for Magic DIAMOND wia the stratified bootstrap
procedure detailed in section III E. From the standpoint
of diffusion orientation information alone, while Fig. 6
features estimated local orientations that are consistent
with the known anatomy, Fig. 7 shows that angular un-
certainty increases when going from LL to LP, and from
LP to LS, in agreement with the in silico results of Fig. 5.
Spatially, angular uncertainty tends to maximize in ex-
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Figure 7. Median angular deviation Med(A©(Max[fFA])) (in
degrees) across 100 stratified bootstrap runs of Magic DI-
AMOND, computed for the orientation of the intra-voxel
fascicle with maximal fFA. For a given stratified bootstrap
run, A©(Max[fFA]) was computed voxel-wise as the angu-
lar difference between the orientation of the Max[fFA] fasci-
cle within this run and the median orientation of this fas-
cicle across stratified bootstrap runs. Med(AO(Max[fFA]))
is here presented in two ways. Panels (a), (b) and (c):
White-matter masked coronal views of Med(A©(Max[fFA]))
(greyscale maps) for LL, LP and LS, respectively, with super-
imposed median orientations of the Max[fFA] fascicles across
stratified bootstrap runs (orientation-colored peaks). Panel
(d): Distribution of the values of Med(A©(Max[fFA])) within
our whole-brain white-matter mask for LL (red), LP (green)
and LS (blue). The main features of these distributions, i.e.
medians and interquartile ranges (IQRs), are quantified as
boxplots.

pected areas, i.e. cortical grey matter, deep grey nuclei,
and crossing-fascicle regions.

From the standpoint of non-orientational metrics,
Figs. 8-9-10 demonstrate that while LP presents sim-
ilar uncertainties on estimation of these parameters
compared to LL, as quantified by the median val-
ues of the white-matter distributions of IQR(frw),
IQR(Max[fAD]) and IQR(Max[fRD]) (panels (e) of
Figs. 8-9-10), LS exhibits a rather substantial increase
in these uncertainties. The median values of the white-
matter distributions of Med(frw), Med(Max[fAD]) and
Med(Max[fRD]) (panels (d) of Figs. 8-9-10) underline
the overall changes in Magic DIAMOND’s estimations
between diffusion-encoding strategies. Both LP and
LS tend to yield lower values of frpw and higher val-
ues of Max[fAD] and Max[fRD] than LL. Although not
shown here, this increase in Max[fAD| and Max[fRD]
leads to an increase in maximal fascicle mean diffusiv-
ity (Max(fMD)), from Med(Max[fMD]) ~ 0.65 pm?/ms
(LL) to Med(Max[fMD]) ~ 0.8 pm?/ms (LS), but rather
constant maximal fascicle fractional anisotropy 0.65 <
Med(Max[fFA]) < 0.7. We acknowledge that a few dis-
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Figure 8. Median value (Med) and interquartile range (IQR)
of the free water signal fraction frw over 100 stratified boot-
strap runs of Magic DIAMOND. Panels (a), (b) and (c):
White-matter masked coronal views of Med(frw) (greyscale
maps) for LL, LP and LS, respectively. Panels (d) and (e):
Distributions of the values of Med(frw) and IQR(frw), re-
spectively, within our whole-brain white-matter mask for LL
(red), LP (green) and LS (blue). The main features of these
distributions, i.e. medians and interquartile ranges, are quan-
tified as boxplots.
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Figure 9. Median value (Med) and interquartile range
(IQR) of the maximal fascicle axial diffusivity (Max[fAD], in
pm? /ms) over 100 stratified bootstrap runs of Magic DIA-
MOND. Layout conventions are identical to those of Fig. 8.

0

crepancies exist between the in silico results of Fig. 5 and
the in vivo results of Figs. 8-9-10, which may originate
from an insufficient match between our simulated phan-
tom and the microstructural complexity of actual in vivo
tissues.

The fascicle-specific metrics estimated by Magic DIA-
MOND can be combined with tractography using their



=

2

=

2

g

Med(Max[fRD]) TQR(Max[fRD]) =

1 1 =
(d) (e) i

0.8 0.8

0.6 0.6

0.2 0.2 _L 4'
0 0 J-

Figure 10. Median value (Med) and interquartile range
(IQR) of the maximal fascicle radial diffusivity (Max[fRD],

in pm? /ms) over 100 stratified bootstrap runs of Magic DIA-
MOND. Layout conventions are identical to those of Fig. 8.
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associated local orientations, as shown in Fig. 11 with the
fascicle fractional anisotropy fFA mapped onto tracks as-
sociated to the corpus callosum, the corticospinal tract
and the arcuate fasciculus. Outputted by our stratified
bootstrap procedure, the median fFA along bundles is
rather constant within the bulk of these bundles, except
close to cortical grey matter and deep grey nuclei, within
fascicle-crossing regions, and in high curvature areas (e.g.
high curvature area in the arcuate fasciculus, see panel
(b) of Fig. 11). The lower Med[fFA] in these regions is ex-
plained by the higher axonal dispersion which, as shown
in Ref. 29, is captured by an increased heterogeneity but
also by a decreased fAD and increased fRD. These partic-
ular areas also appear bright in the IQR-colored bundles,
reflecting a loss in precision on parameter estimation, in
agreement with Fig. 7.

Finally, Figs. 14 and 15 show that the centrum-
semiovale (CS) optimization landscape is flatter than the
corpus-callosum (CC) optimization landscape in the f-All
and f-A* projections, and is more peaked than the CC
optimization landscape in the Al-A+ projections. But
we note that the optimization landscape exhibits no con-
sistent change upon introduction of non-conventional b-
tensors (LS and LP). This fact is reinforced by the three-
dimensional illustration of the optimization landscape
presented in Figs. 12 and 13: LL, LP and LS feature
comparable separations between the minimum found by
Magic DIAMOND and the global minimum of the sam-
pled subspace.

VI. CONCLUSIONS

In this work, we derive for the first time a gen-
eral Laplace transform of the non-central matrix-variate
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Gamma distribution. This Laplace transform, valid for
any arbitrary b-tensor, enables the design of the Magic
DIAMOND model, i.e the combination of the DIA-
MOND model, capable of separately characterizing cross-
ing fascicles, with tensor-valued diffusion encoding. Our
new theoretical approach aims at drawing from the com-
plementary pieces of diffusion information yielded by
tensor-valued diffusion encoding in order to refine the
orientation and diffusional features of each intra-voxel
fascicle estimated by DIAMOND. By design, it therefore
offers new possibilities to quantify the optimization of

tensor-valued encoded acquisition schemes”.

Our in vivo evaluations suggest that introducing non-
conventional b-tensors (either planar or spherical) leads
to a lower estimated free-water signal fraction in the
white matter (Fig. 8). This change is in agreement with
the understanding that there is none or very little freely
diffusing water in the densely packed white matter when
using typical clinically feasible diffusion times®”, which
in turn supports the fact that non-conventional b-tensors
sample new information about the underlying tissue mi-
crostructure and allow improved separation of isotropic
and anisotropic diffusion components. Importantly, our
statistical evaluation via stratified bootstrap shows that
spherical encoding consistently lowers the precision on
parameter estimation. This was verified in both our
voxel-based evaluation throughout white matter (Figs. 7-
8-9-10) and in our fixel-based evaluation in which we col-
ored each tract streamline with the IQR of the corre-
sponding estimated compartment (Fig. 11). First, this is
likely explained by the intrinsic lack of information link-
ing the fascicles’ orientations to their diffusional features
when using spherical encoding (see Eq. (26)). Second, the
inherently low signal-to-noise ratio (SNR) of spherical en-
coding may also be involved in lowering precision. In a
conventional linear acquisition, the diffusion-attenuated
signal is low when the diffusion gradient orientation is
aligned with a fascicle orientation. Because spherical en-
coding samples all orientations, a decrease of spherical
signal occurs for any fascicle orientation, leading to an
SNR that is always lower than that with linear encoding.
However, the SNR depends on the acquisition scheme
and scanning hardware, so that the difference in SNR
between distinct tensor-valued acquisitions may be miti-
gated in other acquisition setups. As a result, we found
that at constant scan duration time, the isotropic infor-
mation brought by spherical encoding has too low SNR
and not enough information about the fascicles them-
selves to improve the estimation of fascicle-specific diffu-
sivities and orientation of a multi-fascicle model without
increasing uncertainty. In contrast, the introduction of
planar encoding did not lower precision on parameter es-
timation. However, we surprisingly did not observe a
clear advantage of our linear-planar dataset (LP) over
our purely linear dataset (LL). Indeed, not only did it
not reduce angular uncertainty on the fascicles’ orienta-
tions (Fig. 7), unlike what could have been expected®®,
it also did not provide a more constraining optimization
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Figure 11. Color-mapping of Magic DIAMOND metrics onto bundles of interest. Panel (a): Coronal view of the tractograms
associated to the corpus callosum, the arcuate fasciculus and the corticospinal tract. Panel (b): Sagittal view of the tractograms
associated to the left arcuate fasciculus. The median (Med) and interquartile range (IQR) across all stratified bootstrap
realizations of the fFA associated to the Magic-DIAMOND fascicle most aligned with the local tract orientation were color-
mapped along these bundles for each encoding combination described in sections 11 F-I11 G.
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Figure 12. Visualization of the minimization landscape in a corpus-callosum voxel for the LL, LP and LS signal combinations
described in section III F. The cost function was computed on sampled grid points in a three-dimensional parameter subspace
encapsulating the axial diffusivity A, the radial diffusivity A* and the signal fraction f of the single fascicle found in this
corpus-callosum voxel (which has maximal fFA by default). Color encodes the value of the cost function, from its minimal
value (blue) to its maximal value (red). Opacity decreases with increasing cost function to focus on regions of the parameter
subspace that are relevant for minimization. Diffusivities are expressed in pm?/ms. While the filled blue point is associated to
the minimal cost function found by Magic DIAMOND, the filled red point corresponds to the global minimum in the sampled
parameter subspace. Empty circles denote projections of the filled points.

landscape (Figs. 12-13-14-15). by maximizing correlations between acquisition dimen-

Nonetheless, combining non-trivial diffusion encodings ~ Sions so that to bring tighter constraints to the Magic-
with the multi-fascicle DIAMOND model should not be ~ PIAMOND minimization. Combining at least two dif-
discarded right away. Indeed, potential improvements fusion encodings might also simply make Magic DIA-
upon introducing tensor-valued diffusion encoding may MOND'’s parameter estimation more robust to data un-
be yielded by the following families of solutions. First, dersampling, an effect that has already been observed in
from a data-acquisition standpoint, one could for in- the past®”. Second, from a data-processing point of view,

stance try to obtain higher SNRs and /or higher b-values, pha§e correction strategies”'”’ may be prac_tical given
by using higher gradient amplitudes and shortening TE the inherently lower SNR of planar and spherical encod-

as in Ref. 82, in order to further differentiate linear ~ 1gs compared to linear encoding. Third, the current
58 Alterna-  design of the DIAMOND model may be too constrained

and planar pieces of diffusion information”®. .
tively, the acquisition protocol could be further optimized ~ t0 take advantage of the power of tensor-valued diffu-
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Figure 13. Visualization of the minimization landscape in a centrum-semiovale voxel for the LL, LP and LS signal combinations
described in section III F. The cost function was computed on sampled grid points in a three-dimensional parameter subspace
encapsulating the axial diffusivity A the radial diffusivity A and the signal fraction f of the fascicle with maximal fFA in
this centrum-semiovale voxel that contained three intra-voxel fascicles. Layout conventions are identical to those of Fig. 12.
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Figure 14. Visualization of two-dimensional cuts of interest in the three-dimensional minimization landscape shown in Fig. 12
for the LL, LP and LS signal combinations described in section III F. The color maps indicate the value of the cost function,
from its minimal value (blue) to its maximal value (red), within two-dimensional projections intersecting the Magic DIAMOND
minimum (blue point, top) and the global minimum in the aforementioned three-dimensional subspace (red point, bottom).

White areas correspond to unphysical fiber configurations where At > Al Diffusivities are expressed in pm? /ms.
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Figure 15. Visualization of two-dimensional cuts of interest in the three-dimensional minimization landscape shown in Fig. 13
for the LL, LP and LS signal combinations described in section III F. Layout conventions are identical to those of Fig. 14.

sion encoding. Such limitation was previously noticed in

Ref. 44 when using spherical encoding within the original



NODDI model*!. The importance of DIAMOND’s con-
straints could be investigated by opening up the model so
that it becomes degenerate for LL but not for LP or LS.
As the mathematics of the Magic DIAMOND model are
now laid down, we invite the diffusion MRI community
to use them and challenge or reproduce our conclusions.
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