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Abstract

Background and Objectives During Twin-to-Twin Transfusion Syndrome

(TTTS), abnormal vascular anastomoses in the monochorionic placenta can

produce uneven blood flow between the fetuses. In the current practice, this

syndrome is surgically treated by closing the abnormal connections using laser

ablation. Surgeons commonly use the inter-fetal membrane as a reference. Lim-

ited field of view, low fetoscopic image quality and high inter-subject variability

make the membrane identification a challenging task. However, currently avail-

able tools are not optimal for automatic membrane segmentation in fetoscopic

videos, due to membrane texture homogeneity and high illumination variability.

Methods To tackle these challenges, we present a new deep-learning frame-

work for inter-fetal membrane segmentation on in-vivo fetoscopic videos. The

framework enhances existing architectures by (i) encoding a novel (instance-

normalized) dense block, invariant to illumination changes, that extracts spatio-

temporal features to enforce pixel connectivity in time, and (ii) relying on an ad-

versarial training, which constrains macro appearance. Results We performed
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Figure 1: Sample frames from our dataset. The frames are extracted from intra-operative

videos acquired in the actual surgical practice for Twin-to-Twin Transfusion Syndrome

(TTTS). Each frame refers to a different video. Although video acquisition was performed

with the same equipment, the frames present high variability, in terms of: (i) different mem-

brane position, shape, tissue area in the field of view, contrast and texture, (ii) noise and blur,

(iii) presence of amniotic fluid particles, (iv) vessels along the membrane equator, (v) different

levels of illumination, (vi) presence of laser-guide light.

a comprehensive validation using 20 different videos (2000 frames) from 20 dif-

ferent surgeries, achieving a mean Dice Similarity Coefficient of 0.8780+−0.1383.

Conclusions The proposed framework has great potential to positively impact

the actual surgical practice for TTTS treatment, allowing the implementation of

surgical guidance systems that can enhance context awareness and potentially

lower the duration of the surgeries.

Keywords: Inter-Fetal Membrane, Twin-to-Twin Transfusion Syndrome

(TTTS), Deep Learning, Fetoscopy

1. Introduction

Twin-to-twin transfusion syndrome (TTTS) may occur, during identical twin

pregnancies, when abnormal vascular anastomoses in the monochorionic pla-

centa result in uneven blood flow between the fetuses. If not treated, the risk of
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perinatal mortality of one or both fetuses can exceed the 90% (Baschat et al.,5

2011). To recover the blood flow balance, the most effective treatment is mini-

mally invasive laser surgery in fetoscopy (Quintero, 2003; Roberts et al., 2014).

At the beginning of the surgical treatment, the surgeon identifies the inter-

fetal membrane, which is used as a reference to explore the placenta vascular

network and identify vessels to be treated. Limited field of view (FoV), poor vis-10

ibility, fetuses’ movements, high illumination variability (as shown in Fig. 1) and

limited maneuverability of the fetoscope makes the membrane identification a

challenging task. This results in increased surgery duration, as well as increased

risks of complications from the patients’ side, such as premature rupture of the

membranes Beck et al. (2012), and mental workload, from the surgeons’ side.15

The Surgical Data Science (SDS) (Maier-Hein et al., 2017) community is

working towards developing computer-assisted algorithms to perform intra-operative

tissue segmentation (Moccia et al., 2020). However, SDS approaches for mem-

brane segmentation have only been marginally explored.

Work relevant to TTTS video analysis focuses on surgical planning, surgical-20

phase detection, intrauterine cavity segmentation, placental vessel segmentation

and mosaicking reconstruction. Examples of surgical-phase detection in TTTS

include the work of Vasconcelos et al. (2018), where a ResNet encoder is used

to detect the ablation phase, and Bano et al. (2020), which extends Vasconcelos

et al. (2018) by adding an LSTM layer to integrate temporal information and25

detect different surgical phases. In Torrents-Barrena et al. (2020), a reinforce-

ment learning approach that relies on capsule networks has been proposed to

perform automatic intrauterine cavity segmentation from multi-planar placenta

magnetic-resonance imaging recordings, for surgical planning purposes. As for

placental vessel segmentation, the work in Almoussa et al. (2011) proposes a30

neural network trained on manually handcrafted features from E4-vivo placenta

images. In Sadda et al. (2019), a UNet architecture is proposed to perform

patch-based vessel segmentation from intra-operative fetoscopic frames. Large

efforts have also been put in mosaicking strategies to provide the surgeons with

navigation maps of the placenta. In Daga et al. (2016), SIFT is used as fea-35
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ture extractor for frame registration, while in Gaisser et al. (2018); Peter et al.

(2018); Bano et al. (2019); Tella-Amo et al. (2019) deep-learning strategies are

presented.

Figure 2: Proposed framework to inter-fetal membrane segmentation in fetoscopic videos. The

segmentor is a U-shaped network with long-skip connections, consisting of dense blocks, each

of which is composed by multiple (number below each block) dense modules. Each module

is composed of two pre-activated 3D convolutions, where the normalization is performed at

instance (1st convolution) and batch (2nd convolution) level. The transition down and tran-

sition up modules perform downsampling and upsamplig, respectively. The critic, inspired

by Casella et al. (2020), consists of a 3D version of the encoder branch of UNet. During train-

ing, as explained in Sec. 2.3, the critic extracts the feature vectors from the input masked by

the segmentor output and the gold standard. The Mean Absolute Error (MAE) computed

between the two vectors, contribute, along with the per-pixel binary cross entropy (BCE), to

the loss that is minimized during training.
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Previous work (Casella et al., 2020), implemented a residual network along

with an adversarial training strategy to enforce placenta-shape constraining.40

Despite achieving promising results, the work does not address the problem

of high illumination variability in fetoscopic frames. Furthermore, the tempo-

ral information naturally encoded in the fetoscopic videos is not processed. 3D

architectures such as V-Net Milletari et al. (2016) have been widely used for vol-

umetric segmentation in medical images. More recently, 3D architectures have45

been used for processing endoscopic videos. Hence, temporal feature proccess-

ing showed to be effective in segmentation tasks in close fields (e.g., instrument

joint detection (Colleoni et al., 2019) and pose estimation (Moccia et al., 2019)

to enhance the temporal continuity in feature processing.

Following such considerations, in this work we implement an adversarial50

strategy to train a novel densely connected 3D fully convolutional neural network

(FCNN), which we call the segmentor, for inter-fetal membrane segmentation.

The third dimension refers to the time for spatio-temporal feature extraction.

The dense topology of the segmentor is here built with an adaptive mechanism

for instance illumination normalization. With a comprehensive study with 2055

videos (2000 frames) acquired from 20 women during actual surgery, we inves-

tigated the following research hypotheses:

• Hypothesis 1 (H1): The instance-normalized topology can tackle the il-

lumination variability typical of fetoscopic videos acquired during TTTS

surgery.60

• Hypothesis 2 (H2): The spatio-temporal features can boost segmentation

performance enforcing the consistency of segmentation masks across se-

quential frames.

Here, the gold standard annotation was obtained manually under the supervi-

sion of an expert surgeons.65
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1.1. Contribution of the work

In this work, we address the problem of automatic inter-fetal membrane seg-

mentation to enhance surgeon context awareness during TTTS surgery. Specif-

ically, we extend the adversarial framework presented in Casella et al. (2020) to

process, via spatio-temporal convolution, surgical video clips. This allows us to70

exploit the temporal information naturally encoded in videos. We further design

a dense block that encodes instance normalization, to account for illumination

changes in the video clips. Recent work explored the potential of adversar-

ial training with spatio-temporal features in other domains than fetal surgery.

In Xu et al. (2018), an adversarial architecture was proposed to segment and75

quantify myocardial infarctions by combining 3D convolutions and Long Short-

Term Memory (LSTM) architecture to process spatio-temporal features in cine

magnetic-resonance images. To the best of our knowledge, this work is the first

to investigate the joint potential of adversarial training, spatio-temporal features

and instance normalization in a densely connected segmentation architecture for80

inter-membrane segmentation in fetoscopic images. We perform extensive ex-

periments on the frame-sampling strategy to build the temporal clips, as well

as ablation studies to identify the best configuration of our framework. We will

make the dataset collected for this work publicly available, to foster further

research in the field.85

2. Methods

The proposed framework consists of the segmentor, described in Sec. 2.1, and

a discriminator network (critic), described in Sec. 2.2. The overall framework is

shown in Fig. 2. The segmentor and critic are trained in an adversarial fashion,

following the strategy proposed in Casella et al. (2020) and described in Sec. 2.3.90

2.1. Segmentor

The segmentor has a dense UNet-like architecture consisting of downsam-

pling and upsampling path, linked via long-skip connections. It consists of 11
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Table 1: Architecture details for the (top) segmentor and (bottom) critic. The IN Conv3D

and BN Conv3D refer to Instance Normalization - leaky ReLu - 3D Convolution and Batch

Normalization - leaky ReLu - 3D Convolution, respectively.

Layers Output Size Segmentor

Dense Block (1) W ×H × wlength × 192

 1× 1 IN Conv3D

3× 3 BN Conv3D

× 4

Transition Module (1) W
2 ×

H
2 × wlength × 195

1× 1 conv

2× 2 average pool, stride 2, 2, 1

Dense Block (2) W
2 ×

H
2 × wlength × 240

 1× 1 IN Conv3D

3× 3 BN Conv3D

× 5

Transition Module (2) W
4 ×

H
4 × wlength × 435

1× 1 conv

2× 2 average pool, stride 2, 2, 1

Dense Block (3) W
4 ×

H
4 × wlength × 336

 1× 1 IN Conv3D

3× 3 BN Conv3D

× 7

Transition Module (3) W
8 ×

H
8 × wlength × 771

1× 1 conv

2× 2 average pool, stride 2, 2, 1

Dense Block (4) W
8 ×

H
8 × wlength × 480

 1× 1 IN Conv3D

3× 3 BN Conv3D

× 10

Transition Module (4) W
16 ×

H
16 × wlength × 1251

1× 1 conv

2× 2 average pool, stride 2, 2, 1

Dense Block (5) W
16 ×

H
16 × wlength × 576

 1× 1 IN Conv3D

3× 3 BN Conv3D

× 12

Transition Module (5) W
32 ×

H
32 × wlength × 1827

1× 1 conv

2× 2 average pool, stride 2, 2, 1

Dense Block (6) W
32 ×

H
32 × wlength × 816

 1× 1 IN Conv3D

3× 3 BN Conv3D

× 17

Transition Up Module (1) W
16 ×

H
16 × wlength × 2643 3× 3 Conv3D transpose

Dense Block (7) W
16 ×

H
16 × wlength × 816

 1× 1 IN Conv3D

3× 3 BN Conv3D

× 12

Transition Up Module (2) W
8 ×

H
8 × wlength × 2067 3× 3 Conv3D transpose

Dense Block (8) W
8 ×

H
8 × wlength × 576

 1× 1 IN Conv3D

3× 3 BN Conv3D

× 10

Transition Up Module (3) W
4 ×

H
4 × wlength × 1347 3× 3 Conv3D transpose

Dense Block (9) W
4 ×

H
4 × wlength × 480

 1× 1 IN Conv3D

3× 3 BN Conv3D

× 7

Transition Up Module (4) W
2 ×

H
2 × wlength × 915 3× 3 Conv3D transpose

Dense Block (10) W
2 ×

H
2 × wlength × 336

 1× 1 IN Conv3D

3× 3 BN Conv3D

× 5

Transition Up Module (5) W ×H × wlength × 531 3× 3 Conv3D transpose

Dense Block (11) W ×H × wlength × 240

 1× 1 IN Conv3D

3× 3 BN Conv3D

× 4

Output Module W ×H × wlength × 1 1× 1 Conv3D, sigmoid
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Layers Output Size
Critic

Segmentor output branch Gold standard branch

Feature Extraction (1) W
2 ×

H
2 × wlength × 64

1× 1 IN Conv3D 1× 1 IN Conv3D

2× 2 average pool, stride 2, 2, 1 2× 2 average pool, stride 2, 2, 1

Feature Extraction (2) W
4 ×

H
4 × wlength × 64 3× 3 IN Conv3D 3× 3 IN Conv3D

Feature Extraction (3) W
8 ×

H
8 × wlength × 64 3× 3 IN Conv3D 3× 3 IN Conv3D

Feature Extraction (4) W
16 ×

H
16 × wlength × 64 3× 3 IN Conv3D 3× 3 IN Conv3D

Feature Extraction (5) W
32 ×

H
32 × wlength × 64 3× 3 IN Conv3D 3× 3 IN Conv3D

Output Layer Concatenate

dense blocks, 10 transition (up and down) modules and an output module, as

reported in Table 1. Inspired by DenseNet (Huang et al., 2017; Jegou et al.,95

2017), we use dense blocks to foster feature connectivity. Each block is made of

multiple dense modules.

To take the temporal information into account, we use 3D convolution to

build the modules. Hence, the input of our segmentor is a temporal clip (i.e., set

of wlength temporally consecutive video frames) obtained with a sliding window100

algorithm (Fig. 3). The sliding window algorithm is inspired by Hou et al.

(2017): starting from the first video frame, the first wlength frames contribute

to the temporal clip (x) of dimensions W ×H ×Nchannels × wlength, where W

and H are the frame width and height, respectively, and Nchannels is the number

of image channels. The window then slides of ∆f frames along the temporal105

direction, skipping ∆w frames. This process is repeated until there are available

frames, and results in a collection of temporal clips.

The downsampling path of our segmentor is designed with an increasingly

higher number of modules (from 4 to 17) in each dense block. Each dense block is

followed by a transition down module for downscaling. Such module is composed110

of a 1x1x1 convolution and average pooling layer with stride 2, 2, 1. This stride

allows to compensate for the growth in the number of feature channels that

occurs in each dense block.

The upsampling path, symmetric to the downsampling one, is designed with

an increasingly lower number of modules (from 17 to 4) in each dense block.115

The transition up module performs upscaling, at the end of each dense block,

to recover the spatial resolution lost with the stride. Following the standard
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UNet (Ronneberger et al., 2015) implementation, the upsampled feature maps

are concatenated to those of the downsampling path via long-skip connections.

The output module, at the end of the segmentor, consists of a 1x1 convolution120

layer activated with the sigmoid function. The segmentor produces as output

(y) consisting of wlength segmentation masks, hence preserving the temporal

size of the input clip.

Figure 3: Sliding window algorithm used for building temporal clips (w1, w2, w3). The

window, consisting of wlength frames, slides of ∆w frames. For wlength = 4 and ∆w = 1, the

generated clips overlap of 3 frames. While building a temporal clip, the sliding window can

possibly skip ∆f frames. For ∆f = 0, clips consist of consecutive frames.
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Implementing a dense framework can potentially tackle the processing of

images with uniform illumination (Zhou et al., 2020), while poorly illuminated

images may still represent a challenge. A possible solution to this problem

may be to use instance normalization, which allows attenuating the dependency

from instance-specific contrast information (Ulyanov et al., 2016). By building

upon the dense module proposed in (Huang et al., 2017), we propose a new

dense module that uses two (leaky ReLu) pre-activated convolutions, instead of

a single one. In our framework, the first convolution is normalized at instance

level, to account for fetoscopic video illumination variability. The process of

instance normalization is performed as follows:

ẑw,h,i,t,n =
zw,h,i,t,n − µi,t,n√

σ2
i,t,n + ε

(1)

µi,t,n =
1

WH

W∑
w=1

H∑
h=1

zw,h,i,t,n (2)

σ2
i,t,n =

1

WH

W∑
w=1

H∑
h=1

(zw,h,i,t,n − µi,t,n) (3)

where z is the block input, which has dimensions W×H×Nchannels×T×Nbatch,

being W and H the spatial dimensions, T the temporal dimension, Nchannels the125

number of channels and Nbatch the batch size. The ẑ is the instance-normalized

output and ε is a trainable parameters accounting for the bias. The t refers to

the t-th frame of the temporal clip and n is the n-th temporal clip in the batch.

The second convolution in our dense block keeps normalization at batch

level, to preserve segmentor generalization capability (Pan et al., 2018; Nam130

and Kim, 2018).

The segmentor is trained by comparing its output against the gold standard

segmentation at temporal-clip level using the per-pixel binary cross entropy
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(BCE ), defined as:

BCE (y, S(x)) =

− 1

IHW

wlength∑
i

H∑
h

W∑
w

(yi,w,h) · log(S(x)i,w,h)

+ (1− yi,w,h) · log(1− S(x)i,w,h) (4)

where yi,w,h and S(x)i,w,h denote the gold standard value and the corresponding135

prediction of the segmentor at pixel location (w, h) in the i-th frame of the

temporal clip. The BCE is minimized in an adversarial fashion during training,

as explained in Sec. 2.3.

2.2. Critic

The critic is inspired by that proposed in Casella et al. (2020). It is com-140

posed by two branches, as described in Table 1 and shown in Fig. 2, for ex-

tracting features from both the gold-standard segmentation and the segmentor

output. Each branch consists of a standard UNet encoding path (i.e., without

dense blocks) with batch-normalized convolution layers. Each branch is used

for feature extraction at different scales from each input.145

In the proposed architecture, the critic implements 3D convolutions for pro-

cessing the temporal information while extracting features. We decided to keep

the critic architecture similar to its original implementation because the role

of the critic is to provide a shape constraining mechanism for the segmentor

output. We decided to keep the critic architecture similar to its original imple-150

mentation in Casella et al. (2020) because the role of the critic is to provide

provide a shape-constraining mechanism on the segmentor to enforce segmen-

tation consistency across sequential frames, and thus preserve the membrane

macro-appearance. The use of dense blocks would have introduced unnecessary

complexity with an increase in memory requirements.155

The gold standard branch of the Critic takes as input the time clip masked

(i.e., pixel-wise multiplication) by the gold standard (y). The segmentor branch

takes as input x masked by the output of the segmentor (S(x)). The two masked
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inputs are processed by the network in order to get two feature vectors. These

are compared using the mean absolute error (MAE ), defined as:

MAE (C(x · y), C(x · S(x))) =∑wlength

i

∑M
j |Cj(xi · yi)− Cj(xi · S(xi))|

wlength ·M
(5)

where C is the output of the critic (i.e., the feature vector) and M is the length

of the feature vector. The MAE is minimized in an adversarial fashion during

training, as explained in Sec. 2.3.

2.3. Adversarial training strategy

We train our framework from scratch in an adversarial fashion. The segmen-

tor and critic layers are initialised using He normal initialization (He et al.,

2015). The stochastic gradient descent is used as optimizer, to minimize an

adversarial loss (L), which sums up the contribution of two loss functions, i.e.,

the BCE loss from the segmentor, and the MAE from the critic:

L = BCE [y, S(x)] + MAE [C(x · y), C(x · S(x))] (6)

The two terms of the loss function span in two different ranges. While there160

is a possible risk of divergence of the loss during training, the introduction

of hyper parameters may allow to balance the action of the two terms in the

loss function avoiding possible divergences, However, this never occurred in our

experiments.

3. Experimental design165

3.1. Dataset

To experimentally evaluate our two research hypotheses, we collected a

dataset of 20 fetoscopic videos acquired during 20 different surgical procedures

for treating TTTS in 20 women. The videos had a frame size of 720×576 pixels,

with an acquisition frame rate of 25 frames per second. From each video, we ex-170

tracted 100 consecutive frames among those in which the inter-fetal membrane
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Table 2: Summary of the ablation study described in Sec. 3.4: E1: 2D vanilla segmentor, E2:

3D vanilla segmentor, E3: 2D vanilla adversarial framework, E4: 2D adversarial framework.

The work in Casella et al. (2020), which is the closest to ours, is shown, too.

Dense Instance 3D Adversarial

blocks normalization convolution training

Casella et al. (2020) X

E1 X

E2 X X

E3 X X

E4 X X X

Proposed X X X X

Table 3: Results of 3-fold cross-validation for E1, E2, E3, E4 and [Casella et al., 2020] in

the ablation study. Segmentation Accuracy (Acc), Dice Similarity Coefficient (DSC ) and

Sensitivity (Sens) on the test set are reported in terms of mean ± standard deviation. The

best results are highlighted in bold.

Framework Metric Fold 1 Fold 2 Fold 3 Overall

[Casella et al., 2020]

Acc .8320 +− .1787 .8182 +− .1480 .9454 +− .0893 .8652 +− .1435

DSC .6414 +− .3616 .6483 +− .3225 .8734 +− .2550 .7210 +− .3161

Sens .6264 +− .3611 .6612 +− .3441 .8781 +− .2700 .7219 +− .3275

2D vanilla segmentor (E1 )

Acc .8597 +− .1548 .8302 +− .1350 .9218 +− .0893 .8706 +− .1402

DSC .6308 +− .3700 .6787 +− .2507 .9003 +− .1388 .7366 +− .2702

Sens .5762 +− .3668 .6758 +− .2687 .9525 +− .0453 .7348 +− .2638

3D vanilla segmentor (E2 )

Acc .8380 +− .1252 .8516 +− .0933 .9331 +− .1080 .8742 +− .1096

DSC .6123 +− .2921 .7208 +− .2494 .8681 +− .1524 .7338 +− .2386

Sens .5077 +− .2800 .7849 +− .2480 .9082 +− .1484 .7340 +− .2323

2D vanilla adversarial segmentor (E3 )

Acc .8701 +− .1515 .8090 +− .1614 .9371 +− .1013 .8720 +− .1406

DSC .6502 +− .3767 .6483 +− .3025 .9107 +− .1330 .7364 +− .2893

Sens .6150 +− .3898 .6509 +− .3297 .9406 +− .0810 .7355 +− .2985

2D adversarial framework (E4 )

Acc .9524 +− .0723 .8291 +− .1153 .9345 +− .0997 .9053 +− .0974

DSC .8964 +− .1715 .7457 +− .1947 .8697 +− .1821 .8373 +− .1830

Sens .8957 +− .1505 .8910 +− .0743 .9518 +− .1132 .9128 +− .1169

Proposed

Acc .9636 +− .0346 .8604 +− .0976 .9709 +− .0465 .9316 +− .0655

DSC .9111 +− .1179 .7698 +− .1993 .9530 +− .0614 .8780 +− .1383

Sens .9004 +− .1328 .8495 +− .1804 .9697 +− .0762 .9065 +− .1366
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Table 4: Results of the sliding window configuration tested in E5, E6 in the ablation study.

Segmentation Accuracy (Acc), Dice Similarity Coefficient (DSC ) and Sensitivity (Sens) on the

test set are reported in terms of mean ± standard deviation. The best results are highlighted

in bold.

Configuration ∆f ∆w Acc DSC Sens

E5 1 1 .9510 +− .0377 .8985 +− .0823 .9060 +− .0776

2 1 .9276 +− .0806 .8425 +− .1822 .8284 +− .2074

3 1 .9162 +− .1079 .8389 +− .1993 .8335 +− .1869

E6 0 2 .9361 +− .0841 .8827 +− .1246 .8644 +− .1368

0 3 .9374 +− .0695 .8804 +− .1254 .8922 +− .0919

0 4 .9173 +− .0908 .8431 +− .1593 .8356 +− .1295

Proposed 0 1 .9636 +− .0346 .9115 +− .1179 .9004 +− .1328

was detected by an expert surgeon. The membrane was manually annotated in

each frame under the supervision of the surgeon.

The videos, despite being acquired with the same equipment, showed high

variability in terms of image noise, blur, field of view size, camera view, illumi-175

nation, appearance, TTTS stage and placenta position, as shown in Fig. 1. This

dataset, to the best of our knowledge, is the biggest dataset currently available

for inter-fetal membrane segmentation. We will make it publicly available upon

publication of the paper.

We used videos from 17 subjects for training (1700 frames), 3 of which were180

used as validation set (300 frames). The remaining 3 videos (300 frames), from

3 subjects that did not contribute to the training and validation set, were used

for testing. We performed 3-fold cross-validation to evaluate the performance

of the proposed segmentation framework.

Each frame was cropped to contain only the FoV of the fetoscope and, resized185

to 128x128 pixels both for smoothing noise and limiting memory usage.
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3.2. Parameter setting

Temporal clips for training were built using the sliding window algorithm

with wlength = 4, ∆f = 0 and ∆w = 1. We kept ∆w = 1 and ∆f = 0 as in

Colleoni et al. (2019); Moccia et al. (2019); Hou et al. (2017) to have overlap-190

ping clips, and increasing the amount of clips available for training. Although

in Colleoni et al. (2019); Hou et al. (2017) a wlength = 8 was used, we used

wlength = 4 due to the higher complexity of our framework, which required

higher memory usage and computational power. Validation and testing tempo-

ral clips were built using the same parameters but with ∆w = 4 (i.e., without195

overlap). This resulted in 1649 temporal clips (1358 for training, and 291 for

validation) and 75 temporal clip for testing.

With our frame size of 128x128 pixels, the critic produced the two vectors

with a dimension of 1397760 features.

During training, at each iteration step, each (unitary) batch was augmented200

with random rotation in range (−25◦,+25◦), horizontal and vertical flip, and

scaling with a scaling factor in range (0.5, 1.5). The best model among epochs

was chosen as the one that provided the best segmentation performance in terms

of Dice Similarity Coefficient (DSC) on the validation set:

DSC =
2TP

2TP + FP + FN
(7)

We trained the proposed framework using TensorFlow on a GeForce RTX2080205

TI (11GB) for 300 epochs for each fold, with an initial learning rate of 10−2.

Due to memory constraints, we fed the network with unitary batches. Each

epoch lasted approximately 800s, for a total of about 70 hours to complete the

training of one fold.

3.3. Performance metrics210

For evaluating the segmentation performance on the test set, we computed,

for each frame, the average DSC, Accuracy (Acc) and Sensitivity (Sens) be-

15



tween the prediction and gold standard masks:

Acc =
TP + TN

TP + TN + FP + FN
(8)

Sens =
TN

TN + FP
(9)

where TP and TN are the number background and membrane pixels correctly

identified, whereas FP and FN are the background and membrane pixels that

are misclassified. The Mann–Whitney–Wilcoxon test on Acc and DSC, both

imposing a significance level (p) equal to 0.05, were used to assess whether or

not remarkable differences existed between the tested architectures.215

3.4. Ablation studies

We compared the results of the proposed framework against those of the

adversarial network presented in Casella et al. (2020), which is the closest work

with respect to ours. Considering that a comprehensive comparison with stan-

dard state of the art approaches (e.g., UNet (Ronneberger et al., 2015) and220

ResNet (He et al., 2016)) is already provided in Casella et al. (2020), we here

focused on the ablation studies.

To assess the impact of each component of the overall framework, we per-

formed the following experiments (Table 2):

Experiment 1 (E1): We implemented a 2D vanilla segmentor, which is the seg-225

mentor described in Sec. 2.1 with the standard dense blocks proposed in Huang

et al. (2017) and 2D kernel convolutions, as baseline for our comparisons. The

training loss function was the one reported in Eq. 6 but without the MAE term.

Experiment 2 (E2): To see if the adversarial training had an impact on seg-

mentation performance, we compared the proposed framework with the 3D seg-230

mentation network without the critic, hence trained in a non adversarial fashion

(3D vanilla segmentor)..
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Experiment 3 (E3): To asses the impact of dense blocks combined with the

adversarial training, we trained the 2D vanilla segmentor using the adversarial

training strategy described in Sec. 2.3 (2D vanilla adversarial framework), thus235

including the 2D version of our critic network.

Experiment 4 (E4): To understand if the temporal information and instance

normalization affected the segmentation performance, we compared the proposed

framework with its version with 2D convolution 2D adversarial framework.

240

Figure 4: Boxplot of performance comparison between E1, E2, E3, E4 in the ablation

study and Casella et al. (2020). The comparison is shown in terms of accuracy (Acc) for

each fold. Black asterisks highlight significant differences between the different architectures

(Mann–Whitney–Wilcoxon) (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001).

We performed ablation studies on the parameters of the sliding window

algorithm:

Experiment 5 (E5): To assess how ∆f affected the training process, we trained

our framework using clips generated with ∆f equal to 1, 2 and 3.
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Figure 5: Boxplot of performance comparison between E1, E2, E3, E4 in the ablation study

and Casella et al. (2020). The comparison is shown in terms of Dice similarity coefficient

(DSC ) for each fold. Black asterisks highlight significant differences between the different

architectures (Mann–Whitney–Wilcoxon) (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001).

Experiment 6 (E6): To assess how ∆w influenced the training process, we245

trained our framework using temporal clips with ∆w equal to 2, 3 and 4 (i.e., no

overlap). Finally, we tested the behaviour of our architecture when processing

frames where the membrane was not present. To this goal, we extracted short

sequences of 40 frames without membrane, from 4 videos in our dataset.

4. Results250

The proposed framework processed ≈ 80 temporal clips per second during

inference. The best segmentation result among all folds was achieved by the

proposed framework with Acc = 0.9316 +− 0.0655, DSC = 0.8780 +− 0.1383 and

Sens = 0.9065 +− 0.1366. Mean metric values are reported, with standard de-

viation in brackets. Figure 4 and Fig. 5 show the boxplots of the performance255
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(a) Acc (b) DSC

Figure 6: (a-b) Boxplot of performance for the sliding window ablation study for each value

of the parameters (i.e. ∆f (E5 ) and ∆w (E6 )) shown in terms of (c) accuracy (Acc) and (d)

Dice Similarity Coefficient (DSC ). The proposed method refers to ∆f = 0 and ∆w = 1.

comparison between our results and those achieved with Casella et al. (2020)

(i.e. the closest work with respect to ours) and the ablation models presented in

E1, E2, E3 and E4. For robustness and performance evaluation, we performed a

3-fold cross-validation of the architectures in the ablation study, as described in

Sec. 3.4. Quantitative results of the 3-fold cross-validation are shown in Table 3.260

Detailed results for each video are presented in the supplementary materials.

The work in Casella et al. (2020) achieved the worst results among all folds

with a DSC of 0.7210+−0.3161. The 2D vanilla segmentor (E1 ) showed compa-

rable results with respect to the 3D vanilla segmentor (E2 ) and the 2D vanilla

adversarial segmentor (E3 ), with a DSC of 0.7366+−0.2702, 0.7338+−0.2386 and265

0.7364 +− 0.2893, respectively. The 2D adversarial framework (E4 ) showed an

improvement in results achieving the closest performance with respect to ours,

with an average DSC = 0.8373 +− 0.1830. The 2D adversarial framework and

the proposed framework outperformed the mean DSC obtained by E1, E2 and

E3 by, at least, 0.1007 and 0.1414, respectively.270
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Figure 7: Sample segmentation results obtained on the test set using the architectures de-

scribed in the ablation study (Sec. 3) and in Casella et al. (2020). The gold standard and

predicted segmentation are highlighted in white and yellow, respectively. Each row refers to a

different video, while each column refers to a different experiment: input: original input frame,

Casella et al. (2020): our previous work, E1: 2D vanilla segmentor, E2: 3D vanilla segmen-

tor, E3: 2D vanilla adversarial framework, E4: 2D adversarial framework, and proposed: 3D

adversarial framework.

Table 4 and Fig. 6 show the results achieved by the proposed framework

when using different parameters of the sliding window algorithm to generate

the training clips, as explained in Sec. 3.4. The best results in both E5 and E6

was achieved by the proposed set of sliding window parameters (i.e., ∆f = 0

and ∆w = 1). The lowest performance, when testing E5, was achieved with275

∆f = 3. For E6, the lowest performance was the one with ∆w = 4 (no overlap

between temporal clips).

Visual samples for the tested models are shown in Fig. 7. Each row shows

the segmentation results of a sample frame extracted from the testing videos

(V 1, V 2 and V 3) from Fold 1.280

In Fig. 8, qualitative results for three consecutive frames in a clip are shown

both for the 2D adversarial framework and the proposed framework. The white

and yellow borders highlight the gold standard and the segmentation results.
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5. Discussion and conclusions

This paper introduced a shape-constrained adversarial framework with instance-285

normalized spatio-temporal features to perform automatic inter-fetal membrane

segmentation in fetoscopic video clips, while tackling the high illumination vari-

ability in fetoscopic videos.

The proposed 3D adversarial framework provided accurate and robust seg-

mentation, reaching the highest mean DSC value (0.8780) among the 3 folds,290

as well as the lowest DSC standard deviation when compared with the per-

formed ablation studies. This confirmed our research hypotheses that instance

normalization and spatio-temporal features can tackle the peculiar challenges

of fetoscopic videos, listed in Sec. 1 and shown in Fig. 1.

This was not the case for the other tested approaches in the ablation study.295

The 2D vanilla segmentor (E1 ), which has been reported to perform well with

homogeneous illumination in closer fields (Zhou et al., 2020), showed one of the

lowest performance in the ablation study, due to the high illumination variability

of fetoscopic videos.

Its mean DSC (0.7366) was similar to that of the framework presented300

in Casella et al. (2020) (0.7210). Hence, the dense non-adversarial segmentor

achieved similar performance with respect to the residual (i.e., non-dense) seg-

mentor trained in adversarial fashion. This may be explained considering that

the instance normalization and adversarial training address different aspects

(i.e., feature connectivity and membrane-shape consistency among consecutive305

frames).

By exploiting both the adversarial training and dense blocks, the 2D vanilla

adversarial segmentor achieved a mean DSC value of (0.7364).

The 3D vanilla segmentor (E2 ) configuration achieved a mean DSC among

all folds of 0.7338, comparable with E1 and Casella et al. (2020). We noticed310

that 3D convolution alone was not able to boost segmentation consistency, as the

results are comparable with the 2D vanilla adversarial framework (E3 ). This

can be explained because 3D convolutions and adversarial training emphasize
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two different aspects, temporal consistency and shape constraint. Both aspects

led to improvements in membrane segmentation performance.315

Figure 8: Sample results of inter-fetal membrane segmentation for three consecutive frames

in a clip. Results are shown for the (second column) 2D adversarial framework and (third

column) the proposed framework. The gold standard and segmentation prediction are high-

lighted in white and yellow, respectively.

However, the strong illumination variability in fetoscopic videos still repre-

sented an issue from some clips. This issue was tackled with the 2D adversarial

framework, which included the dense blocks with instance normalization, that

achieved an average DSC = 0.8373.
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The 3D adversarial framework further improved the overall segmentation320

performance (Fig. 4 and Fig. 5). This may be explained considering that the

introduction of 3D kernels allow the processing the temporal information natu-

rally encoded in endoscopic videos, improving segmentation consistency across

sequential frames and thus reducing the inter-quartile ranges and the number of

outliers. The performance obtained for Fold 2 is the lowest, as shown in Table 3.

Figure 9: Sample frame from patients in the test set of Fold 2. V4 is a patient with posterior

placenta and, V5 and V6 are patients with anterior placenta. Performance results for this

fold are shown in Table 3, detailed metrics for each video are shown in the supplementary

materials.

325

This may be explained considering that several patients in Fold 2 have anterior

placentas, some examples are shown in Fig. 9. In anterior placentas, the inter-

fetal membrane can be folded several times, bringing additional complexity. In

the training of Fold 2, there were few patients with anterior placentas, posing

issues to segmentation generalizability.330

The dataset presented in this work included a larger number of TTTS pa-

tients (20 patients) than that of Casella et al. (2020) (7 patients), granting

higher variability in terms of membrane shape, texture, color and illumination,

as described in Sec. 3.1. The method proposed in our previous work Casella

et al. (2020) was not able to fully tackle such variability, highlighting the need335

for more advanced solutions.

From the visual-analysis perspective of Fold 1, for the first testing video
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(Fig. 7, V1 ) all the models performed well. This may be due to the fact that

the inter-fetal membrane is highly contrasted with respect to the background. In

the second video (V2 ), the presence of the laser-diode light (blue spot) strongly340

hampered the detection of the membrane for the models in Casella et al. (2020),

E1 and E2. The inclusion of the adversarial training (E3 ), and then of the

instance normalization (E4 ) increased the segmentation accuracy. By combining

the adversarial training with the processing of the temporal information encoded

in the video clips, the proposed framework further improved the segmentation345

performance. The video frames shown in Fig 7 (V3 ), presented a quite different

illumination level with respect to the others in the dataset (Fig. 1). In this

case, combining instance normalization with the processing of the temporal

information was crucial to provide accurate segmentation. This may be also

seen in Fig. 8, where the 2D adversarial framework was not able to preserve the350

shape of the membrane across sequential frames.

The results achieved by the models trained with different sliding window

parameters showed the importance of preserving temporal connectivity in the

temporal clips used for training. As showed in Fig. 6, as the sliding windows

parameters ∆f (E5 ) and ∆w (E6 ) increased, the segmentation performance355

decreased. This may be explained considering that the proposed framework

enforce pixel connectivity in the temporal dimension.

To verify that the trained architecture was not biased to produce segmen-

tation masks for frames where the membrane was not present, we extracted 4

short video sequences (40 frames each), from 4 original videos in the dataset,360

in which the membrane was not visible. These videos were not present in the

training set. A sample from each video is shown in Fig. 10. We noted that in the

84.38% of the cases (135 frames) the network did not produce false-positive seg-

mentation. However, for 29 frames (15.62%), the colour and the texture of the

background were similar to those of the membrane, yielding to the false-positive365

segmentation. This limitation could be solved by a preliminary frame-selection

step (Bano et al., 2020), where only frames in which the membrane is visible

are further processed by the proposed framework.
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Figure 10: Sample frames in which the membrane is not present.Each frame was extracted from

a video not used to train the network, as described in Sec. 3.4. The predicted segmentation

is highlighted in yellow.

A possible limitation of the proposed framework can be seen in segmentation

inaccuracies in clips with rapid and wide movements of the fetoscope, where the370

membrane changes in appearance very quickly. However, this rarely happens

during these very delicate operations as rapid motions pose a risk to the patients.

In such cases, the temporal connectivity introduced to guarantee consistency

across consecutive frames can affect the accuracy of segmentation negatively. A

possible solution to attenuate this limitation could be to exploit long short-term375

memory networks to take into account a wider time horizon (Wang et al., 2017).

Another possible limitation may be seen when processing frames with mem-

brane occlusions due to fetal movements, umbilical cord and glare from the

photocoagulation laser. While we did not address this specific aspect in this pa-

per, a possible solution to tackle it would be to rely on the automatic selection380

of occlusion-free frames (Bano et al., 2020).

A limitation of the experimental protocol may be seen in the dataset size,

which could be increased to further validate the proposed framework. However,

the dataset is already the largest available for inter-fetal membrane segmentation

from fetoscopic videos, and we will make it publicly available to further research385

in this field. The proposed framework also has large potential to be translated

to other anatomical districts, where complex environment and high variability

still affect the learning capability of state-of-the-art FCNNs.

To conclude, the achieved results suggest that the proposed approach may be
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effective in supporting surgeons in the identification of the inter-fetal membrane390

in fetoscopic videos. This may have a positive impact on TTTS surgery, by

lowering the surgery duration and, as a consequence, by reducing surgeons’

mental workload and patients’ risks.
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