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A B S T R A C T

Time-of-flight magnetic resonance angiography (TOF-MRA) is one of the most widely
used non-contrast MR imaging methods to visualize blood vessels, but due to the 3-
D volume acquisition highly accelerated acquisition is necessary. Accordingly, high
quality reconstruction from undersampled TOF-MRA is an important research topic for
deep learning. However, most existing deep learning works require matched reference
data for supervised training, which are often difficult to obtain. By extending the recent
theoretical understanding of cycleGAN from the optimal transport theory, here we pro-
pose a novel two-stage unsupervised deep learning approach, which is composed of the
multi-coil reconstruction network along the coronal plane followed by a multi-planar
refinement network along the axial plane. Specifically, the first network is trained in the
square-root of sum of squares (SSoS) domain to achieve high quality parallel image re-
construction, whereas the second refinement network is designed to efficiently learn the
characteristics of highly-activated blood flow using double-headed max-pool discrim-
inator. Extensive experiments demonstrate that the proposed learning process without
matched reference exceeds performance of state-of-the-art compressed sensing (CS)-
based method and provides comparable or even better results than supervised learning
approaches.

c© 2020

1. Introduction

Time-of-flight magnetic resonance angiography (TOF
MRA)(Keller et al., 1989; Miyazaki and Akahane, 2012;
Wheaton and Miyazaki, 2012; Laub, 1995) is widely used in
clinical situations for visualizing blood flow without the need
for the injection of contrast agents. Here, the phenomenon of
flow-related enhancement of spins entering into an imaging
slice is exploited to amplify the contrast between blood vessels
and surrounding tissues.

In 2-D TOF, multiple thin imaging slices are acquired with
a flow-compensated gradient-echo sequence, whereas in 3D
TOF a volume of images is obtained simultaneously by phase-
encoding in the slice-select direction. These images can be
then combined using the maximum intensity projection (MIP)
so that one can obtain a 3-D image of the vessels analogous to
conventional angiography. Accordingly, TOF MRA provides
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tremendously helpful physiological information for the detec-
tion of stenosis or occlusion in the intracranial arteries.

When taking scans of TOF MRA, fully acquiring k-space
is painfully time consuming, especially for 3-D scans where
a large volume has to be covered. Furthermore, patient mo-
tion during the stretched scan time causes artifacts in the image.
Consequently, accelerating MR scans would lead to increase the
patient throughput and relieve the issue of motion artifacts.

1.1. CS-MRI and pMRI

To reduced the long scan time, k-space can be sub-sampled,
but the k-space under-sampling subsequently introduces alias-
ing artifacts. To resolve this issue, multiple receiver coils can
be utilized to merge information from different receiver coils to
compensate for the missing k-space data. These parallel MRI
(pMRI) (Pruessmann et al., 1999; Griswold et al., 2002) tech-
niques are routinely used in clinical practice.

For the TOF MRA, compressed sensing (CS) algorithms
(Lustig et al., 2007; Jung et al., 2009) have been also extensively
studied by exploiting the sparsity in the original image domain,
which is an inherent nature of angiograms. Moreover, appli-
cations of CS in conjunction with pMRI have been extensively
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investigated (Stalder et al., 2015; Hutter et al., 2015; Tang et al.,
2019; Jin et al., 2016). Although CS-MRI have shown its effec-
tiveness in the reconstruction of MRI, the inherently iterative
nature of the method leads to slow and expensive computation.
Moreover, its inability to learn from given data distribution is
also a drawback.

1.2. Deep Learning for CS-MRI

Recently, a myriad of deep learning algorithms have been
proposed for MR reconstruction, which show superior perfor-
mance over CS-MRI while significantly reducing computation
time (Wang et al., 2016; Schlemper et al., 2017; Zhu et al.,
2018; Schlemper et al., 2018; Eo et al., 2018; Wang et al.,
2019b; Liu et al., 2019b; Wang et al., 2020; Sriram et al.,
2020; Lee et al., 2018; Han et al., 2018; Hammernik et al.,
2018). Generative adversarial networks (GAN)(Goodfellow
et al., 2014) have also been largely investigated in the context
of MR reconstruction (Mardani et al., 2017; Wang et al., 2019a;
Quan et al., 2018; Yang et al., 2017) to further enhance the re-
construction quality.

Nonetheless, most of the deep learning approaches are su-
pervised learning framework where a large amount of matched
fully sampled scans must be provided to train the neural net-
work properly. This imposes fundamental challenges in neural
network trainings, since the matched fully sampled reference
data should be acquired under the same conditions, which is
not always possible in clinical environment.

1.3. Our contributions

In our recent paper (Sim et al., 2019), we proposed a system-
atic framework to design various types of unsupervised learn-
ing architecture for general inverse problems using the optimal
transport theory (Villani, 2008; Peyré et al., 2019), and also pro-
vided preliminary results for single coil 2D MR reconstruction
from sparse Fourier samples (Sim et al., 2019). The resulting
network architecture is similar to cycleGAN (Zhu et al., 2017),
but the knowledge of the imaging physics can significantly sim-
plify the network architecture and training scheme (Sim et al.,
2019).

By extending this idea, here we suggest a novel unpaired
multiplanar deep learning scheme which aims specifically at
the reconstruction of under-sampled 3D TOF MRA scan. To
overcome the large GPU memory and training data requirement
for 3-D learning, we propose a novel architecture that consists
of two successive unsupervised training steps in 2D space. The
first step is the reconstruction of MRA scan in the coronal plane,
which is done slice by slice, incorporating complex multi-coil
data into the training scheme. In the second step of reconstruc-
tion, we aim to further enhance the quality of reconstruction,
especially in terms of maximum intensity projection (MIP) im-
ages, through the use of stacked 3D reconstruction with the
newly introduced projection discriminator. One of the impor-
tant advantages of the proposed two-stage unsupervised learn-
ing scheme is that each neural network can be trained with dif-
ferent sets of unpaired training data set, which maximizes the
utility of available data for training purpose.

In brief, our contributions can be summarized as follows:

• Two-stage unsupervised learning process for 3D recon-
struction, in the coronal plane and the axial plane respec-
tively, is proposed. This sequential learning process is par-
ticularly useful in 3D MR acceleration where you have 4
dimensions (3 spatial, 1 for coil).

• Projection discriminator, which learns the distribution of
both volumetric and max-pooled images, is proposed. The
discriminator is used in the second stage of reconstruction,
and proves to enhance the quality of images greatly, espe-
cially in terms of MIP images.

• By deriving network architectures using the optimal trans-
port theory, unwanted artificial features, which are often
observed in GAN type algorithms, can be prevented in a
top-down manner.

The remainder of the paper is organized as follows: in Sec-
tion 2, we briefly review the geometry of cycleGAN from opti-
mal transport theory perspective; in Section 3, the theory of our
two-step unsupervised learning framework for 3D TOF MRA
is proposed by extending the theory of OT driven cycleGAN.
In Section 4, exhaustive description of methods and materials
is provided. In Section 5, experimental results in both in-vitro
and in-vivo situations are shown. In Section 6, we discuss dif-
ferent choices for the design of our learning process, which is
followed by conclusions in Section 7.

2. Related Works

In this section, to make the paper self-contained, we will
briefly review the optimal transport driven cycleGAN proposed
in our companion paper (Sim et al., 2019).

2.1. Geometry of CycleGAN

Consider the following measurement model:

y = Fx , (1)

where y ∈ Y and x ∈ X denote the measurement and the un-
known image, respectively, and F : X 7→ Y is the imaging op-
erator, which could be known, partially known, or completely
unknown.

In contrast to the supervised learning where the goal is to
learn the relationship between the image x and measurement
y pairs, in the unsupervised learning framework there are no
matched image-measurement pairs. Still we could have sets
of images and unpaired measurements, so the goal of unsuper-
vised learning is to match the probability distributions rather
than each individual samples as shown in Fig. 1. This can be
done by finding transportation maps that transport the probabil-
ity measures between the two spaces.

Specifically, suppose that the target image space X is
equipped with a probability measure µ, whereas the measure-
ment spaceY is with a probability measure ν as shown in Fig. 1.
Then, we can see that the mass transport from (X, µ) to (Y, ν)
is performed by the forward operator F, so that F “pushes for-
ward” the measure µ in X to νF in the space Y (Villani, 2008;
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Fig. 1: Geometric view of unsupervised learning.

Peyré et al., 2019). On the other hand, the mass transporta-
tion from the measure space (Y, ν) to another measure space
(X, µ) is done by a generator G : Y 7→ X, i.e. the generator G
pushes forward the measure ν in Y to a measure µG in the tar-
get space X. Then, the optimal transport map for unsupervised
learning can be achieved by minimizing the statistical distances
dist(µ, µG) between µ and µG, and dist(ν, νF) between ν and νF ,
and our proposal is to use the Wasserstein-1 metric as a means
to measure the statistical distance.

More specifically, for the choice of a metric d(x, x′) = ‖x −
x′‖ in X, the Wasserstein-1 metric between µ and µG can be
computed by (Villani, 2008; Peyré et al., 2019)

W1(µ, µG) = inf
π∈Π(µ,ν)

∫
X×Y

‖x −G(y)‖dπ(x, y) (2)

where Π(µ, ν) is the set of joint measures whose marginal dis-
tributions in X and Y are µ and ν, respectively. Similarly, the
Wasserstein-1 distance between ν and νF is given by

W1(ν, νF) = inf
π∈Π(µ,ν)

∫
X×Y

‖F(x) − y‖dπ(x, y) (3)

Since our goal is to find the transportation maps represented by
the joint distribution π, separate minimization of (2) and (3) is
not desirable; instead, we should minimize them together with
the same joint distribution π:

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y; G, F)dπ(x, y) (4)

where the transportation cost is defined by

c(x, y; G, F) = ‖x −G(y)‖ + ‖F(x) − y‖ (5)

One of the most important contributions of our companion
paper (Sim et al., 2019) is to show that the primal formulation
of the unsupervised learning in (4) with the transport cost (5)
can be represented by a dual formulation:

min
G,F

max
ψ,ϕ

`cycleGAN(G, F;ψ, ϕ) (6)

where

`cycleGAN(G, F;ψ, ϕ) := λ`cycle(G, F) + `Disc(G, F;ψ, ϕ) (7)

where λ > 0 is the hyper-parameter, and the cycle-consistency
term is given by

`cycle(G, F) =

∫
X

‖x −G(F(x))‖dµ(x) (8)

+

∫
Y

‖y − F(G(y))‖dν(y)

whereas the second term is the discriminator term:

`Disc(G, F;ψ, ϕ) (9)

= max
ϕ

∫
X

ϕ(x)dµ(x) −
∫
Y

ϕ(G(y))dν(y)

+ max
ψ

∫
Y

ψ(y)dν(y) −
∫
X

ψ(F(x))dµ(x)

Here, ϕ, ψ are often called Kantorovich potentials and satisfy
1-Lipschitz condition (i.e.

|ϕ(x) − ϕ(x′)| ≤ ‖x − x′‖, ∀x, x′ ∈ X
|ψ(y) − ψ(y′)| ≤ ‖y − y′‖, ∀y, y′ ∈ Y

We further showed that if the forward operator F is known,
the optimization with respect to F in (6) is no more necessary,
which leads to the simplified discriminator term:

`Disc(G, F;ϕ) = max
ϕ

∫
X

ϕ(x)dµ(x) −
∫
Y

ϕ(G(y))dν(y) (10)

We will show that these two forms of optimal transport driven
cycleGAN (OT-cycleGAN) is useful for the proposed two-stage
reconstruction method.

3. Theory

3.1. Forward Model
One of the most widely used 3D TOF techniques is the so

called MOTSA, which stands for Multiple Overlapping Thin
Slab Acquisition (Blatter et al., 1991). MOTSA involves the
sequential acquisition of a several overlapping 3D volumes (or
“slabs”). Each slab contains relatively small number of slices,
so loss of signal due to saturation effects is relatively limited.
However, some variation in signal still occurs at the end slices
due to the saturation effect, so MOTSA extracts only the central
portions for each of the overlapping acquisitions to make up the
final data set for processing into the MRA projections. The
end slices are typically discarded or averaged with those in the
adjacent MOTSA section.

In accelerated MOTSA acquisition, 3D scans, when seen
from the coronal plane, have the same sampling mask specif-
ically given in Fig. 2. Performing Fourier transform along the
read-out direction leads to the following forward problem:

x̂ = PΩT x (11)

where with a slight abuse of notation we define

x :=
[
x(1) · · · x(C)

]
, x̂ :=

[
x̂(1) · · · x̂(C)

]
(12)

in which C is the number of coils, T denotes 2D spatial Fourier
transform, and PΩ is the projection operator on the sampling
mask Ω such as Fig. 2.
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Fig. 2: Sampling masks used for both prospective and retrospective under-
sampling, each responsible for ×4 and ×8 acceleration. The first row visualizes
masks in the coronal plane. The second row shows masks in the axial plane,
where partial Fourier sampling scheme (Feinberg et al., 1986) was applied.

3.2. Two Step Unsupervised 3D TOF Reconstruction

For a given forward model in (11), which is obtained from
sampling scheme along the coronal plane as in Fig. 2, the re-
construction should be also performed in the coronal direction.
Unfortunately, this poses a problem since the radiologists would
typically review images in the axial plane and the reconstruc-
tion plane is not aligned with the viewing plane by radiologists;
thus, remaining reconstruction artifacts from the coronal direc-
tion may reduce diagnostic performance. One could address
this using 3D learning, but the memory requirement for 3D
neural network training is much larger than the standard GPU
memory, which prohibits its use.

Therefore, the main idea of the proposed method is a two step
approach, where the first step reconstruction is performed along
the coronal direction, which is followed by the second step for
the axial directional refinement, as shown in Fig. 3. In partic-
ular, our emphasis is to perform these two step reconstruction
without matched reference data, where the following Proposi-
tion is useful in network design.

Proposition 1. Suppose that the transportation cost for the pri-
mal OT problem in (4) is given by

c(x, y; G, F) =‖A(x) −A(G(y))‖ + ‖A(F(x)) −A(y)‖
+ bx(x; G, F) + by(y; G, F) (13)

where A is a deterministic (non)linear operator, and b and c
are deterministic (non)linear functionals, i.e. bx : X 7→ R and
by : Y 7→ R. Then, the corresponding dual OT problem is given
by

min
G,F

max
ψ,ϕ

`dualOT (G, F;ψ, ϕ) (14)

where

`dualOT (G, F;ψ, ϕ) := (15)
λ`cycle(G, F) + `Disc(G, F;ψ, ϕ) + `x(G, F) + `y(G, F)

where λ > 0 is the hyper-parameter, and the cycle-consistency

term is given by

`cycle(G, F) =

∫
X

‖A(x) −A(G(F(x)))‖dµ(x)

+

∫
Y

‖A(y) −A(F(G(y)))‖dν(y)

whereas the second term is the discriminator term:

`Disc(G, F;ψ, ϕ) (16)

= max
ϕ

∫
X

ϕ(A(x))dµ(x) −
∫
Y

ϕ(A(G(y)))dν(y)

+ max
ψ

∫
Y

ψ(A(y))dν(y) −
∫
X

ψ(A(F(x)))dµ(x)

with 1-Lipschitz function ϕ, ψ, and the last two terms are given
by

`x(G, F) :=
∫

bx(x; G, F)dµ(x)

`y(G, F) :=
∫

by(y; G, F)dν(y)

Proof. See Appendix.

3.2.1. Step I: Coronal Reconstruction
Using Proposition 1 we are now ready to derive our algo-

rithm. First, to make the dimension of X and Y the same, the
forward model in (11) is first converted to an image domain
forward formulation by taking inverse Fourier transform:

y = T −1PΩT x = Fx, with F := T −1PΩT (17)

where y =
[
y(1) · · · y(C)

]
and T −1 is the inverse Fourier

transform. Then, define the following transportation cost:

c(x, y; G, F) = ‖A(y) −A(F(x))‖ (18)
+ ‖A(x) −A(G(y))‖ (19)
+ α‖A(x) −A(G(x))‖ (20)

+ β‖PΩT x − PΩTG(F(x))‖2F (21)

where α and β are appropriate hyperparameters, and A is now
defined as the square-root of sum of squares (SSOS) operation
z = A(X) for multi-coil data, where the n-th component of the
vector z is formally defined as:

zn =

 C∑
i=1

|x(i)
n |

2


1
2

(22)

The transportation cost c(x, y; G, F) deserves further discus-
sion. Specifically, the first two terms (18) and (19) are directly
related to those in OT-cycleGAN, but the loss is calculated after
taking the SSoS to make the image comparison less dependent
on the coil sensitivity map. On the other hand, the identity loss
(20) enforces regularization to the neural network such that it
does not alter images that are already in theY domain, and (21)
refers to data fidelity term in the k-space domain. To apply data
consistency to k-space data that are inherently acquired in com-
plex domain for each coil, we calculate the k-space loss using
Frobenius norm.
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Fig. 3: Overall pipeline of multi-planar learning scheme. (a) Step I: Coronal reconstruction - images are reconstructed slice-by-slice with GΘ which are then stacked
to form a full volume. Resizing from matrix size 774×359×21 to 512×512×45 is done, and the coil dimension is merged from SSOS (A) operation. (b) Step II:
Axial reconstruction - volume data of slice depth 7 are fed to GΛ, while only the center slices from reconstruction output are used to refine each slice of the volume.

Fig. 4: Detailed pipeline of each training scheme. (a) Step I: coronal reconstruction. Complex valued multi-coil data are trained with MR-physics driven cycleGAN.
All the losses in the image domain, i.e. `cycle, `GAN are calculated with respect to SSOS images. (b) Step II: axial reconstruction. multi-coil information is merged
prior to the second step of reconstruction process. Training in axial direction is done partially in 3D, which consists of 7 slices of stacked images.

By inspection, we can see that our transportation cost is iden-
tical to (13) if we set

bx(x; G, F)

:= α‖A(x) −A(G(x))‖ + β‖PΩT x − PΩTG(F(x))‖2F (23)
by(x; G, F) = 0 (24)

so that we can use the dual formulation in Proposition 1. More-
over, since the k-space sampling mask Ω is known a priori, the
competition between F and ψ is not necessary and we only need
to estimate G and the corresponding discriminator ϕ. By mod-
eling them with neural networks with parameters Θ and Γ, re-
spectively, we can obtain the following loss function:

min
Θ

max
Γ
`(Θ,Γ) (25)

with

`(Θ,Γ) = γ`cycle(Θ) + `Disc(Θ,Γ) (26)
+ α`identity(Θ) + β` f req(Θ). (27)

where γ, α and β denote some hyper-parameters, and

`cycle(Θ) =

∫
Y

‖A(y) −A(F(GΘ(y)))‖dν(y)

+

∫
X

‖A(x) −A(GΘ(F(x)))‖dµ(x), (28)

and

`Disc(Θ,Γ) =

∫
X

ϕΓ(A(x))dµ(X) −
∫
Y

ϕΓ(A(GΘ(y)))dν(y)

(29)

`identity(Θ) =

∫
X

‖A(x) −A(GΘ(x))‖dµ(x) (30)

` f req(Θ) =

∫
Y

‖PΩT x − PΩTGΘ(F(x))‖2Fdµ(x) (31)

3.2.2. Step II: Axial Reconstruction
After the reconstruction through Step I, outputs are stacked

together to form a single slab. As will be shown later in experi-
ments, when we see the images in the axial plane, however, im-
ages tend to be blurry, and lacks proper texture. Accordingly,
when MIP is performed, thin vessel structures are omitted, or
disconnected, which may lead to misdiagnoses such as vascular
stenosis.

Consequently, we devise a method for axial image enhance-
ment which utilizes another unsupervised neural network to im-
prove the quality especially in MIP images. More specifically,
as shown in Fig. 3(b), after the reconstruction in the coronal
plane, we construct a 3D volume for each slab, which is used
as input for axial image refinement network. The rationale for
taking stacked volume as input are as follows: first, with the
use of volume data, we can perform MIP to the volume, so that
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the networks can learn the distribution of the partially projected
image. Second, being able to infer from adjacent slices, the net-
work can take advantage of information from bordering slices.
The advantages will be discussed more thoroughly in the dis-
cussion section.

One thing to note here is that the relationship between the
input and output domains in Step II is not well-defined. More
specifically, with a slight abuse of notation, let Y be the distri-
bution of 3-D volume of SSoS images that were reconstructed
through Step I, and X be the desired 3-D volume of SSoS im-
age distribution. Unlike Step I, where we could replace one of
the generators with a known forward operator, there exists no
closed form mapping F : X 7→ Y in this case due to the SSoS
operation and volume stacking. This situation corresponds to
the OT-cycleGAN formulation where both forward and inverse
operators are unknown. More specifically, by defining the for-
ward operator F in terms of a neural network parameterized by
Ψ, we define the following transportation cost

c(x, y; G, F) = ‖y − F(x)‖ + ‖G(y) − x‖, (32)

Then, the corresponding OT-cycleGAN formulation is given as
a Kantorovich dual formulation in (6) where `cycle, and `Disc are
cyclic consistency loss and Wasserstein GAN loss, respectively,
which are represented by (8) and (9), respectively. The resulting
network architecture is shown in Fig. 4(b).

Now, one of the main novelties in the second step comes from
the design of the discriminator ϕ in (9). More specifically, to
be an OT-cycleGAN, the discriminator ϕ should satisfy the 1-
Lipschitz condition, i.e.

|ϕ(x) − ϕ(x′)| ≤ ‖x − x′‖, ∀x, x′ ∈ X (33)

In this paper, our discriminator architecture is obtained from
PatchGAN as shown in Fig. 6(b) (Zhu et al., 2017). However,
care should be taken since X is composed of the 3D slabs. Ac-
cordingly, slice direction is stacked in the channel dimension,
so that 2-D convolution in PatchGAN can be utilized directly.
In the first path, as shown in Fig. 6(a), volume data is directly
used as input to PatchGAN. In the second path, max pooling
is applied along the slice directions to generate the 2-D image,
which is then used as an input for PatchGAN (see Fig. 6(a)).
This is in fact equivalent to applying the PatchGAN to the MIP
image at each slab, which is necessary for learning the distri-
bution of MIP. The quality of MIP images are important in that
MIP images are primarily used for radiologists in search of vas-
cular pathology. Although equally important, source images
usually serve as a supplementary tool.

Mathematically, the resulting discriminator ϕ can be repre-
sented as

ϕ(x) = λ1ϕ1(x) + λ2ϕ
max
2 (x) (34)

where ϕ1 and ϕmax
2 are discriminators for the original volume

and max-pooled images, respectively, and λ1, and λ2 are appro-
priate hyperparameters. Then, the resulting discriminator loss

function in (9) can be decomposed as follows:

`Disc(G, F;ϕ, ψ)

= λ1

(∫
X

ϕ1(x)dµ(x) −
∫
Y

ϕ1(GΘ(y))dν(y)
)

+ λ2

(∫
X

ϕmax
2 (x)dµ(x) −

∫
Y

ϕmax
2 (GΘ(y))dν(y)

)
+

(∫
Y

ψ(y)dν(y) −
∫
X

ψ(Fx)dµ(x)
)

(35)

Here, the generators G and F are implemented using neural net-
work parameterized by Λ and Ψ, respectively, whereas the dis-
criminators ϕ = λ1ϕ1 + λ2ϕ2 and ψ are realized using neural
network with the weights Υ = [Υ1,Υ2] and Ξ, respectively.

By jointly optimizing the set of discriminators responsible
for learning the distribution of the stacked volume, and the
MIP discriminator which learns the distribution of MIP images,
our method greatly improves the quality of MIP images whilst
keeping the integrity of the source images. See Fig. 4(b) for the
overall architecture of Step II reconstruction.

4. Methods

4.1. Training Dataset

From 10 patients who volunteered for scanning, 19 sets of
in vivo data were acquired with 3T Philips Ingenia scanner.
Specifically, out of 10 patients, the scans were acquired as fol-
lows:

• acceleration ×1 : 1 patient

• acceleration ×1, acceleration ×4 : 4 patients

• acceleration ×1, acceleration ×8 : 4 patients

• acceleration ×4, acceleration ×8 : 1 patient

In terms of number of slices used to train the neural network,
a total of 18343 fully-acquired slices and 18356 under-sampled
slices were used to train Step I neural network. For Step II
training, 540 fully-acquired slices and 540 under-sampled slices
were used to train the neural network.

All the scans were specified to the region covering the whole
brain, with the field-of-view (FOV) of 180 x 180 mm. Spe-
cific parameters for the scans were defined as follows: repe-
tition time (TR) = 23.00 ms, echo time (TE) = 3.45 ms, and
FA = 18.00◦. Moreover, partial Fourier acquisition (Feinberg
et al., 1986) was applied to the frequency encoding direction.
Each set was acquired through MOTSA, consisting of 6 slabs,
with k-space matrix size 774x359x21 and 30 coils. Once the
k-space data are filled, the final reconstruction is obtained as
512x512x45 matrix size with zero padding and center cropping.
For training, 12 sets of patient data were used, while 7 sets of
patient data were used for simulation study, and in vivo study.

For the undersampling mask Ω, the same masks that are used
to accelerate MR scans from Philips Ingenia scanner were used
without modification. Hence, two determined masks were used
for x4 acceleration and x8 acceleration, respectively.
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Fig. 5: Network architecture of the generators that were used in Step I and Step II. (a) Baseline U-Net which was modified from the original U-Net (Ronneberger
et al., 2015). (b) Network architecture for GΘ and GΛ which consist of baseline U-Net with adaptive residual attention module.

Fig. 6: Network architecture of the discriminators that were used in Step I and
Step II. (a) Double-headed discriminator ϕΥ which consists of ϕΥ1 that takes
in volume data, and ϕmax

Υ2
that receives depthwise-maxpooled image as input.

(b) Shared discriminator architecture that was adopted from patchGAN in (Zhu
et al., 2017). All the discriminators presented in our work share this specific
architecture.

4.2. Network Architecture
4.2.1. Generator Architecture

For the single generator used in Step I training, we use modi-
fied U-Net architecture, which consists of four stages of convo-
lutional layer, ReLU activation, and group normalization. Pool-
ing and unpooling operations were constructed with 3x3 convo-
lution with stride 2, and upscaling with bilinear interpolation,
respectively. The number of convolutional filter channels was
set to 64 at the first stage, and was increased two-fold at every
stage, reaching 1024 at the last stage. To cope with the inherent
nature of MR data which are complex, we stick to the conven-
tional notion by stacking real and imaginary parts in the channel
dimension. Thus, the dimension of the input channel was set to
60 (30 coils × 2 = 60). For detailed description, see Fig. 5.

Moreover, we utilize nonlinear attention module which is
known to enhance the expressivity of the network (Cha et al.,
2020). For GΘ in Step I, due to the large discrepancy between
the input and the desired distribution, we utilize the same net-
work architecture from Fig. 5(a) as the attention module. More-

over, in GΛ, a single 1×1 convolution layer is utilized as the
attention module.

In Step II training, we used two separate architectures for the
mapping GΛ and FΨ. For the generator GΛ, which is crucial,
we adopt U-Net architecture as in Fig. 5(a) and set the ini-
tial filter length as 32 with 3 stages. The network input is 3D
volume composed of multiple slice images, which are stacked
along the channel direction. The network output is enhanced
3D volume with the same number of the slices. Slice depth of
7 was used, whose choice will be discussed further in the dis-
cussion section. For the generator FΨ, we set the initial filter
length to 8 with only 2 stages, restricting the expressivity of
the network. Differentiating the two networks by the size re-
sulted in more efficient and stable training compared to when
we used two identical networks. Again, the input and output
of FΨ is also three dimensional volume, where each slice is
stacked along the channel direction.

4.2.2. Discriminator Architecture
The discriminators used in both steps were adopted from

(Zhu et al., 2017), and was modified to stabilize the training
process. Specifically, patchGAN with 4x4 convolution kernel
of three stages was used. Each stage consists of convolutional
layer, instance normalization and leaky ReLU activation func-
tion as shown in Fig.6(b). Moreover, spectral normalization
(Miyato et al., 2018) was applied to each layer for stability.

Discriminator architecture in Step II training is depicted in
Fig. 6(a). For the given volume data, ϕΥ has two paths: ϕΥ1

which directly receives the volume as input, and ϕmax
Υ2

which
collects single slice images acquired from maxpooling opera-
tion. ϕΥ1 and ϕmax

Υ2
can be seen as a double-headed discriminator

ϕΥ as depicted in Fig. 6 (b).

4.3. Network Training

For the first step of training, hyperparameters in (26) were
set to γ = 100, α = 0.5, β = 1. For optimization, RAdam opti-
mizer (Liu et al., 2019a), (Kingma and Ba, 2014) was used with
together with lookahead optimizer (Zhang et al., 2019). Param-
eters for RAdam were set to β1 = 0.5, β2 = 0.999. Parameters
for lookhead were set to k = 5, α = 0.5. The initial learning rate
was set to 0.0001 and was trained for 100 epochs. At 60 epoch
of training, learning rate was decayed by a magnitude of 0.1.

For Step II traning, hyperparameters in (35) were set to λ1 =
5 and λ2 = 3. In the second step, Adam optimizer (Kingma and
Ba, 2014) was used with parameters β1 = 0.5 and β2 = 0.999.



8 Hyungjin Chung et al.

100 epochs of training was performed with consistent learning
rate of 0.0001.

For both steps of training, each input data was divided with
the standard deviation of each input a priori. The proposed
method was implemented in Python using PyTorch (Paszke
et al., 2017) with NVidia GeForce GTX 2080-Ti graphics pro-
cessing unit. For the first step, the training took about three
days, while the training of the second step took about 4 hours.

5. Results

5.1. Simulation study

To verify the feasibility of our proposed method, and to prove
that our method does not artificially generate pseudo-structures
or pseudo-lesions that are not present in the ground truth, we
first performed a reconstruction using retrospectively subsam-
pling. First, we retrospectively subsampled fully acquired k-
space data with the given masks, each responsible for accelera-
tion factor of ×4 and ×8. The undersampled k-space were sub-
sequently reconstructed with the proposed method with trained
GΘ and GΛ. Here, Fig. 7(a) refers to the results achieved from
two-step supervised learning. More specifically, the same neu-
ral network architectures used in the proposed method, GΘ and
GΛ, were trained as a two-step process - in the coronal plane and
the axial plane. Images in Fig. 7(b) column shows results with
Step I of the proposed method, where only the reconstruction in
the coronal plane was utilized. Fig. 7(c) contains results from
our proposed method, where reconstruction took place both in
coronal and axial directions.

Moreover, when we compare results that were reconstructed
with a two-step supervised learning process shown in Fig. 7(a),
our proposed method shows superiority in preserving texture
and realistic vessel structures. Results reconstructed with super-
vised learning tend to be blurry and the background near ves-
sels contain more noise, whereas with the proposed method we
can reconstruct high-resolution images with clear vessel struc-
ture. In fact, this kind of over-smoothing is quite often reported
in supervised learning for image reconstruction. On the other
hand, unsupervised learning approaches without matched refer-
ence data should learn the distributions, so the oversmoothing
by fitting too much on the target data can be avoided.

Furthermore, the MIP image reconstructed with single step
training has numerous discontinuous vessels that are hard to
distinguish from lesions, as shown in Fig. 7(b). In contrast,
results from multiplanar reconstruction as shown in Fig. 7(c),
clearly have more visible vessels that are connected, and vas-
cular discontinuity that was observed from uniplanar learning
cannot be seen. Through two step learning, the vessel struc-
tures are much better preserved, not to mention the texture and
detailed structures that closely resemble label images. The ad-
vantage of the two step learning can best be seen in the MIP
images. From Fig. 7, we also verify that artificial structures are
not generated from our algorithm. Even though the acceleration
factor in Fig. 7 is ×8, with the proposed method we are able to
reconstruct images that faithfully resemble the structures shown
in the label images.

To inspect the effect of ϕmax
Υ2

, we also compare results without
it. Although results without using ϕmax

Υ2
show improvement as

opposed to results from uniplanar learning, they fall short be-
hind our proposed method, especially in MIP image where we
can still see pseudo-stenosis in the first row of Fig. 8. Visual
clarity of vessels is also enhanced in source MRA images (sec-
ond row, Fig. 8), where we see a thin vessel structure that is not
apparent in the image shown in the third column.

5.2. In Vivo study

To establish the improvements from the proposed method as
opposed to conventional compressed sensing method that are
used, we first performed an in vivo study where we compare
reconstructions by the internal algorithm (Compressed SENSE
(Geerts-Ossevoort et al., 2018)) that Philips 3T Ingenia scanner
uses, to the reconstructions of ours.

As depicted in Fig. 9, our method clearly demonstrates su-
periority with vessel contrast and continuity. Yellow arrows in
Fig. 9 show that our method is able to reconstruct what were
not visible with the CS algorithm by the vendor. Moreover, ro-
bustness to noise, which impairs image quality, is also a clear
advantage as opposed to the conventional algorithm.

Furthermore, MIP from different angles as presented in Fig.
10 verifies that our proposed method clearly outperforms the al-
gorithm of the vendor consistently in any projection directions.
Namely, our method is able to reconstruct vessel structures that
were not visible through the algorithm of the vendor, as marked
with yellow arrows. Moreover, enhanced vascular continuity
can be observed in the figure, which is important in clinical set-
tings.

5.3. Radiological evaluation

The images were evaluated by a neuroradiologist (L.S.) with
10 years of experience in neuroimaging. The source images of
TOF-MRA as well as the MIP images were assessed simulta-
neously during the evaluation.

On Fig. 7, when acceleration factor ×4 was applied, the
MIPs of all four methods seem to be acceptable for relatively
large blood vessels. However, when small vessels are eval-
uated (displayed as yellow boxes), the lumen of the vessels
shows shaggy appearance on the image with supervised learn-
ing approach (Fig. 7(a)) or with step I reconstruction only
(Fig. 7(b)), as if in cases with severe atherosclerosis. In addi-
tion, very fine branches of vessels are missing on Fig. 7(a) and
7(b), whereas it is faintly visualized on the proposed method
(Fig. 7(c)), although slightly less conspicuous than on the label
image (Fig. 7(d)). When acceleration factor ×8 was applied,
even the lumen of large vessels become irregular and discontin-
uous on Fig. 7(a) or 7(b). Although fine branches of vessels
are still missing on the proposed method (Fig. 7(c)), the lumen
of the large vessels are well-visualized and acceptable for eval-
uation. The label image (Fig. 7(d)) confirms that there are
no pathology in the intracranial vessels. On Fig. 8, the image
reconstructed with the projection discriminator (Fig. 8(b)) de-
picts the contour of the vessel more clearly than the one with-
out the projection discriminator (Fig. 8(a)). Although, a focal
mild pseud-stenosis is noted (arrowheads), the degree is much
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Fig. 7: MIP images from retrospective subsampling that were reconstructed using our method with single step and multi step. (a) refers to the reconstruction using
a two step supervised learning approaches, (b) refers to reconstructions where only Step I unsupervised learning was performed. (c) refers to reconstructed results
after both Step I and II. (d) shows label images. The first row compares results from ×4 acceleration, while the second row compares results from ×8 acceleration.
White numbers in the upper right part of the images indicate PSNR and SSIM, respectively.

Fig. 8: Reconstruction results from retrospective subsampling with and without ϕmax
Υ2

. (a) indicates reconstructions that were performed in both steps, but without
the projection discriminator. (b) shows results of our proposed method, with ϕmax

Υ2
present. (c) is the label data. White numbers in the upper right part of the images

indicate PSNR and SSIM, respectively. The yellow arrows in the figure indicate visible vessel structure with the proposed method, which was not visible with the
reconstruction without the projection discriminator
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Fig. 9: In vivo reconstruction results viewed from the axial plane from accel-
eration factor of ×4 and ×8. MIP was also performed in the axial plane. (a)
shows results from the compressed SENSE algorithm of the vendor. (b) shows
results from our proposed method.

milder than on Fig. 8(a) and can be easily dismissed consider-
ing the MRA source image. No stenosis is noted on the label
image (Fig. 8(c)). When the images reconstructed by the pro-
posed algorithm were compared to the ones by the vendor al-
gorithm while maintaining the acceleration factor (Fig. 9), the
proposed algorithm (Fig. 9(b)) was clearly superior to the ven-
dor (Fig. 9(a)), in terms of signal-to-noise and conspicuity of
the vessel contour. In particular, the vendor images with ac-
celeration factor of ×8 seem to be unacceptable for clinical
practice in its present form, where multiple pseudo-stenoses
are found even for relatively large vessels. Interestingly, the
use of two-step reconstruction process, in the coronal plane fol-
lowed by axial plane, appears to be helpful for reducing the so-
called Venetian blind artifact, which is resultant to the MOTSA
technique (Fig. 10). The differences of signal intensity of ad-
jacent slabs have been concomitantly adjusted to the image re-
construction.

6. Discussion

6.1. Optimal choice of slice depth

With Step II training where we take partial stacks of volume
data for training, we can flexibly choose the slice depth as a hy-
perparameter. To choose the optimal depth especially for con-
structing MIP, we experimented with slice depths 1 ∼ 9. The
results in Table 1 using 3D data shows consistent improvement
over using single slice data. Two reasons mainly account for
this. First, the projection discriminator can no longer be uti-
lized when we use depth 1 training. Since the main workhorse
for improving the quality of MIP was the projection discrimina-
tor, the lack of this discriminator leads to poorer performance.
Second, while reconstruction with depth 1 does improve the
visual quality of the images by making the texture more realis-
tic, it cannot enhance the visibility of vessels since information
from adjacent slices are not accessible. Also, when we compare
the metrics by varying the slice depth other than 1, we get the
most effective result when we set the slice depth to 7. Table 1
indicates the choice of 7 as optimal slice depth is sound.

Table 1: Comparison of quantitative metrics between reconstruction results of
source MIP and MRA images with different slice depths. The number in each
column indicates slice depths in the training of Step II.

Image
Type Metric Number of slices

1 3 5 7 9

MIP PSNR 29.27 31.02 29.92 31.43 30.61
SSIM 0.8379 0.8774 0.8524 0.8771 0.8512

MRA PSNR 29.23 29.42 31.10 30.00 29.11
SSIM 0.7831 0.7723 0.7779 0.7958 0.7492

6.2. Multiplanar learning vs. Volumetric learning

There may be different ways to tackle 3D MR acceleration.
Volumetric learning by utilizing full volume data could be a
possible choice. Nonetheless, we propound that multiplanar
learning is a better match for 3D TOF MRA reconstruction.

For one thing, GPU memory is limited, and loading the full
3D data into the GPU easily exceeds the constraint. Note that
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Fig. 10: In vivo MIP from multiple angles are presented in the figure. (a) refers to zero-filled reconstructions. (b) shows images that were directly acquired from the
vendor, which are reconstructed using a CS algorithm (compressed SENSE). Images in (c) were reconstructed from raw k-space data using our proposed algorithm.
The first two rows show reconstructed results from acceleration factor of ×4, while the latter two rows show results from acceleration factor of ×8.

especially for multi-coil data where we have 4 dimensions in
total: read-out, phase-encoding 1, phase-encoding 2, and coil,
we have very limited size of data that are loadable to the GPU
at once. In addition, with MOTSA scans where we have mul-
tiple slabs for each patient data, the choice of a single volume
becomes ambiguous.

That being said, the proposed method that divides the train-
ing stage into two parts is a reasonable choice. Our method
seamlessly incorporates all 4 dimensional information without
technical overhead.

7. Conclusion

To devise a method that is well suited for the reconstruc-
tion of accelerated 3D TOF MRA, in this paper we suggested
a multiplanar unpaired learning approach. In particular, MR-
physics driven cycleGAN approach is exploited in the coronal
plane as the first step of training process. Progressively, a novel
cycleGAN approach in 3D with a newly-proposed projection
discriminator is applied in the axial plane. The first step is
meaningful in that we provide a method that is able to incorpo-
rate accelerated data into the training scheme, and by exploiting
MR-physics we devise a method that is much stabler than the
conventional cycleGAN approach. The second phase enhances
the quality of images, especially images of MIP, which is more
clinically meaningful. Our method can provide high quality re-
constructions at very high acceleration factors which were not
possible with conventional vendor CS methods. Thus, we sug-
gest a new direction of study for the acceleration of 3D MRA

by exploiting information from multiple axes without the need
for large amount of paired data.

In this work, we used 7 patient data scans to validate the re-
search. However, the number of scans used to test the proposed
method is limited, and the method was not tested using scans in
which lesions are apparent. Hence, to prove its clinical utility, a
more comprehensive research in the clinical perspective using
more data with enhanced diversity could be a further direction
of research.
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Appendix

The proof is a direct extension of the proof in (Sim et al.,
2019), but we include the following for self-containment.

Using the transportation cost c(x, y; Θ) given by Eqs. (13),
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the primal optimal transport problem becomes

K(G, F) := min
π∈Π(µ,ν)

∫
X×Y

c(x, y; Θ)dπ(x, y) (36)

=

∫
X×Y

cXY (x, y)dπ∗(x, y) + `x(G, F) + `y(G, F)

(37)

where π∗ denote the optimal joint measure, µ, ν are the marginal
distribution, and

cXY (x, y) =‖A(x) −A(G(y))‖ + ‖A(F(x)) −A(y)‖

and

`x(G, F) = min
π∈Π(µ,ν)

∫
X×Y

bx (x; G, F) dπ(x, y)

=

∫
X

bx (x; G, F) dµ(x)

after integrating out with respect to y; similarly, we have

`y(G, F) =

∫
Y

by (y; G, F) dν(y)

Now, according to the Kantorovich dual formulation (Villani,
2008), we have

KXY :=
∫

cXY (x, y)dπ∗(x, y)

=
1
2

{
max
ζ

∫
X

ζ(x)dµ(x) +

∫
Y

ζc(y)dν(y)

+ max
η

∫
X

ηc(x)dµ(x) +

∫
Y

η(y)dν(y)
}

where the so-called c-transforms ζc(y) and ηc(x) are defined by
(Villani, 2008)

ζc(y) = inf
x
{‖A(x) −A(G(y))‖ + ‖A(F(x)) −A(y)‖ − ζ(x)}

ηc(x) = inf
y
{‖A(x) −A(G(y))‖ + ‖A(F(x)) −A(y)‖ − η(y)}

Now, instead of finding the infx, we choose x = G(y). Simi-
larly, instead of finding the infy, we choose y = Fx. This leads
to an upper bound:

KXY ≤
1
2

(
`cycle(G, F) + `Disc(G, F; ζ, η)

)
where

`cycle(G, F) =

∫
X

‖A(x) −A(G(F(x)))‖dµ(x)

+

∫
Y

‖A(F(G(y))) −A(y)‖dν(y) (38)

`Disc(G, F; ζ, η) = max
ζ

∫
X

ζ(x)dµ(x) −
∫
Y

ζ(G(y))dν(y)

+ max
η

∫
Y

η(y)dν(y) −
∫
X

η(Fx)dµ(x) (39)

Now, if we define

ζ(x) := ϕ(A(x)), η(y) := ψ(A(y)) (40)

for some 1-Lipschitz function ϕ and ψ, we have

ζ(x) − ζ(G(y)) = ϕ(A(x)) − ϕ(A(G(y)))
≤ ‖A(x) −A(G(y))‖
≤ ‖A(x) −A(G(y))‖ + ‖A(F(x)) −A(y)‖

η(y) − η(Fx) = ψ(A(y)) − ψ(A(Fx))
≤ ‖A(x) −A(G(y))‖ + ‖A(F(x)) −A(y)‖

This leads to the following lower-bound

KXY ≥
1
2
`Disc(G, F; ζ, η)

If we replace the discriminator using (40), we have

`Disc(G, F; ζ, η) = `Disc(G, F;ϕ, ψ)

:= max
ϕ

∫
X

ϕ(A(x))dµ(x) −
∫
Y

ϕ(A(G(y)))dν(y)

+ max
ψ

∫
Y

ψ(A(y))dν(y) −
∫
X

ψ(A(F(x)))dµ(x)

The rest of the proof is exactly the same as in Sim et al. (2019).
This concludes the proof.
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Peyré, G., Cuturi, M., et al., 2019. Computational optimal transport. Founda-
tions and Trends R© in Machine Learning 11, 355–607.

Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P., 1999. SENSE:
sensitivity encoding for fast MRI. Magn Reson Med 42, 952–962.

Quan, T.M., Nguyen-Duc, T., Jeong, W.K., 2018. Compressed sensing MRI re-
construction using a generative adversarial network with a cyclic loss. IEEE
Transactions on Medical Imaging (in press) .

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks
for biomedical image segmentation, in: International Conference on Medi-
cal image computing and computer-assisted intervention, Springer. pp. 234–
241.

Schlemper, J., Caballero, J., Hajnal, J.V., Price, A.N., Rueckert, D., 2017. A
deep cascade of convolutional neural networks for dynamic mr image recon-
struction. IEEE transactions on Medical Imaging 37, 491–503.

Schlemper, J., Yang, G., Ferreira, P., Scott, A., McGill, L.A., Khalique, Z.,
Gorodezky, M., Roehl, M., Keegan, J., Pennell, D., et al., 2018. Stochas-
tic deep compressive sensing for the reconstruction of diffusion tensor car-
diac mri, in: International conference on medical image computing and
computer-assisted intervention, Springer. pp. 295–303.

Sim, B., Oh, G., Lim, S., Ye, J.C., 2019. Optimal transport, cycle-
gan, and penalized ls for unsupervised learning in inverse problems.
arXiv:1909.12116.

Sriram, A., Zbontar, J., Murrell, T., Defazio, A., Zitnick, C.L., Yakubova, N.,
Knoll, F., Johnson, P., 2020. End-to-end variational networks for accelerated
mri reconstruction. arXiv preprint arXiv:2004.06688 .

Stalder, A.F., Schmidt, M., Quick, H.H., Schlamann, M., Maderwald, S.,
Schmitt, P., Wang, Q., Nadar, M.S., Zenge, M.O., 2015. Highly under-
sampled contrast-enhanced MRA with iterative reconstruction: Integration
in a clinical setting. Magn Reson Med 74, 1652–1660.

Tang, H., Hu, N., Yuan, Y., Xia, C., Liu, X., Zuo, P., Stalder, A.F., Schmidt,
M., Zhou, X., Song, B., Sun, J., 2019. Accelerated Time-of-Flight Magnetic
Resonance Angiography with Sparse Undersampling and Iterative Recon-
struction for the Evaluation of Intracranial Arteries. Korean J Radiol 20,
265–274.

Villani, C., 2008. Optimal transport: old and new. volume 338. Springer Sci-
ence & Business Media.

Wang, G., Gong, E., Banerjee, S., Pauly, J., Zaharchuk, G., 2019a. Accel-
erated mri reconstruction with dual-domain generative adversarial network,
in: International Workshop on Machine Learning for Medical Image Recon-
struction, Springer. pp. 47–57.

Wang, S., Cheng, H., Ying, L., Xiao, T., Ke, Z., Zheng, H., Liang, D., 2020.

Deepcomplexmri: Exploiting deep residual network for fast parallel mr
imaging with complex convolution. Magnetic Resonance Imaging 68, 136–
147.

Wang, S., Ke, Z., Cheng, H., Jia, S., Ying, L., Zheng, H., Liang, D., 2019b. Di-
mension: Dynamic mr imaging with both k-space and spatial prior knowl-
edge obtained via multi-supervised network training. NMR in Biomedicine
, e4131.

Wang, S., Su, Z., Ying, L., Peng, X., Zhu, S., Liang, F., Feng, D., Liang, D.,
2016. Accelerating magnetic resonance imaging via deep learning, in: 2016
IEEE 13th International Symposium on Biomedical Imaging (ISBI), IEEE.
pp. 514–517.

Wheaton, A.J., Miyazaki, M., 2012. Non-contrast enhanced mr angiography:
physical principles. Journal of Magnetic Resonance Imaging 36, 286–304.

Yang, G., Yu, S., Dong, H., Slabaugh, G., Dragotti, P.L., Ye, X., Liu, F., Ar-
ridge, S., Keegan, J., Guo, Y., et al., 2017. Dagan: Deep de-aliasing gen-
erative adversarial networks for fast compressed sensing mri reconstruction.
IEEE transactions on medical imaging 37, 1310–1321.

Zhang, M., Lucas, J., Ba, J., Hinton, G.E., 2019. Lookahead optimizer: k
steps forward, 1 step back, in: Advances in Neural Information Processing
Systems, pp. 9593–9604.

Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S., 2018. Image recon-
struction by domain-transform manifold learning. Nature 555, 487–492.

Zhu, J.Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks, in: Proceedings of the
IEEE international conference on computer vision, pp. 2223–2232.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1908.03265
http://arxiv.org/abs/1706.00051
http://arxiv.org/abs/1802.05957
http://arxiv.org/abs/1909.12116
http://arxiv.org/abs/1909.12116
http://arxiv.org/abs/2004.06688

	1 Introduction
	1.1 CS-MRI and pMRI
	1.2 Deep Learning for CS-MRI
	1.3 Our contributions

	2 Related Works
	2.1 Geometry of CycleGAN

	3 Theory
	3.1 Forward Model
	3.2 Two Step Unsupervised 3D TOF Reconstruction
	3.2.1 Step I: Coronal Reconstruction
	3.2.2 Step II: Axial Reconstruction


	4 Methods
	4.1 Training Dataset
	4.2 Network Architecture
	4.2.1 Generator Architecture
	4.2.2 Discriminator Architecture

	4.3 Network Training

	5 Results
	5.1 Simulation study
	5.2 In Vivo study
	5.3 Radiological evaluation

	6 Discussion
	6.1 Optimal choice of slice depth
	6.2 Multiplanar learning vs. Volumetric learning

	7 Conclusion

