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Abstract

Three-dimensional (3D) integrated renal structures (IRS) segmentation targets segmenting the kidneys, re-
nal tumors, arteries, and veins in one inference. Clinicians will benefit from the 3D IRS visual model for
accurate preoperative planning and intraoperative guidance of laparoscopic partial nephrectomy (LPN).
However, no success has been reported in 3D IRS segmentation due to the inherent challenges in grayscale
distribution: low contrast caused by the narrow task-dependent distribution range of regions of interest
(ROIs), and the networks representation preferences caused by the distribution variation inter-images. In
this paper, we propose the Meta Greyscale Adaptive Network (MGANet), the first deep learning framework
to simultaneously segment the kidney, renal tumors, arteries and veins on CTA images in one inference. It
makes innovations in two collaborate aspects: 1) The Grayscale Interest Search (GIS) adaptively focuses
segmentation networks on task-dependent grayscale distributions via scaling the window width and center
with two cross-correlated coefficients for the first time, thus learning the fine-grained representation for
fine segmentation. 2) The Meta Grayscale Adaptive (MGA) learning makes an image-level meta-learning
strategy. It represents diverse robust features from multiple distributions, perceives the distribution charac-
teristic, and generates the model parameters to fuse features dynamically according to image’s distribution,
thus adapting the grayscale distribution variation. This study enrolls 123 patients and the average Dice co-
efficients of the renal structures are up to 87.9%. Fine selection of the task-dependent grayscale distribution
ranges and personalized fusion of multiple representations on different distributions will lead to better 3D
IRS segmentation quality. Extensive experiments with promising results on renal structures reveal powerful
segmentation accuracy and great clinical significance in renal cancer treatment.

Keywords: Integrated renal structures, segmentation, Ensemble learning, Meta learning, Automatic
hyper-parameter search, Meta grayscale adaptive network, Grayscale interest search, Meta grayscale
ensemble
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1. Introduction

Three-dimensional (3D) integrated renal structures
(IRS) segmentation on computed tomography an-
giography (CTA) images is one of the most important
tasks for laparoscopic partial nephrectomy (LPN)
(Shao et al., 2011; Simone et al., 2015; Ljungberg
et al., 2019). It targets achieving 3D kidney, renal tu-
mors, arteries, and veins in one inference (Fig. 1(a)),
once successful, clinicians will benefit from the 3D
visual model of renal structures for accurate preop-
erative planning (Porpiglia et al., 2018; Bianchi et al.,
2020). Preoperatively, the renal arteries will help es-
timate renal perfusion model (Zhang et al., 2019), so
that the clinicians will select the tumor-feeding arte-
rial branches and locate the arterial clamping posi-
tion easily (Shao et al., 2012). The tumor and kid-
ney models will visually show the lesion regions, thus
helping the pre-plan of the tumor resection surface
(Fig. 1(b)). Intraoperatively, the preoperative plan
will be displayed on screen together with laparoscopic
videos to guide the LPN (Nicolau et al., 2011; Her-
rell et al., 2014; Hamada et al., 2020). Renal vessels
(veins, arteries) outside hilum will show a clear arte-
rial clamping region visually, thus the clinicians will
select arterial clamping branches quickly. The 3D
IRS visual model will also guide the clinicians mak-
ing appropriate decisions (Fig. 1(c)). Therefore, the
costs of treatment will be reduced, the quality of LPN
will be improved, and the pain of patients will be re-
lieved.

Although the automatic 3D IRS segmentation is
clinically urgent, there is no solution yet. Most of
the recent studies focus on partial renal structure seg-
mentation (Wang et al., 2020a; Jin et al., 2016; He
et al., 2019) which lacks the countermeasures to seg-
ment integrated renal structures. Besides, the sep-
arate segmentation of each structure will bring the
overlapping problem, especially in the renal hilum
where veins, arteries are staggered. Some other stud-
ies are dedicated to multiple renal structure segmen-
tation (Li et al., 2018; Taha et al., 2018), but the

∗Corresponding author.
Email addresses: yang.list@seu.edu.cn (Guanyu

Yang), slishuo@gmail.com (Shuo Li)

Figure 1: 3D IRS segmentation will provide accurate preoper-
ative planning and intraoperative guidance for LPN

lack of fine details limiting their clinical downstream
tasks. Especially, the inadequate segmentation of re-
nal arteries loses the important ability of perfusion
region estimation.

Inherent challenges of 3D IRS segmentation are
limiting the implementation of automated method:
Challenge 1: Narrow task-dependent distribution
making low contrast. The CT image has a large
grayscale range, but the renal structures are only
in a narrow range, making the original CTA im-
ages appear unclear soft tissues and boundaries. As
shown in Fig. 2, the irrelevant distributions occupy
the large grayscale ranges squeezing the renal struc-
tures in narrow grayscale ranges, so that the CTA im-
age has coarse-grained distributions and low contrast
(a). Therefore, the network will lose the sensitivity
to the adjacent structures with close grayscale dis-
tribution and weaken the ability to extract detailed
features such as the boundaries between the struc-
tures. Challenge 2: Distribution variation inter-
images making representation preferences. The sub-
types of the renal tumors have different volumes and
abilities to metabolize contrast agents (Young et al.,
2013), so that it will make the differences in the
distribution of contrast agent overall, thus making
a large grayscale distribution variation inter-images.
As shown in Fig. 3, the clear cell carcinomas present
bright texture and large size, while the papillary has
dark texture and small size. The grey distributions of
five tumor subtypes have various centers and peaks.
These large variations make it the network difficult
to stably learn uniform low-order knowledge (style,
pattern, etc.) resulting in representation preferences
and large fluctuations of performance inter-images,
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Figure 2: Narrow task-dependent distribution makes original
CTA image low contrast and windowing on the distribution
makes sub-window image fine-grained pattern. (a) The origi-
nal CTA image has narrow distribution making low contrast.
(b,d) When the window covers the unconcerned distribution,
the renal structures will be lost. (c) When the window covers
the task-dependent distribution, the sub-window image will
have a fine-grained pattern

especially for the vein structures which are inappar-
ent and sensitive to the variation.

Solution 1 to focus on the task-dependent
grayscale distribution range. Windowing (Goldman,
2007) removes irrelevant grayscale ranges and ex-
pands the task-dependent distributions which will
augment the contrast for ROIs, making networks fo-
cus on a wider distribution of the renal structures
to perceive fine-grained patterns. However, it is
challenging to find the narrow task-dependent dis-
tribution in a large original grayscale range manu-
ally according to human experience. Especially for
our renal structures segmentation task, it has to be
dependent on multiple distributions and has big dis-
tribution variation inter-images. As shown in Fig.
2, in the grayscale distribution of the example im-
age, when the grayscale distribution range window
(sub-window) covers the renal structures’ distribu-
tions (c), the sub-window image has fine-grained pat-
terns and the regions of renal structures are signifi-
cant. When the sub-window is out of the renal struc-
ture’s distributions (b,d), the renal structures will be
lost. Therefore, we propose the Grayscale Inter-
est Search (GIS) strategy which focuses segmentation
networks on the task-dependent grayscale distribu-
tion in CTA images for the first time. It innovatively

Figure 3: Different renal tumor subtypes make the images have
large distribution variation. (a-e) The renal tumor subtypes
have different volumes and abilities to metabolize contrast
agents making distribution variations (Young et al., 2013). f)
The grayscale distributions of the tumor subtypes have a large
variation. The y-axis is the number of voxels and the x-axis is
the grayscale value

simulates doctor’s observation of different structures
in different sub-windows to automatically search the
task-dependent distribution via scaling the window
width and center with two effective cross-correlated
coefficients. Therefore, salient regions with fine-grain
patterns are available and networks will learn the
fine-grained representation for fine segmentation in
details.

Solution 2 to adapt to the grayscale distribution
variation. Meta-learning for parameter generation
learns cross-tasks knowledge to rapidly generate pa-
rameters of models (Hospedales et al., 2020), thus dy-
namically adapting to the variation inter-tasks (task-
level). However, there is no meta-learning study
for the adaptation of grayscale distribution variation
inter-images (image-level). In this study, we pro-
pose the Meta Grayscale Adaptation (MGA) learn-
ing (Fig. 4(c)) which makes each image as a sub-
learning task to dynamically generate the parame-
ters for each image adapting the distribution varia-
tion inter-images. It is an image-level meta-learning
strategy which learns the trained kernels via gradi-
ent descent for the meta knowledge of IRS segmen-
tation, and generates the meta kernels via predic-
tion for the knowledge of each sub-learning task. It
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has three key elements: 1) Represent the image ro-
bustly with distribution variation. We integrate the
feature representation capabilities from multiple dis-
tributions covered by different sub-windows (Multi-
windowing Group) so that more diverse features will
be extracted, reducing the overfitting of representa-
tion preferences. 2) Dynamically generate person-
alized parameters according to image’s distribution.
We make each image as a sub-learning task and fur-
ther propose the Meta Perceiver to perceive its dis-
tribution characteristic, thus generating personalized
feature parameters (meta kernels) to adapt to the
distribution variation of each sub-learning task (im-
age). 3) Personalized fusion of features. We propose
the Meta Residual Convolution (ResConv) to fuse
the meta knowledge of our IRS segmentation task
and the personalized knowledge of each sub-learning
task. Trained kernels learn meta knowledge on IRS
segmentation and the meta kernels generated by our
Meta perceiver represent the personalized knowledge
of sub-learning tasks. The meta kernels fine-tune the
trained kernels for the personalized fusion parameters
of each image adapting to the distribution variation
inter-images and improving the generalization.

We propose the grayscale distribution optimiza-
tion from the perspective of the grayscale distribu-
tion range adjustment and variation adaptation in
our 3D IRS segmentation task, and propose the Meta
Greyscale Adaptive Network (MGANet), the first
deep learning framework to simultaneously segment
the kidney, renal tumors, arteries and veins on CTA
images in one inference. The contributions of our
study are summarized as the following:

� To the best of our knowledge, we achieve the
3D IRS segmentation for the first time which
will play an important role in accurate preop-
erative planning and intraoperative guidance of
LPN. We review the relevant technical and clin-
ical value of this task which will provide a valu-
able reference for follow-up works.

� We propose the MGANet to optimize the
grayscale distribution of the model representa-
tion via grayscale distribution range adjustment
and variation adaptation, so that it will obtain

fine-grained feature representations and person-
alized feature fusion for optimal segmentation re-
sults.

� We propose the MGANet to optimize the
grayscale distribution of the model representa-
tion via grayscale distribution range adjustment
and variation adaptation, so that it will obtain
fine-grained feature representations and person-
alized feature fusion for optimal segmentation re-
sults.

� We present a novel image-level meta-learning
strategy, the MGA learning, which represents
diverse robust features from multiple distribu-
tions, perceives the distribution characteristic,
and generates the model parameters to fuse these
features dynamically according to the image’s
distribution, thus adapting the grayscale distri-
bution variation.

The rest of the paper is organized as follow: We
review the related works about renal structures seg-
mentation, ensemble learning in image segmentation,
hyper-parameter optimization, and meta-learning for
parameters generalization in Sec. 2. Then, we specif-
ically introduce our proposed MGANet in Sec. 3, in-
cluding the GIS strategy (Sec. 3.1), the MGA learn-
ing (Sec. 3.2) and the details of the network struc-
tures (Sec. 3.3). Then Sec. 4 describes the materials,
experiment setting, and evaluation methods, and Sec.
5 shows and analyzes the results of the experiments.
Finally, we discuss and conclude our work in Sec. 6.

2. Related works

2.1. Renal structures segmentation

Renal structure segmentation is significant in accu-
rate preoperative planning and intraoperative guid-
ance of LPN (Porpiglia et al., 2018; Bianchi et al.,
2020), however, the automatic IRS segmentation has
not been reported success. He et al. (2019) designed
a semi-supervised framework and achieved fine seg-
mentation of renal arteries which is important in the
selection of arterial clamping position. Wang et al.
(2020) took the graph-cut (Rother et al., 2004) and
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proposed a tensor-cut framework for renal artery seg-
mentation. Taha et al. (2018) proposed a Kid-Net
for renal vessel segmentation including the arteries,
veins, and ureter. The 3D UNet (Çiçek et al., 2016)
was firstly proposed for Xenopus kidney segmenta-
tion. Li et al. (2018) proposed a residual U-Net and
segmented the renal structures.

However, these works are limited in our task in
two aspects: 1) Some works (He et al., 2019; Taha
et al., 2018; Wang et al., 2020a; Çiçek et al., 2016)
only focus on the segmentation of partial renal struc-
tures lacking the countermeasures for integrated re-
nal structures in one inference. The separate segmen-
tation of each renal structure via these methods will
bring the overlapping problem within segmentation
regions, especially in renal hilum where veins, arter-
ies, and ureter are staggered. 2) Some other works
(Li et al., 2018; Taha et al., 2018) lack fine details of
the segmented structures such as the interlobar renal
arteries which is important to build the renal perfu-
sion model (Zhang et al., 2019), limiting the clinical
downstream tasks.

2.2. Ensemble learning in image segmentation

The ensemble learning (Dietterich, 2002) con-
structs a set of learners and combines their repre-
sentations for a more accurate discussion. It gives a
strategy to embed specific designs for the challenges
of tasks, such as error correction, class-imbalanced
data, etc. (Polikar, 2012). The ensemble segmen-
tation models (Xia et al., 2018; Wang et al., 2015;
Zheng et al., 2019) fuse the superiorities from the
multiple learners improving the integrated segmenta-
tion quality. Xia et al. (2018) proposed the Volu-
metric Fusion Net (VFN) which train three 2D seg-
mentation network in X, Y, and Z-axis and take a 3D
network to fuse the results. Zheng et al. (2019) fur-
ther added a learner in the 3D version and proposed
a meta-learner for the ensemble process.

Although the existing works behave promising re-
sults on their issues, they are inherently impeded to
be applied for our task. They ignore the variation of
grayscale distributions caused by the variation of tu-
mor types in our task, making their networks difficult
to stably learn uniform low-order knowledge (style,
pattern, etc), resulting in representation preferences

for common distributions and limiting the general-
ization for rare distributions. Our MGA learning
trains multiple networks on different searched distri-
butions and fuses their feature representations abil-
ities according to the distribution characteristic dy-
namically. Thereby, their representation for different
distributions will be jointed making generalization for
distribution variation inter-images.

2.3. Hyper-parameter optimization

Hyper-parameter optimization (Bergstra and Ben-
gio, 2012; Tan and Le, 2019) is widely used to achieve
better accuracy. Numerous prior studies (He et al.,
2016; Huang et al., 2017; Real et al., 2019) on net-
work’s depth and width proofs that the deeper and
wider networks will capture richer and more com-
plex features for more accurate performance. Tan
and Le (2019) simultaneously studied the influence of
the width, depth, and resolution’s compound scaling
on network accuracy, and searched the EfficientNet
which uses less computing resourcesfor higher accu-
racy.

In medical image analysis, the grayscale distribu-
tion ranges of the medical images are another im-
portant hyper-parameter that lacks the attention of
researchers. The CT imaging process makes a large
grayscale range so that the original image will ap-
pear in low contrast and unclear soft tissues. When
observing medical images, radiologists use the win-
dowing method (Goldman, 2007) to removes irrele-
vant grayscale ranges and expands the distributions
of the ROIs, thus improving the contrast and bring-
ing clearer details. However, there is no study on
the optimization of this hyper-parameter: 1) numer-
ous medical image analysis studies (He et al., 2019;
Çiçek et al., 2016; Li et al., 2018; Taha et al., 2018)
ignore the optimization of this hyper-parameter and
train their models on original grayscale ranges, lim-
iting the segmentation quality on their regions of in-
terest (ROIs); 2) Some other studies (Isensee et al.,
2018; Wang et al., 2020b) only set the grayscale range
manually based on researchers’ experience or clini-
cal criteria directly without further optimization for
the better grayscale range in their task. We propose
the GIS strategy which adaptively searches the task-
dependent grayscale range so that the network will
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learn more fine-grained feature representation for the
interested distributions.

2.3.1. Meta learning for parameters generalization

Meta-learning for parameters generalization di-
rectly predict model parameters (Hospedales et al.,
2020) rather than the gradient in back-propagation,
thus generating the personalized parameters and pro-
viding dynamic adaptation to the variation. The Hy-
pernetworks (Ha et al., 2017; Brock et al., 2018) train
a network to generate the parameters of another net-
work for fast learning, which are common applica-
tions in model compression or multi-task learning.
The Meta networks (Munkhdalai and Yu, 2017) com-
bine the parameters predicted by meta learner and
the weights trained cross tasks making rapid gener-
alization. The WeightNet (Ma et al., 2020) unifies
the SENet (Hu et al., 2018) and CondConv (Yang
et al., 2019), trains the network in the kernel space
and takes the network to generate weights for the
classification task.

However, these studies only focus on task-level pa-
rameter generation and there is no meta-learning
study for the adaptation of grayscale distribution
variation inter-images (image-level). Our MGA
learning makes each image as a sub-learning task
to dynamically generate parameters for each image,
thus making an image-level meta-learning framework
to adapt the distribution variation. It represents di-
verse robust features from multiple distributions and
generates the model parameters to fuse these features
dynamically according to the input image’s distribu-
tion in a stable residual structure, thus adapting the
grayscale distribution variation inter-images.

3. Methodology

As shown in Fig. 4, our MGANet adaptively op-
timizes the grayscale distribution of medical images
and achieves the 3D IRS segmentation. It makes
innovations in two collaborate components: 1) The
Grayscale Interest Search (GIS, Sec. 3.1, Fig. 4 (a))
adaptively optimizes the focused grayscale distribu-
tion range via scaling the window width and center
with two cross-correlated coefficients, thus adaptively

discovering the task-dependent distribution. It fur-
ther expands the searched distribution via window-
ing making salient regions with fine-grain patterns,
so that segmentation networks will learn fine-grained
feature representation for renal structures. 2) The
Meta Grayscale Adaptive (MGA, Sec. 3.2, Fig. 4
(b)) learning makes each image as a sub-learning task
to adapt the distribution variation via three key ele-
ments: the Multi-windowing Group extracts features
from multiple grayscale distributions for robust fea-
ture representation with distribution variation; the
Meta Perceiver perceive the distribution character-
istic to generate personalized parameters (meta ker-
nels) to adapt to the distribution variation; the Meta
ResConv fuses the meta knowledge of our IRS seg-
mentation task and the personalized knowledge of
each sub-learning task, improving the generalization.

3.1. Grayscale interest search for task-dependent dis-
tributions

Our GIS (Fig. 4 (a)) scales the dimensions of win-
dow width and center using two cross-correlated coef-
ficients discovering our task-dependent distributions
adaptively and expands the searched distribution via
windowing (Goldman, 2007) for fine-grained feature
representation of renal structures. Therefore, it fo-
cuses segmentation networks on the task-dependent
grayscale distribution in CTA images to learn the
fine-grained representation for fine segmentation.

3.1.1. Problem Formulation

As shown in Fig. 2, the automatic search for the
grayscale range of interest has to scale the dimen-
sions of window width w and center c. The width
w determines the size of the grayscale range covered
by the window, the wider the window, the richer dis-
tribution information will be covered, but a wider
window will weaken the discrimination between the
distributions of the structures thus reducing the con-
trast of medical images. The center c determines the
position of the window, the closer the window cen-
ter is to the task-dependent distribution, the clearer
the details of these structures will appear in im-
ages. We define the images in sub-window as Xw,c =
Ww,c

(
X[gmin,gmax]

)
where the W is the windowing

6



Figure 4: Our MGANet adaptively optimizes the grayscale distribution of medical images via our GIS strategy and MGA
learning, achieving the 3D IRS segmentation

process (Sec. 3.1.2), the gmin and gmax are the min-
imum and maximum values of the defined original
grayscale range. In our IRS segmentation task, the
gmin = 0 and gmax = 2048. Segmentation networks
Nw,c trained on the sub-window images predicts seg-
mentation results Y(w, c), thus this process is de-
fined as Y(w, c) = Nw,c

(
Ww,c

(
X[gmin,gmax]

))
. The

boundaries of the window cannot exceed the original
grayscale ranges. We set the Dice coefficient (DSC)
(Taha and Hanbury, 2015) of all targeted renal struc-
tures as the metric to evaluate these segmentation
results on the searched sub-window images, thus the
searching process of the task-dependent grayscale dis-
tribution is as follow:

max
w,c

DSC (Y(w, c))

s.t. Y(w, c) = Nw,c
(
Ww,c

(
X[gmin,gmax]

))
c− w

2
≥ gmin

c+
w

2
≤ gmax

(1)

We take the grid search method (Bergstra and Ben-
gio, 2012) to optimize these two hyper-parameters,
and scale an initial window width w0 = φ and center
c0 = φ in integer multiples using two cross-correlated
coefficients, α and β, to reduce the search space:

width : wα = αφ

center : cβ = βφ

s.t. α ∈ Z+

β ∈ Z+

α+ 2β ≤ 2gmax
φ

α+ 2β ≥ 2gmin
φ

(2)

where the α and β are the cross-correlated scal-
ing coefficients which have to match the condition
2gmin
φ ≤ α+ 2β ≤ 2gmax

φ for the width and center. In
our experiment, we set φ = 256 to make the grayscale
window grid (Fig. 5), so that 32 sub-windows on our
grayscale window grid are searched. In particular, we
find the best values are α = 3 and β = 5.

3.1.2. Adaptively search the task-dependent distribu-
tion range

As shown in Fig. 5, we make a grayscale window
grid adaptively via scaling the dimensions of window
width and center, and our GIS strategy searches the
task-dependent distribution on this grid.

Windowing expends distribution for fine-grained pat-
tern. As shown in Fig. 4(c), a windowing process
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Figure 5: Our GIS strategy for our task-dependent grayscale distribution making the networks fine-grained feature representa-
tion

W removes irrelevant grayscale ranges and expands
the distributions of the renal structures thus improv-
ing the contrast and bring salient ROIs, so that the
network will focus on a wider distribution of the re-
nal structures to perceive their fine-grained patterns.
It takes the window width wα and center cβ from
the grayscale window grid firstly, and then thresh-
olds the original image x on the boundaries, cβ − wα

2
and cβ + wα

2 , of the sub-window for a thresholded
image xthr. Finally, the thresholded image is nor-
malized for sub-window images xw,c to [0, 1] making
more salient renal structures. Therefore, the whole
windowing process is as follow:

xw,c =Ww,c(x)

=
max(min(x, cβ − wα

2 ), cβ + wα
2 )− (cβ − wα

2 )

wα
(3)

Adaptive sub-window search for task-dependent dis-
tribution. Our adaptive sub-window search trains
multiple segmentation networks iteratively on our
grayscale window grid and evaluates via the DSC
metric (Taha and Hanbury, 2015) for the best win-
dow width w and center c which covers the task-
dependent distribution. As shown in Fig. 5, mul-
tiple sub-window images on the grayscale window
grid train their corresponding segmentation networks
iteratively to adapt to the segmentation of renal
structures on different sub-windows. Therefore, seg-

mented results on these windows are available to cal-
culate their average DSCs on the four renal struc-
tures. The DSC ranking step ranked these average
DSCs. For our following Meta Grayscale Adaptive
learning, our framework selects topM windows as the
sub-windows. Evaluated by our experiments, we set
the M = 4, considering model performance and com-
putational efficiency. We follow DenseBiasNet (He
et al., 2020) as our segmentation networks in our GIS
process. The details of DenseBiasNet is introduced
in Sec. 3.3.1.

Summary of the advantages. 1) Our GIS strat-
egy adaptively discovers our IRS segmentation task-
dependent distribution, so that it will automatically
provide the deep learning model with a more ap-
propriate hyper-parameter of the grayscale distri-
bution range. 2) Our GIS strategy removes ir-
relevant grayscale ranges and expands the task-
dependent distribution so that the interruption of
task-unconcerned distributions’ variations will be
weakened, and the contrast of the ROIs will be aug-
mented, thus focusing segmentation networks on a
wider distribution of the renal structures to perceive
fine-grained patterns.

3.2. Meta grayscale adaptive learning for personal-
ized adaptation of distribution variation

Our MGA learning (Fig. 4 (b)) makes an image-
level meta-learning to extract diverse robust features
from multiple distributions via our Multi-windowing
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Group, perceive the distribution characteristics of
each image via our Meta Perceiver, and fuse the
meta knowledge (trained kernels) and the personal-
ized knowledge (meta kernels) for a personalized fu-
sion process via our Meta ResConv, thus adapting
the distribution variation.

3.2.1. Multi-windowing Group for robust feature rep-
resentation

Our Multi-windowing Group extracts features
from multiple distributions covered by different sub-
windows, thus representing the images in multi-views
making the features more diverse to reduce the over-
fitting of representation preferences to a single distri-
bution. For a CTA image, it obtains M sub-window
images {x0, ..., xM} with different distributions from
the searched M sub-windows via windowing, im-
proving the diversity of image distributions. Inde-
pendent segmentation networks {N0, ...,NM} trained
in the searched sub-windows during our GIS pro-
cess learn the representation of the distributions cov-
ered by these sub-windows, and the corresponding
sub-window images are put into these networks for
the features before the output convolutional layers.
These features are concatenated for the features F
which integrate the representation of multiple distri-
butions:

F = cat(N0(x0), ...,NM (xM )) (4)

where the ’cat’ means the concatenation process.
Therefore, the features from different distributions
will have richer representation capabilities and can
be more robustly deal with distribution changes.

3.2.2. Meta perceiver perceives distribution charac-
teristic

Our meta perceiver P perceives the distribution
characteristic of each image to dynamically fuse
the features from the trained segmentation networks
of the M grayscale distributions covered by the
searched sub-windows. The features from our Multi-
windowing Group are put into our meta perceiver P
together with the original image x to generate meta
kernels Ŵmeta, b̂meta. The meta kernels will fine-tune
the trained kernels initialized by the trained weights

in the output layers of the segmentation networks for
personalized fusion parameters in our Meta ResConv,
thus dynamically fusing the features according to the
image’s distribution:

Ŵmeta, b̂meta = P(F , x) (5)

3.2.3. Meta residual convolution for stable personal-
ized fusion

The personalized fusion parameters from our
Meta ResConv has two components: trained kernels
Wconv, bconv and meta kernels Ŵmeta, b̂meta. The
trained kernels represent the meta knowledge of our
IRS segmentation task and the meta kernels from our
Meta Perceiver represent the personalized knowledge
of each image. Therefore, the meta kernels dynam-
ically fine-tune the trained kernels via residual (He
et al., 2016), generating the personalized fusion pa-
rameters and improving the generalization for var-
ied distributions inter-images. As shown in Fig. 6,
we use the weights of output convolutional layers in
the trained segmentation networks to initialize the
trained kernels. The meta kernels Ŵmeta, b̂meta from
our Meta Perceiver are added to the trained kernels
Wconv, bconv making a dynamic meta Conv Ŵ, b̂ ad-
just the attention degree of different components in
the features F dynamically. Therefore, the represen-
tations of different distributions will be dynamically
fused according to the distribution characteristic of
each image. The formulation of this process is:

Ŵ = Ŵmeta + Wconv

b̂ = b̂meta + bconv

ŷ = σ(ŴT ×Fn + b̂)

(6)

Here, the σ is a softmax activation function for
our segmented IRS mask, the n ∈ N is the position
of feature vectors in three-dimensional feature maps.
The × is the matrix multiplication and the ŴT is
the transpose of the matrix Ŵ.

Our Meta ResConv is a dynamic fine-tuning of
the output convolutional kernels of the segmentation
networks which have been trained in our searched
sub-windows. When our meta kernels tend to zero
Ŵmeta → 0, b̂meta → 0, the Meta Conv degenerates

9



Figure 6: Our Meta ResConv takes the trained kernels as basic
parameters and fine-tunes them via our meta kernels from our
Meta Perceiver for the adaptation of each image.

to the original kernels of the trained output convolu-
tion layers Ŵ ≈Wconv, b̂ ≈ b̂conv, so our MGA learn-
ing will degenerate to an average ensemble strategy
(Polikar, 2012). Therefore, our MGA learning is a dy-
namical enhancement of average ensemble which fur-
ther considers the personalized optimization of dis-
tribution variation for each image, so it will bring
the generalization of varied distributions inter-images
and stable performance.

Summary of the advantages. 1) Our Mult-
windowing Group integrates feature representation
capabilities from multiple distributions, thus extract-
ing more diverse features and reducing the overfitting
of representation preferences to a single distribution.
2) Our Meta Perceiver perceives distribution charac-
teristics of each image and our Meta ResConv gener-
ates personalized model parameters to fuse the fea-
tures from different sub-windows, thus adapting the
distribution variation in our 3D IRS segmentation
task. 3) Our Meta ResConv block uses residuals to
generate new fusion parameters based on trained ker-
nels, thus greatly reducing the output space of meta
kernels, so that the generated fusion parameters will
not make large fluctuations and the personalized fu-
sion for distribution variation will be stable.

3.3. Details of the networks

We follow DenseBiasNet structure (He et al., 2020)
as our segmentation network for our IRS segmenta-
tion and take continuous convolutions, pooling, ac-

Figure 7: The detailed basic segmentation network structures
(DenseBiasNet) for IRS segmentation and meta perceiver for
high-order meta kernels.

tivations, and full connections as our meta perceiver
for the perception of discriminative compositions in
features.

3.3.1. DenseBiasNet for IRS segmentation

As shown in Fig. 7 (a), we follow DenseBiasNet
(He et al., 2020) as our segmentation network for
IRS segmentation, it fuses multi-receptive fields and
multi resolution features for the adaptation of scale
changes and has achieved success in renal artery seg-
mentation. We take seven resolution stages and each
stage has two 3×3×3 convolutional layers followed by
a group normalization (Wu and He, 2018)(GN) and a
ReLU activation. Max-pooling and up-sampling lay-
ers are used to change the resolution. After the final
stage, a 1×1×1 convolutional layer followed by a soft-
max outputs our segmented IRS. The feature maps
from each Conv-GN-ReLU layer are compressed via
a 1×1×1 convolutional layer and transmitted to ev-
ery forward layer thus making a full dense connection
network. The number of transmitted feature maps
in this network is a hyper-parameter k, and in our
experiments, it is 4. To train DenseBias-Net, a cross-
entropy (ce) loss function Lce (Taha et al., 2018,?),
which has good convergence (Goodfellow et al., 2016)
and is widely used in medical image segmentation
tasks, is calculated between the IRS labels y and their
segmented results ŷ.
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3.3.2. Meta Perceiver perceives distribution charac-
teristic

As shown in Fig. 7 (b), our Meta Perceiver takes
continuous convolutions, pooling, activations, and
full connections for meta kernels which will give a
higher response to the discriminative compositions
of the feature vectors in feature maps. It has five res-
olution stages, each stage has one 3× 3× 3 convolu-
tional layer followed by a GN and a ReLU activation.
Max-pooling follows each stage for down-sampling of
the feature maps. Finally, the feature maps are com-
pressed into a one-dimensional feature vector via a
global average pooling layer (Lin et al., 2014) and this
feature vector is put into two full connections for our
meta kernels which will enhance the task-beneficial
features. These meta kernels are trained to optimize
the trained kernels initialized by the weights of the
trained output convolution layers following our Sec.
3.2 via the Lce.

4. Experiments Configurations

Dataset. Abdominal CTA images from 123 patients
who have a tumor in their unilateral kidney were ret-
rospectively selected from the radiology department
of Jiangsu Province Hospital in this study. Each im-
age is acquired on a Siemens dual-source 64-slice CT
scanner and contrast media was injected during the
CT image acquisition. This dataset has five different
kidney tumor types including clear renal cell carcino-
mas, papillary, chromophobe, angiomyolipoma, and
eosinophilic adenoma resulting in large heterogeneity
and distribution variation. Pixel sizes of these images
are between 0.47 mm/pixel and 0.74 mm/pixel, and
their slices thicknesses are 0.5 mm/pixel. The cancer-
ous kidney ROIs whose size is 150 × 150 × /200 are
pre-extracted automatically via a multi-atlas-based
approach following (Yang et al., 2014). Kidney, tu-
mor, veins, and arteries are finely labeled by two ra-
diologists with cross-checking.

Data augmentation. To avoid overfitting and im-
prove the generalization of models, the dataset is

augmented via batch-generators1. The combina-
tion of random rotation (−20° ↔ 20°), cropping
(128 × 128 × 128), mirror (in the axis of x, y and
z), scaling (0.75 ↔ 1.25 times) and elastic deforma-
tion, enlarges the dataset 1,000 times, thus making
123,000 samples.

Implementation. Our MGANet has two training
stages to search the task-dependent grayscale dis-
tributions and learn to fuse the features from mul-
tiple distributions dynamically. In the first stage,
the initial window width w0 and center c0 are 256
and 256, thus 32 sub-windows on our grayscale win-
dow grid are searched. The optimization setting of
the corresponding segmentation networks (DenseBi-
asNet (He et al., 2020)) trained in these sub-windows
is the Adam with the batch size of 1, learning rate
of 1 × 10−4 and iterations of 1.6 × 105. The DSC of
their results is ranked for the four best sub-windows.
In the second stage, the weights of DenseBiasNets on
the searched four sub-windows are fixed to extract
features, and the kernels of their output convolutional
layers are used to initialize the trained kernels during
the training of our Meta ResConv. Same as the first
stage, The optimization setting of our Meta perceiver
is the Adam with the batch size of 1, learning rate of
1× 10−4, and iterations of 1.6× 105.

The framework is implemented with PyTorch2 and
runs on NVIDIA TITAN Xp GPUs. Five-fold cross-
validation is performed for comprehensive evaluation.
All models in our experiments are optimized for 1.6×
105 iterations.

Comparison settings. To illustrate the superiority of
our framework, we compare the proposed MGANet
with V-Net (Milletari et al., 2016), 3D U-Net (Çiçek
et al., 2016), Res-U-Net (Li et al., 2018), Kid-Net
(Taha et al., 2018), Dense-BiasNet (He et al., 2020),
and an ensemble model, VFN (Xia et al., 2018) on
CTA images. To further study the nature of our GIS
strategy, we analyze the performance of the segmen-
tation network in different sub-windows, and the vari-
ation of their ensemble performance with the number

1https://github.com/MIC-DKFZ/batchgenerators
2https://pytorch.org/
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of integrated learners changes. All methods use a
same implementation.

Evaluation metric. The segmentation performance
of each method is evaluated in two aspects (Taha and
Hanbury, 2015) following He et al. (2020). 1) The
area-based metric: we take the Dice coefficient (DSC)
to evaluate the area-based overlap index. 2) The
distance-based metric: we take the average Hausdorff
distance (AVD) to evaluate the coincidence of the
surface for stable and less sensitive to outliers. To
further compare the segmentation quality of outliers,
we also take the Hausdorff distance (HD) which is
sensitive to outliers. Average DSC (%), AVD (mm),
and HD (mm) of all renal structures are also reported
together with their standard deviation (±std).

5. Results and Analysis

Our MGANet achieves fine-grained feature repre-
sentation and bridges the representation preferences
caused by the distribution variations thus achieving
an excellent 3D integrated renal structures segmenta-
tion. In this part, we will thoroughly evaluate and an-
alyze the effectiveness of our proposed MGANet: 1)
The quantitative evaluation and qualitative evalua-
tion in the comparative study (Sec. 5.1) will show the
superiorities of our framework compared with other
models. 2) The ablation study (Sec. 5.2) will demon-
strate the contribution of our innovations and the
influence of different hyper-parameters in our frame-
work. 3) The GIS process, the number of fused sub-
windows, and the meta kernels will be analyzed in
framework analysis (Sec. 5.3)

5.1. Comparative study shows our superiority

5.1.1. Quantitative evaluation for metric superiority

As demonstrated in Tab. 1, our MGANet achieves
excellent performance compared with other methods.
In our MGANet, the artery achieves 89.0% DSC,
22.67 mm HD, and 0.60 mm AVD which will strongly
support the perfusion regions estimation and the ar-
terial clamping position selection. The kidney gets
95.1% DSC, 12.28 mm HD, and 0.53 mm AVD, the
tumor gets 86.4% DSC, 29.85 mm, and 2.76 mm

AVD, and the veins get 81.0% DSC, 18.94 mm HD,
and 0.90 mm AVD which will provide the operation
guidance. The ensemble model, VFN, fuses 2D infor-
mation in different perspectives, achieving good per-
formance on tumors (86.3% DSC) and fewer outliers
on veins (18.14 mm HD). However, it has poor per-
formance on arteries (81.8% DSC) because of the low
contrast in original images and the small arteries in
2D slices. The Kid-Net takes deep supervision thus
getting competitive performance with smaller aver-
age surface distances on tumors (2.42 mm AVD), but
it only gets 78.0% DSC on arteries and 75.4% DSC on
veins. Dense-BiasNet which is our basic segmentation
network has a decent performance in four structures
and achieves 84.6% AVG DSC on the original win-
dow. When taking our GIS and MGA, our MGANet
achieves a significant average improvement of 3.3%
DSC in each renal structure.

5.1.2. Qualitative evaluation for visual superiority

As illustrated in Fig. 8, our proposed MGANet
has great visual superiority which will provide visual
guidance for renal surgery. In case 1, our MGANet
achieved fine IRS segmentation results visually, while
DenseBiasNet, Kid-Net, and Res-U-Net have serious
mis-segmentations (yellow arrows) between the kid-
ney and the tumor. V-Net and VFN have rough
segmentation in tumor regions due to the unclear
boundaries caused by the narrow grayscale range
and the variable grayscale distribution of tumors.
In case 2, the enlarged details show fine segmenta-
tion quality on the boundaries of the tumor. The
comparison methods segment the tumor regions out-
side the kidney into the kidney (yellow arrows) ow-
ing to the unclear boundaries caused by low contrast
in the original window and the representation pref-
erences of the varied tumor distributions. In case
3, the enlarged hilum regions illustrate the excellent
segmentation quality of our method in complex re-
gions. The kidneys, veins, and arteries structures
are crowded in the narrow renal hilum region, which
will make the mis-segmentation of these structures.
Our MGANet has fine and complete segmentation of
veins, while the other comparison methods have se-
rious mis-segmentation of vein regions that have low
contrast in such a complex environment.

12



Table 1: The quantitative evaluation demonstrates the superiority of our MGANet for our 3D IRS segmentation task. Our
MGANet achieves better performance than the comparison methods (V-Net, 3D U-Net, Res-U-Net, Kid-Net, VFN, and Dense-
BiasNet) on all four renal structures. The EN means that the model is an ensemble method and the AVG DSC means the
average DSC on the four structures.

Method
Kidney Tumor
DSC(%) HD(mm) AVD(mm) DSC(%) HD(mm) AVD(mm)

V-Net 94.3±1.6 14.77±8.59 0.69±0.26 81.5±19.7 23.81±25.63 3.40±4.35
3D U-Net 94.9±1.6 19.40±11.09 0.79±0.50 82.0±19.4 31.22±27.98 2.78±3.27
Res-U-Net 94.4±1.2 14.52±9.52 0.62±0.17 80.3±14.0 53.87±30.38 5.69±5.71
Kid-Net 94.3±1.5 14.33±8.70 0.66±0.20 82.7±19.1 22.04±25.31 2.42±3.32
VFN (EN) 94.5±1.5 15.70±9.17 0.65±0.36 86.3±10.3 16.34±23.77 2.45±3.82
DenseBiasNet 94.2±1.7 20.44±12.70 0.76±0.50 82.6±15.1 35.60±32.25 4.23±5.32
Our MGANet (EN) 95.1±1.5 12.28±7.92 0.53±0.14 86.4±11.8 29.85±31.17 2.76±3.12

Method
Vein Artery

AVG DSC(%)
DSC(%) HD(mm) AVD(mm) DSC(%) HD(mm) AVD(mm)

V-Net 76.4±9.2 21.99±18.66 1.20±0.71 84.3±4.5 53.51±14.86 0.76±0.77 84.1±6.5
3D U-Net 73.7±13.5 30.82±21.06 2.12±2.69 80.2±8.2 50.82±14.49 1.47±1.83 82.7±7.7
Res-U-Net 76.8±7.9 19.04±10.84 1.27±0.93 84.5±8.6 27.60±14.36 1.20±1.89 84.0±6.6
Kid-Net 75.4±10.4 18.25±10.61 1.19±0.96 78.0±7.1 35.15±16.76 0.91±1.02 82.6±7.3
VFN (EN) 76.9±9.0 18.14±12.45 1.20±1.40 81.8±6.1 23.33±15.55 0.84±1.16 84.9±6.5
DenseBiasNet 75.3±11.3 23.47±15.67 1.61±2.53 86.1±8.0 25.68±14.77 1.27±2.43 84.6±6.8
Our MGANet (EN) 81.0±7.2 18.94±13.86 0.90±0.70 89.0±5.1 22.67±13.33 0.60±0.70 87.9±5.1

5.2. Ablation study shows improvements of the inno-
vations

As illustrated in Tab. 2, our innovations bring
significant enhancements. The DenseBiasNet in the
original window achieves 94.2%, 82.6%, 75.3%, and
86.1% DSC on kidneys, tumors, veins, and arter-
ies. When taking our GIS strategy, the best sub-
window (w = 768, c = 1280) augments the contrast
of the CTA image and make the network focus on a
wider distribution of the renal structures to perceive
fine-grained patterns, so that the veins and arter-
ies achieve 3.9% and 1.9% DSC improvements. The
AVG EN-4 in Tab. 2 is an ensemble models which
takes an average ensemble strategy (Polikar, 2012) to
calculate the average of the segmentation results from
the networks trained in the top four sub-windows.
When we take the average ensemble strategy (AVG
EN-4), it achieves 95.0%, 85.5%, 79.5%, and 88.1%
DSC on kidneys, tumors, veins, and arteries. When
using our MGA learning to make the personalized
fusion of networks’ preferences for different distribu-
tions, our MGANet gets great improvements, espe-
cially on veins, it achieves the significant 1.5% DSC

improvement compared with the average ensemble
strategy and finally obtains the 87.9% average DSC
for our 3D IRS segmentation task.

5.3. Framework analysis

5.3.1. Grayscale interest search analysis

Our GIS strategy achieves multiple sub-windows
which will perform better than original CTA images
in renal structures. As shown in Fig. 9, we calculate
the average DSC of the segmented renal structures
is, highlight and select the highest four windows as
the sub-windows in our MGANet. 1) The networks’
performance present different characteristics of the
renal structures when the sub-windows are changed.
The kidney has a more stable performance when the
sub-window changes than other structures, because it
has a relatively large volume, regular shape, and wide
grayscale range making the stable learning of feature
representation. The vein, tumor, and artery are sen-
sitive to the window center and width, because their
volumes are small and grayscale ranges are narrow
making the searched sub-windows difficult to cover
in some extreme sub-windows. 2) Since the renal
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Figure 8: The qualitative evaluation illustrates the visual superiority of our proposed MGANet

Table 2: The ablation study analyses the contributions of our innovations. The AVG EN-4 takes an average ensemble strategy
to fuse the networks trained in the top four sub-windows, achieving further improvements in tumors.

GIS AVG EN-4 MGA-4
DSC(%)±std

Kidney Tumor Vein Artery AVG

94.2±1.7 82.6±15.1 75.3±11.3 86.1±8.0 84.6±6.8
X 94.5±2.0 83.6±14.1 79.2±6.7 88.0±5.3 86.3±5.7

X X 95.0±1.4 85.5±13.0 79.5±8.2 88.1±7.0 87.0±5.6
X X 95.1±1.5 86.4±11.8 81.0±7.2 89.0±5.1 87.9±5.1

structures have different grayscale distributions, they
have different interested sub-windows due to their
different distribution characteristics. The best sub-
window of the veins, kidneys, tumors, and arteries
are (w = 1280, c = 1024), (w = 1536, c = 1024),
(w = 1280, c = 1280) and (w = 768, c = 1280). Con-
sidering the superiority of overall performance, we
calculate the average DSC of these structures and se-
lect the top four sub-windows, {(w = 768, c = 1280),
(w = 1280, c = 1024), (w = 512, c = 1280), (w =
1280, c = 1280)}, for our MGANet. 3) The net-
works trained in the sub-windows which cover the
task-dependent distributions will achieve better per-
formance than those trained in the original window.
The network trained in the original window achieves
84.6% average DSC which is 1.7% DSC lower than
the network trained in the best sub-window.

5.3.2. Fused networks’ amount analysis

As shown in Fig. 10, we analyze the DSC change
of the models with the amount of the fused networks
trained in our GIS increasing. The networks trained
during our GIS process are fused start from the high-
est average DSC. It illustrates the characteristic in
two aspects: 1) The fusion performance increases
and then decreases. Due to the severe degradation of
the networks accuracy in some singular sub-windows
(noisy networks), the average DSC first increases and
then decreases with the amount of the fused networks
increasing. 2) Renal structures have different sensi-
tivity to the increasing of the fused networks. Kidney
has little fluctuation due to its large volume and wide
grayscale range, making its DSC have less fluctuated.
Tumors are sensitive and when the models fuse more
than 20 networks, the noisy networks will seriously
interrupt the whole accuracy and make severe degra-
dation. Considering model performance and com-
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Figure 9: The heatmaps show the DSC of four renal structures and their average performance from our GIS process

Figure 10: With the amount of the fused networks trained
in our GIS process increasing, the DSC will increase and then
decrease, and the renal structures will have different sensitivity
to the increasing of the networks

putational efficiency, we set the fused sub- window
amount to 4 in our MGANet which has the highest
average DSC and relatively fewer parameters.

5.3.3. Meta kernels analysis

As shown in Fig. 11, the meta kernels in our MGA
learning fine-tune the trained kernels to dynamically
adapt the variation of the grayscale distributions. 1)
The renal structures have different meta kernel values
to fine-tune the trained kernels in different degrees.
Because the renal structures have different distribu-
tions which present different characteristics, our meta
perceiver perceives their characteristics and output
the best fine-tuning degrees (meta kernels) for renal
structures enhancing the final results. 2) The cases
have different meta kernels to fine-tune the trained
kernels for the adaptation of the distribution varia-

Figure 11: The meta kernels in our MGA learning fine-tune
the trained kernels to dynamically adapt the variation of the
grayscale distributions.

tion. Owing to our MGA learning’s significant im-
provement on veins, we show the meta kernels of the
vein in two cases. As the distribution changes inter-
images, our meta perceiver will perceive the variation
and the fine-tuning degree of the trained kernels will
also dynamically change.

6. Discussion and Conclusion

In this paper, we propose and systematically study
the grayscale distribution optimization in the 3D IRS
segmentation task, and propose the MGANet for 3D
IRS segmentation which will provide great technical
support for the treatment of renal cancer for the first
time. Our MGANet takes the advantage of our GIS
strategy and MGA learning achieving powerful gener-
alization ability. Our GIS strategy (fig. 4 (a)) adap-
tively searches and expands our task-dependent dis-
tributions to help segmentation networks learn fine-
grained feature representation for renal structures.
Our MGA learning (fig. 4 (b)) takes image-level
meta learning strategy which makes each image as
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a sub-learning task. It represents diverse robust fea-
tures from multiple distributions, perceives the dis-
tribution characteristic of each sub-learning task, and
generates the personalized parameters to fuse these
features dynamically according to the sub-learning
task’s distribution, thus adapting the grayscale dis-
tribution variation.

Fine optimization of grayscale distribution signif-
icantly improves the performance of medical image
segmentation without adding additional model pa-
rameters. The experiments of our GIS strategy ver-
ified that: 1) The images in suitable sub-window
will obtain better performance than in the original
window because the sub-window expands the task-
dependent distribution making networks focus on a
wider distribution of the renal structures to perceive
fine-grained patterns. fig. 9 shows that the best
sub-window achieves 1.7% average DSC improvement
compared with the original window. 2) The seg-
mentation objects have different best sub-windows
owing to their different distribution characteristics.
For example, the vein achieves the best DSC in
(w = 1280, c = 1024), while the tumors best sub-
window is (w = 1280, c = 1280). As shown in fig.
12, our GIS strategy automatically searches multiple
window centers and widths for windowing to aug-
ment the contrasts which adapt to our renal struc-
tures, thus bringing clear boundaries, salient regions,
and fine-grained textures in different sub-windows.
Therefore, the model obtains the discriminative rep-
resentation of different structures with such stronger
regional differences, and finally obtains higher accu-
racy. Compared with the other methods, our frame-
work achieves higher DSC, lower HD, and AVD in
Tab. 1 illustrating our significant improvement.

Our 3D IRS segmentation provides visual assis-
tance for preoperative plans for LPN having great
clinical significance. 1) A clinical case (fig. 1 (b))
demonstrates preoperative plans via our 3D IRS seg-
mentation. The 3D IRS model will help doctors es-
timate the renal perfusion model, locate the tumor
resection surface and point the arterial clamping po-
sitions visually for preoperative plans. 2) Intraop-
eratively, the preoperative plan will be displayed on
screen together with laparoscopic videos to guide the
LPN (fig. 1 (c)). Therefore, 3D IRS visual model will

Figure 12: Compared with the original images, our GIS strat-
egy automatically searches multiple window centers and widths
for windowing to augment the contrasts which adapt to our re-
nal structures, thus bringing clear boundaries, salient regions,
and fine-grained details in different sub-windows

supplement the invisible regions in the laparoscope,
so that the difficulties of LPN will be reduced and the
quality of LPN will be improved. 3) Thanks to the
high computing speed of deep learning frameworks on
GPUs, our MGANet has good time efficiency. It only
takes 2.305 seconds on each case which will greatly
reduce the time cost for doctors to obtain the renal
structures 3D model.

Future works. Hyper-parameter optimization for
grayscale distribution in medical image analysis is
a research direction worthy of further exploration.
There are many potential research topics such as the
quick search of this hyper-parameter, the grayscale
distribution optimization for other medical image
tasks, the application of grayscale distribution op-
timization in cross-domain learning, etc.
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