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Abstract

Brain graphs (i.e, connectomes) constructed from medical scans such as
magnetic resonance imaging (MRI) have become increasingly important tools
to characterize the abnormal changes in the human brain. Due to the high
acquisition cost and processing time of multimodal MRI, existing deep learn-
ing frameworks based on Generative Adversarial Network (GAN) focused
on predicting the missing multimodal medical images from a few existing
modalities. While brain graphs help better understand how a particular dis-
order can change the connectional facets of the brain, synthesizing a target
brain multigraph (i.e, multiple brain graphs) from a single source brain graph
is strikingly lacking. Additionally, existing graph generation works mainly
learn one model for each target domain which limits their scalability in jointly
predicting multiple target domains. Besides, while they consider the global
topological scale of a graph (i.e., graph connectivity structure), they over-
look the local topology at the node scale (e.g., how central a node is in the
graph). To address these limitations, we introduce topology-aware graph
GAN architecture (topoGAN), which jointly predicts multiple brain graphs
from a single brain graph while preserving the topological structure of each
target graph. Its three key innovations are: (i) designing a novel graph ad-
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versarial auto-encoder for predicting multiple brain graphs from a single one,
(ii) clustering the encoded source graphs in order to handle the mode col-
lapse issue of GAN and proposing a cluster-specific decoder, (iii) introducing
a topological loss to force the prediction of topologically sound target brain
graphs. The experimental results using five target domains demonstrated the
outperformance of our method in brain multigraph prediction from a single
graph in comparison with baseline approaches.

Keywords: Brain multigraph prediction, Generative adversarial learning,
Geometric deep learning, Adversarial autoencoders

1. Introduction

Multimodal neuroimaging data such as magnetic resonance imaging (MRI)
and positron emission tomography (PET) provides complementary informa-
tion for diagnosing neurological disorders. Nevertheless such data is not
conventionally acquired for clinical diagnosis. Therefore, predicting modali-
ties from minimal resources becomes a fundamental task in the neuroscience
field. Existing deep learning methods aiming to solve this problem can be
categorized into one-target (i.e, one-to-one) and multi-target (i.e, one-to-
many) prediction approaches. For instance, in the first category, (Zeng and
Zheng, 2019) proposed a framework based on Generative Adversarial Net-
work (GAN) (Goodfellow et al., 2014) to predict Computed Tomography
(CT) images from MRI where a cyclic reconstruction loss were introduced
to improve the synthesis task. Similarly, (Pan et al., 2019) adopted the
cyclic loss proposed in (Zhu et al., 2017) to predict PET from MR images
for an early Alzheimer’s Disease identification. While these works predicted
the target image using a single source modality, (Li et al., 2019) introduced
DiamondGAN, a multi-modal GAN-based framework to predict double in-
version recovery (DIR) scan from three source modalities (i.e, Flair, T1 and
T2). A potential limitation of such one-target prediction frameworks, is that
they are incapable of jointly predicting multiple target modalities in a single
learning model (Fig. 1-A).

To this end, several attempts were made in the literature which are em-
bedded into the second category that is multi-target prediction frameworks.
For example, (Huang et al., 2019b) designed an autoencoder adversarially
regularized by a discriminator to predict three target MR images (i.e, T1-
weighted, T2-weighted, and FLAIR) from a single source T1 MRI scan.



While it is the single multi-target prediction work we identified in the medi-
cal imaging field, many frameworks were designed for computer vision tasks.
Recently, (Wu et al., 2019) proposed a GAN-based model where the image
synthesis step is first conditioned by a relative attribute vector represent-
ing the desired target domain, second it is adversarially regularized using
three discriminators. To further improve the quality of the synthetic images,
(Cao et al., 2019) exploited the correlation existing across multiple target do-
mains by proposing a Wasserstein GAN-based framework. However, all the
aforementioned models belonging to both categories were designed for syn-
thesizing images, which limits their generalization to geometric data types
such as graphs and manifolds (Bronstein et al., 2017). In particular, predict-
ing brain graphs (i.e, connectomes), which models the functional, structural,
or morphological interactions between brain regions is of paramount impor-
tance for charting the brain dysconnectivity patterns (van den Heuvel and
Sporns, 2019; Bassett and Sporns, 2017).

A brain graph is an undirected graph conventionally encoded in a sym-
metric connectivity matrix where each element (i.e, edge connecting two
nodes) measures the connectivity strength between pairs of region of interest
(ROIs). Leveraging such brain data representation for the purpose of neu-
rological disorder diagnosis can eventually improve prognosis (Fornito et al.,
2015). By reason of its importance for understanding normal brain function
and disordered brain dysfunction, such brain representation have been used
for many purposes such as brain graph integration (Mbhiri et al., 2020b; Yang
et al., 2020; Bessadok and Rekik, 2018; Gurbuz and Rekik, 2020), disease
early detection (Song et al., 2020; Li et al., 2020), developmental trajectories
prediction (Ghribi et al., 2019; Goktas et al., 2020; Nebli et al., 2020). These
studies demonstrate that leveraging different types of brain connectivities
such as functional, structural and morphological ones provide more accurate
results compared to neuroimaging since brain graphs represent a compre-
hensive mapping of neural activities. Thus, we highly need the connectomic
data types for early diagnosis of neurological diseases. However, construct-
ing brain graphs is limited by (i) the incompleteness of existing multimodal
medical datasets and (ii) the pre-processing pipeline including different steps
such as cortical parcellation and the surface registration is time-consuming
for a single raw MRI (e.g, T1- and T2-weighted scans) (Li et al., 2013).
Hence, these challenges dictate priorities for brain graph prediction. Espe-
cially, predicting missing target brain graphs from an existing source graph is
highly required for learning the holistic brain mapping in healthy and disor-



der cases. In this regard, several recent studies were proposed for predicting
brain graphs (Bessadok et al., 2019b,a, 2020a). However, to predict a tar-
get brain multigraph from a single source graph using these frameworks, we
need to train the model for each target brain graph independently. Thus,
such one-to-one prediction frameworks have a limited robustness. Conse-
quently, we propose topoGAN, the first geometric deep learning framework
aiming to jointly predict multiple brain graphs from a single graph in an
end-to-end learning architecture (Fig. 1-B). We root our framework in the
recently designed adversarial autoencoder model (Cao et al., 2019), which is a
multi-domain translation technique primarily designed for images. Although
effective, (Cao et al., 2019) has two major limitations: (i) it fails to operate
on graphs as it was primarily designed for Euclidean data, (ii) it overlooks
GAN mode collapse, where the generator (i.e., decoder) produces data that
mimic a few modes of the target domain. To this end, we first propose to
cluster the source graphs into homogeneous groups, which helps disentangle
heterogeneous source data distributions. Second, we include the topological
measurements (e.g, closeness centrality) into the adversarial learning which
aligns the global and local graph topology of the predicted target graphs
with that of the ground-truth ones. Fundamentally, we summarize the main
contributions of this paper as follows:

1. Source brain graph embedding clustering. We learn the source graph
embedding using an encoder E defined as a Graph Convolutional Net-
work (GCN) (Kipf and Welling, 2016). Second, we cluster the result-
ing embeddings of the whole training population with heterogeneous
distribution into homogeneous clusters. In that way, we enforce our
multi-target prediction model to circumvent the mode collapse issue of
GAN-based works (Goodfellow et al., 2014; Cao et al., 2019).

2. Cluster-specific multi-target graph prediction. Given the clustered source
graphs embeddings, we define a set of synergetic generators for each tar-
get domain, each representing a cluster-specific GCN decoder. Hence,
the graph prediction is learned more synergistically using our proposed
cluster-specific generators, rather than using a single generator for each
target domain. This generative process is regularized using one discrim-
inator, which enforces the generated graphs to match the original target
graphs.

3. Topology-aware adversarial loss function. In order to preserve both
global and local topological properties of the original graphs, we un-
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precedentedly introduce a topological loss function which enforces the
generated graphs to retain a centrality score of each nodes in the orig-
inal target brain graph.

Note that a preliminary version of this work was published in (Bessadok
et al., 2020b). This journal version presents the following extensions. (1) We
removed the graph reconstruction loss in the adversarial loss of the generator
since it had a low affect in the prediction accuracy of the graphs. (2) We car-
ried out more experiments to show the effectiveness of our method compared
with the benchmark methods. Specifically, we report the results of jointly
predicting multiple brain graphs using six different source graphs (i,e. views).
(3) We further compared our framework to its variant architectures including
graph attention network (GAT) and graph convolutional network (GCN). (4)
We added more topology-focused evaluation metrics such as mean absolute
error (i,e. MAE) between the real and predicted graphs, MAE between the
real and predicted PageRank centrality, effective size and clustering coef-
ficient of the graphs. We further reported p-value results using two-tailed
paired t-test and the Kullback-Leibler divergence between the real and pre-
dicted scores. (5) Finally, we added a visual comparison of the real and
predicted graphs where we display the residual of the predicted multigraphs.

2. Related work

Brain Graph synthesis. A few recent papers have investigated geo-
metric deep learning methods for brain graph prediction (Bessadok et al.,
2019b,a; Sserwadda and Rekik, 2020; Zhang et al., 2020a) where in the first
two works the synthesis task was partially formalized as a domain adapta-
tion problem. For example, (Bessadok et al., 2019b) symmetrically aligned
the training source and target brain graphs and adversarially regularized
the training and testing source graphs embeddings using two discriminators.
The second geometric deep learning (Hamilton et al., 2017) work, namely
HADA (Bessadok et al., 2019a), hierarchically aligned each source graphs to
the target graphs of training subjects and optimized the whole framework
using a single discriminator. Next, to predict the target brain graph of a
representative subject both works averaged the target graphs of the training
subjects that share similar local neighborhoods across source and target do-
mains. Although promising, these works are not designed in an end-to-end
learning fashion (Fig. 1-A). They mainly dichotomize the model into sepa-
rate parts that do not co-learn which leads to relatively high accumulated



errors across the learning steps. To overcome this limitation, (Sserwadda
and Rekik, 2020) and (Zhang et al., 2020a) designed end-to-end GAN-based
frameworks for brain graph synthesis. In particular, (Sserwadda and Rekik,
2020) adopted a cycle-consistency loss function to accurately perform the
bidirectional mapping between the source and target brain graphs. Addi-
tionally, a new topological constraint was proposed to enforce the connec-
tivity strength of the brain regions in the predicted graph to be similar to
those of the ground-truth graph. On the other hand, (Zhang et al., 2020a)
parallelised multiple GCN models and fused the resulting learned represen-
tations to predict a target brain graph from a source one. Furthermore, a
structure-preserving loss function was proposed to stabilize the training of
both generator and discriminator models. A shared shortcoming of all these
brain graph synthesis works lies in their limited scalability for jointly pre-
dicting target brain multigraph from a single source graph. Regarded as a
holistic representation of brain connectivities, a multigraph is a set of brain
graphs stacked in a tensor where each captures a particular type of interac-
tions between brain regions. Such brain representation plays an important
role in modeling the dysfunctions in connectivity patterns existing between
brain regions (van den Heuvel and Sporns, 2019). Thus, to predict a target
brain multigraph using the existing frameworks we should learn one model
for each target domain. Such frameworks, however, have a limited robustness
in predicting more than one target domain. To solve this issue, our MICCAI
2020 conference paper (Bessadok et al., 2020b) presents the first work that
jointly predicts a set of target brain graphs (i,e. target brain multigraph)
from a single source graph. However, its experiments were restricted to only
use a single source view to predict the target brain multigraph. Even such
experiments demonstrated the superiority of our model over the comparison
methods, we aim in this work to further show its prediction performance
using five additional source views from both hemispheres to the one we used
in the conference paper.

Graph generation. Besides, plenty of efforts have been dedicated to
synthesizing different types of graphs and have shown remarkable results in
various applications such as road network generation (Belli and Kipf, 2019),
scene graph generation (Yang et al., 2018) and biological molecules synthesis
(Mitton et al.). Other studies (Su et al., 2019; Liao et al., 2019) proposed
to sequentially generate subgraphs consisting in a subset of nodes and their
connectivities in order to generate the whole graph. Some other studies
(Bresson and Laurent, 2019; Flam-Shepherd et al., 2020) proposed graph au-
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toencoder frameworks where the encoded graph structure is decoded using a
set of decoders. Recent works adopted a GAN-based solution combined with
a reinforcement learning approach where an additional network is designed
to further optimize the graph synthesis task (De Cao and Kipf, 2018; You
et al., 2018). Despite their ineffectiveness in multi-target prediction tasks,
such graph synthesis studies fail to preserve the node-wise topological prop-
erties of the target domain. Specifically, they only learn the global graph
structure (i.e., number of nodes and edges weights). However, the brain
wiring has both global and local topological properties which makes the ebb
and flow of brain activity acts like the fingerprint of a subject (Fornito et al.,
2015). In fact, neurological disorders such as Alzheimer’s disease alter the
brain cortex and more importantly it atrophies its ROIs in varying degrees.
Hence, focusing only on learning the global graph properties and overlooking
the local graph structure may undervalue the role of specific ROIs in early di-
agnosing the disease. Therefore, devising a scalable and accurate framework
for predicting a target brain multigraph from a single source graph that pre-
serves the global and local topological properties of the original brain graphs
is of great interest (Zhang et al., 2020c,b). Such local topology awareness
can be defined by learning the node’s influence in the graph measured using
path-length based metric which is defined in graph theory as “centrality”.
Several network metrics such as betweenness centrality, closeness centrality
and PageRank centrality have been introduced in the graph theory literature.
For instance, (Huang et al., 2019a) proposed an analysis study for Parkin-
son’s disease (PD) where many centrality measurements were leveraged to
identify the potential biomarkers in the disease progression using functional
brain graphs extracted from resting-state functional MRI data (rs-fMRI). In
a follow-up work, (Cid et al., 2019) used five centrality metrics to create a
graph-based subject profile for a Pulmonary tuberculosis (TB) classification
purpose. To the best of our knowledge, up to now no existing works have
investigated the learning of node centrality for brain graph prediction (Zhou
et al., 2018).



A) Conventional one-to-one graph generation framework
for brain graph prediction
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Figure 1: Conventional brain graph prediction methods and the proposed brain multigraph
prediction architecture. A) In this illustration, we show the one-to-one strategy adopted
in recent brain graph synthesis works aiming to predict a target graph from a source
one. Unfortunately, such strategies fail to simultaneously predict multiple target graphs
from a single one, which limits their scalability to brain multigraph derived from one or
more magnetic resonance imaging (MRI) modalities (e.g., T1-weighted or resting-state
functional MRI). B) To fill this gap, we propose a one-to-many learning architecture
aiming to predict a target brain multigraph from a source graph.
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3. Proposed Method

Problem Definition. A brain graph is defined as B = {B", B¢, V} where
B is a set of nodes (i.e, ROIs) and B¢ is a set of weighted edges encoding
the biological connectivity between nodes. Each training subject s in our
dataset is represented by a brain multigraph which captures the functional,
structural, or morphological connectivities between brain regions. More com-
pactly, it can be written as a tensor V® in R™*"*" where its tensor layers de-
note a set of multi-view brain graphs {V$}Y_, each view capturing a particu-
lar type of interactions between brain regions (e.g, morphological, functional
and structural). V € R™" denotes the connectivity matrix measuring the
pairwise edge weight between nodes using a particular view, where r is the
number of ROIs. Given a testing subject s’ represented by a single source
graph Vg . our objective is to predict its missing target brain multigraph V¥
in R™*™* where k = v — 1 and its frontal views are denoted by {V% ko

Fig. 2 provides an overview of our proposed method and Table 1 sum-
marizes the major mathematical notations we used in this paper. There
are three major steps in the pipeline: 1) extraction of multi-view brain fea-
tures from source and target graphs and construction of a graph population
for each domain, 2) embedding and clustering of the source graphs, and 3)
prediction of the target brain multigraph using cluster-specific generators.

3.1. Graph population representation using multi-view brain graphs

To map the source brain graph of a subject to its target brain multigraph,
we need to model the relationship between training samples using their con-
nectivity features (e.g, weights). In fact, we hypothesize that samples (i.e,
brain graphs) with strong affinity in the source domain will also maintain such
a strong affinity in the target domains to some extent. Hence, we propose to
learn the source graph embedding of each training subject using an encoder
E defined as a Graph Convolutional Network (GCN) (Kipf and Welling,
2016). Thus, we create in this step for each of the source and target domains
a graph population encoded in an affinity matrix where nodes denote sub-
jects represented by their brain features and the edges represent the pairwise
affinity between subjects. Since each brain graph is encoded in a symmetric
matrix, we propose to vectorize the off-diagonal upper-triangular part which
helps eliminate redundancy in the brain graphs. Then, we vertically stack
the extracted feature vectors of size f for n training subjects which results
in a feature matrix F" in R™/ where v € {S,T1,...,T}}. Next, given these
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matrices we create a subject-based affinity matrix A in R™*" by leverag-
ing multi-kernel manifold learning (MKML) algorithm (Wang et al., 2017)
which learns the affinity between training feature vectors. We choose MKML
for its appealing aspect of learning multiple kernels to efficiently fit the true
underlying statistical distribution of the data. Hence, for a specific view v,
we define our graph population for a specific domain as G, = {G', G, F, },
GI' denotes a set of nodes (i.e, subjects), G¢ a set of weighted edges encoding
the affinity between subjects and F,, denotes a feature matrix. We create a
set of graph populations {G!"}¥_, for the source and target domains where
each is represented by a set of feature matrices {F"}?_, and a set of learned
affinity matrices { A" }Y_, for the training subjects (Fig. 2-A). The resulting
graph populations will be used in the two following steps to learn the graph
embeddings of the source population (i.e, step B) and to map the source
graph to the target multigraph of a training subject (i.e, step C).

3.2. Source brain graphs embedding and clustering

The proposed topoGAN is a graph autoencoder comprising an encoder
FE and a set of domain-specific decoders (i.e, generators) {Gr.}r, (ie, a
decoder for each of the k target domains) regularized by a discriminator D.
Considering such an adversarial learning-based framework causes the mode
collapse problem where the generator produces very limited number of modes
(Goodfellow et al., 2014). In such case, no matter how big is our training set
in terms of number of subjects because only few of them contribute to the
graph synthesis. Thus, all generated graphs will look similar. We propose to
solve this problem by clustering the source brain graphs which naturally have
a heterogeneous statistical distribution. Since clustering samples encoded in
high-dimensional feature vectors might be a complex task, we first propose to
map the source brain graph into a low-dimensional space which helps reduce
its dimensionality while preserving its topological structure. Consequently,
the mode collapse issue is handled in two consecutive steps:

(1) we first learn the population graph embedding in the source domain
which maps each subject-specific features into a lower representative dimen-
sional space. To this end, we use an encoder F(F% AY) defined as a GCN
with two layers inputing the source feature matrix F% of the training subjects
and the learned subject-based affinity matrix A%. GCN (Kipf and Welling,
2016) is originally defined using convolutions in the spectral domain which
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Table 1: Major mathematical notations used in this paper

Notation Dimension Definition
r N number of brain regions (i.e, ROIs)
v N number of brain views (i.e, source and target views)
k N number of target views (i.e, k =v — 1)
s N total number of subjects including training and testing ones
n N number of training subjects
m N number of testing subjects
f N number of features extracted from the original brain graph
d N number of features in the embedded graphs
c N number of clusters
e N number of edges in a graph population
e’ N number of edges in a brain graph
B={B",B°,V} — a brain graph of a specific subject
B" Nixr a set of anatomical brain regions representing nodes in the brain graph
Be Nixe’ a set of edges connecting the brain regions representing either functional,
structural or morphological connectivities in the brain.
v RTXT connectivity matrix measuring the pairwise edge weights between nodes
(i.e, ROIs)
V; R7*T brain graph constructed from a single view ¢ where ¢ € {0,...,v}
A\ R X" predicted brain graph for a specific target domain ¢ where ¢ € {0,...,k}
vs RP XXV a brain multigraph tensor of a training subject s stacking a set of source
and target brain graphs
s/ R XXk predicted target brain multigraph tensor of a testing subject s’ stacking a
T set of target brain graphs
_ rhn e graph population representing the similarity between subjects belonging
Go ={97, 95, Fu} N to a population
ar N1xs a set of graph population nodes or subjects in a population
Ge Nlxe a set of edges connecting pairs of subjects representing the similarity
v between them based on their brain graphs
F Rnxs feature matrix vertically stacking feature vectors extracted from the view
v v of s subjects belonging to a specific population
Fir RS feature matrix vertically stacking feature vectors extracted from the view
v v of n training subjects
Al R X1 subject-based affinity matrix between n training subjects using the brain
v feature vectors belonging to the view v
z R7Xd learned source graph embeddings of the training subjects
(Xj ) c RAXT centrality matrix of the real target graphs in the domain 7; and the
T; cluster j of the training subjects computed using the centrality metric C
(Xj )C RAXT centrality matrix of the predicted target graphs in the domain T; and the
T; cluster j of the training subjects computed using the centrality metric C
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is expressed by the following convolution function:
fo(FO, AZW") = 6(D"2AGD 2FW) (1)

¢ denotes the ReLU and linear activation functions we used in the first
and second layers, respectively. We define F in the first layer as the source
feature matrix F% while we define it in the second layer as the resulting
embeddings learned from the first layer /. w® is a filter used to learn the
convolution in the GCN in each layer I. D;; = 3 As(ij) is a diagonal matrix

and ;Jg = A% + T with I being an identity matrix used for regularization.
Ultimately, we define the layers of our GCN encoder as follows:

Z(l) = fReLU(FtTv AZ’W(O))7 Z(2) = flinear(z(l)v Ag|w(1)> (2>

(2) We cluster the resulting source embeddings Z into homogeneous groups
which helps disentangle the heterogeneous distribution thereby reducing the
generator’s risk to match a few unimodal samples of the target domain. To
do so, we leverage MKML since it outperformed PCA (Jolliffe and Cadima,
2016) and t-SNE (Maaten and Hinton, 2008) clustering methods when deal-
ing with biological dataset (Wang et al., 2017). More importantly, it is widely
used for brain graph analysis tasks and showed promising results in neauro-
logical disorder diagnosis such as Autism spectrum disorder (ASD) (Soussia
and Rekik, 2018; Bessadok et al., 2019b; Mhiri and Rekik, 2020). Specifically,
it first produces a pairwise affinity matrix measuring the similarity between
training subjects using their source graph embeddings Z and having c diag-
onal blocks denoting the clusters. Next, the obtained source affinity matrix
is projected into a lower dimension using t-SNE (Maaten and Hinton, 2008)
which results in a latent matrix in R"*¢. Last, k-means algorithm (Jain,
2010) is used to cluster the subjects into ¢ clusters based on the resulting
learned latent matrix (Fig. 2-B).

3.3. Cluster-specific multi-target graph prediction

For each target view k, we design a set of cluster-specific generators
{Gf_p}fzcl i1, each learning to match the distribution of a cluster j belonging
to a target domain 7T; (Fig. 2-C). Our goal is to enforce each generator to
learn from all examples in the cluster ¢ thereby avoiding the mode collapse
issue of GAN-based models. We define our generators as GCN decoders with
similar architecture to the encoder (Eq. (2)). Specifically, a generator G%_

designed to predict the target graphs of the domain 7; and the cluster j
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takes as input the learned source embeddings Z’ and the subject-based affin-
ity matrix A]T Specifically, we learn the affinity between feature vectors
of the target domain 7; belonging to the same cluster j. In other words,
decoding the source embeddings with the affinity matrix learned using the
target graphs in 7; enforces the generated graphs to approximate the real tar-
get domain structure of a specific cluster 5. We further propose to optimize
the target graph prediction using a discriminator D which is a GCN with
three layers aiming to enforce the generated target graph to approximate the
ground-truth target distribution of a specific target domain. To achieve this,
we propose three loss functions which optimize the discriminator D.

Adversarial loss. We introduce an adversarial loss function differently
from the vanilla GAN (Goodfellow et al., 2014) where we compute the Wasser-
stein distance among all domains in order to measure the realness of the
generated graphs. This distance has been widely used in the GAN literature
as it stabilizes the training process of the model thereby making it less sen-
sitive to hyperparameter regularization (Gulrajani et al., 2017). Thus, we
formulate it as follows:

k
j / 1 "
Logw = —Epnpy [DE) ]+ ¢ > Erie, [D(E")] (3)
i=1 Ti

where IP)Fg is the real source graph distribution of the cluster j, and the

distribution ]P’FjT ~is the generated distribution by GJT in the target domain
T.. l

Graph domain classification loss. We recall that the goal of training
the cluster-specific generators {G7, }fzcl j—1 1s to produce graphs for the cluster
j which are properly classified by the discriminator to the specific target
domain T;. Thus, we define a binary classifier D¢ on top of our discriminator
D which classifies the synthetic graphs F]T as 0 and the real target graphs

F]TL as 1. In detail, the former is defined as:
‘ k
Lhue =Y Brner,, o, use(De(F"), y(F") (1)
i=1 i T

(pse is the mean squared loss. Do (F”) and y(F”) denote the predicted
and ground-truth labels corresponding to the graph F”, respectively. More
specifically, we compute the ¢,,5g for the predicted and real graphs separately
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(i.e, ]?‘%_, F%) then we sum both values which we mathematically denote by

the following notation for simplicity EFI/NPFj P, -
T; T;
Gradient penalty loss. To improve the training stability of our model,

we adopt the gradient penalty loss used in (Cao et al., 2019) which is formu-
lated as follows:

£}, = (maz{0, By [VD(F)| - 0} (5)

F is sampled between the source graph distribution IP’Fg and the predicted

target graph distribution Pﬁi where ]?‘?C is a matrix stacking vertically the
generated target graphs for all £ domains in the cluster j. Particularly,
F < aF + (1 — a)F, where a ~ U [0,1 ] and U is a uniform distribution.
As suggested in (Cao et al., 2019), we set the hyper-parameter o to k.

Ultimately, the cost function of the discriminator which helps the gener-
ators of each cluster produce brain graphs each associated with a specific
target domain is formulated as follows:

[

Lp = Z(‘Cidv + )‘gp ’ ﬁZp + /\gdc ’ ﬁédc)a (6>

j=1

Agde and Ay, are hyper-parameters to be tuned. Hence, by maximizing the
discriminator loss function defined above Eq. (6) the generators are optimally
trained to produce graphs that belong to a specific target domain.

Moreover, brain graphs have rich topological properties including their
percolation threshold, hubness and modularity (Bassett and Sporns, 2017).
Such unique properties should be preserved when synthesizing the target
brain graphs (Liu et al., 2017; Joyce et al., 2010). Although regarded as
an efficient graph embedding model, graph autoencoder is limited to only
learning the global graph structure such as number of nodes and edges in the
graph while the local graph structure should be also learned since it reflects
the node importance in the graph. To this aim, we unprecedentedly introduce
a topological loss function to guide the training process of the generators and
constrains each of them to preserve the local nodes properties while learning
the global graph structure (Fig. 2-C). Specifically, we adopt three centrality
metrics to compute a score for each ROI in the brain graph. We choose three
centrality metrics widely used in graph theory (Borgatti and Everett, 2006):
closeness centrality, betweenness centrality and eigenvector centrality.
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The closeness centrality C'C' quantifying the closeness of a node to all
other nodes (Freeman, 1977) is defined as follows:

r—1

clr*) = s=——
SR Sy

(7)
r denotes the number of nodes (i.e, ROIs) and p,a,» is the length of the
shortest path between nodes 7¢ and r°.

The betweenness centrality BC' measuring the number of shortest paths
which pass across a node (Beauchamp, 1965) can be defined as:

2 P(Tc rb)(?"a)
BCr*) = ——m _— 8
= #Z# Pl ®)

Piye y0y(r?) denotes the number of shortest paths between two nodes ¢ and
r® that pass through (7).

The eigenvector centrality EC' capturing the centralities of a node’s neigh-
bors (Bonacich, 2007) is defined as follows:

a a 1 - b
EC(r*) =x :X;Vabx 9)

V represents the b neighbor of the node a, x* and x® are the eigenvectors
resulting from the eigen decomposition of the adjacency matrix V and A is
a positive proportionality factor.

Next, we compute £, AE(.)C the absolute difference between the real and
predicted centrality scores of each node in the target graph which represents
our local topology loss. In particular, given a centrality metric C where C €
{CC,BC,EC}, a cluster j and a target domain T;, we define (XZ[)C and

(XJT)C both in R"*" as the centralities for the real brain graphs VJT and

the generated ones \A/'{F reconstructed from the feature matrices FZ[ and FJT,
respectively. To preserve the relationship between brain regions in terms
of number of edges and their weights we compute the absolute difference
between the real and predicted feature matrices Fy, and Fy,, which mainly
represents our global topology loss function. Ultimately, to take advantage of
both local and global losses we propose to fuse them into a single function.

Topological loss. This is one of the key contributions for our proposed
architecture which regularizes the cluster-specific generators (Fig. 2-C). It is
computed as follows:
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k k
L£1,,(C) = O baan(X7,, X5)° + Y taan(Fy, F)) (10)

i=1 =1
" 2 ~

vV vV
local topology loss global topology loss

Information maximization loss. Since our k target domains are cor-
related we integrate the information maximization loss term to force the
cluster-specific generators {G{fi}f;Cl,j:l to correlate the predicted graphs with
a specific target domain 7;. As in (Cao et al., 2019), we define it using this
formula:

k
L= tsce(y =1,Dc(FY,)) (11)
i=1
lpeop is the binary cross entropy. Given the above definitions of the
topological and information maximization losses, we introduce the overall
topology-aware adversarial loss function of each generator as:

C

k
1 " j
Lo = Z(_E : ZEF//N% [DE") ]+ Neop * Liop(C) + Xing - Li,p) (12)
=1

J=1

where Ay, and ;¢ are hyper-parameters that control the relative impor-
tance of topological loss and information maximization losses, respectively.
As illustrated in (Fig. 2-1I), given a testing source graph we predict each
view of the target brain multigraph by averaging the graphs of a specific
target domain 7; produced by the cluster-specific generators.
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4. Experiments and Discussion

4.1. Multi-view brain graph dataset

For evaluation, we use the Autism Brain Imaging Data Exchange (ABIDE!)
including 310 subjects (i.e, structural T1-w MRI). We reconstruct both corti-
cal hemispheres by FreeSurfer (Fischl, 2012) and then parcellate each cortical
hemisphere into 35 cortical regions using Desikan-Killiany Atlas. For each
hemisphere, we extract three morphological brain graphs (i.e, MBG), which
means each subject in our dataset is represented by six MBGs. We use the
following cortical measurements to extract a pair of graphs for left and right
hemispheres: maximum principal curvature (i.e, view 1 and view 4), aver-
age curvature (i.e, view 2 and view 5) and mean sulcal depth (i.e, view 3
and view 6). Recently introduced in (Mahjoub et al., 2018), morphological
brain networks (MBNs) quantify the dissimilarity in morphology between
pairs of ROIs in the cortex. Essentially, given a particular cortical attribute,
(e.g, mean sulcal depth), we compute its average across all vertices in a given
brain ROI. Next, we define the edge weight between two ROIs as the absolute
difference between their average cortical attributes. MBNs have been widely
used for healthy (Dhifallah et al., 2020; Nebli and Rekik, 2019; Mhiri and
Rekik, 2020) and disordered brain connectivity analysis (Khelifa and Rekik,
2019; Banka and Rekik, 2019; Soussia and Rekik, 2018).

4.2. Model architecture and parameter setting

As shown in (Fig. 2-1), we use (¢ x k+2) trainable neural networks: an en-
coder E, a discriminator D and (c¢x k) cluster-specific generators {G]T }fzcl i1
We construct our encoder with a hidden layer comprising 32 neurons and an
embedding layer with 16 neurons. Conversely, we define all generators with
two layers each comprising 16 and 32 neurons. The discriminator comprises
three layers each has 32, 16 and 1 neurons, respectively. We add to its last
layer a softmax activation function representing our domain classifier. We
train our model on 1000 iterations using batch size 70, a learning rate of
0.0001, By = 0.5 and 52 = 0.999 for Adam optimizer. We use a grid search
to set our hyper-parameters A\gge = 1, Agp = 0.1, App = 0.1, Apee = 0.01 and
Aing = 1. Specifically, we use the parameter setting that produced the best
performance for each method independently. We also train our discriminator

Thttp://fcon_1000.projects.nitrc.org/indi/abide/
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five times and the generators one time in order to have better models. By
doing so, we are improving their learning performances. For MKML param-
eters (Wang et al., 2017), we fix the number of kernels to 10. We vary the
number of clusters ¢ between 2 and 4 then we choose the one which gave the
best performance ¢ = 2.

4.8. Fwvaluation and comparison methods

We train our model using two different training strategies: (i) a random
split where 90% of the dataset represents the training set and 10% of it is used
for testing, and (ii) a 3-fold cross-validation where we train the model on two
folds and test it on the left fold. To quantitatively evaluate the topoGAN’s
performance, we use the mean absolute error (MAE) (Lin et al., 1990) com-
puted between ground-truth target graphs and the generated ones and the
MAE between the ground-truth centrality scores and the predicted ones. To
comprehensively evaluate our model, we further incorporate an additional
centrality evaluation including PageRank centrality (PC), effective size (Eff)
and the clustering coefficient (Clst). In particular, PageRank centrality in-
troduced in (Brin, 1998) assumes that a central node is likely to receive more
edges from other nodes. The effective size metric introduced in (Burt, 2009)
assume that the efficiency of a node is related to the number of non-redundant
links in a graph and the clustering coefficient (Saraméki et al., 2007) mea-
sures the degree to which nodes in a graph tend to cluster together. Lastly,
we consider the average of the resulting MAEs computed for each of the k
target domains as the final measures to evaluate our framework. The lower
is the MAE the better is the performance of our framework in predicting the
target multigraph. Moreover, we compute the Kullback—Leibler divergence
(Kullback, 1959) between the real and predicted topology scores (i.e, CC,
BC, EC, EFF and Clst). Then, we average the KL-divergence results of all
k domains and report the results for each source brain graph. Originated
in probability theory and information theory, KL-divergence measures the
information lost when the predicted distribution approximates the original
distribution. Thus, a lower value indicates that the predicted distribution is
almost identical to the real one.

We compare our topoGAN framework with two baseline methods and
three ablated versions of our model where we use three different centrality
metrics. Essentially, each method is implemented with two graph neural
network architectures (i.e, GCN (Kipf and Welling, 2016) and graph attention
network (GAT) (Velickovi¢ et al., 2017)):
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1. Adapted MWGAN: we use the same architecture proposed in (Cao
et al., 2019) that we adapted to graph data types where we neither in-
clude the clustering step nor our proposed topological loss term (Eq. (10)).

2. Adapted MWGAN (clustering): it is a variant of the first method
where we add the MKML clustering of the source graph embeddings
(Wang et al., 2017).

3. topoGAN+H4CC: it is an ablated version of our framework which
adopts a clustering strategy and a topological loss function that in-
cludes the closeness centrality (Freeman, 1977) in the topological loss
function (i.e, C = CC in Eq. (10)).

4. topoGAN+BC: in this method we incorporate the betweenness cen-
trality (Beauchamp, 1965) in the topological loss function (i.e, C = BC
in Eq. (10)).

5. topoGAN-+EC: in this method we include the eigenvector central-
ity (Bonacich, 2007) in the topological loss function (i.e, C = EC in

Eq. (10)).

4.4. Results and benchmarking

We conducted six different experiments, each taking one of the six MBGs
as a source graph and the five remaining ones as views stacked in the target
brain multigraph to predict. Clearly, supplementary Table 77, Table 77
and Table ?? show that our topoGAN consistently and significantly (p-value
=< 0.05 using two-tailed paired t-test) outperformed benchmark methods in
predicting brain multigraph from a single source graph.

4.4.1. Impact of the clustering and global topology loss function

To evaluate the effectiveness of clustering the source graph embeddings
and learning the global topological structures of the target graphs, we report
in Table 7?7 and Table ??7 the average MAE (i.e, first column) computed
between the real and predicted graphs of five target domains. These results
show that three variants of topoGAN outperformed two baseline methods.
Although it produced a slightly higher MAE using one source graph (i.e, view
5), our framework achieved the lowest MAE results using five source graphs
(i.e, views 1,2,3,4 and 6). Specifically, methods adopting the CC and BC both
ranked first best in six experiments while the method adopting EC ranked
second best using the MAE metric. Notably, these results show that our
topoGAN using the proposed topological loss function significantly outper-
forms the baseline methods in preserving the global topology of the original
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target graphs. We also show that our framework using the global topology loss
term is better then GCN-based methods which simply leverage graph convo-
lution to learn the graph structure. Additionally, Fig. 3 displays the source
graph, the ground-truth target graphs and the predicted ones by topoGAN
using three centrality measures and the two baseline methods (Adapted MW-
GAN and Adapted MWGAN (clustering)) for a representative subject. We
display below each predicted graph its residual graph, representing the ab-
solute difference between the ground-truth and predicted target graph. We
observe that the residual was noticeably reduced by our method using both
CC and BC measures. When predicting the target graph 2 (i.e, mean sulcal
depth (LH)), Adapted MWGAN is marginally better than three variants of
topoGAN. This shows that while the average results of topoGAN outperform
benchmark methods, our framework might lag behind for a few particular
subjects. However, we argue that although our framework works relatively
poorly in predicting the target graph 2, it still achieved better results than
the Adapted MWGAN (clustering) in predicting four target graphs for the
same representative subject (Fig. 3). This demonstrates the advantage of our
cluster-specific generators in eventually avoiding the mode collapse problem
thereby boosting the performance of topoGAN in the target brain multigraph
prediction.

4.4.2. Impact of the local topology loss and the reconstruction loss evaluation

To further evaluate the effectiveness of learning the local topological struc-
tures of the original target graphs, we compute the MAE between the ground-
truth and the predicted centrality scores, effective size and clustering coef-
ficient. Results reported in Table 77 and Table 77 show that our method
consistently achieved the best topology-preserving predictions compared with
the baseline methods using the six graph topology evaluation measures. No-
tably, four out of six experiments (i.e, views 1,2,3 and 6) results highlight
the importance of using BC and EC which both gave the lowest MAE using
different evaluation metrics. This is explicable since considering the node
neighborhoods (i.e., EC) and the frequency of being on the shortest path
between nodes in the graph (i.e., BC) have much impact on identifying the
most influential node rather than focusing on the average shortest path ex-
isting between two nodes. As for predicting five target graphs from the
source view 4 (derived from the maximum principal curvature of the right
hemisphere), topoGAN outperformed both baseline methods (i.e, Adapted
MWGAN and Adapted MWGAN (clustering)) in terms of MAE computed
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Figure 3: Visual comparison between the ground-truth and the predicted five views stacked
in the target brain multigraph of a representative testing subject using different methods:
Adapted MWGAN Cao et al. (2019), Adapted MWGAN (clustering), and topoGAN using
different centrality metrics. We display the residual error computed using mean absolute
error (MAE) metric between the original brain graph and the predicted graph. Source
brain graph is derived from maximum principal curvature (LH) (i.e, viewl). Target brain
graphs are derived from the average curvature (LH) (Target graph 1), mean sulcal depth
(LH) (Target graph 2), maximum principal curvature (RH) (Target graph 3), average
curvature (RH) (Target graph 4) and mean sulcal depth (RH) (Target graph 5).
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using the whole graph, however it produced a slightly higher MAE results
computed using the topological measurements (i.e, CC, BC, EC, EFF and
Clst). We can see similar results for the view 5 (average curvature of the right
hemisphere). We included this example in our results to show that while the
average results of topoGAN were remarkable and outperformed comparison
methods, our method might lag behind for a few particular source views.
Still the Adapted MWGAN (clustering) which is the clustering-based base-
line method achieved better results than the Adapted MWGAN method.
This clearly demonstrates the advantage of our cluster-specific generators
for avoiding the mode collapse problem. We can conclusively confirm that
our proposed local topology loss term optimally improves the learning of the
local graph structure when predicting the target graphs. On the other hand,
the results reported in Table 7?7 and Table 7?7 show that the fact of re-
moving the graph reconstruction loss term introduced in (Bessadok et al.,
2020b) from the adversarial loss remarkably improves the learning of our
model. Mainly, five out of six experiments (i.e, views 1,2,3,5 and 6) results
proved that the graph reconstruction loss does not impact the accuracy of
predicting the target multigraph. This is explicable because our aim is to
make our prediction similar to the real target multigraph so there is no need
to enforce the model to preserve the topology of the source domain in the
predicted graphs. This further demonstrates that our proposed framework
outperformed the existing state-of-the-art method named MultiGraphGAN
(Bessadok et al., 2020b). Interestingly, our model achieved better results than
comparison methods using two different training strategies: random split and
cross-validation. Specifically, we report in supplementary Table 7?7 results
for three GCN-based comparison methods and our GCN-based topoGAN
learned using eigenvector centrality in our loss function. More results can be
found in the supplementary material.

4.4.8. Impact of the graph representation learning using GCN

To further evaluate the effectiveness of GCN in learning the brain rep-
resentation, we implemented a GAT-based version with 8 heads for each
benchmark method. Results reported in Table 7?7 and Table 7?7 demon-
strate that our GCN-based framework outperformed the GAT version for six
experiments. This can be explained by the fact that assigning larger weights
to the most important nodes in brain graphs is not effective since each ROI
have a distinct role in the graph thereby equally learning the nodes’ rep-
resentations is highly needed. Originally, the graph convolution operation
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updates the local deep features by aggregating the features in a local neigh-
borhood of a particular sample (i.e, node) (Zhang et al., 2019). Thus, our
GCN version of topoGAN combined with the topological constraint perfectly
models the larger contextual region within the brain which is important for
learning the correct anatomical structures in connectomes. We observe in
the Table 7?7 and Table 77 that the average KL-divergence over five target
views was noticeably reduced by our method. Still, our framework produces
higher KL-distance using the source views 4 and 5, which is similar to the
MAE results reported in Table 7?. Essentially, views 1, 2, 3 and 6 show that
betweenness and eigenvector centralities present better choices to boost the
topological property preservation in jointly predicting multiple target graphs.
Such good results demonstrate the advantage of our GCN-based framework
in learning the source brain graph representation and preserving the struc-
ture of the original target graphs which is in line with recent GCN-based
brain analysis works (Banka and Rekik, 2019; Bessadok et al., 2019b).

4.4.4. Comparison using cross-validation

For a thorough comparison, we also compare our topoGAN with two base-
line methods (i.e., Adapted MWGAN and Adapted MWGAN (clustering))
and MultiGraphGAN method using 3-fold cross-validation strategy. Since
GCN-based variants along with the inclusion of EC in our loss function out-
performed the GAT-based ones and GCN-based methods that include CC
and BC during the learning process, we only include the experimental results
of the GCN-based methods. Supplementary Table 4 reports the average re-
sults over three folds on the same dataset. Our topoGAN achieved better
performance than comparison methods when predicting five target graphs
from the source views 1, 4 and 5 in terms of MAE computed using the topo-
logical measurements (i.e, CC, BC, EFF and Clst), however it produced a
slightly higher MAE results computed using the EC and PC evaluation mea-
surements. This is in line with previous results reported in Table 77 and
Table 77 for the topoGAN+EC method. On the other hand, our topoGAN
ranked second best when predicting five target graphs using the source views
2 and 3. This is because the alignment of a source domain to multiple target
domains is very challenging, even a one-to-one domain alignment has been
recently shown to be a hard task when performed on brain graphs (Wang
et al., 2020; Bessadok et al., 2020a). Thus, integrating a domain alignment
module in our topoGAN is our future avenue which will better learn the
adaptation of the source distribution to multiple target distributions. Still,
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these results reported in the supplementary Table 4 indicate the superi-
ority of our topoGAN over three experiments (i.e, view 1, 4 and 5) which
demonstrate the advantage of our proposed cluster-specific generators and
our topological loss function compared to its ablated versions as well as the
state-of-the-art method.

4.5. Discussion and future recommendations

In this paper, we introduced the first geometric deep learning framework
designed for jointly predicting multiple brain graphs from a single brain
graph. Our model (i) is a novel graph adversarial auto-encoder that includes
an encoder and a set of decoders (i.e., generators) all regularized by a single
discriminator, (ii) clusters the source embeddings and defines a set of cluster-
specific decoder to overcome the mode collapse issue of GAN, (iii) includes a
topological loss to preserve both global and local topological properties of the
original graphs. For the first time, we take the connectomics field one step
further into predicting missing brain graphs from existing minimal resources
(i.e., a single brain graph). Our topoGAN achieved significantly better per-
formances than the ablated versions and the state-of-the-art method —namely
MultiGraphGAN (Bessadok et al., 2020b). Moreover, it consistently outper-
formed all comparison methods not only when evaluated using random split
(i.e., 90/10%) but also when using cross-validation strategy. Although the
proposed target brain multigraph prediction framework is generic and can
also be applied to any type of brain graph (e.g, functional or structural),
there are still some issues that can affect its performance. One major issue
is that the more clusters we introduce, the more easily the model can overfit
the training set. This might be circumvented by monitoring the training and
testing loss functions (Rice et al., 2020).

A second major issue is considering a single discriminator to regular-
ize the encoder and our set of clustering-specific generators while recent
works demonstrate that multiple discriminators improve the learning pro-
cess even using small datasets (Durugkar et al., 2016; Neyshabur et al., 2017).
Hence, we will improve the cluster-specific multi-target graph prediction step
(Fig. 2-C) by leveraging a recent multi-objective optimization framework
(Albuquerque et al., 2019) that ensures an accurate data generation using
multiple adversarial regularizers. However, this method was originally de-
signed for image generation so we aim to adopt it to geometric data. To
further improve the GCN learning on brain graphs, we aim to use variational
GCN (Tiao et al.) in combination with a recent adversarial graph embedding
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Table 4: Prediction results for three source views derived from the left hemisphere using KL-divergence

evaluation metric.

View 1 CC BC EC PC EFF Clst
GAT | 0.0023 | 0.088 | 0.0203 | 0.0124 | 0.0213 0.0025
sCkpiEs. BTN GCN | 0.0019 | 0.0461 | 0.0063 | 0.0093 | 0.0083 0.0003
) GAT | 0.0022 | 0.0501 | 0.0061 | 0.0702 | 0.0104 0.0003
Adapted MWGAN (clustering) |- n | 010009 | 0.0226 | 0001 | 0027 | 0.0038 | 1.6E-05
GAT | 0.0035 | 0.1064 | 0.0144 | 0.0194 | 0.0222 0.0021
e LD GCN | 0.001 | 0.0209 | 0.0011 | 0.0206 | 0.0031 | 1.6E-05
GAT | 0.0024 | 0.0369 | 0.0039 | 0.0309 | 0.0072 | 0.0001
HEEE e NSRBI GCN | 0.0011 | 0.027 | 0.0014 | 0.0223 | 0.004 2.1E-05
GAT | 0.0017 | 0.0374 | 0.0034 | 0.0383 | 0.0056 | 0.0001
ol Erk  NSHE( GCN | 0.0006 | 0.0215 | 0.0006 | 0.0282 | 0.0025 | 0,0000072
MultiGraphGAN+CC GCN | 0.00167 | 0.0351 | 0.0026 | 0.0394 | 0.0055 | 0,000071
MultiGraphGAN+BC GCN | 0.0007 | 0.0178 | 0.0009 | 0.0155 | 0.0017 | 0,0000086
MultiGraphGAN+EC GCN | 0.0007 | 0.0211 | 0.0008 | 0.0229 | 0.0033 | 0,000013
View 2 CC BC EC PC EFF Clst
GAT | 0.0038 | 0.1718 | 0.0235 | 0.0415 | 0.0314 0.0045
sugipiad. BTG GCN | 0.0034 | 0.1336 | 0.0179 | 0.0283 | 0.026 0.0014
. GAT 0.002 0.0366 0.0051 0.0241 0.0067 0.0002
Adapted MWGAN (clustering) | o1 | 00041 | 01002 | 0.0135 | 00374 | 0.0237 0.0009
GAT | 0.0039 | 0.1646 | 0.0196 | 0.021 | 0.0398 0.0033
BEDREAIN-HUIE GCN | 0.003 | 0.068 | 0.0128 | 0.0415 | 0.0132 0.0006
GAT | 0.0022 | 0.0481 | 0.0055 | 0.031 | 0.0084 0.0003
el NEHEC GCN | 0.0018 | 0.0324 | 0.0045 | 0.0317 | 0.0061 0.0002
GAT 0.0023 0.0501 0.0042 0.0371 0.0086 0.0001
e GCN | 0.0018 | 0.0371 | 0.0079 | 0.0352 | 0.0078 |  0.0009
MultiGraphGAN+CC GCN | 0.0029 | 0.0557 | 0.0074 | 0.0312 | 0.0116 0.0005
MultiGraphGAN+BC GCN | 0.0033 | 0.0873 | 0.0122 | 0.0394 | 0.0181 0.0008
MultiGraphGAN+EC GCN | 0.0024 | 0.0441 | 0.0059 | 0.0358 | 0.0083 | 0.0002
View 3 CC BC EC PC EFF Clst
GAT | 0.0032 | 0.0893 | 0.0134 | 0.0109 | 0.0189 0.0012
st BTG DY GCN | 0.0017 | 0.0332 | 0.0045 | 0.0052 | 0.0063 0.0002
. GAT | 0.0022 | 0.0362 | 0.0052 | 0.021 | 0.0077 | 0.0003
Adapted MWGAN (clustering) | o | 00007 | 0.0147 | 0.0009 | 0.0088 | 0.0024 | 0,000014
GAT | 0.0026 | 0.0491 | 0.0063 | 0.0431 | 0.0082 0.0002
B E AN =HLIL GCN | 0.0012 | 0.0282 | 0.0015 | 0.0064 | 0.0064 | 0,000047
GAT 0.0024 0.0508 0.0045 0.0123 0.0086 0.0001
ool NHHEIE GCN | 0.0012 | 0.0265 | 0.0015 | 0.0065 | 0.0057 | 0,000035
GAT | 0.0024 | 0.0409 | 0.0047 | 0.0105 | 0.0092 0.0003
S D GCN | 0.0008 | 0.012 | 0.0009 | 0.0113 | 0.0016 | 0,0000098
MultiGraphGAN+CC GCN | 0.0015 | 0.0247 | 0.0021 | 0.0068 | 0.0054 | 0,000048
MultiGraphGAN+BC GCN | 0.0017 | 0.0266 | 0.0013 | 0.0061 | 0.0037 | 0,000024
MultiGraphGAN+EC GCN | 0.0019 | 0.0465 | 0.0028 | 0.0079 | 0.0103 | 0,000097

View 1: maximum principal curvature (LH). View 2: average curvature (LH). View 3: mean sulcal depth (LH).
MAE: mean absolute error. CC: closeness centrality. BC: betweenness centrality. EC: eigenvector centrality. PC:
PageRank centrality. EFF: effective size. §8st: clustering coefficient. We highlight in red and blue colors the
lowest KL-distance resulting from a particular evaluation metric for the GCN and GAT versions of topoGAN,

respectively.



Table 5: Prediction results for three source views derived from the right hemisphere using KL-divergence

evaluation metric.

View 4 CC BC EC PC EFF Clst
GAT | 0.0028 | 0.1416 | 0.0268 | 0.0661 | 0.0223 | 0.0062
sCkpiEs. BTN GCN | 0.0021 | 0.0552 | 0.0075 | 0.0102 | 0.0095 | 0.0003
) GAT | 0.0029 | 0.0773 | 0.0085 | 0.0766 | 0.0165 | 0.0005
Adapted MWGAN (clustering) |\ oni 10008 | 0.0167 | 0.001 | 0.0188 | 0.002 0,000009
GAT | 0.0023 | 0.061 | 0.0052 | 0.0455 | 0.0115 | 0.0004
e LD GCN | 0.0014 | 0.034 | 0.0018 | 0.0235 | 0.0055 | 0,00003
GAT | 0.0025 | 0.0417 | 0.0049 | 0.0178 | 0.0067 | 0.0002
R GCN | 0.0015 | 0.0349 | 0.0019 | 0.0198 | 0.005 | 0,000022
GAT | 0.0021 | 0.0421 | 0.0042 | 0.034 | 0.0075 | 0.0002
ol Erk  NSHE( GCN | 0.0015 | 0.0418 | 0.0018 | 0.0236 | 0.006 | 0,000026
MultiGraphGAN+CC GCN | 0.0006 | 0.0117 | 0.0007 | 0.0185 | 0.0014 | 0,000008
MultiGraphGAN+BC GCN | 0.0019 | 0.0461 | 0.0029 | 0.0267 | 0.0088 | 0,000085
MultiGraphGAN+EC GCN | 0.0008 | 0.0153 | 0.001 | 0.0255 | 0.0029 | 0,000015
View 5 CC BC EC PC EFF Clst
GAT | 0.0034 | 0.1783 | 0.023 | 0.0426 | 0.0337 | 0.0045
sugipiad. BTG GCN | 0.0024 | 0.0688 | 0.0116 | 0.0195 | 0.0123 | 0.0015
. GAT | 0.0032 | 0.0543 | 0.0066 | 0.0074 | 0.0116 | 0.0003
Adapted MWGAN (clustering) | ~n | 025 | 0.0386 | 0.0056 | 0.0198 | 0.006 | 0.0003
GAT | 0.0021 | 0.0374 | 0.0042 | 0.0154 | 0.0087 | 0.0002
BEDREAIN-HUIE GCN | 0.0026 | 0.052 | 0.0065 | 0.018 | 0.0116 | 0.0005
GAT | 0.0036 | 0.0738 | 0.0105 | 0.014 | 0.0156 | 0.0006
el NEHEC GCN | 0.0035 | 0.0725 | 0.01 | 0.0332 | 0.0157 | 0.0005
GAT 0.0013 0.0405 0.0026 0.0111 0.0065 0.0001
PO AINS I GCN | 0.0035 | 0.0845 | 0.0114 | 0.0253 | 0.0171 0.001
MultiGraphGAN+CC GCN | 0.0022 | 0.0431 | 0.0052 | 0.0244 | 0.0069 | 0.0003
MultiGraphGAN+BC GCN | 0.0038 | 0.1026 | 0.015 | 0.0232 | 0.0185 | 0.0012
MultiGraphGAN+EC GCN | 0.0036 | 0.0746 | 0.0099 | 0.0295 | 0.0175 | 0.0008
View 6 CC BC EC PC EFF Clst
GAT | 0.0027 | 0.0883 | 0.0117 | 0.0099 | 0.018 0.0011
st BTG DY GCN | 0.0014 | 0.0791 | 0.0095 | 0.026 | 0.0169 0.002
. GAT | 0.003 | 0.0708 | 0.0098 | 0.0414 | 0.0122 | 0.0006
Adapted MWGAN (clustering) | ~onr | 00018 | 00257 | 0.004 | 0031 | 0.0045 | 00002
GAT | 0.0026 | 0.0386 | 0.0068 | 0.0314 | 0.006 | 0.0003
B E AN =HLIL GCN | 0.0017 | 0.037 | 0.0026 | 0.0202 | 0.0065 | 0.0001
GAT 0.0017 0.0416 0.0034 0.0581 0.0076 0.0002
HEEEC NGB GCN | 0.0019 | 0.0205 | 0.0028 | 0.0189 | 0.0065 | 0.0001
GAT | 0.0026 | 0.0481 | 0.0054 | 0.0304 | 0.0096 | 0.0003
S D GCN | 0.0015 | 0.0254 | 0.0022 | 0.027 | 0.0052 | 0.0001
MultiGraphGAN+CC GCN | 0.0027 | 0.0491 | 0.0066 | 0.0426 | 0.0077 | 0.0003
MultiGraphGAN+BC GCN | 0.0018 | 0.029 | 0.0056 | 0.0342 | 0.0075 | 0.0003
MultiGraphGAN+EC GCN | 0.0026 | 0.0548 | 0.0043 | 0.0351 | 0.0124 | 0.0002

View 4: maximum principal curvature (RH). View 5: average curvature (RH). View 6: mean sulcal depth (RH).
MAE: mean absolute error. CC: closeness centrality. BC: betweenness centrality. EC: eigenvector centrality.
PC: PageRank centrality. EFF: effective sizegClst: clustering coefficient. We highlight in red and blue colors the
lowest KL-distance resulting from a particular evaluation metric for the GCN and GAT versions of topoGAN,
respectively.



technique (Pan et al., 2018). We hypothesize that such architecture improve-
ment will boost the source graph embedding. As another research direction,
we will evaluate our framework using a larger dataset including functional
and structural brain graphs. Since in this work we only focused on graph
synthesis task we aim in the future to work on early disease identification.
Essentially, we will combine both graph prediction and disease classification
tasks in a single and unified geometric deep learning framework trained in an
end-to-end manner which will be used for diagnosing different neurological
disorders. Ultimately, this model can serve as a stepping stone to develop
more holistic brain prediction models such as predicting spatiotempral tra-
jectory (Ghribi et al., 2019; Vohryzek et al., 2020) and super-resolution brain
graphs (Cengiz and Rekik, 2019; Mhiri et al., 2020a).

5. Conclusion

Very few models exist for predicting a single target brain graph from a
source graph (i.e, one-to-one prediction task). This is a recently emerging
field with high-level meaningful implications in neurological disorder diagno-
sis. We presented in this paper the first geometric deep learning framework,
namely topoGAN, for jointly predicting multiple brain views represented by a
target multigraph from a single source graph both derived from MRI (i.e, one-
to-many prediction task). Our architecture has two compelling strengths: (i)
clustering the learned source graphs embeddings then training a set of cluster-
specific generators which synergistically predict the target brain graphs, (ii)
introducing a topological loss function using a centrality measure which en-
forces the generators to preserve both local and global topologies of the origi-
nal target graphs. Our proposed brain multigraph prediction framework can
be further tailored to predict the evolution of target brain multigraph over
time from a single source brain graph (Ghribi et al., 2019; Vohryzek et al.,
2020). Such framework harbors a powerful tool to examine how alterations in
the connectome may lead to a progressive brain dysfunction in neurological
disorder. Eventually, we envision to evaluate our framework on larger con-
nectomic datasets and cover a diverse range of brain graphs such structural
and functional networks (Wen et al., 2017; Mhiri and Rekik, 2020).
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Table 6: P-value results using two-tailed paired t-test for predicting a target brain multigraph
using two source views derived from the left hemisphere.

View 1 topoGAN+CC | topoGAN+BC | topoGAN+EC
View 1 1.1661x10~10 1.7835x10~° 4.8519 x10~10
View 2 0.0354 0.0911 0.1138
Adapted MWGAN View 3 0.1259 0.0321 0.0516
View 4 9.8979 x10~7 0.0404 0.0717
View 5 0.0369 0.0694 0.0808
View 1 0.016 0.0924 0.1008
View 2 0.0643 0.0679 0.0281
Adapted MWGAN (clustering) | View 3 0.0146 0.0007 0.0014
View 4 7.6946 x10~7 0.0045 0.0553
View 5 0.0014 0.1216 0.0454
View 1 0.0001 0.0012 0.0023
View 2 2.3 x10=20 0.0001 0.0041
MultiGraphGAN+CC View 3 0.0299 2.7 x10~7 0.0018
View 4 0.0403 0.0011 2.02 x10~8
View 5 0.0003 2.7 x10~7 2.5 x10—12
View 1 0.0789 0.0649 0.0306
View 2 0.0976 0.0245 0.0002
MultiGraphGAN+BC View 3 0.086 0.0015 0.0002
View 4 0.0599 0.0115 0.0211
View 5 0.0805 0.0549 0.0102
View 1 0.0679 0.1076 0.0059
View 2 1.4 x10=7 0.1027 0.0723
MultiGraphGAN+EC View 3 0.0177 0.0917 0.0264
View 4 8.5 x10~ 11 0.0054 0.0609
View 5 0.0161 0.0548 0.086
View 2 topoGAN+CC | topoGAN+BC | topoGAN+EC
View 1 | 1.7883 x10~ 15 8.9525x10 12 0.0008
View 2 2.4751x10~15 7.0026 x10—10 0.0007
Adapted MWGAN View 3 | 4.6296x1020 9.9692 x10~20 9.9618 x10~11
View 4 4.6198x107 0.0603 0.0567
View 5 1.0612x10~ 12 0.0001 0.0003
View 1 0.2857 0.1867 0.0294
View 2 0.0433 0.2578 0.1832
Adapted MWGAN (clustering) | View 3 0.0599 0.0553 0.4429
View 4 0.4283 0.0005 0.0292
View 5 0.1386 0.0361 0.2063
View 1 0.1786 0.3806 0.0246
View 2 0.0361 0.1927 0.263
MultiGraphGAN+CC View 3 0.4158 0.4336 0.1761
View 4 0.14 0.0002 0.0003
View 5 1.01x10°° 0.2049 0.1333
View 1 0.0129 0.1223 0.3667
View 2 7.8x107 0.0359 0.2009
MultiGraphGAN+BC View 3 0.0099 0.0372 0.2489
View 4 5.8x10—24 6.98x10~7 1.8x10~10
View 5 0.0184 0.3352 0.5021
View 1 0.1926 0.3907 0.0498
View 2 0.3544 0.3772 0.0046
MultiGraphGAN+EC View 3 0.01 0.031 0.2065
View 4 3.3x10°6 0.0407 0.0343
View 5 0.0014 0.3154 0.2411

Adapted MWGAN: the graph-based architecture of the method introduced in (Cao et al., 2019).
Adapted MWGAN (clustering): a variant of the adapted method (Cao et al., 2019) with a clus-
tering step. topoGAN+CC, topoGAN+BC, topoGAN+EC: the proposed method that includes
closeness, betweenness and eigenvector. MultiGraphGAN+CC, MultiGraphGAN+BC, Multi-
GraphGAN+EC: the state-of-the-art methed, (Bessadok et al., 2020b) that includes the recon-
struction loss and the closeness, betweenness and eigenvector centralities. View 1: maximum
principal curvature (LH). View 2: average curvature (LH). We highlight in bold the p-value <
0.05 using two-tailed paired ¢-test between row-wise and column-wise methods.



Table 7: P-value results using two-tailed paired t-test for predicting a target brain multigraph
using six source views.

View 3 topoGAN+CC | topoGAN+BC | topoGAN+EC
View 1 0.0252 0.1635 0.0961
View 2 4.2923x10~13 0.0265 0.005
Adapted MWGAN View 3 0.1796 0.0043 0.0611
View 4 0.024 0.0006 0.0059
View 5 0.0583 0.0547 0.0479
View 1 0.0016 0.179 0.0437
View 2 6.1182x10 7 0.0858 0.0527
Adapted MWGAN (clustering) | View 3 0.0217 0.091 0.0292
View 4 0.0204 0.0068 0.0317
View 5 0.0202 0.0595 0.023
View 1 0.0001 0.0012 0.0023
View 2 2.3x10-20 0.0001 0.0041
MultiGraphGAN+CC View 3 0.0299 2.7x10~7 0.0018
View 4 0.0403 0.0011 2.02x10~8
View 5 0.0003 2.7x10°7 2.5x10~12
View 1 0.0789 0.0649 0.0306
View 2 0.0976 0.0245 0.0002
MultiGraphGAN+BC View 3 0.086 0.0015 0.0002
View 4 0.0599 0.0115 0.0211
View 5 0.0805 0.0549 0.0102
View 1 0.0679 0.1076 0.0059
View 2 1.4x10=7 0.1027 0.0723
MultiGraphGAN+EC View 3 0.0177 0.0917 0.0264
View 4 8.5x10~11 0.0054 0.0609
View 5 0.0161 0.0548 0.086
View 4 topoGAN-+CC | topoGAN+BC | topoGAN+EC
View 1 0.0437 0.0762 0.0008
View 2 0.2806 0.2209 0.0847
Adapted MWGAN View 3 0.1332 0.1404 8.6744x107
View 4 0.1761 0.0564 0.0316
View 5 0.166 0.0047 0.1258
View 1 0.1384 1.2571x10~16 0.1709
View 2 0.0002 3.1156x10~ 11 0.373
Adapted MWGAN (clustering) | View 3 0.0462 6.7905x10~" 0.0099
View 4 0.0269 6.8363x10— 11 4.0492x1037
View 5 0.1468 2.1769x10~6 0.2629
View 1 0.0835 2.1x10~ ™ 0.1468
View 2 0.0793 0.0015 0.0321
MultiGraphGAN+CC View 3 0.1515 0.0023 0.0044
View 4 0.1276 0.0076 0.0007
View 5 0.0231 3.1x10-10 0.0276
View 1 0.0122 1.96x10-6 0.0105
View 2 0.1649 0.1468 0.0384
MultiGraphGAN-+BC View 3 0.0287 3.97x10~13 0.0211
View 4 1.3x10~° 0.0389 0.1389
View 5 0.0006 1.3x10~16 5.65x10~8
View 1 0.1068 0.0314 0.1585
View 2 0.0181 0.027 0.2697
MultiGraphGAN+EC View 3 0.0994 0.0048 0.0004
View 4 0.0001 0.0464 0.1533
View 5 0.1148 0.0444 0.1643

Adapted MWGAN: the graph-based architecture of the method introduced in (Cao et al., 2019).
Adapted MWGAN (clustering): a variant of the adapted method (Cao et al., 2019) with a clus-
tering step. topoGAN+CC, topoGAN+BC, topoGAN+EC: the proposed method that includes
closeness, betweenness and eigenvector. MultiGraphGAN+CC, MultiGraphGAN+BC, Multi-
GraphGAN+EC: the state-of-the-art meth%% (Bessadok et al., 2020b) that includes the recon-
struction loss and the closeness, betweenness and eigenvector centralities. View 3: mean sulcal
depth (LH). View 4: maximum principal curvature (RH). We highlight in bold the p—value <
0.05 using two-tailed paired t—test between row-wise and column-wise methods.



Table 8: P-value results using two-tailed paired t-test for predicting a target brain multigraph
using six source views.

View 5 topoGAN+CC | topoGAN+BC | topoGAN+EC
View 1 0.03 1.9211x10~ 1 0.0002
View 2 0.0967 2.9925x10~6 0.2356
Adapted MWGAN View 3 7.8964 %106 2.9087x10~11 0.0006
View 4 1.3136x10~7 9.1108 %109 4.8735x10~10
View 5 0.029 0.0002 0.0037
View 1 0.0997 1.3734x10 9 0.0489
View 2 0.046 0.0002 0.2289
Adapted MWGAN (clustering) | View 3 0.1573 0.0319 0.2678
View 4 0.1849 0.2604 0.108
View 5 0.1197 0.012 0.0808
View 1 0.2674 0.0074 0.1941
View 2 0.3214 0.0206 0.4486
MultiGraphGAN+CC View 3 0.39 0.1531 0.0641
View 4 0.1074 0.0933 0.0707
View 5 0.099 0.0514 0.095
View 1 0.3093 0.034 0.1881
View 2 0.1106 0.013 0.1803
MultiGraphGAN+BC View 3 0.2799 0.208 0.0787
View 4 0.1296 0.0765 0.1991
View 5 0.0954 0.3384 0.1493
