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Abstract—Synthetic medical image generation has a huge
potential for improving healthcare through many applications,
from data augmentation for training machine learning systems
to preserving patient privacy. Conditional Adversarial Generative
Networks (cGANs) use a conditioning factor to generate images
and have shown great success in recent years. Intuitively, the
information in an image can be divided into two parts: 1)
content which is presented through the conditioning vector and
2) style which is the undiscovered information missing from
the conditioning vector. Current practices in using cGANs for
medical image generation, only use a single variable for image
generation (i.e., content) and therefore, do not provide much
flexibility nor control over the generated image.

In this work we propose DRAI—a dual adversarial infer-
ence framework with augmented disentanglement constraints—
to learn from the image itself, disentangled representations of
style and content, and use this information to impose con-
trol over the generation process. In this framework, style is
learned in a fully unsupervised manner, while content is learned
through both supervised learning (using the conditioning vector)
and unsupervised learning (with the inference mechanism). We
undergo two novel regularization steps to ensure content-style
disentanglement. First, we minimize the shared information
between content and style by introducing a novel application
of the gradient reverse layer (GRL); second, we introduce a self-
supervised regularization method to further separate information
in the content and style variables.

For evaluation, we consider two types of baselines: single latent
variable models that infer a single variable, and double latent
variable models that infer two variables (style and content).
We conduct extensive qualitative and quantitative assessments
on two publicly available medical imaging datasets (LIDC and
HAM10000) and test for conditional image generation, image
retrieval and style-content disentanglement. We show that in gen-
eral, two latent variable models achieve better performance and
give more control over the generated image. We also show that
our proposed model (DRAI) achieves the best disentanglement
score and has the best overall performance.
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SUPERVISED deep neural networks have shown great
success in many applications, including those in medical

imaging [21, 27, 29, 36]. However, previous works have
demonstrated the data hungry nature of these methods. While
there are a lot of medical images being scanned inside health
centers everyday, there are various factors which prohibit
training of large scale models capable of achieving expert
level performance. Among others, these factors include patient
privacy, difficulty in collecting diverse and unbiased datasets
with expert level annotations [53, 28]. Using synthetic data
as a mean to circumvent the aforementioned challenges is a
fascinating research venue for the medical imaging commu-
nity. With the advent of newer algorithms and computational
power, the desire to synthesize medical images that resemble
real data is closer than ever to becoming a possibility.

Generative Adversarial Networks (GANs) [25] are gener-
ative models based on artificial neural networks which have
proven successful in many applications [58, 79, 69, 35, 6, 76,
77, 49], including in the medical imaging domain [73, 34, 72,
18, 9]. They can be thought of as transformation functions
that map a sample from a prior distribution (e.g., the normal
distribution) to a random sample from the learned data dis-
tribution (pmodel(x)). However, GANs, as introduced in [25],
are unconditioned generative models, and therefore, there is
no control on the data being generated. Conditional generation
can be very helpful as we can be more selective on which part
of the learned distribution (pmodel(x))to generate data from.
This is particularly interesting in the medical imaging domain,
where datasets are known to have long-tail distributions with
the majority of the mass around common diseases. Therefore,
it’s very difficult to collect real patient data from rare diseases
which lie on the lower ends of the distribution tail. In this
respect, conditional generative models can be used to sample
the learned data manifold in areas of interest; the generator
can be conditioned on some factors which we care about, e.g.,
malignancy of a tumor, age group, ethnicity. Images generated
in this way can be subsequently used for data augmentation,
medical staff training, etc. Conditional GAN (cGAN) [54] is a
generative adversarial network where the model is conditioned
during training by additional information in order to direct
the generation process. This auxiliary information could be,
in theory, any type of data, such as a class label, a set of tags,
a text description, or even another image.

One common pitfall of cGAN is that the conditioning codes
are extremely high-level and do not cover nuances of the data.
For instance, the conditioning factor could be in the form of
a sparse vector representing crude class information, such as
class labels. Since the class information varies significantly
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within each class, the class label alone does not provide
the freedom to control the individual factors of variation
governing each class. This challenge is exemplified in the
medical imaging domain where insufficient label granularity
is a common occurrence. We refer to the factors of variation
that depend on the conditioning vector as content.

Another challenge in conditional image generation is that
the image distribution also contains factors of variation that are
agnostic to the conditioning code. These types of information
are shared among different classes or different conditioning
codes. In this work we refer to such information as style,
which depending on the task, could correspond to position,
orientation, location, background information, etc.

Having distinct control over both attributes of content and
style is very appealing when generating medical images. For
example, for privacy concerns, we may want to refrain from
using real patient images and rely on synthetically generated
images instead. In such cases, having full control over the
image generation is crucial for preserving patient privacy, i.e.,
removing patient information (style) while preserving disease
information (content). Learning disentangled representation of
content and style allow us to control the detailed nuances of
the generation process.

Another venue where inferring disentangled content and
style can be of interest is unsupervised style or content based
image retrieval, where we want the retrieved image to respect
the style or the content of the query image. In this case, if
there is no disentanglement of content and style, the shared
information between the two variables, would result in an
undesirable outcome. (see Section III-E3 for experiments on
this application).

In this work, we consider two types of information to
preside over the image domain: i) content, which refers to the
information in the conditioning vector for image generation
and ii) style, which encompasses any information not covered
by the conditioning vector. By definition, these two types
of information are independent from one another and this
independence criteria should be taken into account when
training a model. By explicitly constraining the model to
disentangle content and style, we ensure their independence
and prevent information leakage between them. To achieve
this goal, we introduce Dual Regularized Adversarial Inference
(DRAI), a conditional generative model that leverages un-
supervised learning and novel disentanglement constraints to
learn disentangled representations of content and style, which
in turn enables more control over the generation process.

Since there is no supervision on the style, we use an
adversarial inference mechanism and learn to infer style in an
unsupervised way from the image. For the content information
however, we have access to both the conditioning vector and
the image. The content can thus be learned both in a supervised
way through the conditioning vector and unsupervised way
from the image itself.

We impose two novel disentanglement constraints to facil-
itate the separation of content and style: Firstly, we introduce
a novel application of the Gradient Reverse Layer (GRL) [22]
to minimize the shared information between the two variables.
Secondly, we present a new type of self-supervised regu-

larization to further enforce disentanglement; using content-
preserving transformations, we attract matching content in-
formation, while repelling different style information.

An important feature of our model is that, in contrary to
most conditional generation methods that require the condi-
tioning vector at test time, our model has the flexibility to use
either a conditioning vector or a content code inferred from a
reference image. In addition, we also allow generating hybrid
images by mixing the inferred style and content codes from
multiple sources (see more details in Section II-F).

We compare the proposed method with multiple baselines
on two datasets. We show the advantage of using two latent
variables to represent style and content for conditional im-
age generation. To quantify style-content disentanglement, we
introduce a disentanglement measure and show the proposed
regularizations can improve the separation of style and content
information. We also demonstrate the use case of DRAI in the
style or content based image retrieval.

The contributions of this work can be summarized as
follows:
• To the best of our knowledge, this is the first time

disentanglement of content and style has been explored
in the context of medical image generation.

• We introduce a novel application of GRL that penalizes
shared information between content and style in order to
achieve better disentanglement.

• We introduce a self-supervised regularization that en-
courages the model to learn independent information as
content and style.

• we introduce a quantitative content-style disentanglement
measure that does not require any content or style labels.
This is especially useful in real world scenarios where
attributes contributing to content and style are not avail-
able.

II. METHOD

Our proposed framework, DRAI, has two main components:
a conditional image generation module and an inference mod-
ule. In what follows, we explain each component individually.
Note that the two modules are not independent since training
is end-to-end. To ensure disentanglement between the two
inferred variables, i.e., style and content, we impose disentan-
glement constraints which are also introduced in this section.

A. Overview

We start by describing the objectives of this paper. Let t be
the conditioning vector associated with image x, where t could
be a text description, class identity, meta data or any other
piece of information for which our image generation is based
on. Using the pairs {(ti,xi)}, i = 1, . . . , N , where N denotes
the size of the dataset, we train an inference model Gc,z and
a generative model Gx such that (i) the inference model Gc,z

infers content c and style z in a way that they are disentangled
from each other and (ii) the generator Gx can generate
realistic images that not only visually respect the conditioning
vector t but also the style/content disentanglement.



Fig. 1: Overview of DRAI. The encoder Eϕ maps the conditioning vector t to a higher dimensional content space represented by the random
variable c with distribution q(c). The generator Gx takes two inputs: a sample from the content random variable c, and a sample from
the style random variable z to generate x̃. The dashed purple arrows mark the cycle consistency between features implemented via `1
norm, while the solid purple arrows show the imposed disentanglement constrains. On the right hand side of the figure we show all the
discriminators used for training. ĉ represents the inferred content, ẑ the inferred style, x̂ the reconstructed input image and x̄ the image
with mismatched conditioning.

This framework allows for great flexibility in image gener-
ation. On one hand, conditional image generation is possible
by conditioning on vector t to generate x. In such cases,
the content information is conveyed through the conditioning
vector t. On the other hand, if t is not available, we can use the
inference module to infer style and content from a reference
image. The inferred codes can then be used to generate images
that resemble the content and/or style of the reference image.
This is in contrast to prior works which operate on the strong
assumption that the conditioning vector t is always available.
It is worth noting that our generative module is not constrained
to require a style image. Having a probabilistic generative
model allows us to sample the style code from the style prior
distribution and generate images with random style attributes.

The framework also allows us to generate hybrid images by
mixing style and content from various sources (details can be
found in Section II-F).

In the remaining of this section, we will describe each
component of the proposed DRAI model. An illustration of
DRAI is made in Figure 1.

B. Conditional image generation

We follow the formulation of Lao et al. [44]. Our image
generation module takes two vectors as input: a noise vector z
(representing style) sampled from the style prior distribution
and a vector c (representing content) which is an encoded
representation of the conditioning vector t. In order to learn
richer representations for the content, we sample c from a
Gaussian distribution qϕ(c|t) = N (µt, Σt), where µ and Σ
are functions of t parameterized by a neural network with
parameters ϕ and are trained end-to-end with the rest of the
network. To simplify the notations, we denote qϕ(c|t) as q(c)
throughout the paper.

In this work, we use adversarial training [25] in multiple
fronts for which we will explain in the following. Adversarial
training was introduced by [25] where a discriminator network
is trained to distinguish between real data examples (positive
class) and fake examples (negative class) generated by the
generator. The generator on the other hand is optimized
towards fooling the discriminator. Through the adversarial
game between the generator and discriminator, the distribution
of the generated fake examples moves towards the distribution
of real data, resulting in the generator producing realistic
images. Adversarial training provides powerful implicit loss
functions and has shown to be very powerful in matching
complex distributions. In order to improve the alignment
between conditioning vector t and the generated image x̃,
we seek to match p(x̃, t) with p(x, t). To do so, we adopt
the matching-aware discriminator proposed by [60]. For this
discriminator—denoted as Dx,t—the positive sample is the
pair of real image and its corresponding conditioning vector
(x, t), whereas the negative sample pairs consist of two
groups; the pair of real image with mismatched conditioning
(x̄, t), and the pair of synthetic image with corresponding
conditioning (Gx(z, c), t). Borrowing intuition from [10],
we can show that Dx,t measures the mutual information
between t and x and assigns higher scores to (x, t) pairs
with higher mutual information. In order to retain the fidelity
of the generated images, we also train a discriminator Dx

that distinguishes between real and generated images. The loss



function imposed by Dx,t and Dx is as follows:

min
G

max
D

Vt2i(Dx, Dx,t, Gx) =

Ex∼pdata [logDx(x)]+Ez∼p(z),c∼q(c)[log(1−Dx(Gx(z, c)))]+

E(x,t)∼pdata [logDx,t(x, t)]+

1

2

{
E(x̄,t)∼pdata [log(1−Dx,t(x̄, t))]+

Ez∼p(z),c∼q(c),t∼pdata [log(1−Dx,t(Gx(z, c), t))]
}
, (1)

where x̃ = Gx(z, c) is the generated image and (x̄, t)
designates a mis-matched pair.

C. Adversarial Inference
Latent variable models provide an efficient way to perform

approximate inference in order to discover factors of variations
governing the data distribution. This allows the model to rea-
son about the data on an abstract level. While data generation
is carried out through mapping the latent space z to the data
space x, an inference mechanism learns the inverse mapping
function from x to z. Bidirectional GAN a.k.a Adversarially
Learned Inference (ALI) [19, 20] is a GAN based latent vari-
able model that performs approximate inference by training
a bidirectional discriminator to distinguish between two joint
distributions: real data sample and its inferred latent code (x,
ẑ) , and real latent code and its generated data sample (z, x̃).

1) Single variable adversarial inference: For a single la-
tent variable model, let q(x) represent the empirical data
distribution and p(z) the marginal distribution of the latent
variable, specified as a simple random distribution, e.g., the
standard normal distribution N (0, I). ALI aims to match the
two joint distributions q(x, z) = q(z|x)q(x) and p(x, z) =
p(x|z)p(z), which in turn implies that q(z|x) matches p(z|x).
To achieve this, an encoder Gz(x) : ẑ = Gz(x),x ∼ q(x) is
introduced in the generation phase, in addition to the standard
generator Gx(z) : x̃ = Gx(z), z ∼ p(z). The discriminator
D is trained to distinguish between the joint pairs (x, ẑ) and
(x̃, z). The minimax objective of adversarial inference can be
written as:

min
G

max
D

V (D,Gx, Gz) =

Ex∼q(x),ẑ∼q(z|x)[logD(x, ẑ)]+

Ex̃∼p(x|z),z∼p(z)[log(1−D(x̃, z))]. (2)

2) Double variable adversarial inference: ALI and its
variants encode all the information in a single latent variable.
Following [44], we augment this framework to support two
independent variables representing style (z) and content (c)
which allows us to encode disjoint information in each variable
and ultimately disentangle style and content information. In
this augmented framework, given a sample x from empirical
data distribution q(x), the posterior distribution over style and
content is formulated as q(z, c|x). Using the adversarial infer-
ence framework, we are interested in matching the conditional
q(z, c|x) to the posterior p(z, c|x). Given the Independence
assumption of c and z, we have the following factorisation:

q(z, c | x) = q(z | x)q(c | x), (3)
p(z, c | x) = p(z | x)p(c | x). (4)

This formulation allows us to match q(z|x) to p(z|x) and
q(c|x) to p(c|x), respectively. We achieve this by matching
the two pairs of joint distributions:

q(z,x) = p(z,x), (5)
q(c,x) = p(c,x). (6)

In the dual adversarial inference process, the feature gen-
erator Gc,z , encodes the image to infer style and content;
ẑ, ĉ = Gc,z(x),x ∼ q(x), while the image generator Gx

decodes samples from the style and content prior distributions
into an image; x̃ = Gx(z, c), z ∼ p(z), c ∼ p(c). To
compete with the generators (i.e., Gx and Gc,z), we train two
discriminators: Dx,z to discriminate between the pairs (x, ẑ)
and (x̃, z) (sampled from q(x, z) and p(x, z)), and Dx,c to
discriminate between the pairs (x, ĉ) and (x̃, c) (sampled from
q(x, c) and p(x, c)). The dual adversarial inference objective
can be thus framed as:

min
G

max
D

VdALI(Dx,z, Dx,c, Gx, Gc,z) =

Ex∼q(x),ẑ,ĉ∼q(z,c|x)[logDx,z(x, ẑ) + logDx,c(x, ĉ)]+

Ex̃∼p(x|z,c),z∼p(z),c∼p(c)[log(1−Dx,z(x̃, z)) + log(1−Dx,c(x̃, c))].

(7)

3) Image cycle-consistency: Matching the two joint distri-
butions alone as done in ALI, does not identify the relationship
between the latent codes (i.e., z and c) and the data (i.e.,
x). This results in ALI generating realistic looking images,
but having poor reconstructions. Li et al. [47] address this
issue and describe the non-identifiability problem of ALI in
the single latent variable setup. To impose correlation between
the latent code z and image x, they propose to incorporate
a loss function which enforces cycle-consistency between
data sample x and the generated image from the inferred
code ẑ. More specifically, a discriminator Dcycle is trained to
distinguish between x and its reconstruction x̂. They show
that in addition to achieving better reconstructions, using
cycle consistency stabilizes the training of ALI. The cycle-
consistency loss was introduced in [79] for unpaired image
to image translation using the CycleGAN architecture and has
since then been used in many different applications [3, 74, 40].

In this work, we adopt cycle-consistency in a similar way
as [47]. We train a discriminator Dcycle to distinguish between
pairs (x,x) and (x, x̂) with x̂ being the reconstruction for x;
x̂ = Gx(ẑ, ĉ), where ẑ, ĉ = Gc,z(x). The cycle-consistency
loss is denoted by Vcycle as follows:

min
G

max
D

Vimage-cycle(Dcycle, Gx, Gc,z) =

Ex∼q(x)[logDcycle(x,x)]+

Ex∼q(x),(ẑ,ĉ)∼q(z,c|x)[log(1−Dcycle(x, Gx(ẑ, ĉ)))]. (8)

We also experimented with the `1 loss as the objective
function for cycle-consistency. In practice, the adversarial
cycle consistency was slightly better.

4) Latent code cycle-consistency: To further preserve in-
formation from a pair of style-content codes in the generated
image, we infer the latent code from the generated image and



apply cycle consistency between the inferred and the original
codes.

min
G

Vcode-cycle(Gx, Gc,z) =

E(z′,c′)∼q(z,c|x̃),z∼p(z),c∼q(c)[‖z′ − z‖+ ‖c′ − c‖], (9)

where x̃ ∼ p(x|z, c).
We can show that Equation (9) maximizes the mutual

information between the content variable and the generated
image as well as the mutual information between the style
variable and the generated image. Let I(c;Gx(c, z)) denote
the mutual information between the content variable and the
generated image, where

I(c;Gx(c, z)) = H(c)−H(c|x̃). (10)

Following [2], we define a variational lower bound on I(c; x̃)
by rewriting the conditional entropy in Equation (10) as:

−H(c|x̃) = Ex̃∼p(x|z,c)[log q(c|x̃)+DKL(p(c|x̃)||q(c|x̃))],

and by extension:

I(c; x̃) = H(c)+Ex̃∼p(x|z,c)[log q(c|x̃)+DKL(q(c|x̃)||p(c|x̃))].

Using the non-negativity of H(c) and
DKL(p(c|x̃)||q(c|x̃))), we obtain the following lower
bound on the mutual information:

I(c; x̃) ≥ Ex̃∼p(x|z,c)[log q(c|x̃)].

Similar derivation can be made to show

I(z; x̃) ≥ Ex̃∼p(x|z,c)[log q(z|x̃)].

The objective function in Equation (9), maximizes the log like-
lihoods Ex̃∼p(x|z,c)[log q(c|x̃)] and Ex̃∼p(x|z,c)[log q(z|x̃)]
and by extension the variational lower bound on the terms
I(c; x̃) and I(z; x̃).

D. Disentanglement constraints

Lao et al. [44] use double variable ALI as a criterion for
disentanglement. However, ALI does approximate inference
and does not necessarily guarantee disentanglement between
variables. To further impose disentanglement between style
and content, we propose additional constrains and regulariza-
tion measures.

1) Content-Style information minimization: The content
should not include any information of the style and vice versa.
We seek to explicitly minimize the shared information between
style and content. For this, we propose a novel application of
the Gradient Reversal Layer (GRL) strategy. First introduced
in [22], the GRL strategy is used in domain adaptation methods
to learn domain-agnostic features, where it acts as the identity
function in the forward pass but reverses the direction of
the gradients in the backward pass. In domain adaptation
literature, GRL is used with a domain classifier. Reversing
the direction of the gradients coming from the domain clas-
sification loss has the effect of minimizing the information
between the representations and domain identity, thus, learning
domain invariant features. Inspired by the literature on domain
adaptation, we use GRL to minimize the information between

style and content. More concretely, for a given example x, we
train an encoder Fc to predict the content from style and use
GRL to minimize the information between the two. The same
process is done for predicting style from content through Fz ,
resulting in the following objective function:

min
G

max
F

VGRL(Fz, Fc, Gc,z) =

− Ex∼q(x),(ẑ,ĉ)∼q(z,c|x)[‖ẑ − Fz(ĉ)‖+ ‖ĉ− Fc(ẑ)‖].
(11)

This constrains the content feature generation to disregard
style features and the style feature generation to disregard
content features. Figure 2 shows a visualization of this module.

We can show that Equation (11) minimizes a lower bound
on the mutual information between the style variable and the
content variable. Here, we only provide the proof for using
GRL with Fz to predict style from content. Similar reasoning
can be made for using GRL with Fc. Let I(z; c) denote the
mutual information between the inferred content and the style
variables, where

I(z; c) = H(z)−H(z|c). (12)

Once again, following [2], we define a variational lower bound
on I(z; c) by rewriting the conditional entropy in (12) as:

−H(z|c) = Eĉ∼q(c|x)[log q(z|ĉ) +DKL(p(z|ĉ)||q(z|ĉ))]],

and by extension:

I(z; c) = H(z) + max
Fz

Eĉ∼q(c|x)[log q(z|ĉ)], (13)

where the maximum is achieved when

DKL(p(z|ĉ)||q(z|ĉ))] = 0.

Since H(z) is non-negative and ||ẑ − Fz(ĉ)|| corresponds to
− log q(z|ĉ), minimization of lower bound on mutual informa-
tion can be written as:

min
G

max
Fz

−Eĉ∼q(c|x),ẑ∼q(z|x)[||ẑ − Fz(ĉ)||], (14)

which corresponds to Equation (11).
2) Self-supervised regularization: Self-supervised learning

has shown great potential in unsupervised representation learn-
ing [57, 30, 15]. To provide more control over the latent
variables c and z, we incorporate a self-supervised regular-
ization such that the content is invariant to content-preserving
transformations while the style is sensitive to such transforma-
tions. The proposed self-supervised regularization constraints
the feature generator Gc,z to encode different information for
content and style. More formally, let T be a random content-
preserving transformation such as a rotation, horizontal or
vertical flip. For every example x ∼ q(x), let x′ be its
transformed version; x′ = Ti(x) for Ti ∼ p(T ). We would
like to maximize the similarity between the inferred contents
of x and x′ and minimize the similarity between their inferred
styles. This constrains the content feature generation to focus
on the content of the image reflected in the conditioning vector
and the style feature generation to focus on other attributes.
This regularization procedure is visualized in Figure 3. The



Content Predictor
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Fig. 2: Content-Style information minimization. For a given image x,
Fc is trained to predict the content ĉ from the style ẑ. By reversing
the direction of the gradients, the GRL penalizes Gc,z to minimize
the content information in the style variable z. The same procedure
is carried out to minimize style information in the content variable
c.

Fig. 3: Self-Supervised regularization. Given x and its transformed
version x′, their corresponding content codes c and ĉ form a positive
pair and the disparity between them is minimized (i.e., attract each
other) while their corresponding style codes z and ẑ form a negative
pair and the disparity between them is maximized (i.e., repel each
other).

objective function for the self-supervised regularization is
defined as:

min
G

Vself(Gc,z) = Ex∼q(x)[‖ĉ− ĉ′‖ − ‖ẑ − ẑ′‖], (15)

where (ẑ, ĉ) ∼ q(z, c|x) and (ẑ′, ĉ′) ∼ q(z, c|x′).

E. Full Objective

DRAI is a probabilistic model which requires reparameteri-
zation trick to sample from the approximate posteriors q(z|x),
q(c|x) and q(c|t). We use KL divergence in order to regularize
these posteriors to follow the normal distribution N (0, I).
Taking that into account, the complete objective criterion for

(a)

(b)

Fig. 4: Hybrid image generation: (a) via the conditioning factor
ti (representing content) and the style code ẑj inferrnd from the
style reference image. (b) via the content code ĉi inferred from the
content reference image and the style code ẑj inferred from the style
reference image.

DRAI is:
min
G

max
D,F

Vt2i(Dx, Dx,t, Gx) +

VdALI(Dx,z, Dx,c, Gx, Gc,z) +

Vimage-cycle(Dcycle, Gx, Gc,z) +

Vcode-cycle(Gx, Gc,z) +

VGRL(Fz, Fc, Gc,z) +

Vself(Gc,z) +

λDKL(q(z|x) || N (0, I)) +

λDKL(q(c|x) || N (0, I)) +

λDKL(q(c|t) || N (0, I)).

(16)

Figure 1 illustrates various discriminators and objective func-
tions used to train DRAI.

F. Generating Hybrid Images

Thanks to our encoder that is able to infer disentangled
codes for style and content and also our generator that does
not have a hard constraint on requiring the conditioning
embedding t, we can generate hybrid images where we mix
style and content from different image sources. Let i and j
be the indices of two different images. There are two ways in
which DRAI can generate hybrid images:

1) Using a conditioning vector ti and a style image xj :
In this setup, we use the conditioning factor ti as the



content and the inferred ẑj from the style image xj as
the style:

ci = Eϕ(ti)

ẑj , ĉj = Gc,z(xj)

x̃ij = Gx(ẑj , ci).

2) Using a content image xi and a style image xj : In
this setup we do not rely on the conditioning factor
t. Instead, we infer codes for both style and content
(i.e., ẑj and ĉi) from style and content source images
respectively.

ẑi, ĉi = Gc,z(xi)

ẑj , ĉj = Gc,z(xj)

x̃ij = Gx(ẑj , ĉi)

The generation of hybrid images is graphically explained in
Figure 4 for the aforementioned two scenarios.

III. EXPERIMENTS

A. Datasets

We conduct experiments on two publicly available medical
imaging datasets.

1) HAM10000: Human Against Machine (HAM10000)
[66], contains approximately 10000 training images, includes
10015 dermatoscopic images of seven types of skin lesions and
is widely used as a classification benchmark. One of the lesion
types, “Melanocytic nevi” (nv), occupies around 67% of the
whole dataset, while the two lesion types that have the smallest
data size, namely, “Dermatofibroma” (df) and “Vascular skin
lesions” (vasc), have only 115 and 143 images respectively.
Such data imbalance is undesirable for our purpose since
limitations on the data size lead to severe lack of image
diversity of the minority classes. For our experiments, we
select the three largest skin lesion types, which in order of
decreasing size are: “nv” with 6705 images; “Melanoma”
(mel) with 1113 images; and “Benign keratosis-like lesions”
(bkl) with 1099 images. Patches of size 48 × 48 centered
around the lesion are extracted and then resized to 64 × 64.
To balance the dataset, we augment mel and bkl three times
with random flipping. We follow the train-test split provided
by the dataset, and the data augmentation is done only on the
training data.

2) LIDC: The Lung Image Database Consortium image
collection (LIDC-IDRI) consists of lung CT scans from 1018
clinical cases [5]. In total, 7371 lesions are annotated by
one to four radiologists, of which 2669 are given ratings
on nine nodule characteristics: “malignancy”, “calcification”,
“lobulation”, “margin”, “spiculation”, “sphericity”, “subtlety”,
“texture” and “internal structure”. We take the following pre-
processing steps for LIDC: a) We normalize the data such
that it respects the Hounsfield units (HU), b) the volume
size is converted to 256 × 256 × 256, c) areas around the
lungs are cropped out. For our experiments, we extract a
subset of 2D patches composing nodules with consensus
from at least three radiologists. Patches of size 48 × 48
centered around the nodule are extracted and then resized to

64× 64. Furthermore, we compute the inter-observer median
of the malignancy ratings and exclude those with malignancy
median of 3 (out of 5). This is to ensure a clear separation
between benign and malignant classes presented in the dataset.
The conditioning factor for each nodule is a 17-dimensional
vector, coming from six of its characteristic ratings, as well
as the nodule size. Note that “lobulation” and “spiculation”
are removed due to known annotation inconsistency in their
ratings [4], and “internal structure” is removed since it has
a very imbalanced distribution. We quantize the remaining
characteristics to binary values following the same procedure
of Shen et al. [63] and use the one-hot encoding to generate
a 12-dimensional vector for each nodule. The remaining five
dimensions are reserved for the quantization of the nodule
size, ranging from 2 to 12 with an interval of 2. Following
the above described procedure, the nodules with case index
less than 899 are included in the training dataset while the
nodules of the remaining cases are considered as the test set.
By augmenting the label in such way, we exploit the richness
of each nodule in LIDC, which proves to be beneficial for
training.

B. Baselines

To evaluate the quality of generation, inference, and dis-
entanglement, we consider two types of baselines. To show
the effectiveness of dual variable inference, we compare our
framework with single latent variable models. For this, we
introduce a conditional adaptation of InfoGan [16] referred
to as cInfoGAN and a conditional adversarial variational
Autoencoder (cAVAE), both of which are explained in this
section.

To compare our approach to dual latent variable inference
methods, we extend InfoGAN and cAVAE to dual variables
which we denote as D-cInfoGAN and D-cAVAE respectively.

We also compare DRAI to Dual Adversarial Inference
(DAI) [44] and show how using our proposed disentanglement
constraints together with latent code cycle-consistency can
significantly boost performance. Finally, we conduct rigorous
ablation studies to evaluate the impact of each component in
DRAI.

1) conditional InfoGAN: InfoGAN is a variant of genera-
tive adversarial network that aims to learn unsupervised disen-
tangled representations. In order to do so, InfoGAN modifies
the original GAN in two ways. First, it adds an additional input
c to the generator. Second, using an encoder network Q, it
predicts c from the generated image and effectively maximizes
a lower bound on the mutual information between the input
code c and the generated image x̃. The final objective is the
combination of the original GAN objective plus that of the
inferred code ĉ ∼ Q(c|x):

min
G,Q

max
D

VInfoGAN(D,G,Q) =

VGAN(D,G)− λ(Ex∼G(z,c),c∼p(c)[logQ(c|x)] +H(c)).
(17)

The variable c can follow a discrete categorical distribution
or a continuous distribution such as the normal distribution.



Fig. 5: Conditional InfoGAN (cInfoGAN).

Fig. 6: Dual conditional InfoGAN (D-cInfoGAN).

InfoGAN is an unsupervised model popular for learning
disentangled factors of variation [68, 43, 56].

We adopt a conditional version of InfoGAN–denoted by
cInfoGAN–which is a conditional GAN augmented with an
inference mechanism using the InfoGAN formulation. We
experiment with two variants of cInfoGAN; a single latent
variable model (cInfoGAN) shown in Figure 5, where the
discriminator Dx is trained to distinguish between real (x)
and fake (x̃) images while the discriminator Dx,t distinguishes
between the positive pair (x, t) and the corresponding negative
pair (x̃, t), where x̃ = Gx(z, t) and t is the conditioning
vector representing content. With the help of Gz , InfoGAN’s
mutual information objective is applied on z which represents
the unsupervised style.

We also present a double latent variable model of InfoGAN
(D-cInfoGAN) shown in Figure 6 where in addition to infer-
ring ẑ we also infer ĉ through cycle consistency using the `1
norm.

2) cAVAE: Variational Auto-Encoders (VAEs) [42] are la-
tent variable models commonly used for inferring disentangled
factors of variation governing the data distribution. Let x
be the random variable over the data distribution and z the
random variable over the latent space. VAEs are trained by
alternating between two phases, an inference phase where
an encoder Gz is used to map a sample from the data to
the latent space and infer the posterior distribution q(z|x)
and a generation phase where a decoder Gx reconstructs the
original image using samples of the posterior distribution with
likelihood p(x|z).

VAEs maximize the evidence lower bound (ELBO) on the

Fig. 7: Conditional Adversarial VAE (cAVAE).

Fig. 8: Dual conditional Adversarial VAE (D-cAVAE).

likelihood p(x):

max
G

VVAE(Gx, Gz) =

Ez∼q(z|x)[log p(x|z)]−DKL[q(z|x) || p(z)]. (18)

Kingma and Welling [42] also introduced a conditional
version of VAE (cVAE) where p(x|z, c) is guided by both
the latent code z and conditioning factor c. There have also
been many attempts in combining VAEs and GANs. Notable
efforts are that of Larsen et al. [46], [52] and [75].

Conditional Adversarial Variational Autoencoder (cAVAE)
is very similar to conditional Variational AutoEncoder (cVAE)
but uses an adversarial formulation for the likelihood p(x|z, c).
Following the adversarial formulation for reconstruction [52,
47], a discriminator Dcycle is trained on positive pairs (x,x)
and negative pairs (x,x̂), where x̂ ∼ p(x|t, ẑ) and ẑ ∼ q(z|x).
For the conditional generation we train a discriminator Dx,t

on positive pairs (x, t) and negative pairs (x̂, t), where t is
the conditioning factor. We empirically discover that adding
an additional discriminator Dx,t,z which also takes advantage
of the latent code ẑ improves inference. Similar to cInfoGAN,
we use two versions of cAVAE: a single latent variable version
denoted by cAVAE (Figure 7) and a double latent variable
version D-cAVAE (Figure 8), where in addition to the style
posterior q(z|x), we also infer the content posterior q(c|x).
Accordingly, to improve inference on the content variable, we
add the discriminator Dx,t,c.



C. Evaluation Metrics

We explain in detail various evaluation metrics used in our
experiments.

1) Measure of disentanglement: Multiple methods have
been proposed to measure the degree of disentanglement
between variables [32]. In this work, we propose a measure
which evaluates the desired disentanglement characteristics of
both the feature generator and the image generator. To have
good feature disentanglement, we desire a feature generator
(i.e., encoder) that separates the information in an image in two
disjoint variables of style and content in such a way that 1) the
inferred information is consistent across images. e.g., position
and orientation is encoded the same way for all images; and
2) every piece of information is handled by only one of the
two variables, meaning that the style and content variables do
not share features. In order to measure these properties, we
propose Cross Image Feature Consistency (CIFC) error where
we measure the model’s ability to first generate hybrid images
of mixed style and content inferred from two different images
and then its ability to reconstruct the original images. Figure 9
illustrates this process. As seen in this figure, given two images
Ia and Ib, hybrid images Iab and Iba are generated using
the pairs (ĉa,ẑb) and (ĉb,ẑa) respectively. By taking another
step of hybrid image generation, Iaa and Ibb are generated
as reconstructions of Ia and Ib respectively. To make the
evaluation robust with respect to high frequency image details,
we compute the reconstruction error in the feature space. In
retrospect, the disentanglement measure is computed as:

CIFC = E(Ia,Ib)∼qtest(x)[‖ẑa − ẑaa‖+ ‖ĉa − ĉaa‖+

‖ẑb − ẑbb‖+ ‖ĉb − ĉbb‖], (19)

where qtest(x) represents the empirical distribution of the test
images.

2) FID: The Frechet inception distance (FID) score [31]
measures the distance between the real and generated data
distributions. An inception model is required for calculating
FID, but since the conventional inception model used for FID
is pretrained on colored natural images, it is not suitable
to be used with LIDC which consists of single channel CT
scans. Consequently, we train an inception model on the
LIDC dataset to classify benign and malignant nodules. We
use InceptionV3 [65] up to layer “mixed3” (initialized with
pretrained ImageNet weights), and append a global average
pooling layer followed by a dense layer.

3) Inception Score: Inception Score (IS) [61] is another
quantitative metric on image generation which is commonly
used to measure the diversity of the generated images. We
use the same inception model described above to calculate IS.
The TensorFlow-GAN library [64] is used to calculate both
FID and IS.

4) Conditional Generation Accuracy: Since the inception
model is pretrained on image labels, we can evaluate the
classification accuracy of the generated images to measure
the performance of the conditional generation. This metric is
referred to as CGAcc through out this text.

TABLE I: Comparison of image generation metrics on LIDC dataset
of single and double variable baselines

Method LIDC

FID(↓) IS(↑) CGAcc(↑)

cInfoGAN 0.283± 0.06 1.366± 0.02 0.740± 0.02
cAVAE 0.181± 0.03 1.424± 0.01 0.809± 0.02
D-cInfoGAN 0.333± 0.06 1.342± 0.09 0.645± 0.04
D-cAVAE 0.378± 0.03 1.371± 0.04 0.597± 0.07
DAI [44] 0.106± 0.02 1.423± 0.05 0.773± 0.03
DRAI 0.089± 0.02 1.422± 0.03 0.773± 0.02

5) Image retrieval scores: Quantitative Image retrieval tests
are conducted on LIDC dataset, where given a query image,
the curated test set1 is searched to find the closest match.

In our experiments, we construct a query dataset from the
nodules in the original test set which were excluded from our
curated test set (those with median malignancy equals to 3). To
quantitatively evaluate the performance of image retrieval, we
construct an attribution vector for each image, which consists
of the conditioning vector and the nodule size. The nodule size
is calculated from the nodule segmentation maps provided in
the dataset.

For each query image, the image retrieval test requires the
model to find top-N nearest neighbors (we set N equal to
3 in our experiments) in the test set. The model’s searching
criterion is the distance between two images, which is defined
by the mean absolute error (MAE) between their inferred latent
representations.

We introduce two quantitative metrics to evaluate the image
retrieval performance. One is the “disagreement divergence”
that measures the average disagreement—computed via mean
square error (MSE)—between the label of the query image
and those of the top-N retrieved images. The other measure
is the percentage of the label from the ground truth image
found in the top-N nearest neighbors. For every query im-
age, the ground truth image is defined as the image with
the smallest disagreement divergence in the test set. It is
important to note that since the conditioning vectors used
for the evaluation of the image retrieval performance is tied
with the content variable, this quantitative measure can only
evaluate the content based image retrieval performance. We
resort to qualitative assessments to evaluate the style based
image retrieval experiments.

D. Generation evaluation

To evaluate the quality and diversity of the generated
images, we measure FID and IS (see Section III-C) for the
proposed DRAI model and various double and single latent
variable baselines described in Section III-B. The results are
reported in Table I and Table II for LIDC and HAM10000
datasets respectively. We also report in these tables the CGAcc
score which measures how well the generated images match
the conditioning factors. For the LIDC dataset, we observe
all methods have comparable IS and CGAcc score while
DRAI and DAI have significantly lower FID compared to

1See Section III-A2 for details on how the data is curated



Fig. 9: Cross Image Feature Consistency (CIFC) error. CIFC is computed by first generating hybrid images of mixed style and content across
two different images and then reconstructing the original images. For a more robust evaluation, CIFC is measured in the feature space.

TABLE II: Comparison of image generation metrics on HAM10000
dataset of single and double variable baselines.

Method HAM

FID(↓) IS(↑) CGAcc(↑)

cInfoGAN 1.351± 0.33 1.326± 0.03 0.647± 0.04
cAVAE 3.566± 0.56 1.371± 0.01 0.651± 0.02
D-cInfoGAN 1.684± 0.42 1.449± 0.03 0.654± 0.06
D-cAVAE 4.893± 0.99 1.321± 0.01 0.578± 0.01
DAI [44] 1.327± 0.06 1.304± 0.01 0.656± 0.02
DRAI 1.224± 0.05 1.300± 0.01 0.630± 0.02

other baselines, with DRAI having better performance. For the
HAM10000 dataset, DRAI once again achieves the best FID
score while D-cInfoGAN achieves the best IS. All methods
seem to perform on par regarding the conditional generation
accuracy CGAcc. It is interesting to note that compared with
other baselines, DAI and DRAI achieve lower prediction
intervals, which indicate more stable training process. For each
model, the prediction interval is computed across four training
sessions.

We highlight that while FID and IS are the most common
metrics for the evaluation of GAN based models, they do
not provide the optimum assessment [7] and thus qualitative
assessment is needed. For the qualitative evaluation, we visu-
alize samples generated by each model. We use the provided
conditioning vector for the generation process and only sample
the style variable z. The generated samples are visualized in
Figure 10 and Figure 11 for LIDC and HAM10000 datasets
respectively. In every sub-figure, the first column represents
the reference image corresponding to the conditioning vector
used for the image generation, and the remaining columns
represent synthesized images. Studying these figures, we make
the following observations:

• For LIDC, DRAI and DAI generate images with higher
fidelity and less artifacts compared to other baselines. For
HAM, all compared models generate realistic looking
images. This could be because HAM10000 is a larger
dataset.

• There is evidently more content consistency in double
variable models compared to single variable models. This
validates the hypothesis that using two latent variables
to infer style and content allows for more control over
the generation process. Among double variable models,

DRAI has the best content consistency.
• By fixing the content and sampling the style variable, we

can discover the types of information that are encoded as
style and content for each dataset. We observe that the
learned content information are color and lesion size for
HAM10000, and nodule size for LIDC; while the learned
style information are location, orientation and lesion
shape for HAM10000 and background for LIDC. We also
observe that DRAI is very successful in preserving the
content information when there is no stochasticity in the
content variable (i.e., c is fixed). As for other baselines,
sampling style results in changing the content information
of the generated images, which indicates information leak
from the content variable to the style variable. The results
show that compared to DAI and other baselines, DRAI
achieves better separation of style and content.

E. Evaluation of Style-Content Disentanglement

Achieving good style-content disentanglement in both in-
ference and generation phases is the main focus of this work.
We conduct multiple quantitative and qualitative experiments
to asses the quality of disentanglement in DRAI (our proposed
method) as well as the competing baselines.

1) Quantitative evaluation using CIFC: As a quantitative
metric, we introduce the disentanglement error CIFC (refer
to III-C for details). Table III shows results on this metric. As
seen from this table, in both HAM10000 and LIDC datasets,
DRAI and DAI achieve significantly lower disentanglement
error compared to other baselines, indicating the importance
of dual adversarial inference. The dual adversarial inference
formulation with style and content independence assumption
facilitates their separation, and allows for better disentan-
glement compared to D-cInfoGAN and D-cAVAE where the
latent space is merely divided into two variables with sep-
arate encoders and separate discriminators. This experiment
also shows that model architecture alone is not enough for
style-content separation and proper objective functions are
needed to guide the learning process. We observe that DRAI
improves over DAI by a notable margin, which demonstrates
the advantage of the proposed disentanglement regularizations;
on one hand, the information regularization objective through
GRL minimizes the shared information between style and
content variables, and on the other hand, the self-supervised
regularization objective not only allows for better control of



Fig. 10: Conditional generations on LIDC. In every sub-graph, the first column represents the real image corresponding to the conditioning
vector. The images are generated by keeping the content code (c) fixed and only sampling the style codes (z).

DRAI DAI D-cAVAE D-cInfoGAN cInfoGAN cAVAE

Fig. 11: Conditional generations HAM10000. In every sub-graph, the first column represents the real image corresponding to the conditioning
vector. The images are generated by keeping the content code (z) fixed and only sampling the style codes (z).

TABLE III: Content-style disentanglement evaluation using CIFC
error.

Method CIFC(↓)

HAM10000 LIDC

D-cInfoGAN 1.201± 0.17 1.625± 0.11
D-cAVAE 1.354± 0.03 1.944± 0.02
DAI [44] 0.256± 0.01 1.096± 0.28
DRAI 0.210± 0.01 0.456± 0.06

the learned features but also facilitates disentanglement. In the
ablation studies (Section III-F), we investigate the effect of the
individual components of DRAI on disentanglement.

2) Qualitative evaluation: To have a more interpretable
evaluation, we qualitatively assess the style-content disentan-
glement through generating hybrid images by combining style
and content information from different sources. We can then
evaluate the extent to which the style and content of the
generated images respect the corresponding style and content
of the source images. Figure 12 and Figure 13 show these
results on the two datasets. Following these figures, we make
the following observations:

• For the LIDC dataset, DAI and DRAI learn CT image
background as style and nodule as content. This is due
to the fact that the nodule characteristics such as nodule
size is included in the conditioning factor and thus the
content tends to focus on those attributes. Since the
background of the CT images is not well represented in
the conditioning label of the LIDC dataset, the model
tends to learn features controlling the background in
an unsupervised way as style. For style features, the
boundary between high and low density tissues is often
captured. The model also inclines towards ignoring small

artifacts in the background, which suggests that it infers
based on higher-level features.

• Thanks to the added disentanglement regularizations,
DRAI has the best content-style separation compared
to all other baselines and demonstrates clear decoupling
of the two variables. Because of the self-supervised
regularization objective, DRAI assigns more emphases
on capturing nodule characteristics as part of the content
and background as part of the style. DAI follows closely
behind but is not as successful as DRAI in inferring
the correct background or nodule size. Overall, it is
evident from the qualitative experiments that the proposed
disentanglement regularizations help to decouple the style
and content variables.

• DRAI generates better reconstructed images compared
to other baselines. The inferred content is mostly con-
strained to nodule size and density, which are correlated.
It is likely that the nodule size and malignancy dominate
the content, while other LIDC characteristics seem less
discriminative in comparison. A richer and finer condi-
tioning factor could help alleviate this.

• For HAM10000, style encodes features shared across
lesion types such as shape, orientation and location of the
skin lesion, while the content constitutes lesion type, size
and color information of both the lesion and background.

• The conditioning factor for HAM10000 is only comprised
of lesion type, so learning color and lesion size as part
of the content, is the result of inductive biases caused by
inferring two latent variables to learn style and content,
and also the result of objective functions such as the
self supervised regularization. The unsupervised learning
of content (in addition to the supervised learning) helps
bring about a richer content representation.

• DRAI also shows clear separation of style and content



Fig. 12: Qualitative evaluation of style-content disentanglement through hybrid image generation on LIDC dataset. In every sub-figure, images
in the first row present style image references and those in the first column present content image references. Hybrid images are generated
by using the style and content codes inferred from style and content reference images respectively.
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Fig. 13: Qualitative evaluation of style-content disentanglement through hybrid image generation on HAM10000 dataset. In every sub-figure,
images in the first row represent style image references and those in the first column represent content image references. Hybrid images are
generated by using the style and content codes inferred from style and content reference images respectively.

on HAM10000 dataset. DAI fails to disentangle the two
vectors and some features such as color are captures by
both the style and content variables. As for D-cInfoGAN
and D-cAVAE models, the hybrid image generation is

mostly dominated by either the style (for D-cInfoGAN)
or the content (for D-cAVAE).

• HAM10000 is a harder dataset in terms of the vast
lesion variability. Using separate style and content vectors



without an independence assumption between them (e.g.,
D-cInfoGAN and D-cAVAE), results in the coupling of
the two representations which as seen in Figure 12 and
Figure 13, is detrimental.

• Requiring disentanglement adds an additional regulariza-
tion effect on the generation task, which introduces a
trade-off between disentanglement and generation. This
is evident in the HAM10000 dataset where we observe
images generated by double variable models (especially
DRAI and DAI where there is more regularization in-
volved) are blurrier than those generated by single vari-
able models. Careful tuning of the hyper-parameters is
required to generate high quality images which also
satisfy the disentanglement criteria for style and content.

3) Image retrieval: While the above experiments evaluate
disentanglement on both inference and generation, we would
also like to further assess how the inferred style and content
features are disentangled from each other in the retrieval test.
For a given query image, we can retrieve its closest matches in
a reference dataset, in terms of style and content separately.
The style-content disentanglement can then be evaluated by
investigating the style and content of the retrieved images.

We resort to qualitative evaluation of style based image re-
trieval since there is no label on style. We could however, eval-
uate content based image retrieval, based on the conditioning
vector (nodule size and other characteristics) associated with
each image. This allows us to evaluate how well each model
can infer correct content information.Quantitative results on
content based image retrieval are presented in Table IV where
we present the disagreement divergence and label overlap.
As seen in this table, while DAI and DRAI have relatively
similar performance, other baselines (i.e., D-cINfoGAN and
D-cAVAE) significantly under perform. Interestingly, “Pixel
Matched”, which is the nearest neighbor to the query image
computed in the image space, focuses only on the background
(i.e., the dominant factor in the image). This is also quantita-
tively shown in Table IV; Pixel Matched performs poorly on
both metrics.

For the quantitative evaluation, we resort to using only the
LIDC dataset since it has a richer conditioning label compared
to HAM10000 dataset.

For the qualitative evaluation, the top nearest neighbors to
the query image with respect to its inferred style and content
codes are retrieved. Figure 14 and Figure 15 showcase the
qualitative evaluation of style based and content based image
retrieval on LIDC and HAM10000 datasets respectively. In
each figure, the horizontal images next to the query image
represent the retrieved images based on the style information,
while the vertical images represent the retrieved images based
on the content information. For single variable baselines i.e.,
cAVAE and cInfoGAN, image retrieval is performed based on
the inferred single code. We observe that DRAI manages to
retrieve images based on style or content without allowing
interference from the other variable (i.e., content or style
respectively). As for the other baselines, since the style and
content information are intertwined, the retrieved images have
both style and content information which is undesirable.

TABLE IV: Quantitative evaluation on the top 3 nearest neighbors
for content based image retrieval on LIDC dataset.

Method disagreement divergence(↓) label-overlap(↑)
Pixel Matched 2.42 35.27

D-cInfoGAN 2.566± 0.04 33.850± 1.19
D-cAVAE 2.961± 0.08 35.010± 0.96

DAI+selfReg+MIReg 1.826± 0.05 52.325± 3.87
DAI+featureCycle 1.458± 0.11 59.173± 3.16
DAI+MIReg 1.928± 0.26 54.909± 1.82
DAI+selfReg 1.791± 0.26 56.589± 3.59

DAI [44] 1.687± 0.32 54.780± 5.02
DRAI 1.575± 0.04 53.359± 2.94

F. Ablation studies

As discussed in Section II, our proposed method DRAI is
composed of different components to ensure the quality of
inference and style-content disentanglement. In this section,
we perform ablation studies to evaluate the effect of each com-
ponent, both quantitatively and qualitatively. Ablated models
use the same architecture with the same amount of parameters.
The quantitative assessment is presented in Table V and
Table VI where we study the performance of each component
with respect to FID, IS, CGAcc and CIFC metrics. We observe
that on both LIDC and HAM10000, each added component
improves over DAI, while the best performance is achieved
when these components are combined together to form DRAI.

We also provide qualitative analysis of ablation studies
which are visualized in Figure 16 and Figure 17 for LIDC
and HAM10000 datasets respectively. Our qualitative results
also support the quantitative findings and show each added
component in DRAI namely self-supervised regularization
(“selfReg”), shared information minimization (“MIReg”) and
latent code cycle consistency (“featureCycle”) can improve
DAI. We observe selfReg and MIReg have significant impact
on disentanglement when combined together. However, the
model may suffer from over regularization especially in the
case of LIDC dataset where some content information e.g.,
nodule size is under estimated. This effect is alleviated when
the featureCycle term is integrated. We achieve the best dis-
entanglement with style-content preservation in DRAI where
we integrate all 3 components to DAI.

a) Latent space interpolation: For our best performing
model DRAI, as a sanity check for memorization and overfit-
ting, we look at latent space interpolations between testset ex-
amples as shown in Figure 18 for both LIDC and HAM10000.
We conduct 3 tests for each dataset: (i) interpolating the
content while maintaining the style of the source image, (ii)
interpolating the style while maintaining the content of the
source image, (iii) interpolating both style and content.

In all 3 tests, we observe smooth transitions between pairs
of examples with plausible intermediary image generations.
This experiment also demonstrates the disentanglement power
of DRAI; in the content interpolation experiment, DRAI
maintains the style of the source image while the content
gradually transitions from the source image to the target image,
and in the style interpolation test, the content is maintained and
the style transitions.



Fig. 14: Style-Content image retrieval on LIDC dataset. The “Target image” is the image in the testset with the lowest disagreement divergence
to the query image. the “Pixel Matched” image is the nearest neighbor to the query image in the pixel space. In every sub-figure, images to
the right of the query image represent the nearest neighbors computed via the style code, while images at the bottom, represent the nearest
neighbors computed via the content code.

b) t-SNE plots for style and content latent spaces:
To better understand how DRAI clusters style and content
information, we provide t-SNE [67] plots of the style and
content variables for both datasets in 2 dimensions. As seen
in Figure 19, for LIDC, the style clusters similar backgrounds
together while the content focuses more on the size of the
nodules. Whereas for HAM10000, the style focuses more on
the shape, orientation and position of the lesion while the
content focuses more on size of the lesions and color.

G. Implementation details

In this section, we provide the important implementation
details of DRAI. Firstly, to reduce the risk of information
leak between style and content, we use completely separate en-
coders to infer the two variables. For the same reason, the dual
adversarial discriminators are also implemented separately for

style and content. The data augmentation includes random flip-
ping and cropping. To enable self-supervised regularization,
each batch is trained twice, first with the original images and
then with the transformed batch. The transformations include
rotations of 90, 180, and 270 degrees, as well as horizontal
and vertical flipping. LSGAN (Least Square GAN) [51] loss
is used for all GAN generators and discriminators, while `1
loss is used for the components related to disentanglement
constraints, i.e., GRL strategy and self-supervised regulariza-
tion. In general, we found that “Image cycle-consistency”
and “Latent code cycle-consistency” objectives improve the
stability of training. This is evident by DRAI achieving lower
prediction intervals (i.e., standard deviation across multiple
runs with different seeds) in our experiments.

We did not introduce any coefficients for the loss com-
ponents in Equation (16) since other than the KL terms,
they were all relatively on the same scale. As for the KL



Fig. 15: Style-Content image retrieval on HAM10000. In every sub-figure, images to the right of the query image represent the nearest
neighbors computed via the style code, while images at the bottom, represent the nearest neighbors computed via the content code.

Fig. 16: Qualitative ablation study of style-content disentanglement through hybrid image generation on LIDC dataset.

co-efficients λ, we tried multiple values and qualitatively
evaluated the results. Since the model was not overly sensitive
to KL, we used a coefficient of 1 for all KL components.

All models including the baselines are implemented in
TensorFlow [1] version 2.1, and the models are optimized
via Adam [41] with initial learning rate 1e−5. For IS and



Style Images
Co

nt
en

t I
m

ag
es

Style Images

Co
nt

en
t I

m
ag

es

Style Images

Co
nt

en
t I

m
ag

es

Style Images

Co
nt

en
t I

m
ag

es

Style Images

Co
nt

en
t I

m
ag

es

Style Images

Co
nt

en
t I

m
ag

es

DAI + selfRegDAI DAI + MIReg

DAI+selfReg+MIReg DRAI = DAI+selfReg+MIReg+featureCycleDAI+featureCycle

Fig. 17: Qualitative ablation study of style-content disentanglement through hybrid image generation on HAM10000 dataset.
TABLE V: Quantitative ablation study on LIDC dataset

Method LIDC

FID(↓) IS(↑) CGAcc(↑) CIFC(↓)

DAI [44] 0.106± 0.02 1.423± 0.052 0.773± 0.031 1.096± 0.284
DRAI=DAI+selfReg+MIReg+featureCycle 0.089± 0.02 1.422± 0.030 0.773± 0.016 0.456± 0.069
DAI+selfReg+MIReg 0.176± 0.06 1.433± 0.018 0.760± 0.015 0.554± 0.185
DAI+featureCycle 0.221± 0.07 1.383± 0.039 0.708± 0.037 0.913± 0.074
DAI+MIReg 0.154± 0.04 1.411± 0.028 0.746± 0.041 0.747± 0.226
DAI+selfReg 0.208± 0.05 1.433± 0.033 0.780± 0.014 0.781± 0.203

TABLE VI: Quantitative ablation study on HAM10000 dataset.

Method HAM

FID(↓) IS(↑) CGAcc(↑) CIFC(↓)

DAI [44] 1.327± 0.06 0.656± 0.02 1.304± 0.01 0.256± 0.01
DRAI=DAI+selfReg+MIReg+featureCycle 1.224± 0.050 0.618± 0.011 1.300± 0.01 0.210± 0.01
DAI+selfReg+MIReg 1.350± 0.12 0.683± 0.02 1.299± 0.01 0.233± 0.01
DAI+featureCycle 1.367± 0.12 0.690± 0.01 1.296± 0.01 0.311± 0.01
DAI+MIReg 1.298± 0.12 0.647± 0.04 1.290± 0.02 0.228± 0.01
DAI+selfReg 1.347± 0.14 0.653± 0.03 1.295± 0.01 0.219± 0.04

FID computation, we fine-tune the inception model on a 5
way classification on nodule size for LIDC and a 7 way
classification on lesion type for HAM10000. FID and IS are
computed over a set of 5000 generated images.

IV. RELATED WORK

a) Connection to other conditional GANs in medical
imaging: While adversarial training has been used extensively
in the medical imaging domain, most work uses adversarial
training to improve image segmentation and domain adap-
tation. The methods that use adversarial learning for image
generation can be divided into two broad categories; the
first group are those which use image-to-image translation
as a proxy to image generation. These models use an image
mask as the conditioning factor, and the generator gener-
ates an image which respects the constraints imposed by
the mask [38, 26, 17, 17, 55]. Jin et al. [38] condition
the generative adversarial network on a 3D mask, for lung

nodule generation. In order to embed the nodules within their
background context, the GAN is conditioned on a volume of
interest whose central part containing the nodule has been
erased. A favored approach for generating synthetic fundus
retinal images is to use vessel segmentation maps as the
conditioning factor. Guibas et al. [26] uses two GANs in
sequence to generate fundus images. The first GAN generates
vessel masks, and in stage two, a second GAN is trained to
generate fundus retinal images from the vessel masks of stage
one. Costa et al. [17] first use a U-Net based model to generate
vessel segmentation masks from fundus images. An adversarial
image-to-image translation model is then used to translate the
mask back to the original image.

In Mok and Chung [55] the generator is conditioned on
a brain tumor mask and generates brain MRI. To ensure
correspondence between the tumour in the generated image
and the mask, they further forced the generator to output the
tumour boundaries in the generation process. Bissoto et al. [12]
uses the semantic segmentation of skin lesions and generate
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Fig. 18: Latent space interpolation between testset examples for (a) LIDC and (b) HAM10000. For each dataset, we show (left) content
only interpolation from source to target images while maintaining style of the source image, (middle) style only interpolation from source
to target images while maintaining content of the source image and (right) both style and content interpolation.

high resolution images. Their model combines the pix2pix
framework [35] with multi-scale discriminators to iteratively
generate coarse to fine images.

While methods in this category give a lot of control over the
generated images, the generator is limited to learning domain
information such as low level texture and not higher level
information such as shape and composition. Such information
is presented in the mask which requires an additional model
or an expert has to manually outline the mask which can get
tedious for a lot of images.

The second category of methods are those which use
high level class information in the form of a vector as the
conditioning factor. Hu et al. [33] takes Gleason score vector
as input to the conditional GAN to generate synthetic prostate
diffusion imaging data corresponding to a particular cancer
grade. Baur et al. [8] used a progressively growing model to
generate high resolution images of skin lesions.

As mentioned in the introduction one potential pitfall of
such methods is that by just using the class label as con-
ditioning factor, it is hard to have control over the nuances
of every class. While our proposed model falls within this
category, our inference mechanism allows us to overcome this
challenge by using the image data itself to discover factors of
variation corresponding to various nuances of the content.

b) Disentangled representation learning: In the litera-
ture, disentanglement of style and content is primarily used for
domain translation or domain adaptation. Content is defined
as domain agnostic information shared between the domains,
while style is defined as domain specific information. The goal
of disentanglement to preserve as much content as possible
and to prevent leakage of style from one domain to another.
Gonzalez-Garcia et al. [24] used adversarial disentanglement
for image to image translation. In order to prevent exposure of
style from domain A to domain B, a Gradient Reversal Layer
(GRL) is used to penalize shared information between the

generator of domain B and style of domain A. In contrast, our
proposed DRAI, uses GRL to minimize the shared information
between style and content. In the medical domain, Yang
et al. [71] aim to disentangle anatomical information and
modality information in order to improve on a downstream
liver segmentation task.

Ben-Cohen et al. [11] used adversarial learning to infer
content agnostic features as style. Intuitively their method
is similar to using GRL to minimize leakage of content
information into a style variable. However, while [11] prevents
leakage of content into style, it does not prevent the reverse
effect which is leakage of style into content and thus does not
guarantee disentanglement.

Yang et al. [70] use disentangle learning of modality ag-
nostic and modality specific features in order to facilitate
cross-modality liver segmentation. They use a mixture of
adversarial training and cycle consistency loss to achieve dis-
entanglement. The cycle-consistency component is used for in-
domain reconstruction and the adversarial component is used
for cross-domain translation. The two components encourage
the disentanglement of the latent space, decomposing it into
modality agnostic and modality specific sub-spaces.

To achieve disentanglement between modality information
and anatomical structures in cardiac MR images, Chartsias
et al. [13] use an autoencoder with two encoders: one for
the modality information (style) and another for anatomical
structures (content). They further impose constraints on the
anatomical encoder such that every encoded pixel of the input
image has a categorical distribution. As a result, the output of
the anatomical encoder is a set of binary maps corresponding
to cardiac substructures.

Disentangled representation learning has also been used
for denoising of medical images. In Liao et al. [48], Given
artifact affected CT images, metal-artifact reduction (MAR) is
performed by disentangling the metal-artifact representations
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Fig. 19: t-SNE plots of the inferred content (a and c) and style (b and d) codes for LIDC and HAM10000. In the case of HAM10000, the
content variable focuses mostly on color and size whereas the style variable focuses on lesion location and orientation. In the case of LIDC,
the content variable focuses mostly on nodule size whereas the style variable focuses on background information.

from the underlying CT images.
Sarhan et al. [62] use β-TCAV [14] to learn disentangled

representations on an adversarial variation of the VAE. Their
proposed model differs fundamentally from our work; its is
a single variable model, without a conditional generative pro-
cess, and does not infer separate style and content information.

Garcia1 et al. [23] used ALI (single variable) on structured
MRI to discover regions of the brain that are involved in
Autism Spectrum Disorder (ASD).

In contrast to previous work, we use style-content disentan-
glement to control features for conditional image generation.

To the best of our knowledge this is the first time such attempt
has been made in the context of medical imaging.

c) Gradient Reverse Layer (GRL): Introduced in Ganin
et al. [22], GRL uses the identity function in the forward pass,
but reverses the sign of the gradient in the backward pass.
GRL was initially intended for domain adaptation with the
goal of learning domain invariant representations. Since then,
GRL has been used extensively in various domain adaptation
approaches [78, 37, 45]. For image translation, Gonzalez-
Garcia et al. [24] used a model based on VAE-GAN and
GRL to disentangle the attributes of paired data into shared



and exclusive representations. Raff and Sylvester [59] used
GRL for fairness with the goal of learning a model whose
outcome is invariant to sensitive attributes such as ethnicity or
gender. It is worth mentioning that some fairness and invariant
representation learning methods, rely on adversarial training
which in spirit is similar to using GRL [39, 50].

Different from previous work, we introduce a novel use case
for GRL to explicitly disentangle the inferred style and content
information.

d) Connection to CycleGAN approaches: Zhu et al.
[79] introduced CycleGAN as an image-translation (domain-
translation) model which preserves the content and changes
the style from one domain to another domain. At test time,
the mapping between the domains is deterministic and one-
to-one. Almahairi et al. [3] augmented CycleGAN with latent
variables which allowed many to many mapping between the
two domains. In this paper we do not tackle the problem of
image domain translation and rather focus on conditional gen-
eration of desired content and style through dual adversarial
inference. In our approach, the cycle-consistency is used to
stabilize the adversarial inference. That being said, it would be
possible to apply our framework to image domain translation
problem as well. We leave exploration in this direction to
future work.

V. CONCLUSION

We introduce DRAI, a frame work for generating synthetic
medical images which allows control over the style and content
of the generated images.

DRAI uses adversarial inference together with conditional
generation and disentanglement constraints to learn content
and style variables from the dataset. We compare DRAI
quantitatively and qualitatively with multiple baselines and
show its superiority in image generation in terms of quality,
diversity and style-content disentanglement. Through ablation
studies and comparisons with DAI [44], we show the impact
of imposing the proposed disentanglement constraints over the
content and style variables.

It is important to note that DRAI learns style in a completely
unsupervised fashion, allowing for its practical use case in real
world scenarios where information contributing to style is not
available. Also, contrary to previous methods that assume a
high-level conditioning vector for generation, in addition to
using supervised learning to learn the content, our framework
uses unsupervised learning to discover factors of variation not
present in the conditioning vector.

The proposed model has a wide range of potential applica-
tions from improving the training of deep models by means of
data augmentation to generating rare image cases for training
of medical personnel.

In future work we would like to explore DRAI’s abil-
ity to improve generalization of supervised learning through
conditional synthetic image generation. It is also interesting
to explore whether DRAI’s ability to disentangle style and
content can help to learn better representations of under-
represented subgroups.
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