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SRPN: similarity-based region proposal networks
for nuclei and cells detection in histology images

Yibao Sun1, Xingru Huang1?, Huiyu Zhou2, Qianni Zhang1

Abstract—The detection of nuclei and cells in histology images
is of great value in both clinical practice and pathological studies.
However, multiple reasons such as morphological variations of
nuclei or cells make it a challenging task where conventional
object detection methods cannot obtain satisfactory performance
in many cases. A detection task consists of two sub-tasks,
classification and localization. Under the condition of dense
object detection, classification is a key to boost the detection
performance. Considering this, we propose similarity based
region proposal networks (SRPN) for nuclei and cells detection
in histology images. In particular, a customized convolution layer
termed as embedding layer is designed for network building. The
embedding layer is added into the region proposal networks,
enabling the networks to learn discriminative features based
on similarity learning. Features obtained by similarity learning
can significantly boost the classification performance compared
to conventional methods. SRPN can be easily integrated into
standard convolutional neural networks architectures such as
the Faster R-CNN and RetinaNet. We test the proposed ap-
proach on tasks of multi-organ nuclei detection and signet
ring cells detection in histological images. Experimental re-
sults show that networks applying similarity learning achieved
superior performance on both tasks when compared to their
counterparts. In particular, the proposed SRPN achieve state-
of-the-art performance on the MoNuSeg benchmark for nuclei
segmentation and detection while compared to previous methods,
and on the signet ring cell detection benchmark when com-
pared with baselines. The sourcecode is publicly available at:
https://github.com/sigma10010/nuclei cells det.

Index Terms—Nuclei Detection, Cell Detection, Similarity
Learning, Deep Learning, Computational Pathology

I. INTRODUCTION

Pathology has benefited from the rapid progress in tech-
nology of digital scanning during the last decade. Nowadays,
slide scanners are able to produce super-resolution whole slide
images (WSI) [1], also called digital slides, which can be
explored by image viewers as an alternative to the use of
conventional microscope. The use of WSI together with the
other microscopic and molecular pathology images brings the
development of digital pathology, which further enables to
perform digital diagnostics. Standardization efforts of digital
pathology has been made in Europe [2]. Moreover, the avail-
ability of WSI makes it possible to apply image processing and
recognition techniques to support digital diagnostics, opening
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new revenues of computational pathology. There have been
some computational pathology tools that support pathologists
for very routine tasks such as to segment nuclei [3]–[5] or
tumour [6] and to classify cancer in histopathological images
[7]–[9]. Due to the promising impact on future pathology
practice, digital pathology and computational pathology have
been attracting tremendous attention [10], [11].

Cancer diagnosis and prognosis based on digital slides is
of significant value both in clinical medicine and pathological
research. A pathology report that gives detailed information
on the assessment of cancer stage and progression can help
employ personalised therapy and provide better treatment and
care post tumour resection surgery. Generally, cancer staging
is determined by various aspects such as differentiation of
tissues, morphological variety and distribution of cells. In
a routine of cancer staging, pathologists need to frequently
perform several necessary operations to examine digital slides,
such as identifying certain cells or nuclei, marking them or
counting them. The procedure is labor-intensive and often
leads to inter-observer disagreement. Well-trained specialists
often report different opinions against each other. According
to the definition given in [12], computational pathology is a
promising solution to improve pathological routine efficiency
and to eliminate inter-observer variability. However, training
more effective computational algorithms requires adequate
data and obtaining large-scale annotated pathology datasets
by pathologists is expensive. Even when adequate annotated
pathology datasets are available, the intrinsic complex mor-
phological characteristics and variations keep histology image
analysis a challenging task.

In recent years, benefiting from the powerful computa-
tional resources and the availability of large-scale labeled
data, deep learning has made incredible advances in image
recognition related challenges, and has become a solution for
computational pathology. In many cases, morphological and
numeric features of nuclei and cells are meaningful for cancer
assessment. For instance, the Nottingham system grades breast
cancer by adding up scores for tubule formation, nuclear
pleomorphism and mitotic count [13]. Among these factors,
nuclear pleomorphism could give an indication of the degree
of the cancer evolution while mitotic count could give an
evaluation of the aggressiveness of the tumour. Cell-level
analysis is normally performed by pathologists manually by
using a microscope or examining digital slides. This process
is laborious, error-prone and sometimes impossible due to
the high density of cell in some regions. Thus, it is highly
demanding to build a computational model that is able to
automatically and accurately detect, segment and quantify
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Fig. 1: Variations of nuclei (first row) and signet ring cells
(second row) in histology images.

nuclei and cells of interest in a digital slide.
Histology images produced by different laboratories with

different platforms unavoidably introduce variations in colour,
scale and shape of nuclei and cells (Fig. 1). Overlapping cells
poses further intrinsic complications to the task. There are also
some external factors that add difficulties to the cell detection
task, e.g., the lack of quality and quantity in the annotation
labels and class imbalance, which impose widely encountered
and long lasting issues in biomedical image analysis. Various
CNN based systems have been developed to resolve the task
of cell detection. Some works directly apply well-developed
object detectors of excellent performance on cell detection. For
example, Zhang et al. [14] successfully apply the framework of
Faster R-CNN [15] to detect adhesion cells in phase-contrast
microscopy images; Yi et al. [16] solve the task of accurate
neural cell detection by adapting the original SSD to a light-
weight model. Although those deep learning based systems
succeed in some specific cases, they cannot obtain satisfactory
performance in more general scenarios.

The heterogeneity in cell-level objects and the visual
challenges existing in histology images together make the
classification, detection and segmentation of these objects a
completely different task than working on objects in natural
images. The unique morphological nature of cells and nuclei
need to be considered and specifically addressed in the design
of relevant deep learning solutions. Thus, in this research a
dedicated similarity learning enhanced deep neural network
is presented with the leverage of state-of-the-art techniques
to detect generic cell-level objects in histology images. The
main contributions include: 1) Tailored similarity-based region
proposal networks for solving the challenges in nuclei and
cells detection in histology images, with special focus on
detecting individual nuclei instances in cases where high
visual variance and intense occlusion take place. 2) A new
network architecture that includes embedding layers to enable
similarity learning, providing expressive and discriminative
features that suit the task of nuclei and cells detection. 3) The
proposed method is applied in solving two different tasks -
multi-organ nuclei detection and signet ring cell detection - to
validate the effectiveness of the proposed method compared
against the state-of-the-arts. Multiple CNN architectures are
tested to reveal their impacts on nuclei or cells detection.
Different loss functions are applied to the training of the
networks.

II. RELATED WORK

A. Object detection

Visual object detection is defined as localising and cate-
gorising objects of interest in a given image. Classical frame-
work of detectors mainly consist of three processes: 1) propose
regions of interest (ROI) to predict candidate bounding box;
2) extract feature vectors from ROI for classification; 3)
categorize ROI and refine the corresponding bounding boxes.
Generally, a sliding window approach is used to search for
ROI. To better consider situations where objects entail scale
and aspect ratio variations, some strategies have been proposed
such as cropping the input image into different sizes or using
multiple sliding windows with different aspect ratios [17],
[18].

R-CNN is a pioneering framework that exploits regional
features extracted by CNN for object detection [19]. Compared
to the previous complex ensemble systems like SegDPM [20],
R-CNN makes a breakthrough and achieved a mean average
precision (mAP) of 53.3% on the detection benchmark VOC
2012. However, each module of R-CNN must be trained
separately, making it difficult to obtain a global optimisation.
Fast R-CNN is proposed to address this limitation of R-CNN
[21]. The training of Fast R-CNN is performed in an end-
to-end manner by using a multi-task loss. Moreover, Fast
R-CNN introduces a ROI Pooling layer to extract regional
features from feature maps. The ROI Pooling layer applies
max pooling to convert features inside each reasonable ROI
into a small uniform feature map. These changes make Fast
R-CNN a better detector both in accuracy and inference speed
compared to R-CNN. Still, the conventional region proposal
methods used by Fast R-CNN are computationally expensive
and based on hand-crafted features, which poses limitations on
the performance. To eliminate these limitations of region based
detectors, Ren et al. proposed region proposal networks (RPN)
[15], devising a data-driven and learnable way for region
proposals. The resulting detector Faster R-CNN demonstrates
an outstanding performance with a very high inference speed,
making it a real-time object detection system.

Liu et al. propose to use feature pyramid networks (FPN)
to solve the scale variation problem faced by object detection
[22]. The network architecture of FPN is similar to the one
used in U-net [23] and stacked hourglass networks [24].
Applying FPN in adapted single-scale detectors like RPN, Fast
R-CNN and Faster R-CNN leads to significant improvement
on detection accuracy for each baseline without increasing the
inference time. The adapted Faster R-CNN reported state-of-
the-art results on the COCO detection benchmark [25].

Besides scale variation, class imbalance between back-
ground and foreground is another challenge in object detection.
Instead of using the strategy of hard example mining, which
intuitively discard some easy negative examples and sample
a fixed ratio (e.g., 3:1) between negatives and positives [26],
[27], Lin et al. introduce a novel focal loss to address the
problem of class imbalance by suppressing the gradients of
easy samples [28]. The resulting detector named RetinaNet is
built on the basis of RPN and FPN, but trained by the focal
loss which is able to match the speed of previous one-stage
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detectors while surpassing the accuracy of all existing state-
of-the-art two-stage detectors.

B. Similarity learning

Similarity learning is a promising way to learn effective
visual representations without human supervision [29]–[31].
These approaches learn visual representations by contrasting
positive samples against negative samples. To learn from unla-
beled data, in [32], the authors propose to treat each instance
as a class and perform a variety of transformations to each
instance to yield training sets with surrogate labels. Through
using the instance classes we can discard human supervi-
sion. Meanwhile, large computational complexity imposed by
learning from instance classes becomes a new challenge. The
memory bank has been proposed to tackle the computational
problem [30], [33], [34]. Instead of using a memory bank,
some works use in-batch samples for negative sampling [35]–
[37]. With pairing samples, distance metrics in an embedding
space are used to measure the similarity between samples.
Similar samples are closer than those dissimilar ones in the
embedding space. Various loss functions based on distance
metric in an embedding space, such as the contrastive loss
[29] and the triplet loss [38], have been proposed for similarity
learning. Similarity learning becomes widely used for tasks
like signature verification [39], one-shot image recognition
[40] and object tracking [41]. Despite of its success, similarity
learning is rarely used in analysing histopathological images.
In this paper, we show the effectiveness of learning multi-scale
embeddings in a contrastive way for nuclei and cell detection
in digital histology images, with an appropriate design.

C. Nuclei and cells detection

The detection of nuclei and cells is a critical step for cell-
level analysis in digitised WSIs, from which useful clinical
clues including cell distribution and categorisation can be
automatically acquired. Similar to object detection introduced
in Section II-A, approaches for cell detection have evolved
from using handcrafted features to exploiting learned features.
Most early stage approaches exploit handcrafted low-level
visual features that encode information such as shape [42],
edge [43], luminance [44] and texture [45], to detect nuclei or
cells in WSIs.

Nowadays, convolution neural networks are generally recog-
nised to be more powerful to learn image representations from
pixel intensity. Due to its superior ability in learning robust
features, a variety of works employ CNNs to tackle the task
of cell detection. A straightforward way to use classification
networks for detection related tasks is to train a classifier with
small image patches for target objects, and then apply the
trained classifier to make predictions on a large input image
with the help of a sliding-window, whose center pixel is classi-
fied as background or foreground. Some early works following
this approach show promising results for the purpose of cell-
level object detection, including mitosis detection [46], [47]
and nuclei detection in colon cancer histology images [48].
However, a major drawback of this kind of methods is that they
are unable to deal with object scale variation. Instead of using

classification architectures for nuclei and cell detection, further
works deploy regional CNN (R-CNN) architectures where the
scale variation problem is well considered. For instance, Xu et
al. integrate an improved U-net and SSD to detect and segment
cell instances in a multi-task way [49]. In practice however, the
CNNs designed and trained for natural images are often unable
to achieve satisfactory performance when directly applied to
biomedical images.

An alternative method to detect a nucleus is to localize
its center, instead of using a bounding box. Several works
study nuclei detection in this setting [50], [51]. In [50], a
regression model predicts and outputs a score map of the same
size as the input image. Each pixel value of the score map
indicates its inverted distance to the nearest nucleus center.
Local extremums of the score map are then considered as
nuclei centers. The model is simple and easy to implement,
but its performance relies on cell density and a hypothesis that
all nuclei are in a circle shape.

Nuclei segmentation is another area that attracts significant
attention. The multi-organ nuclei segmentation (MoNuSeg)
dataset, which is used for testing nuclei detection methods
in this paper, also supports nuclei segmentation [52]. Based
on this dataset, several nuclei segmentation solutions are
presented [4], [5], [53]. These approaches are mainly base
on U-Net [23], with auxiliary strategies like nuclear contour
regularization [54], [55] and/or multi-scale feature aggregation
[5], [56]. Zhou et al., propose a contour-aware information
aggregation method for nuclei instance segmentation [54]. In
their study, besides employing the standard Average Jaccard
Index (AJI) for segmentation performance evaluation, they
also report the state-of-the-art F1-score for nuclei instance
detection on the MoNuSeg dataset. Comparison between the
proposed SRPN method against these previous approaches
based on valid metrics are presented in the Experiments
section IV.

III. METHODOLOGY

Given an image, one common method to detect objects of
interest across the whole image is to use anchor boxes [15].
As illustrated in Fig. 2, at first a large number of anchor boxes
(object bounding boxes) serving as object (cell) candidates are
overlaid on each possible locations of the input image. Net-
work (detector) parameters are then adjusted to simultaneously
refine the candidate bounding boxes and to assign a label for
each candidate bounding box during the process of training.
Normally, to take into account the difference in size and
shape of object, multiple anchor boxes with different scales
and aspect ratios are assigned for each candidate location.
In our experiments, we use 3 scales and 3 aspect ratios, 9
anchor boxes per location. There are many methods to adjust
parameters of a detector. The proposed method exploits the
advantage of similarity learning to achieve a high performance
for cell-level object detection. Next, we describe the proposed
method in detail focusing on two aspects, i.e., the network
architecture and loss functions.
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Fig. 2: Illustration of using anchor boxes for object detection.
For each location in the feature map, multiple anchor boxes
with different scales and aspect ratios are considered as
candidates. The yellow grid roughly denotes the receptive field
of neural networks.

A. Network architecture

The proposed network architecture to detect nuclei and cells
is illustrated in Fig. 3. At the beginning, a CNN backbone
is used to extract feature maps from an input image of size
C0 × H0 × W0 (C0 = 3 for RGB image), since features
extracted by CNN have been demonstrated with excellent
robustness to various kinds of visually related tasks such as
classification [57], segmentation [58] and detection [19]. Given
an extracted feature map of C1 channels as input, a convolution
layer (Conv1) encodes a local region of 3 × 3 pixels of
the feature map into a feature vector of length C2; in our
experiments C1 = C2 = 256. Predictions of a bounding box
array and a confidence array are then acquired for each feature
vector (H2 ×W2 in total) by using a regressor and classifier
head respectively. A regressor head (Conv2) encodes offsets
between the default anchor boxes and the corresponding
predicted bounding boxes. A classifier head (Conv4) assigns
a confidence score indicating foreground or not for each
predicted bounding box with a Softmax function. Before the
classifier head, an embedding layer (Conv3) is added to enable
similarity learning to improve the classification performance.
In order to keep location consistency, a convolution layer with
a kernel size of 1× 1 is applied to the regressor, the classifier
or the embedding layer. An anchor box is presented as a 4-
tuple, consisting of a coordinate pair of its top left corner and
its height and width, that is to say, C3 = 4 × num anchor
where num anchor denotes the number of anchors to predict
per location. C4 = num anchor × dim embedding, C5 =
num anchor, where dim embedding denotes the dimension
of embedding, set to 20 in our experiments.

In contrast to the original RPN settings proposed by [15], an
embedding layer is added before the classifier head to enable
similarity learning with the aim to improve the performance of
nuclei detection. The motivations behind applying similarity
learning in this framework are in two folds. On the one
hand, embeddings learned under the constraint that samples
of the same class are clustering and those of different classes

are separating, are more discriminative, especially in the
cases of identifying one specific type of objects out of a
noisy background. A well-performing classifier is of crucial
importance to build an excellent object detector. On the other
hand, through pairing samples for similarity learning, one can
indirectly eliminate the impact of the class imbalance problem
commonly faced by object detectors by controlling the sam-
pling process. Furthermore, we can generate the maximum
of n2 sample pairs or n3 sample triplets from n training
samples, meaning that the pairing of samples also serves as
a data augmentation process for model training. Overall, the
similarity learning paradigm demonstrates significant benefits
for feature learning in object detection tasks.

B. Loss functions

According to the network architecture presented in Section
III-A, when given an image with ground truth, the embedding
layer outputs an embedding array of size C4×H4×W4 where
C4 equals to the product of the number of the anchors per lo-
cation and the dimension of the embeddings, i.e., 9×20 in our
experiments. To perform supervised learning, a label indicating
foreground or background is assigned to each anchor based on
the intersection over union (IoU) between the anchor and the
corresponding ground truth. An anchor is given a positive label
1 if it has an IoU higher than the positive threshold, say 0.7,
with any ground truth box. A negative label 0 is given to an
anchor if the IoU is lower than the negative threshold, say
0.3, with all the ground truth boxes. Anchors that are neither
positive nor negative will be filtered out during training.

To use similarity learning, generating embedding pairs or
triplets is a key step. Given a set of embeddings E1 =
{(εi, p∗i ) |i ∈ Z+}, where εi represents embedding for the
ith anchor and p∗i ∈ {0, 1} denotes its anchor label, it
is easy to transform E1 into 1) a set of embedding pairs
E2 = {(εi, ε′i, si) |i ∈ Z+}, where si ∈ {0, 1} denotes the
similarity/closeness between embedding εi and ε′i; or 2) a set
of embedding triplets E3 = {(εai , ε

p
i , ε

n
i ) |i ∈ Z+}, where εai is

a reference embedding, and εpi is a positive embedding of the
same class as the reference while εni is a negative embedding
of a different class. In practice, the sampling process can be
controlled to the balance embedding pairs with a different label
si. For a better description, we define a function ϕ : E1 → E2
to represent the process of generating pairs, and ψ : E1 → E3
to represent the generation of triplets.

With the embedding pairs E2 or triplets E3, we can now
apply the contrastive loss/pair loss [29] or triplet loss [38] as
a constraint for similarity learning. The pair loss is defined as
follows:

Lpair(ε, ε
′, s) =

1

2
s ‖ε− ε′‖2+1

2
(1−s)max(m−‖ε− ε′‖2 , 0)

(1)
where m is a constant of margin, and ‖·‖ an Euclidean distance
metric. After the process of minimizing the loss function,
the distance between two samples with different categories
should be greater than the margin m. In other words, samples
of different classes spread widely in the embedding space.
Meanwhile, samples of the same class cluster closely together.
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Fig. 3: Architecture of SRPN for nuclei and cells detection. It takes an image as input and outputs prediction indicating
locations and confidences for nuclei across whole image by using a regressor and classifier head respectively.

Embeddings learned in this way are expected to be capable of
discriminating sample classes.

The triplet loss is defined as:

Ltriplet(ε
a, εp, εn) = max(‖εa − εp‖2 − ‖εa − εn‖2 +m, 0)

(2)
where m and ‖·‖ denote the same as in the pair loss. After
optimisation, the distance between a positive pair should be
less than that between a negative pair by a margin m.

Following the R-CNN based approaches for object detection
[15], [19], [21], a classification head and a regression head are
employed for object identification and bounding box regres-
sion respectively, as depicted in Fig. 3. For the classification
head, a regular cross-entropy loss or focal loss [28] is used
for weights tuning. For the regression head, following [21],
we apply the smooth L1 loss for anchor box tuning. An
anchor box is encoded as a 4-tuple [xa, ya, ha, wa], where
(xa, ya) indicate the coordinate of its top left corner, and
(ha, wa) represent its height and width respectively. To refine
the anchor boxes, offsets between the final predicted bounding
box and the corresponding anchor box are encoded as a 4-tuple
t = [tx, ty, th, tw] such that:

tx = (x− xa) /wa

ty = (y − ya) /ha
th = log (h/ha)
tw = log (w/wa)

 (3)

where [x, y, h, w] is the 4-tuple for the final predicted bound-
ing box similar to [xa, ya, ha, wa] for the anchor box. In
a supervised learning setting, ground truth bounding boxes
are also input as supervision signals. The offsets between a
ground truth bounding box and an anchor box are encoded as
t∗ = [t∗x, t

∗
y, t
∗
h, t
∗
w], such that:

t∗x = (x∗ − xa) /wa

t∗y = (y∗ − ya) /ha
t∗h = log (h∗/ha)
t∗w = log (w∗/wa)

 (4)

where [x∗, y∗, h∗, w∗] is a 4-tuple for a ground truth box. With
the definitions above, the smooth L1 loss can be defined as:

LsmoothL1
(t, t∗) =

∑
j∈{x,y,h,w}

f(tj − t∗j ) (5)

where f (·) is the smooth L1 function:

f(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise.
(6)

Overall, the total loss for an input image with the ground
truth is a weighted sum of the embedding loss Lembed, the
localization loss Lloc and the classification loss Lcls:

L =

N∑
i

Lembed (ε (εi, p
∗
i ))+

N∑
i

p∗iLloc (ti, t
∗
i ) +

N∑
i

Lcls (pi, p
∗
i )

(7)

in which N denotes the number of anchor boxes, ε (·) =
ϕ (·) or ψ (·) depending on the option of the embedding loss
Lembed. In our experiments, we employ either the pair loss
in Eq. (1) or the triplet loss in Eq. (2) as the embedding loss
Lembed. The term p∗iLloc indicates that the localization loss
is activated only for positive anchors where p∗i = 1 and is
disabled otherwise, p∗i = 0. The smooth L1 loss Eq. (5) is
tested as the localization loss. Since there is only one cell or
nuclei type to detect, as mentioned before, we employ either
the cross-entropy loss or the focal loss [28] as the classification
loss.

C. Enhanced Faster R-CNN and RetinaNet

As described in Section II-A, both Faster R-CNN [15] and
RetinaNet [28] utilise RPN to propose possible foreground
regions. It is easy to replace the RPN module with the
proposed SRPN so that similarity learning is enabled in the
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framework to improve both Faster R-CNN and RetinaNet for
nuclei and cells detection in histology images.

IV. EXPERIMENTS

A. Training and inference

The detectors are trained using the optimiser of stochastic
gradient descent (SGD) together with a basic learning rate
of 1e-3. We validate several CNN architectures, like ResNet-
50/ResNet-101 [59] and ResNeXt-50/ResNeXt-101 [60], as
the backbone of detectors. To speed up the training procedure,
we exploit networks pretrained on ImageNet [61]. The weights
and biases in the other layers are initialized by values drawn
from the normal distribution N ∼ (0, 0.012) and a constant of
0 respectively. The training procedure takes a couple of hours
for each detector on a GPU of NVIDIA GeForce GTX Titan
X, depending on the range of the batch size from 4 to 12.

To ensure the robustness of the detectors against visual
variations in histology images, data augmentation is performed
during training by transforming the training images in ways
of colour jitter, horizontal flipping and vertical flipping with a
certain probability of 0.5. For colour jitter, the image colour
are randomly changed in their brightness, contrast, saturation
and hue.

Class imbalance is a very common problem faced by dense
object detection. Generally, the number of interested objects
is much less than the rest of searched locations to predict in
an input image. That is to say, the number negative samples
overwhelms the number of positive samples. Thus, during the
training process, the technique of online hard example mining
(OHEM) is applied to eliminate the effect of class imbalance
[26]. Consequently, the ratio between the negative and positive
samples becomes 3 : 1, similar to that reported in previous
works [15].

In the inference phase, there might be several predictions
for one object due to the settings designed for dense object
detection. Normally, a process of non-maximum suppression
is performed to remove the repeated predictions, keeping
only one with the highest probability for each object [62].
A threshold of IoU between two predictions is used to decide
whether they are repeated or not. In our experiments, the
threshold is set to 0.3.

B. Evaluation on multi-organ nuclei detection

Nuclei detection in histology images enables the extrac-
tion of cell-level features for computational histopathology
analysis. Once accurately detected, nuclear morphometric and
appearance features such as nuclei density, average size, and
pleomorphism can be used to assess cancer grades, as well as
to predict treatment effectiveness. Identifying different types of
nuclei based on the detection results can also yield information
about tumour growth, which is important for cancer grading.
In this section, we utilise the MoNuSeg dataset [52] to validate
the effectiveness of the proposed method for nuclei detection
in histology images.

Fig. 4: F1-score and average precision (AP ) against different
margins for the pair loss (top one) and the triplet loss (button
one) respectively.

1) Dataset: The MoNuSeg dataset is published for the
Multi-organ Nuclei Segmentation challenge1 in MICCAI
2018. The training dataset consists of 30 images generated
from multiple organs including breast, kidney, liver, prostate,
bladder, colon and stomach, each of size 1, 000 × 1, 000
pixels. There are in total 21,713 nuclear boundary annotations
drawn by domain experts. The testing dataset consists of 14
images with 6,697 additional nuclear boundary annotations. To
validate the proposed method thoroughly, the testing dataset
is organised into two groups based on the organ types. Images
in group 1 are taken from the same organs of training data
(seen) and images in group 2 from unseen organs (unseen).

2) Evaluation criteria: The first metric used to validate
the effectiveness of the proposed method for nuclei detection
is the F1-score (F1 = 2TP

2TP+FP+FN ). The value of true
positives (TP ) is the number of ground truth objects with
a matched predicted object. The value of false positives (FP )
is the number of predicted objects without a matched ground
truth object. The value of false negatives (FN ) equals to
the number of the ground truth objects without a matched
predicted object. Intersection over union (IoU ) is computed to
decide if two objects are matched or not. In our experiments,
the IoU threshold is set as 0.3. Besides F1-score, we also
report the average precision (AP ) value for each test to provide
additional evaluation.

3) Ablation study: To select suitable margins for the em-
bedding loss functions as given in Eqs. (1) and (2), we train
models with the pair and triplet loss functions by varying
the margin from 0.5 to 2.0 respectively. Fig. 4 shows model
performance against different margins on the MoNuSeg testing

1https://monuseg.grand-challenge.org/Data/

https://monuseg.grand-challenge.org/Data/
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TABLE I: Comparison of the proposed SRPN method with different CNN backbones and
embedding loss functions.

Model Backbone Lembed TP FP FN Precision Recall F1-score AP
RPN ResNet-50 - 4760 1040 1937 0.8207 0.7108 0.7618 0.7253
SRPN ResNet-50 Lpair 5131 1000 1566 0.8369 0.7662 0.8000 0.8112
SRPN ResNet-50 Ltriplet 5426 742 1271 0.8797 0.8102 0.8435 0.7976
RPN ResNet-101 - 4961 756 1736 0.8678 0.7408 0.7992 0.7470
SRPN ResNet-101 Lpair 5136 1029 1561 0.8331 0.7669 0.7986 0.7964
SRPN ResNet-101 Ltriplet 5399 695 1298 0.8860 0.8062 0.8442 0.7785
RPN ResNeXt-101 - 4398 1501 2299 0.7456 0.6567 0.6983 0.7678
SRPN ResNeXt-101 Lpair 5184 994 1513 0.8391 0.7741 0.8053 0.8024
SRPN ResNeXt-101 Ltriplet 5482 663 1215 0.8921 0.8186 0.8538 0.7898

dataset. It is observed that margin m = 1.0 for the pair loss
and m = 2.0 for the triplet loss yield the best F1-scores in
the respective cases.

To investigate the impact of similarity learning on nuclei
detection, we test a variety of the proposed models with dif-
ferent CNN backbones (ResNet-50, ResNet-101 or ResNeXt-
101) and embedding loss functions (pair or triplet loss). Fig.
5 shows some samples of ground truth and corresponding
detection for a visual assessment.

Table I presents a comparison among the tested models
in different settings. As it can be observed, the performance
of these models with embedding loss functions show great
improvements in both F1-score and average precision com-
pared to the associated baselines (models without embedding
loss functions), demonstrating the effectiveness of similarity
learning for nuclei detection. For example, the original model
with ResNet-50 backbone achieves a F1-score of 0.7618,
which is significantly increased to 0.8435 when the triplet loss
is applied to it. Similar increases of F1-scores can also be seen
for the other two backbones. Focusing on the AP column, we
can see that the models with embedding losses applied, espe-
cially the pair loss, outperform their corresponding baselines
with clear advantages. Overall, these results evidence a strong
positive influence of similarity learning on the performance of
nuclei detection models.

To further investigate and compare the performance of
each model, we plot F1-score against the number of training
iteration at a sampling interval of 2500, as depicted in Fig.
6. The lines of the triplet models are superior to those of
the baseline models in all cases. This further reveals the fact
that the employment of similarity learning introduces evident
enhancement to the detection performance, due to its excellent
ability to distinguish nucleus out of the background. Moreover,
the convergence performance of the baseline models changes
as the network depth and complexity increase from ResNet-50
to ResNeXt-101 while those of similarity learning models keep
relatively stable. After using ResNet-101, the baseline model’s
F1-score is close to that of the network with pair loss, but still
far behind that of the triple loss model. However, the training
of the baseline model fails with further increase of complexity
of network. These observations further validate the efficacy of
the embedding losses in leveraging the similarity metric for
nuclei detection.

4) Comparison against the state-of-the-art: To demonstrate
the effectiveness of the proposed SRPN method for nuclei
detection, we compare the performance of different SoTA

TABLE II: Performance comparison of
different methods for seen-organ and
unseen-organ images.

No. Method F1-score
Seen Unseen

1 Fiji [64] 0.6402 0.6978
2 CNN3 [52] 0.8226 0.8322
3 DCAN [63] 0.8265 0.8214
4 PA-Net [65] 0.8156 0.8336
5 BES-Net [66] 0.8118 0.7952
6 CIA-Net [54] 0.8244 0.8458
7 Proposed SRPN 0.8579 0.8427

methods evaluated on the MoNuSeg testing dataset. Table
II shows a comparison of these methods on seen-organ and
unseen-organ images. All the deep learning based methods
(from method No. 2 to 7) outperform the conventional wa-
tershed method (Method 1) on both seen-organ and unseen-
organ images by a large margin. Among them, it is observed
that the proposed method SRPN achieves the state-of-the-art
results. The F1-score on seen organs is 3% higher than the
best published method [63] and that of the unseen organ is
almost the same with the best result [54].

In the nuclei detection task, similarity learning can sig-
nificantly enhance the classification ability of the proposed
model, especially when the triple loss is used. We argue that
this method’s ability in producing better results on data with
low diversity makes it particularly suitable for tasks on cell-
level object detection in histology images where traditional
detection methods cannot obtain better performance. It can
extract more discriminative features for nuclei detection and
maintain its performance in spite of the change of CNN
architectures. The proposed SRPN model shows superior per-
formance on nuclei detection in both seen and unseen organ
images, because its ability in leveraging the similarity metric
for instance classification.

C. Evaluation on signet ring cells detection

We further test the proposed method on a much more
challenging task - signet ring cell detection. Signet ring cell
is a type of abnormal cell that is most frequently associated
with stomach cancer. A tumour is defined as signet ring cell
adenocarcinoma when it is composed of at least 50% signet
ring cells. Generally, a tumour has a worse prognosis when
a significant number of signet ring cells present. It is of
clinical importance to detect and count the number of signet
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Fig. 5: Detection of nuclei by models trained with different loss functions. First row: trained without embedding loss; second
row: trained with Lpair; third row: trained with Ltriplet. Ground truth is depicted in green bounding boxes and detection in
yellow bounding boxes (best view in color).

Fig. 6: F1-score of different models with different CNN backbones and embedding losses evaluated on the MoNuSeg testing
dataset.

ring cells in a region. This can be used as valuable clues to
help pathologists understand and evaluate the degree of tissue
lesion. However, due to its large morphological variations
and other complexities, signet ring cell detection remains a
challenging task. Therefore in this section, we validate the
performance of the proposed SRPN method by applying it to
solve the task of signet ring cell detection.

1) Dataset: The used dataset is released for the Digestive-
System Pathological Detection and Segmentation Challenge2.
There are in total 77 histology images with annotations from
20 patients. All the images are acquired from either gastric
mucosa or intestine. The average size of each image is about
2000 × 2000 pixels and there is a total of 9,710 signet ring
cells annotated by experienced pathologists in the format of
bounding boxes. To validate the networks, we randomly split

2https://digestpath2019.grand-challenge.org/Dataset/

the images into a training set and a validation set with a ratio of
4 : 1. Images from the training set are then cropped into small
patches for training. The size of patches is defined as 600×600
pixels here according to the network input requirement.

2) Evaluation criteria: In the annotated images, patholo-
gists can only guarantee that the labeled cells all belong to
the signet ring cell category, but cannot exhaustively label all
the signet ring cells presented in the images, especially in the
overcrowded regions. In this situation, it is not possible to
use average precision or F1-score to validate and compare
the detection performance. Evaluation metrics here include
1) recall R = TP

TP+FN , and 2) score of normal region
false positives Snr = max(100−FPnr,0)

100 , where FPnr is mean
normal region false positives counted on a set of extra negative
images. This set contains 378 extra images extracted from
normal regions, each of size 2000 × 2000 pixels, and are

https://digestpath2019.grand-challenge.org/Dataset/
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employed only for evaluation purposes. Since there is no signet
ring cells present in the negative images, all the predicted
bounding boxes in the negative images are added to FPnr.
The evaluation results are compared against baseline networks
without the embedding losses, but no comparison with external
methods can be presented in this paper as the results are not
yet published to date.

3) Results and discussion: We comprehensively test and
compare different models (Faster R-CNN and RetinaNet) with
different CNN backbones and/or embedding loss functions on
both the validation set and the extra negative image set. Table
III lists the recall value R and the score on normal regions
Snr at a confidence threshold of 0.5 of each model. From
group 1 to 3 for different models, the same observation can be
drawn that models with embedding loss functions outperform
those baselines in terms of the score on normal region Snr.
However, the proposed similarity learning models achieve
slightly lower recall R values in most cases. In particular, it
can be observed from group 1 that the SRPN model with triplet
losses achieves superior average performance when compared
to the corresponding RPN model without embedding losses
due to the improvement on Snr.

To investigate the impact of the CNN architectures on
signet ring cells detection, we test the RetinaNet model with
multiple CNN backbones including ResNet-50, ResNet-101
and ResNeXt-101. As can it be seen from group 4 to 6 of Table
III, the light-weight architecture ResNet-50 perform better on
recall R while deeper and more complex architectures ResNet-
101 and ResNeXt-101 perform better on Snr, resulting in a
close average performance of different backbones.

To observe changes of performance against training iteration
and to compare the performance of different embedding loss
functions, we plot the performance of RetinaNet with different
embedding loss functions, on the signet ring cell validation set
(Fig. 8). As presented in the figure, normal region scores Snr

of models applied embedding loss are better than those of the
baselines while the recall R values demonstrate in a different
way. The observation that models with embedding losses
outperform baselines on normal region scores Snr can also be
validated in Fig. 7, which shows false positives of signet ring
cell on negative images of normal region predicted by different
models. As can it be seen from the figure, the numbers of false
positives decrease significantly when embedding loss functions
are applied.

These result together show that the proposed SRPN net-
works with a similarity learning scheme present excellent
ability in discriminating true and untrue instances, and can
thus avoid challenging false positives being detected while
maintaining a high true positive rate.

V. CONCLUSION

We present a similarity based region proposal network
(SRPN) to accurately detect nuclei and cells in histology
images. This challenging cell-level object detection problem is
formulated as a multi-task learning process, namely, instance
localisation and classification. A similarity metric is used to
improve classification performance. To apply similarity lean-
ing, we introduce an embedding layer to the SRPN architecture

for building networks, which allows us to train networks with
embedding loss functions. Networks trained with embedding
losses are able to learn discriminative features based on
the similarities and use them for instance classification. The
proposed SRPN has been evaluated on two cell-level object
detection benchmarks. Significant improvement are introduced
by exploiting embedding losses, demonstrating the effective-
ness of the similarity learning approach for nuclei and cells
detection. Specifically, experimental results show that SRPN
yield outstanding performance on the MoNuSeg benchmarks
for nuclei detection compared to previous methods, and on the
signet ring cell detection benchmark when compared against
baseline networks.
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