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Abstract

Simultaneous segmentation and detection of liver tumors (hemangioma and hep-
atocellular carcinoma (HCC)) by using multi-modality non-contrast magnetic
resonance imaging (NCMRI) are crucial for the clinical diagnosis. However,
it is still a challenging task due to: (1) the HCC information on NCMRI is
invisible or insufficient makes extraction of liver tumors feature difficult; (2)
diverse imaging characteristics in multi-modality NCMRI causes feature fusion
and selection difficult; (3) no specific information between hemangioma and
HCC on NCMRI cause liver tumors detection difficult. In this study, we propose
a united adversarial learning framework (UAL) for simultaneous liver tumors
segmentation and detection using multi-modality NCMRI. The UAL first uti-
lizes a multi-view aware encoder to extract multi-modality NCMRI information
for liver tumor segmentation and detection. In this encoder, a novel edge dis-
similarity feature pyramid module is designed to facilitate the complementary
multi-modality feature extraction. Second, the newly designed fusion and se-
lection channel is used to fuse the multi-modality feature and make the decision
of the feature selection. Then, the proposed mechanism of coordinate sharing
with padding integrates the multi-task of segmentation and detection so that it
enables multi-task to perform united adversarial learning in one discriminator.
Lastly, an innovative multi-phase radiomics guided discriminator exploits the
clear and specific tumor information to improve the multi-task performance via
the adversarial learning strategy. The UAL is validated in corresponding multi-
modality NCMRI (i.e. T1FS pre-contrast MRI, T2FS MRI, and DWI) and three
phases contrast-enhanced MRI of 255 clinical subjects. The experiments show
that UAL gains high performance with the dice similarity coefficient of 83.63%,
the pixel accuracy of 97.75%, the intersection-over-union of 81.30%, the sensi-
tivity of 92.13%, the specificity of 93.75%, and the detection accuracy of 92.94%,
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which demonstrate that UAL has great potential in the clinical diagnosis of liver
tumors.

Keywords: liver tumors segmentation and detection, multi-modality NCMRI,
multi-phase radiomics feature, united adversarial learning

1. Introduction

Segmentation and detection of liver tumors (hemangioma and hepatocellular
carcinoma (HCC)) of multi-modality non-contrast magnetic resonance imaging
(NCMRI) is a time-saving, safe, and inexpensive solution for the clinical diagno-
sis and treatment (Kim et al., 2020b), which as shown in Fig.1 (a). However, cur-
rently in clinical, the segmentation and detection of liver tumors would be per-
formed manually by physicians via observing the multi-phase contrast-enhanced
magnetic resonance imaging (CEMRI), which as shown in Fig.1 (b). It is heavy
work that suffers from potential misjudgment. More importantly, the gadolin-
ium contrast agents (CAs) injection of CEMRI suffers from time-consumption,
high-risk and expensive (Idée et al., 2006). Especially for patients with com-
promised kidney function, they are restricted from injecting CAs(Marckmann
et al., 2006). Therefore, if the liver tumors segmentation and detection can
be achieved via using NCMRI only, it will overcome the shortcomings in the
clinic. Recently, there has been some related work trying to satisfy the clinical
requirements, but they all have some limitations.

1.1. Existing works for avoiding CAs injection

Recently, to overcome the shortcomings caused by the injection of CAs,
some works have attempted to segment or detect liver tumors via using sin-
gle modality NCMRI, which as shown in Fig.1 (c). For instance, Xiao et al.
(Xiao et al., 2019) attempted to segment liver tumors on T2FS via using the
radiomics feature from delay-phase CEMRI. And Zhao et al. (Zhao et al., 2020)
attempted to detect liver tumors on synthetic delay-phase CEMRI by using a
Tripartite-GAN. However, the assumption of their works ignored the situation
of HCC information is invisible or insufficient on T1FS and T2FS. So that the
performance of their works will be limited when HCC is small or invisible due
to lacking the information of DWI. Moreover, clinical research has shown some
HCC cases that more clear on arterial-phase CEMRI than delay-phase CEMRI
(Cereser et al., 2010). And the multi-phase CEMRI (i.e. arterial-phase, portal-
venous (PV) phase, and delay-phase) has shown high sensitivity and specificity
for clinical liver tumors diagnosis (Yu et al., 1999; Kierans et al., 2016). There-
fore, the performance of (Xiao et al., 2019) and (Zhao et al., 2020) will be
limited because they are all using delay-phase CEMRI only. Lastly, it is crucial
for clinical that segment liver tumors and detect the tumor whether is benign
or malignant simultaneously. But their works are limited to segment or detect
liver tumors separately.
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Figure 1: Simultaneous liver tumors segmentation and detection via using multi-modality
NCMRI are crucial for clinical diagnosis. However, existing related methods can not perform
well due to some limitations. It is still challenging due to: 1) diverse imaging character-
istics of multi-modality NCMRI cause multi-modality NCMRI fusion difficult; 2) invisible
or insufficient HCC information in NCMRI makes feature extraction difficult; 3) no specific
texture feature of hemangioma and HCC cause liver tumors detection difficult. To address
these challenges, we proposed a united adversarial learning framework (UAL), which inte-
grates multi-modality NCMRI information and utilizes the multi-phase CEMRI information
to perform the adversarial learning for promoting the liver tumors segmentation and detection.
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1.2. Challenges

For liver tumors segmentation and detection, the segmentation task pays
more attention to the accurate boundary information while the detection task fo-
cuses more on the location, size, and specific information of liver tumors. There-
fore, simultaneously segment and detect liver tumors by using multi-modality
NCMRI (i.e. T1FS, T2FS, and DWI) is still challenging due to some limitations,
which as shown in Fig.1(d). 1) Diverse imaging characteristics in multi-modality
NCMRI causes the feature fusion and section difficult for multi-task. 2) HCC
information in NCMRI is invisible or insufficient (Choi et al., 2014) limits the
performance of segmentation and detection. 3) No specific texture information
of liver tumors has the risk of confusing liver tumors.

1.3. Our proposed method

In this study, we propose a united adversarial learning framework (UAL)
to simultaneously segment and detect liver tumors by using multi-modality
NCMRI, which is shown in Fig.1 (d). Our basic assumption is that the in-
tegration of complementary information from multi-modality MRI can enhance
the feature representation and using multi-phase radiomics (MPR) features from
CEMRI to perform adversarial learning can guide the detailed information ex-
traction of NCMRI. And then it will improve the performance of liver tumors
segmentation and detection. Specifically, the UAL first utilizes three parallel
convolution channels for multi-modality NCMRI information extraction. To
facilitate the complementary multi-modality feature extraction, a novel edge
dissimilarity feature pyramid module (EDFPM) is designed to extract the multi-
size edge dissimilarity maps. Additionally, the multi-size edge dissimilarity maps
as the prior knowledge added into the convolution channel make the UAL easy
to training. Then, a fusion and selection channel (FSC) is designed to make the
final decision of feature fusion and selection. After FSC, we proposed the mecha-
nism of coordinate sharing with padding (CSWP) to integrate the segmentation
task and detection task so that it enables multi-task to perform united adversar-
ial learning. Lastly, an innovative multi-phase radiomics guided discriminator
(MPRG-D) exploits the clear and specific tumor information to improve the
multi-task performance via the adversarial learning strategy.

The contributions of this work are summarized as following:

• For the first time, the proposed UAL provided a time-saving, safe, and
inexpensive tool, which achieves simultaneous liver tumors segmentation
and detection via using multi-modality NCMRI only, especially for HCC
information is invisible or insufficient.

• The novel EDFPM extracts the multi-size edge dissimilarity maps to en-
hance the multi-modality NCMRI feature extraction and it as the prior
knowledge added into UAL facilitates the UAL training.

• The innovative FSC fuses the multi-modality NCMRI feature and adap-
tively makes the final decision of feature selection according to the feature
requirements of liver tumors segmentation task and detection task.
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• We proposed a CSWP mechanism, which enables the MPRG-D achieves
the united adversarial learning for liver tumors segmentation and detection
for the first time.

• The newly designed MPRG-D enhances discrimination by adding the
MPR feature. In this situation, it is capable of constraint accurate liver
tumors segmentation and detection via the adversarial learning strategy.

2. Related work

2.1. Deep learning for automatic liver tumors diagnosis

Deep learning for automatic liver tumors diagnosis has attracted great in-
terests since it can extract high-level semantic information (Bousabarah et al.,
2020). Hamm et al. (Hamm et al., 2019) developed and validated a convolu-
tional neural network-based deep learning system that classifies common liver
lesions on CEMRI. Bousabarah et al. (Bousabarah et al., 2020) adopted a deep
convolutional neural network with the radiomics feature to automatically de-
tect and delineate HCC on CEMRI. Kim et al. (Kim et al., 2020a) used a deep
learning-based classifier to detect HCC on CEMRI. All these clinical researches
demonstrated that deep learning can provide an effective solution for liver tu-
mors diagnosis. However, all of these models are trained and tested based on
CEMRI, which suffers from CAs injection.

Recently, to overcome the shortcomings caused by the injection of CAs. For
instance, the work of Xiao et al. (Xiao et al., 2019) attempted to extract T2FS
information and perform adversarial learning via using delay-phase CEMRI in-
formation for liver tumors segmentation. The work of Zhao et al. (Zhao et al.,
2020) attempted to learn the highly non-linear mapping between T1FS and
CEMRI for liver tumors detection. However, their works do not perform well
due to using single modality NCMRI and single CEMRI. Besides, both of their
works are limited to segment or detect liver tumors separately.

2.2. Multi-task of simultaneous segmentation and detection

Some deep learning-based networks used for multi-task of simultaneous seg-
mentation and detection have achieved great success (Wu and Nevatia, 2007;
Hariharan et al., 2014; He et al., 2017; Gao et al., 2020). The work (He et al.,
2017) proposed a general framework named Mask R-CNN for object instance
segmentation. The work (Gao et al., 2020) proposed a derivative of Mask R-
CNN for breast cancer segmentation and detection. However, they are not
performed-well when simultaneous segmentation and detection of small lesions.
Because the feature maps used for segmentation are highly reduced in spatial
resolution (Gao et al., 2020).
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2.3. Clinical researches of liver tumors diagnosis

Nowadays, clinical researches on liver tumors diagnosis showed that the com-
plementary information between multi-modality NCMRI has high sensitivity
when used for HCC diagnosis (Han et al., 2018; Wu et al., 2019; Canellas et al.,
2019). DWI with clear location information of liver lesions has shown excellent
performance in detecting liver tumors (Kele and van der Jagt, 2010; Piana et al.,
2011; Kim et al., 2012; Vandecaveye et al., 2009). The research of (Ebeed et al.,
2017; Xu et al., 2009) proved that DWI with multi-modality CEMRI helped to
provide higher sensitivities than multi-modality CEMRI alone in the detection
of HCC.

Discussions: To the best of our knowledge, no work attempted to seg-
ment and detect liver tumors simultaneously via using multi-modality NCMRI.
Therefore, if liver tumors segmentation and detection can be completed via
using multi-modality NCMRI only. It will greatly optimize the liver tumors
diagnosis and overcome the shortcomings of existing works.

3. Methodology

The UAL integrates multi-modality NCMRI information for liver tumors
segmentation and detection. Moreover, it uses multi-phase CEMRI to guide seg-
mentation and detection by adversarial learning strategy when framework train-
ing. And it avoids the risk that comes from contrast agents injection by removing
the adversarial learning when framework testing. Specifically, as shown in Fig.2,
the UAL is fed with T1FS (X T1 ∈ RH×W×N ), T2FS (X T2 ∈ RH×W×N ), and
DWI (XD ∈ RH×W×C) sequences, and outputs the results of liver tumor seg-
mentation ŶS and detection {Yp, tu}. The UAL is performed via the following
four stages:

• An encoder using three parallel convolution channels with EDFPM for
multi-modality NCMRI feature extraction. The EDFPM extracts the
multi-size edge dissimilarity maps, which as the prior knowledge added
into the three parallel convolution channels to facilitate complementary
multi-modality NCMRI information extraction.

• The FSC fuses the feature from the three parallel convolution channels
and makes the final decision of feature selection for liver tumors segmen-
tation and detection.

• The CSWP integrates the outputs of liver tumors segmentation and de-
tection via the operation of padding using number 2. And then feeding
the integration into discriminator, which enables the united adversarial
learning for multi-task.

• The MPRG-D extracts the semantic feature and MPR feature to distin-
guish the real or fake of the integration. And then constrain the multi-task
to optimize by adversarial learning strategy.
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Figure 2: Overview of the proposed UAL. It segments and detects liver tumors simultane-
ously contains four stages. 1) Using three parallel convolution channels to extract the multi-
modality NCMRI feature with the help of newly designed EDFPM. (2) To solve the challenge
of multi-modality fusion, UAL using an innovative FSC to fuse and select features according
to the feature requirements of the segmentation task and detection task. 3) To perform the
united learning strategy for promoting liver tumors segmentation and detection, UAL using
the CSWP mechanism to unify the outputs of segmentation and detection. 4) To solve the
challenge of HCC is invisible and no specific texture feature of hemangioma and HCC, we
proposed an MPRG-D which is added the multi-phase radiomics from CEMRI to perform the
united adversarial learning strategy.

3.1. EDFPM for multi-modality NCMRI feature extraction.

As shown in Fig.3, the calculation mechanism of EDFPM mainly goes through
three steps. (1) Feeding two modalities MRI of Xm,Xn ∈ {X T1,X T2,XD} into
the Sobel-based edge detector (Sobel and Feldman, 1968) to generate the corre-
sponding edge maps X edge

m and X edge
n . Then perform the element-wise subtrac-

tion between X edge
m and X edge

n to yield the edge dissimilarity maps X d−edge. (2)
The bilinear interpolation is used to perform the operation of 2× downsample,
which ensures the multi-size edge dissimilarity maps are consistent with the size
of the feature maps from the connected convolution layer. Besides, the pyramid
structure refines the spatial precision of the edge dissimilarity maps. (3) The
connection manner of multi-size edge dissimilarity maps and feature maps is
shown in the dashed window of Fig.3. The 1×1 convolution operation is added
to the path of the skip connection. It is used to change the channel number of
edge dissimilarity maps to make it consistent with that of feature maps from
three parallel convolution channels. The edge dissimilarity maps promote the
complementary multi-modality feature extraction while also accelerating the
convergence of the UAL.

3.2. FSC for multi-modality feature fusion and selection.

As the stage2 shown in Fig.2, the FSC is connected at the end of Encoder for
feature FT1, FT2, and FD fusion and selection. The calculation mechanism of
FSC is shown in Fig.4. The FSC composes a gate for controlling the information
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Figure 3: The calculation mechanism of EDFPM. It yields multi-size edge dissimilarity maps
via using Sobel Filter and downsample operation, in which the pyramid structure refines the
spatial precision of the edge dissimilarity maps. And adding the multi-size edge dissimilarity
maps into UAL to promote multi-modality NCMRI feature extraction.

fusion and selection, in which the gate has been proposed by (Pang et al., 2019)
and developed in (Ge et al., 2019). In this work, we are the first to design
FSC with the gate for three modalities MRI fusion. Moreover, according to the
feature requirements of multi-task, FSC increases the weight of the dominant
modality MRI. In this way, it can adaptively integrate and select features to
improve multi-task performance. Specifically, it mainly goes on two steps. (1)
Obtaining the preliminary fusion features Fa of the FT1, FT2, and FD without
setting any weight. It can be calculated as:

Fa = σ(ε(x[F
T1,FT2,FD] ∗Wa + ba) ∗Wb + bb) (1)

where the features of x[F
T1,FT2,FD] represents the concatenation of FT1,FT2,

and FD. Wa, ba, Wb and bb are the trainable weights and biases of the first
two convolution operations, ε is ReLU activation, σ is tanh activation. (2)
Obtaining the final fusion features FSeg for segmentation path and FDec for
detection path. Inspired by (Leng et al., 2018) that context information will
improve the segmentation performance, we concatenate the Fa and FT1 to
increases the weight of global anatomical information on T1FS when calculating
FDec. And inspired by (Kele and van der Jagt, 2010; Piana et al., 2011; Kim
et al., 2012; Vandecaveye et al., 2009) that DWI with clear location information
of liver lesions has shown excellent performance in detecting liver tumors, we
concatenate the Fa and FD to increases the weight of location information on
DWI when calculating FDec. The calculation of FSeg and FDec as follows:

FSeg = ε(x[Fa,FT1] ∗Wc + bc) (2)
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Figure 4: The calculation mechanism of FSC. It mainly contains a series of operations for
multi-modality fusion, a gate for feature selection, and the weight setting of the multi-modality
NCMRI.

FDec = ε(x[Fa,FD] ∗Wd + bd) (3)

where the features of x[Fa,FT1] represents the concatenation of FT1 and feature

maps Fa, x[Fa,FD] represents the concatenation of FD and feature maps Fa,
Wc and bc are the trainable weights and biases of the last convolution operation
for segmentation path, and Wd and bd are the trainable weights and biases of
the last convolution operation for detection path.

3.3. CSWP integrates liver tumors segmentation and detection for united ad-
versarial learning.

The CSWP enables a united adversarial learning for multi-task of segmen-
tation and detection for the first time. The calculation mechanism of CSWP
as shown in Fig.5. First, we defined the label of segmentation image is YS , the
prediction of segmentation image is ŶS , the true tuple as the ground-truth of
the bounding-box (b-box) is v = (vo, vw, vh), and the predicted tuple of b-box
regression is tu = (tuo , t

u
w, t

u
h). Where the vo and tuo are the center point of b-box,

vw = vh means the true b-box is square, tuw = max{tuw, tuh} and tuh = max{tuw, tuh}
makes the the predicted b-box is square. Then, to integrate the YS and v for
feature extraction in MPRG-D, using the operation of number 2 padding and
taking the vo as the center for generating the integration YSc. Performing the
same operation on ŶS and tu to obtain the integration ŶSc. The padding op-
eration makes YSc and ŶSc to 64× 64 pixels. In this situation, CSWP enables
segmentation and detection can be unified to be optimized by performing ad-
versarial learning in our MPRG-D with Ladv(ŶSc,YSc). And then reduce the
error (i.e. segmentation error, center point error, height error, and width error)
between ŶSc and YSc via the united adversarial learning strategy.
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Figure 5: The mechanism of CSWP. It uses coordinate sharing to unify the outputs of seg-
mentation task and detection task. And in the premise of fixed coordinates, use the padding
operation to unify their size for feature extraction.

3.4. MPRG-D for united adversarial learning.

As the stage4 shown in Fig.2, the MPRG-D receives ŶSc and YSc after the
operation of CSWP and outputs a single scalar that the real or fake of ŶSc

and YSc. Then the discrimination of MPRG-D is fed back to the segmentation
path and detection path via the adversarial strategy with Ladv(ŶSc,YSc). To
enhance the discrimination and fully extract features of liver tumors, MPR from
multi-phase CEMRI is added into MPRG-D. Because the multi-phase CEMRI
has shown high sensitivity and specificity for clinical liver tumors diagnosis
(Yu et al., 1999; Kierans et al., 2016). Specifically, the MPRG-D utilizes a
network with three convolutional layers to extract semantic features and utilizes
a python toolbox Pyradiomics (Van Griethuysen et al., 2017) to extract multi-
phase radiomics feature. For semantic feature extraction, the input is ŶSc or
YSc. And for MPR feature extraction, the input is ŶSc with multi-phase CEMRI
or YSc with multi-phase CEMRI. Finally, the output of real of fake is obtained by
feeding the concatenation of the semantic feature and MPR feature to Softmax
layer. With learn through this adversarial strategy, the MPRG-D can constrain
our UAL to train an excellent model with accurate liver tumors segmentation
and detection.

3.5. Constraint strategy of UAL.

The UAL is the first time to achieves simultaneously promote the segmen-
tation and detection via using a united adversarial learning strategy. The basic
adversarial learning strategy of our UAL is coming from the minimax game
between generator and discriminator in the primary GAN (Goodfellow et al.,
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2014), which the minimax optimization formulated as:

min
G

max
D

[Ey∼pdata(y)[(logD(y)] + Ex∼px(x)[log(1−D(G(x))]] (4)

UAL is trained to minimize the probability of ŶSc to be recognized while max-
imizing the probability of making mistakes of the discriminator when discrimi-
nating the ŶSc It means that the y ∼ pdata(y) in equation(4) corresponding to
YSc and G(x) equation(4) corresponding to ŶSc. Specifically, for the optimiza-
tion of tumors segmentation, the loss function LSeg is defined as:

LSeg(ŶS ,YS , ŶSc) = Lpix−CE(ŶS ,YS) + λ1Ladv(D(ŶSc, 1)) (5)

where the hyper-parameter λ1 set to one for maintaining the balance between tu-
mor segmentation Lpix−CE and the adversarial learning Ladv. In which Lpix−CE

and Ladv are:

Lpix−CE(ŶS ,YS) =∑
n

∑
i,j(Ŷi,j

n log(Yi,j
n ) + (1− Ŷi,j

n )log(1− Yi,j
n ))

NHW

(6)

Ladv(ŶSc,YSc) = −
∑
n

Yn
Sclog(Ŷn

Sc) + (1− Yn
Sc)log(1− Ŷn

Sc) (7)

where Ŷi,j
n and Yi,j

n represents the pixel classification located at (i, j) in ŶS and
YS . n ∈{YS} represents the each image of Yi,j

S . H and W is the height and the
width of each image n from the total training images of N .

The loss function of LD for MPRG-D optimization is defined as:

LD(ŶSc,YSc) = Ladv(D(ŶSc), 1) + Ladv(D(YSc), 0) (8)

The loss function of LDec for liver tumors detection optimization is defined
as:

LDec(Yp,Yu, tu, v, ŶSc) =Lcls(Yp,Yu) + λ2[u ≥ 1]Lreg(tu, v)

+ λ3Ladv(D(ŶSc, 1))
(9)

where the hyper-parameter λ2 and λ3 set to one for maintaining the balance of
the adversarial loss Ladv and two tasks losses of tumor classification Lcls and
b-box regression Lreg. The Lcls and Lreg are:

Lcls(Yp,Yu) = −logpYu

Lreg(tu, v) =
∑

i∈{o,w,h}

smoothL1
(tui − vi) (10)

in which smoothL1(x) = 0.5x2 if |x|<1, and smoothL1(x) = |x| − 0.5 other-
wise. Where the Yp represents the outputs of the probability distribution of
liver tumors, Yu represents the ground-truth class (i.e. hemangioma or HCC),

11



the [Yu ≥ 1] evaluates to 1 when Yu ≥ 1 and 0 otherwise.

We show the architecture details of our UAL in Table.1. And the Algorithm
1 summarizes the procedure of UAL. The algorithm contains two parts: the
training process of the UAL and the testing process of UAL. In which the
training process of UAL mainly contains four stages for forward propagation
and backward propagation for parameters update. The testing process of UAL
mainly goes through two stages for liver tumors segmentation and detection.

Table 1: The architecture of the UAL. The ”Params” include: (1) Kernel size; (2) ”@”:
Number of channels; (3) ”Pad”: Spatial padding number; (4) ”Str”: stride number. (Conv
means convolution, Deconv means deconvolution, FC means fully connection)

Stage of UAL
Layer

Annotation
Params

Feature extraction
in Stage1

(i∈{T1FS, T2FS, DWI})

Convi1 3*3@64; Pad: 1; Str: 1
Convi2 3*3@128; Pad: 1; Str: 1
Convi3 3*3@256; Pad: 1; Str: 1
Convi4 3*3@512; Pad: 1; Str: 1

Decoder of FSeg

in Stage2

Decond1 3*3@512; Pad: 1; Str: 1
Decond2 3*3@256; Pad: 1; Str: 1
Decond3 3*3@128; Pad: 1; Str: 1
Decond4 3*3@64; Pad: 1; Str: 1

Semantic feature extraction
in Stage4

Conv5 3*3@64; Pad: 1; Str: 1
Conv6 3*3@128; Pad: 1; Str: 1
Conv7 3*3@256; Pad: 1; Str: 1
FC1 1*1@256
FC2 1*1@1

4. Experiments

The effectiveness of the proposed UAL is validated in the liver tumors seg-
mentation and detection. Experimental results show that UAL successfully seg-
ments and detects liver tumors via using multi-modality NCMRI, and achieves
dice similarity coefficient (DSC) of 83.63%, pixel accuracy (p-Acc) of 97.75%,
intersection-over-union (IoU) of 81.30%, the sensitivity of 92.13%, the specificity
of 93.75%, and detection accuracy of 92.94%.

4.1. Dataset and Configurations

Our UAL is validated on a clinical dataset with totaling 255 subjects (125
subjects of hemangioma and 130 subjects of HCC), and each subject has cor-
responding T1FS [256×256 px], T2FS [256×256 px], DWI [256×256 px] and
multi-phase CEMRI [256×256 px] collected after standard clinical liver MRI
examinations. CEMRI used in these protocols was gadobutrol 0.1 mmol/kg
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Algorithm 1:

Training process of UAL:

Input: Multi-modality NCMRI X T1, X T2, and XD; Arterial-phase

CEMRI XA; PV-phase CEMRI XP ; Delay-phase CEMRI XDe;

Segmentation label YS ; True tuple of b-box v; The label of the types

of tumors Yu; Loss balanced weights λ1, λ2, and λ3; Batchsize n;

Learning rate η; Iteration number M.

Output: Learned parameters {θseg, θDec, θDis}
for step in M do

begin forward propagation:

Stage1: Feature extraction

{FT1,FT2,FD} = Encoder(X T1
n , X T2

n , XD
n )

Stage2: Feature fusion and selection for segmentation and detection

{FSeg,FDec} = FSC(FT1,FT2,FD)

ŶS = SegPath(FSeg)

{Yp, tu} = DecPath(FDec)

Stage3: Coordinate sharing with padding

ŶSc = CSWP (ŶS , tu)

YSc = CSWP (YS , v)

Stage4: United adversarial learning

D(ŶSc) =MPRG-D(ŶSc)

D(YSc) =MPRG-D(YSc)

end

begin backward propagation:

θseg = θseg − η∇(Lpix−CE(ŶS ,YS) + λ1Ladv(D(ŶSc, 1)))

θDec = θDec − η∇(Lcls(Yp,Yu) + λ2[u ≥ 1]Lreg(tu, v)

+λ3Ladv(D(ŶSc, 1)))

θDis = θDis − η∇(LD(Ladv(D(ŶSc), 1) + Ladv(D(YSc), 0))

end

end

Testing process of UAL:

Stage1: fed multi-modality NCMRI X T1, X T2, and XD

Stage2: Prediction of liver tumors segmentation and detection

forward propagate the X T1, X T2, and XD through UAL with trained

weights, and get the prediction of liver tumors segmentation ŶS and

detection {Yp, tu}.
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Figure 6: The visual examples of the liver tumors segmentation, where the white denotes the
liver tumors segmentations and the black denotes the background. From the left to right:
source multi-modality NCMRI, segmentation results, and ground truth.

on a 3T MRI scanner. The segmentation labels performed on CEMRI are ob-
tained manually according to the clinical criterion by using the ITK-SNAP tool
(Yushkevich et al., 2006). And all subjects are provided after approval by the
McGill University Health Centre. We perform one 5-fold cross-validation test to
train our UAL for performance evaluation and comparison. Specifically, UAL
is trained using batchsize of 2, iteration number of 100,000, and learning rate of
1e-4. The UAL is performed on Ubuntu 18.04 platform, Python v3.6, Pytorch
v0.4.0, and CUDA v9.0 library, and running on Intel(R) Core(TM) i9-9900K
CPU @ 3.60GHz and GeForce GTX 1080Ti 11GB.

4.2. Evaluation metrics and method

4.2.1. Evaluation metrics

To quantitatively evaluate the segmentation performance of UAL, we utilize
the DSC to calculate the similarity of the output Yn and ground truth Ŷn, which
can be defined as:

DSC =
1

N

N∑
n

2|Yn ∩ Ŷn|
|Yn|+ |Ŷn|

× 100% (11)

Using p-Acc to evaluate the proportion of pixels that are correctly classified.
Using IoU to evaluate b-box regression performance via measuring accuracy of
the output YB (YSc before padding) relative to ground truth ŶB (ŶSc before
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Table 2: The quantitative evaluation of the liver tumors segmentation and detection. Six
criteria (i.e. DSC, p-Acc, IoU, TPR, TNR, and Acc) evaluated the performance of our UAL
and other six state-of-the-art methods. It demonstrates that our proposed UAL outperforms
six state-of-the-art methods in liver tumors segmentation and detection.

Method DSC p-Acc IoU TPR TNR Acc

U-net
78.88 96.57

- - - -±3.73 ±0.91
Radiomics-guided 80.65 96.72 - - - -

GAN ±3.13 ±0.89
Faster

- -
66.43 78.63 82.26 80.39

R-CNN ±8.20 ±2.74 ±2.45 ±2.47

Tripartite-GAN - -
73.42 86.82 89.68 88.24
±4.60 ±1.84 ±1.67 ±1.78

Mask 75.17 96.21 68.30 80.00 83.20 81.57
R-CNN ±5.58 ±1.16 ±7.31 ±2.43 ±1.88 ±2.09

FT-MTL-Net
77.58 96.48 70.64 82.75 81.40 84.13
±4.17 ±0.93 ±5.85 ±2.20 ±2.04 ±2.11

Proposed UAL
83.63 97.75 81.30 92.13 93.75 92.94
±2.16 ±0.72 ±3.26 ±1.26 ±0.74 ±0.86

padding). The IoU can be defined as:

DSC =
1

N

N∑
n

2|Yn ∩ Ŷn|
|Yn|+ |Ŷn|

× 100% (12)

And we use the sensitivity (true positive rate, (TPR)), specificity (true negative
rate, (TNR)), and accuracy (Acc) for evaluating liver tumors classification, in
which the TPR, TNR, and Acc can be defined as:

TPR =
TP

TP + FN
× 100% (13)

TNR =
TN

FP + TN
× 100% (14)

Acc =
TP + TN

TP + FP + TN + FN
× 100% (15)

where the hemangioma is defined as positive and HCC as negative. TP, FP,
TN, and FN denotes the true positive, false positive, true negative, and false
negative measurements, respectively.

4.3. Performance comparison with state-of-the-art

The UAL has been validated by comparing with two state-of-the-art segmen-
tation methods (U-net (Ronneberger et al., 2015) and Radiomics-guided GAN
(Xiao et al., 2019)), two state-of-the-art detection methods (Faster R-CNN (Ren
et al., 2015) and Tripartite-GAN (Zhao et al., 2020)), and two state-of-the-art
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simultaneous segmentation and detection methods (Mask R-CNN (He et al.,
2017) and FT-MTL-Net(Gao et al., 2020)). The visual segmentation results are
shown in Fig.6. The quantitative analysis results of segmentation and detection
are shown in Table.2. Our UAL outperforms six state-of-the-art methods, which
achieved liver tumors segmentation with DSC of 83.63% and p-Acc of 97.75%,
b-box regression with IoU of 81.30%, and liver tumors classification with TPR
of 92.13%, TNR of 93.75%, and Acc of 92.94%. These high performances in
both the segmentation and the detection are from EDFPM, FSC, CSWP, and
MPRG-D.

Figure 7: Two cases of liver tumors information on T2FS is invisible or insufficient, and the
liver tumors information on arterial-phase CEMRI is more clear than delay-phase CEMRI.
The first and third rows are multi-modality NCMRI and multi-phase CEMRI. From the left to
right: T1FS, T2FS, DWI, arterial-phase CEMRI, PV-phase CEMRI, and delay-phase CEMRI.
The second and fourth rows are segmentation results. From the left to right: result from
Radiomics-GAN, result from our UAL, ground truth, and the comparison of segmentation
results. It is clear that our proposed UAL outperforms the Radiomics-GAN.

Moreover, to validate the contributions of using multi-modality NCMRI and
multi-modality CEMRI, we showed the cases of the liver tumors information
are invisible or insufficient on T2FS. And the liver tumors information is more
clear on arterial-phase than delay-phase CEMRI. The comparisons are per-
formed among Radiomics-GAN (Xiao et al., 2019) and our UAL, in which the
Radiomics-GAN uses T2FS and delay-phase CEMRI for liver tumors segmen-
tation. The visualized results are shown in Fig.7. It is clear that our proposed
UAL outperforms Radiomics-GAN. The results demonstrate that our UAL has
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Table 3: The quantitative evaluation of the ablation studies. The ablation studies demonstrate
that every part of the newly designed UAL contributes to liver tumors segmentation and
detection.

Method DSC p-Acc IoU TPR TNR Acc
Without 81.65 96.88 76.77 91.34 92.97 92.61
EDFPM ±2.76 ±0.81 ±3.85 ±1.56 ±1.31 ±1.28
Without 81.37 96.86 76.29 90.55 92.19 91.37

FSC ±2.92 ±0.85 ±4.13 ±1.60 ±1.42 ±1.36
Without 82.33 97.12 74.82 89.76 91.41 90.59
CSWP ±2.46 ±0.78 ±4.53 ±1.66 ±1.51 ±1.45

Without 80.67 96.27 74.47 84.50 87.30 85.88
MPR ±3.06 ±0.88 ±4.32 ±1.93 ±1.76 ±1.82

Without 80.53 96.19 73.37 83.72 86.51 85.10
MPRG-D ±2.96 ±0.89 ±4.56 ±2.01 ±1.77 ±1.88

Proposed UAL
83.63 97.75 81.30 92.13 93.75 92.94
±2.16 ±0.72 ±3.26 ±1.26 ±0.74 ±0.86

high robustness via using multi-modality NCMRI and multi-modality CEMRI
than Radiomics-GAN. Especially for the situation that liver tumors informa-
tion is invisible or insufficient on T2FS, and the liver tumors information is
more clear on arterial-phase than delay-phase CEMRI.

4.4. Ablation studies

In order to verify the contributions of EDFPM, FSC, CSWP, MPR, and
MPRG-D. We performed the comparison among our UAL, the UAL without
EDFPM, the UAL without FSC, the UAL without CSWP, the UAL without
MPR, and the UAL without MPRG-D. The quantitative analysis results of these
ablation studies are shown in Table.3, which demonstrated that every part of
the UAL contributes to the liver tumors segmentation and detection.

4.4.1. Evaluation of EDFPM

To verify the contribution of EDFPM, we performed the comparison be-
tween the UAL and the UAL without EDFPM. The quantitative results (2nd

row in Table.3) showed that the performance of segmentation and detection
dropped when EDFPM is removed. Specifically, the DSC decreased by 1.98%,
the IoU decreased by 4.53%, and the Acc decreased by 0.33%. It demonstrates
that the newly designed EDFPM benefits liver tumors segmentation and detec-
tion. Besides, in order to visualize the contribution of that EDFPM facilitates
the complementary multi-modality NCMRI information extraction, we showed
the visualized feature maps in Fig.8. For the first row of feature maps, they
are obtained from the channel #18 and channel #25 of ConvT1

2 layer. It is
clear that the feature maps lost the feature of the liver tumors when without
EDFPM. In contrast, the feature maps obtained by our proposed UAL are pre-
cise. This demonstrates that the complementary feature between T1FS and
T2FS extracted by EDFPM facilitates the liver tumors feature extraction. For
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Figure 8: The comparison of feature maps from proposed UAL and UAL without EDFPM.
It is clear that EDFPM contributes to accurate edge features and HCC features extraction,
which are marked out in the red circle.

the second row of feature maps, they are obtained from the channel #57 and
channel #9 of ConvT2

2 layer. It is clear that the edge feature of liver tumors
in feature maps obtained without EDFPM is inaccurate. In contrast, the fea-
ture maps obtained by our proposed UAL are precise. This demonstrates that
the complementary feature between T2FS and DWI extracted by EDFPM fa-
cilitates the liver tumors edge feature extraction. To summarize, the EDFPM
extracts the multi-size edge dissimilarity maps, which as the prior knowledge
added into the three parallel convolution channels benefits to multi-modality
NCMRI feature extraction for improving liver tumors segmentation and detec-
tion.

4.4.2. Evaluation of FSC

To verify the contribution of FSC, we use the operation of concatenation
followed by the convolution and ReLU to replace the FSC (i.e. without FSC). It

means that using the Fs = ε(x[F
T1,FT2,FD] ∗Ws+bs) to replace FSeg and FDec.

The quantitative results (3rd row in Table.3) showed that the performance of
segmentation and detection dropped when FSC is replaced. In which the DSC
decreased by 2.26%, the IoU decreased by 5.01%, and the Acc decreased by
1.57%. It demonstrates that the design with the gate and the weight increasing
of FT1 and FD contributes the liver tumors segmentation and detection.

4.4.3. Evaluation of CSWP

To verify the contribution of CSWP, we performed the comparison between
the UAL and the UAL without CSWP. The structures of the UAL and the UAL
without CSWP are shown in Fig.9 (a) and (b). Fig.9(a) indicates that CSWP
enables the SegPath (i.e. segmentation path) and DecPath (i.e. detection path)
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Figure 9: Structures of the (a) our proposed UAL, (b) UAL without CSWP, and (c) UAL
without MPRG-D.

to perform the united adversarial learning by Ladv(D(ŶSc, 1)). Fig.9(b) indi-
cates that when CSWP removed, it only enables the SegPath to perform adver-
sarial learning by Ladv(D(ŶS , 1)) and no adversarial learning in DecPath. The
quantitative result (6th row in Table.3) showed that the performance of seg-
mentation and detection dropped when CSWP is removed. Especially for the
b-box regression, the IoU value decreased from 81.30% to 74.82% (decreased by
6.48%). This proved that CSWP enables segmentation and detection can be
unified to perform adversarial learning for improving their performance. Espe-
cially for the great performance improvement of b-box regression by using the
united adversarial learning strategy.

4.4.4. Evaluation of MPR and MPRG-D

To verify the contribution of MPRG-D, we removed the MPRG-D in UAL,
which is shown in Fig.9(c). In this case, neither SegPath nor DecPath has
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Figure 10: Four cases of the comparison of heatmaps (predicted probability of liver tumors,
highlighted region by red color means high predicted score after softmax layer) from proposed
UAL, UAL without MPR, and UAL without MPRG-D. From the left to right, it is T1FS,
T2FS, DWI, heatmaps from UAL, heatmaps from UAL without MPR, heatmaps from UAL
without MPRG-D, and ground truth of liver tumors from CEMRI, respectively.

adversarial learning. The performance of segmentation and detection dropped
significantly (6th row in Table.3), in which the DSC decreased by 3.10%, the
IoU decreased by 7.93%, and the Acc decreased by 7.84%. To further verify
the contribution of MPR in MPRG-D, we keep adversarial learning but remove
the MPR. The quantitative results (5th row in Table.3) showed that the per-
formance of segmentation and detection still dropped significantly, in which the
DSC decreased by 2.96%, the IoU decreased by 6.83%, and the Acc decreased
by 7.06%. This shows that adversarial learning is greatly helpful for liver tu-
mors segmentation and detection improvement. And most of the contribution
comes from MPR. In order to visualize the contribution, we show the four cases
heatmaps from UAL, UAL without MPR, and UAL without MPRG-D in Fig.10.
From the first two rows in Fig.10, it is clear that the predicted scores of tumor
area obtained from our UAL are more accurate than UAL without MPR and
UAL without MPRG-D. From the last two rows in Fig.10, it is clear that the
UAL without MPR and UAL without MPRG-D lose tumors prediction when
liver tumors are invisible on multi-modality NCMRI. All these results demon-
strate that MPR and MPRG-D improved UAL performance when liver tumors
information is invisible or insufficient on multi-modality NCMRI.
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Table 4: The quantitative evaluation of 6 types of combinations of multi-modality NCMRI for
liver tumors segmentation and detection. It demonstrates that using multi-modality NCMRI
information is the best choice for our UAL to perform liver tumors segmentation and detection.

Modality of NCMRI
DSC p-Acc IoU TPR TNR Acc

T1FS T2FS DWI

X
81.09 96.05 75.33 87.40 90.03 88.71
±2.58 ±0.87 ±3.98 ±1.77 ±1.65 ±1.65

X
81.16 96.13 75.78 87.11 89.86 88.47
±2.57 ±0.86 ±3.77 ±1.80 ±1.68 ±1.70

X
81.54 96.51 78.26 87.56 90.19 88.86
±2.65 ±0.83 ±3.37 ±1.72 ±1.60 ±1.68

X X
81.58 96.76 76.42 87.71 90.35 89.02
±2.54 ±0.82 ±3.69 ±1.69 ±1.58 ±1.58

X X
82.89 97.16 79.96 88.58 90.72 89.65
±2.30 ±0.78 ±3.32 ±1.67 ±1.57 ±1.55

X X
82.67 96.92 78.14 89.31 91.08 90.20
±2.35 ±0.77 ±3.41 ±1.58 ±1.53 ±1.49

X X X
83.63 97.75 81.30 92.13 93.75 92.94
±2.16 ±0.72 ±3.26 ±1.26 ±0.74 ±0.86

4.5. Influences of the combination of different NCMRI modality

In order to verify the influences of the combination of different NCMRI
modality, we set up six different combinations of different NCMRI modality
as the inputs of our UAL. Quantitative analysis results are shown in Table.4.
Firstly, when the input of UAL is a single modality of NCMRI (i.e. T1FS
only, T2FS only, or DWI only), the quantitative results (3rd, 4th, and 5th rows
in Table.4) show that the performance of segmentation and detection among
these three single modalities are roughly equivalent, except for the IoU value
(6th column in Table.4). Compare with DWI only, the IoU value decreased by
2.93% of using T1FS only and decreased by 2.48% of using T2FS only. This
demonstrated that DWI is helpful to detect the location of liver tumors when
using a single modality of NCMRI. Secondly, when the input of UAL is the
combination of two NCMRI modalities, the quantitative results (6th, 7th, and
8th rows in Table.4) show the performance of segmentation and detection among
these combinations are roughly equivalent. And they are all better than using
sing modality only, which demonstrates that the complementary information in
different NCMRI modalities benefits liver tumors segmentation and detection.
Lastly, the quantitative results of the last row in Table.4 of using multi-modality
NCMRI (i.e. T1FS, T2FS, and DWI) achieves the best results compared with
the other six different combinations of multi-modality NCMRI. It proved that
using multi-modality NCMRI information is the best choice for our UAL to
perform liver tumors segmentation and detection.
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Table 5: The quantitative evaluation of 6 types of combinations of multi-phase CEMRI for
liver tumors segmentation and detection. It demonstrates that using multi-phase CEMRI
information to perform the united adversarial learning strategy is the best choice for our
UAL.

Phase of CEMRI
DSC p-Acc IoU TPR TNR Acc

Arterial PV Delay

X
81.43 96.36 79.77 91.02 92.65 91.83
±2.55 ±0.85 ±3.50 ±1.56 ±1.15 ±1.28

X
80.92 96.03 79.33 90.71 92.34 91.53
±2.63 ±0.86 ±3.63 ±1.62 ±1.31 ±1.38

X
81.80 96.86 79.85 91.18 92.81 92.00
±2.45 ±0.83 ±3.54 ±1.55 ±1.04 ±1.23

X X
82.18 96.90 79.91 91.50 93.13 92.31
±2.44 ±0.81 ±3.55 ±1.44 ±0.85 ±1.10

X X
83.19 97.16 81.13 91.81 93.44 92.63
±2.20 ±0.76 ±3.30 ±1.39 ±0.82 ±1.07

X X
83.06 96.98 81.05 91.65 93.28 92.47
±2.27 ±0.76 ±3.36 ±1.43 ±0.88 ±1.15

X X X
83.63 97.75 81.30 92.13 93.75 92.94
±2.16 ±0.72 ±3.26 ±1.26 ±0.74 ±0.86

4.6. Influences of the combination of different CEMRI phase

In order to verify the influences of the combinations of different CEMRI
phase, we set up six different combinations of different CEMRI phase for ra-
diomics feature extraction in our MPRG-D. Quantitative analysis results are
shown in Table.5. Firstly, when we using a single phase CEMRI in our MPRG-
D (i.e. arterial-phase only, PV-phase only, or delay-phase only), the quantita-
tive results (3rd, 4th, and 5th rows in Table.5) illustrates that the delay-phase
achieves the best performance. This proved that the radiomics feature extracted
from delay-phase CEMRI is the most useful for liver tumors segmentation and
detection than Arterial-phase CEMRI and PV-phase CEMRI. Secondly, when
we using three combinations of two phases CEMRI, the quantitative results (6th,
7th, and 8th rows in Table.5) show that the performance of segmentation and
detection is better than using a single phase CEMRI. Lastly, the quantitative
results of the last row in Table.5 of using multi-phases CEMRI (i.e. arterial-
phase, PV-phase, or delay-phase) achieves the best results compared with the
other six different combinations of multi-phase CEMRI. All these results proved
that extracting multi-phase CEMRI radiomics feature maximizes the ability of
MPRG-D to discriminate. And then improve the performance of liver tumors
segmentation and detection via using the united adversarial learning strategy.

5. Conclusions

For the first time, the proposed UAL achieves simultaneous segmentation
and detection of HCC via using multi-modality NCMRI only. The novel EDFPM
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extracts the multi-size edge dissimilarity maps that enhance multi-modality
NCMRI information extraction. And then the innovative FSC fuses the multi-
modality NCMRI feature and makes the final decision of feature selection ac-
cording to the liver tumors segmentation and detection. Finally, the newly
designed MPRG-D enhances discrimination by adding the MPR feature. And
with the help of the proposed CSWP mechanism, the MPRG-D achieves united
adversarial learning for promoting liver tumors segmentation and detection.
The experimental results (i.e. DSC of 83.63%, p-Acc of 97.75%, IoU of 81.30%,
the sensitivity of 92.13%, the specificity of 93.75%, and detection accuracy of
92.94%) demonstrate that UAL has great potential to assist clinical segmenta-
tion and detection of liver tumors without CAs injection.
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