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a b s t r a c t 

Joint registration of a stack of 2D histological sections to recover 3D structure (“3D histology reconstruc- 

tion”) finds application in areas such as atlas building and validation of in vivo imaging. Straightforward 

pairwise registration of neighbouring sections yields smooth reconstructions but has well-known prob- 

lems such as “banana effect” (straightening of curved structures) and “z-shift” (drift). While these prob- 

lems can be alleviated with an external, linearly aligned reference (e.g., Magnetic Resonance (MR) im- 

ages), registration is often inaccurate due to contrast differences and the strong nonlinear distortion of 

the tissue, including artefacts such as folds and tears. In this paper, we present a probabilistic model 

of spatial deformation that yields reconstructions for multiple histological stains that that are jointly 

smooth, robust to outliers, and follow the reference shape. The model relies on a spanning tree of latent 

transforms connecting all the sections and slices of the reference volume, and assumes that the registra- 

tion between any pair of images can be see as a noisy version of the composition of (possibly inverted) 

latent transforms connecting the two images. Bayesian inference is used to compute the most likely la- 

tent transforms given a set of pairwise registrations between image pairs within and across modalities. 

We consider two likelihood models: Gaussian ( � 2 norm, which can be minimised in closed form) and 

Laplacian ( � 1 norm, minimised with linear programming). Results on synthetic deformations on multiple 

MR modalities, show that our method can accurately and robustly register multiple contrasts even in the 

presence of outliers. The framework is used for accurate 3D reconstruction of two stains (Nissl and par- 

valbumin) from the Allen human brain atlas, showing its benefits on real data with severe distortions. 

Moreover, we also provide the registration of the reconstructed volume to MNI space, bridging the gaps 

between two of the most widely used atlases in histology and MRI. The 3D reconstructed volumes and 

atlas registration can be downloaded from https://openneuro.org/datasets/ds003590 . The code is freely 

available at https://github.com/acasamitjana/3dhirest . 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

.1. Motivation 

Histology is the area of science concerned with microscopic ex- 

loration of tissue sections sampled from either a post mortem 

pecimen or biopsy tissue. After a tissue processing pipeline 
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 Bancroft and Gamble, 2008 ), thin sections can be inspected under 

he microscope and digitised with a scanner. The most common 

istology pipeline consists of fixation, processing and embedding 

ith a hardening material (e.g., wax) for sectioning. Thin sections 

rom the wax-embedded tissue are cut using a microtome and 

ounted in glass slides for staining. Large specimens (e.g., a whole 

uman brain) are typically first cut into several blocks, which are 

hen processed independently. 

Histological examination is the gold standard for many diagnos- 

ic protocols. Different staining procedures enable the visualisation 
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f different microscopic structures. For example, the ubiquitous 

aemotoxylin and Eosin (H&E) ( Chan, 2014 ) stains cell nuclei pur- 

le and cytoplasm pink while immunohistochemistry techniques 

electively identify antigens in cells ( Ramos-Vara, 2005 )). Stains are 

ost often used in combination, e.g., to target different cell types 

n cancer diagnosis ( Cooper et al., 2009 ) or to detect neuropatholo- 

ies in neurodegenerative diseases ( Montine et al., 2012 ). 

On addition to clinical pathology, histology has many appli- 

ations in medical imaging, often in combination with mm -scale 

odalities like Magnetic Resonance Imaging (MRI): the former 

ields excellent contrast at the microscopic scale, while the lat- 

er provides larger-scale context, 3D structure and minimal distor- 

ion. One such application is the validation of in vivo imaging tech- 

iques, like microstructure imaging ( Bourne et al., 2017 ) or mass 

pectrometry imaging ( Thiele et al., 2014 ). In these applications, 

istology provides a gold standard for the underlying anatomy. 

Another successful application of combining μm -scale histol- 

gy with mm -scale is the 3D modelling of anatomy at the mi- 

roscopic level. In anatomy, histology is often used as the basis 

or fine anatomical delineation as it provides detailed information 

bout the size, shape and cell density of structures. The mm -scale 

mages are often used to inform the spatial registration of histolog- 

cal sections into a consistent 3D volume – a problem known as 3D 

istology reconstruction ( Pichat et al., 2018 ). Sample applications 

nclude mammary glands ( Shojaii et al., 2014 ) or lungs ( Rusu et al.,

015 ) in mice; brain tissue ( Malandain et al., 2004; Stille et al.,

013 ) or prostate ( Gibson et al., 2013 ) in humans. 

In the specific case of human neuroimaging, histology has been 

ombined with MRI to build atlases. The most notable examples 

re the BigBrain project ( Amunts et al., 2013 ) and the Allen at-

as ( Ding et al., 2016 ), which used special whole-brain microtomes 

o section through a whole human brain specimen each (a sin- 

le hemisphere in the Allen atlas), without needing to block the 

issue. At the single structure level, Yelnik et al. (2007) used im- 

unohistochemistry and MRI to build an atlas of the basal gan- 

lia; Adler et al. (2018) used a similar approach to build an at- 

as of the hippocampus; in previous work, we used Nissl stain- 

ng with thionin to build a probabilistic atlas of the human tha- 

amus ( Iglesias et al., 2018a ). Krauth et al. (2010) also built a tha-

amic atlas, but used histological sections in different orientations 

rather than a reference MRI) to solve the 3D reconstruction prob- 

em ( Song et al., 2013 ). Many of these works integrate multiple 

tains to capture a richer characterisation of the microstructural 

rganisation of tissue. For example, the Allen atlas comprises three 

taining procedures (Nissl stain and two antibodies for immuno- 

istochemistry) to gather structural evidence from both cyto- and 

hemoarchitectural features ( Ding et al., 2016 ). 

A central component of the works above is the 3D histology re- 

onstruction. The invasive acquisition and the processing pipeline 

sed in histology heavily distort the original shape of the tissue 

uch that the 3D contextual information is lost and the spatial re- 

ationship between and within structures is broken. Therefore, im- 

ge registration algorithms are required to recover the original 3D 

hape. The tissue processing pipeline also produces a number of 

ther artifacts, such as staining inconsistency, tears, folds, tissue 

oss, or air bubbles. These artifacts are often very difficult to model 

ith deformation fields estimated with a registration algorithm, if 

ot impossible (e.g., folding). Therefore, they are typically corrected 

ith dedicated preprocessing methods ( Pichat et al., 2018 ). 

In this work, we seek to achieve 3D reconstruction of multi- 

odality serial histology with a method that satisfies three main 

roperties. First, producing spatially smooth reconstructions. Sec- 

nd, producing precise reconstructions, i.e., recovering shapes that 

ccurately follow the underlying anatomy. And third, being ro- 

ust against histological artefacts (e.g., folds or tears). We as- 

ume the availability of an external reference (e.g., an MRI scan, 
2 
nnese 2012 ) that provides contextual information and enables 

nbiased reconstruction. 

.2. Related work 

3D histology reconstruction without any additional shape in- 

ormation is an underconstrained problem. In this case, recon- 

truction is typically achieved by pairwise registration of adjacent 

lices. An important design choice in this approach is the ref- 

rence slice, which is often chosen to be the one at the centre 

f the stack ( Ourselin et al., 2001 ) – even though automatic se- 

ection methods ( Ba ̆gci and Bai, 2010 ) have also been proposed. 

hile these methods yield 3D reconstructions that are smooth 

and thus visually pleasant), the lack of external guidance tends to 

traighten curved shapes (incurring the so-called “banana effect”) 

nd also leads to accumulation of errors along the stack (“z-shift”, 

alandain et al. 2004 ). 

These problems can be mitigated with a reference volume 

roviding information on the true shape and thus constraining 

he original reconstruction problem. 3D histology reconstruction is 

hen split into a linear 3D registration problem between the refer- 

nce volume and the stack of histological images, and a set of non- 

inear 2D registration problems between section in the stack and 

he corresponding resampled slice from the reference volume. The 

roblem can be addressed in an iterative fashion ( Malandain et al., 

004 ). Other existing approaches attempt to solve the linear 3D 

nd nonlinear 2D problems simultaneously, i.e., jointly optimis- 

ng the registration similarity metric with respect to all linear and 

onlinear parameters ( Alic et al., 2011; Yang et al., 2012 ). While 

his approach is potentially more accurate, it also requires dedi- 

ated registration algorithms. 

Different methods have been used in the literature to ini- 

ialise the stack, e.g., direct stacking of sections with alignment of 

heir centres of mass ( Goubran et al., 2013 ) or, most commonly, 

airwise registration of consecutive slices starting from the bot- 

om ( Ceritoglu et al., 2010 ) or middle ( Stille et al., 2013 ) of the

tack. To decrease the z-shift effect and avoid large error due 

o badly distorted slices, some approaches consider larger neigh- 

ourhoods when registering the histological stack. For example, 

ushkevich et al. (2006) consider a 5-neighbourhood centred on 

he reference slice and use a graph theoretical approach to find the 

hortest path from every slice to a selected reference slice, increas- 

ng the robustness against poorly registered slices. The use of an 

ndistorted intermediate modality may also facilitate the 3D align- 

ent. For example, blockface photographs are sometimes taken 

revious to sectioning and thus do not present many of the arte- 

acts caused by the histology processing pipeline ( Amunts et al., 

013 ). 

If the linear 3D alignment is considered fixed (i.e., histolog- 

cal sections are linearly aligned to resampled slices of the ref- 

rence volume), histology reconstruction reduces to a set of 2D 

n-plane registration problems. Naively, any intermodality regis- 

ration model could be used to align histology and the resam- 

led slices of the reference volume (henceforth “reference slices”) 

ne at the time, producing an unbiased 3D reconstruction. How- 

ver, intermodal nonlinear registration (typically using mutual in- 

ormation) is often difficult and inaccurate due to the artefacts dis- 

ussed above, such as folding, tears, etc. ( Jacobs et al., 1999 ). When

reating each histological section independently, these inaccuracies 

ield jagged reconstructions in the orthogonal planes. 

To improve reconstruction continuity, sequential approaches in 

he literature consider not only the reference slice but also the 

djacent histological sections in each 2D registration step ( Adler 

t al., 2014; Rusu et al., 2015; Wirtz et al., 2004 ). Hence, each his-

ological slice is deformed to simultaneously match their reference 

ounterpart and neighbouring slices in an iterative fashion. How- 
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Fig. 1. Our choice of spanning tree for C = 2. Each MRI slice is connected to the 

corresponding histological sections, as well as the immediate neighbour in the MRI 

stack. 
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ver, these approaches are prone to getting stuck in local minima, 

re biased towards the choice of the initial slice, and may propa- 

ate correlated errors at each step. 

Instead, joint refinement of deformation fields provides a more 

obust alternative. For example, Feuerstein et al. (2011) define a 

D Markov random field between the control points of a set of 

recomputed 2D B-spline transforms and use discrete optimisa- 

ion tools to globally minimise an energy function that encourages 

moothness. Other ad hoc approaches involve low-pass filtering of 

he deformation fields along the direction of the stack, e.g., with 

 Gaussian filter that smooths rigid transforms ( Yushkevich et al., 

006 ). Similarly, Malandain et al. (2004) apply a Gaussian fil- 

er directly on linear transform parameters. Finally, Casero et al. 

2017) define a new framework for linear histology reconstruction 

nd provide theoretical equivalence with Gaussian filter smoothing. 

n our prior work ( Iglesias et al., 2018b ), we defined a generative

odel over diffeomorphic deformation fields and used Bayesian 

nference to find a smooth solution along the stack direction. 

his framework yields 3D reconstructions that are simultaneously 

mooth and unbiased, i.e., without banana effect or z-shift. 

.3. Contribution 

Here we present an extension of our previous conference ar- 

icle ( Iglesias et al., 2018b ) on 3D histology reconstruction with 

 reference volume. Our work seeks to model the nonlinear de- 

ormations that the tissue undergoes through the histology pro- 

essing pipeline, i.e., we do not consider other artefacts that af- 

ect the topology of the tissue (e.g., folding or tearing) – which, 

s mentioned above, can be addressed with dedicated algorithms 

 Pichat et al., 2018 ). The contributions with respect to the confer- 

nce article are: 

• Multiple stains: we extend the framework to joint reconstruc- 

tion of multiple histological stains, explicitly encouraging the 

spatial alignment of all modalities. To the best of our knowl- 

edge, it is the first attempt at 3D histology reconstruction using 

multiple stains. 
• Robustness: we greatly increase the robustness of our method 

against remaining artefacts by modelling the registration error 

with Laplacian distributions that penalise its � 1 norm, and solv- 

ing the optimisation problem with linear programming. More- 

over we use histology and reference masks on the generative 

model to further mitigate the impact of artefacts on the opti- 

misation. 
• Computational efficiency: we greatly increase the efficiency of 

our method by making approximations in the optimisation that 

have nearly no effect on the registration accuracy as well as by 

using modern deep learning registration techniques. 

The rest of this paper is organised as follows. We introduce 

he proposed framework in Section 2 . Experiments on two case 

tudies are described in Section 3 . A dataset with synthetic de- 

ormations is used to thoroughly test and compare different vari- 

nts of the methodology in Section 3.4 . A real-case scenario of 3D 

rain histology reconstruction is described in Section 3.5 . Finally, 

ection 4 discusses the results and concludes the article. 

. Methods 

.1. Preliminaries 

Consider a 3D histology reconstruction framework where dif- 

erent staining procedures are carried out and a reference volume 

s available (henceforth, we will assume this volume is an ex-vivo 

RI scan). Let { I c n (x ) } n =1 , ... ,N be a stack of N histological sections
3 
f contrasts c = 1 , . . . , C (e.g., H&E staining), defined on pixel loca- 

ions x over a discrete 2D image domain �. Paired sections of each 

ontrast are cut a few microns apart and are thus assumed to be 

rom the same tissue – but with independent deformations. 

We further assume that the reference MRI volume has been 

inearly aligned to the stack, and resampled into the planes of 

he histological sections: { I 0 n (x ) } n =1 , ... ,N . Typically, a 3D rigid body 

ransform is used between the MRI volume and one of the 

vailable contrasts (e.g., c = 1 ). Then, 3D histology reconstruction 

mounts to solving a set of interdependent 2D registration prob- 

ems. An initial 2D linear alignment between every section of 

he remaining contrasts ( c = 2 , · · · , C) and the correspondent MRI 

lices is subsequently computed. This registration not only solves 

he linear component of the problem, but also greatly simplifies 

he nonlinear part by bringing all the images to the same 2D coor- 

inate frame (with equal pixel dimensions). We finally assume that 

ll images (MRI and histology) have associated binary masks M 

c 
n (x ) 

iscriminating tissue vs. background and obtained with manual de- 

ineation or (semi-)automatic methods (e.g., Wang et al. 2016 ). 

Furthermore, we consider all (C + 1) N images vertices in a 

raph G, connected through a spanning tree with L = N(C + 1) − 1 

dges, such that any two images are connected by a unique path 

cross the tree. The choice of spanning tree is irrelevant, as the al- 

orithm presented below will guarantee convergence to the global 

ptimum. Here we assume that the tree consists of N − 1 edges 

onnecting the MRI slices to their neighbours (i.e., I 0 n to I 0 
n +1 

, ∀ n <

), as well a C × N edges connecting each MRI slice I 0 n to the C

orresponding histological sections I 1 n , . . . , I 
C 
n ( Fig. 1 ). 

Associated with the edges of the spanning tree, we define 

 set of L latent, noise-free, nonlinear, diffeomorphic transforms 

T l (x ) } l=1 , ... ,L . These transforms introduce directionality in the 

raph G. As for the choice of spanning tree, the chosen criterion 

or defining the direction of the transforms does not affect the re- 

ults of the algorithm. Here, we assume that the transforms point 

rom I 0 n to I c n , ∀ n, c, and from I 0 n to I 0 
n +1 

, ∀ n < N ( Fig. 1 ). Since these

ransforms are assumed to be diffeomorphic and thus invertible, 

ne can obtain the latent transform connecting any two images 

n G by composing a subset of (possibly inverted) transforms in 

T l (x ) } . 
Finally, we consider a set of K ≥ L nonlinear diffeomorphic 

ransforms between pairs of images in G, estimated with a diffeo- 

orphic registration algorithm (e.g., Ashburner, 2007; Avants et al., 

008; Dalca et al., 2018; Modat et al., 2012; Vercauteren et al., 
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Fig. 2. Example of three observations. R A : an intermodality registration between 

histological contrasts. R B , R C : intramodality registration within contrasts in the tree 

leaves. Blue and red arrows indicate the direction of the velocity fields from the 

spanning tree definition and observation path, respectively. Weight values are +1/-1 

when blue and red arrows follow the same/opposite direction. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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008 ): {R k (x ) } k =1 , ... ,K . Every R k can be seen as a noisy version of

 composition of transforms in {T l } and their inverses. We use a 

 × L matrix W to encode the transforms in {T l } that each R k tra-

erses, as follows: 

• W kl = 1 if T l is on the path of R k , 
• W kl = −1 if T −1 

l 
is on the path of R k , and 

• W kl = 0 otherwise. 

Even though R k can in principle connect any pair of nodes, one 

ould normally only register images that are not too far in the 

raph. In practice, we compute registrations between images at the 

ame level in the stack (MRI to histology, as well as between dif- 

erent histological stains), as well as between every image (MRI or 

istology) and its nearest neighbours in the stack ( Fig. 2 ). It is the

oal of our method to infer the most likely underlying {T l } given 

he observed {R k } , as explained in the following section. 

.2. Probabilistic modelling and Bayesian inference 

In this work, we assume that the latent transforms {T l } and the 

bserved registrations {R k } are explained by a probabilistic gener- 

tive model, such that 3D histology reconstruction can be posed as 

 Bayesian inference problem: given the K ≥ L observed noisy reg- 

strations, what is the most likely set of L underlying transforms 

i.e., those in the spanning tree) that gave rise to them? 

The proposed probabilistic model relies on a number of key as- 

umptions: 

• The observed registrations {R k } are conditionally independent, 

given the latent transforms {T l } . 
• The likelihood of each registration R k is parameterised by a set 

of parameters θ, for which we do not make any prior assump- 

tions, i.e., p(θ) ∝ 1 . 
• We do not make any prior assumptions on the distribution of 

the latent transforms {T l } , i.e., p( {T l } ) ∝ 1 . 

Under these assumptions, the generative model describing the 

oint probability distribution of the latent transforms, the likeli- 
4 
ood parameters and the observed registrations is: 

p 
({ T l } , { R k } , θ

)
= p ( { T l } ) p 

(
θ
) K ∏ 

k =1 

p 
(
R k | { T l } , θ;W k, : 

)

∝ 

K ∏ 

k =1 

p 
(
R k | { T l } , θ;W k, : 

)
(1) 

here we have dropped the dependency on x for simplicity. 

Within this framework, one can compute the most likely 3D re- 

onstruction by finding the most likely latent transforms that bring 

he histological sections into alignment; we note that this is a sub- 

et of {T l } , including only the transforms between histology and 

RI (subset S 1 ); the transforms between reference MRI slices (sub- 

et S 2 ) are not needed for the 3D histology reconstruction. In a 

ully Bayesian formulation, solving this problem requires marginal- 

sing over all the variables we are not seeking to optimise, includ- 

ng the likelihood parameters and the subset of latent transforms 

onnecting the reference MRI slices: 

ˆ T l 
}

l∈ S 1 
= argmax 

{ T l } l∈ S 1 
p 
({ T l } l∈ S 1 | { R k } 

)

= argmax 
{ T l } l∈ S 1 

∫ 
p 
({ T l } , θ| { R k } 

)
d θ

∏ 

l∈ S 2 
d T l . (2) 

Eq. 2 is often intractable due to the integral over transforms and 

ikelihood parameters. Instead, we optimise the joint probability of 

ll transforms (both subsets) and likelihood parameters: 

ˆ T l 
}
, ˆ θ = argm ax 

{ T l } , θ
p 
({ T l } , θ| { R k } 

)

= argm ax 
{ T l } , θ

p 
({ T l } , θ, { R k } 

)

= argm ax 
{ T l } , θ

K ∏ 

k =1 

p 
(
R k | { T l } , θ;W 

)

= argm ax 
{ T l } , θ

K ∑ 

k =1 

logp 
(
R k | { T l } , θ;W 

)
. (3) 

.3. Model instantiation 

There are two main design choices in our model: the represen- 

ation for the spatial transforms {T l } , {R k } , and the shape of the

ikelihood p(R k |{T l } , θ;W ) . 

.3.1. Model for spatial transforms 

We choose the Log-Euclidean framework to parameterise dif- 

eomorphisms in the Lie group of stationary velocity fields (SVFs, 

rsigny et al. 2006 ). Let { R k (x ) } and { T l (x ) } be the SVF in-

nitesimal generators whose integration using Lie exponentials re- 

ult in the corresponding diffeomorphisms R k (x ) = exp [ R k (x )] and

 l (x ) = exp [ T l (x )] . For fast computation of exponentials we use

he scaling-and-squaring approach ( Arsigny et al., 2006 ). From Lie 

roup manifolds, two relevant properties are derived. First, the in- 

erse of a transform is equivalent to its negation in the log-space: 

 

−1 
l ( x ) = exp [ −T l ( x ) ] ;
nd second, in a scenario of small deformations, the composi- 

ion of transforms can be approximated by truncating the Baker- 

ampbell-Hausdorff series at its first term ( Vercauteren et al., 

008 ): 

 l (x ) ◦ T l ′ (x ) ≈ exp [ T l (x ) + T l ′ (x )] . 

hese two properties greatly simplify evaluation of the likelihood 

erms described below. 
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.3.2. Likelihood models 

We consider two different likelihood models, Gaussian and 

aplacian. Both of them are based on two key assumptions. The 

rst assumption is statistical independence across spatial locations 

nd also between the horizontal and vertical components of the 

ransforms. We note that, in spite of such spatial independence, 

he smoothness of the solution will be guaranteed for two rea- 

ons: the observed registrations are often spatially smooth (lead- 

ng to smooth solutions for {T l } ), and the fact that we only solve

he problem at a sparse set of control points, as explained in 

ection 2.7.2 below. The second assumption is that each observed 

egistration is a noisy version of the “true” underlying transform, 

hich is a composition of a subset of the hidden transforms, 

ossibly inverted, as specified by the matrix W (as explained in 

ection 2.1 above). 

Let R 
ξ1 

k 
(x ) and R 

ξ2 

k 
(x ) be the horizontal ( ξ1 ) and vertical ( ξ2 )

omponents of the SVF of registration k at x , which we group into

wo K × 1 vectors R 

ξ j (x ) = [ R 
ξ j 

1 
(x ) , . . . , R 

ξ j 

K 
(x )] T , with j ∈ { 1 , 2 } . In

 similar fashion, let T 
ξ1 

l 
(x ) and T 

ξ2 

l 
(x ) be the two components of

he SVF of the l th latent transform, grouped into two L × 1 vectors 

 

ξ j (x ) = [ T 
ξ j 

1 
(x ) , . . . , T 

ξ j 

L 
(x )] T , with j ∈ { 1 , 2 } . The model of spatial

ransforms in Section 2.3.1 enables us to write: 

 

ξ j (x ) = W T ξ j (x ) + ζξ j (x ) , with j ∈ { 1 , 2 } , 
here ζξ1 (x ) and ζξ2 (x ) are K × 1 vectors with the horizontal and

ertical components of errors in the SVFs of the K registrations at 

 . The statistical distribution of the error ζ (Gaussian or Laplacian) 

ill shape the likelihood model, as described next. 

Gaussian The Gaussian model was presented in our previous 

onference article ( Iglesias et al., 2018b ). In short, it assumes that 

ach error ζ
ξ j 

k 
(x ) is independent from the others and follows a 

aussian distribution with zero mean and variance σ 2 
k 

, such that 

he likelihood is: 

 

ξ j (x ) ∼ N 

(
W T ξ j (x ) , diag [ σ 2 

k ] 
)
. (4) 

e use a model for the variances { σ 2 
k 
} , which explicitly assumes 

hat errors are larger when registering across modalities, or when 

egistering slices or sections further apart. Specifically, the variance 

f a registration is assumed to be a linear combination of inter- 

nd intra-modal variances: 

2 
k = c k σ

2 
inter + 

C ∑ 

c=0 

d k,c σ
2 
c , 

here c k ∈ { 0 , 1 } is an indicator variable which is equal to one if

he registration is across modalities (e.g., MRI to histology, or be- 

ween different histological stains), and zero otherwise; d k,c ≥ 0 is 

he separation between the registered slices or sections along the 

tack for the intramodal registration of the c-th constrast, and zero 

therwise; and σ 2 
c , σ

2 
c are model parameters that need to be esti- 

ated, i.e., θ = [ σ 2 
inter 

, σ 2 
c=0 , · · · , σ 2 

c= C ] 
T . 

Laplacian In spite of the model for the variances, the Gaussian 

ikelihood is sensitive to outliers in the registration. Such outliers 

ccur frequently in histology due to common artifacts such as fold- 

ng or tears. As an alternative, we propose a Laplacian model pe- 

alising the absolute value of the errors, i.e., the � 1 norm: 

 

ξ j 

k 
(x ) ∼ Laplace 

(
W T ξ j (x ) , b 

)
, (5) 

here b is the scaling parameter of the Laplace distribution, which 

e consider constant across registrations; this assumption enables 

s to solve a single linear program per location during inference –

ather than iteratively solving multiple linear programs. Moreover, 

odelling the dispersion of each registration separately as in the 

aussian case is not as important, due to the robustness of the � 1 
orm against outliers. Therefore, b is the only model parameter, 

.e., θ = [ b] . 
5 
.4. Inference algorithms 

Following the general inference framework in Section 2.2 and 

he design choices in Section 2.3 , we now present two specific al- 

orithms to solve the inference problem for the two proposed like- 

ihood models. 

.4.1. Gaussian 

Substituting the Gaussian likelihood from Eq. 4 into the max- 

misation problem from Eq. 3 and switching signs, we obtain the 

ollowing cost function ( Iglesias et al., 2018b ): 

C � 2 [ T 
ξ1 (x ) , T ξ2 (x ) , σ 2 

c , σ
2 
d )] = | �| 

K ∑ 

k =1 

log 
[
2 π(c k σ

2 
c + d k σ

2 
d ) 

]

+ 

2 ∑ 

j=1 

K ∑ 

k =1 

∑ 

x ∈ �

[ 
R 

ξ j 

k 
(x ) − ∑ L 

l=1 W kl T 
ξ j 

l 
(x ) 

] 2 
2(c k σ

2 
c + d k σ

2 
d 
) 

. (6) 

We use coordinate descent to solve this minimisation problem, 

lternately optimising for { T ξ j } j=1 , 2 and for θ = [ σ 2 
c , σ

2 
d 

] T , with the

ther fixed. For a constant θ, Eq. 6 becomes a simple weighted 

east squares problem, with a closed-form solution given by: 

 

ξ j 

l 
(x ) = 

K ∑ 

k =1 

Z lk R 

ξ j 

k 
(x ) , (7) 

or the two spatial coordinates ξ j , j = 1 , 2 . The regression matrix Z

s by: 

 = [ W 

T diag (1 /σ 2 
k ) W ] −1 W 

T diag (1 /σ 2 
k ) . 

With the hidden transforms fixed, there is no closed-form ex- 

ression for σ 2 
c and σ 2 

d 
. However, Eq. 6 becomes a smooth function 

f two variables that can be easily and quickly minimised with nu- 

erical methods, e.g., conjugate gradient ( Shewchuk et al., 1994 ) 

r BFGS ( Liu and Nocedal, 1989 ). 

.4.2. Laplacian 

Substituting the Laplacian likelihood from Eq. 4 into Eq. 3 , we 

btain the following objective function: 

 � 1 = −2 K | �| log ( 2 b ) − 1 

b 

2 ∑ 

j=1 

K ∑ 

k =1 

∑ 

x ∈ �

∣∣∣∣∣R 

ξ j 

k 
( x ) −

L ∑ 

l=1 

W kl T 
ξ j 

l 
( x ) 

∣∣∣∣∣
(8) 

ince the values of the optimal latent transforms that minimise 

q. 8 do not depend on the model parameter b, we can remove 

he terms related to b and switch signs to obtain the following cost 

unction: 

 � 1 

[
T ξ1 ( x ) , T ξ2 ( x ) 

]
= 

2 ∑ 

j =1 

K ∑ 

k =1 

∑ 

x ∈ �
| R 

ξ1 

k 
( x ) −

L ∑ 

l=1 

W kl T 
ξ1 

l 
( x ) | , (9) 

hich can be solved one spatial location x and direction (horizon- 

al ξ1 or vertical ξ2 ) at the time. Crucially, the minimisation of 

q. 9 can be rewritten as a linear program in standard form as 

ollows: 

inimize c T y 

s. t. A 

T 
1 y ≤ −R 

ξ j ( x ) , 

A 

T 
2 y ≤ R 

ξ j ( x ) , 

here: 

• y = [ D 

ξ j 

1 
(x ) , . . . , D 

ξ j 

K 
(x ) , T 

ξ j 

1 
(x ) , . . . , T 

ξ j 

L 
(x )] T is a (K + L ) × 1 vec-

tor concatenating the K absolute deviations, D 

ξ j 

k 
(x ) (defined be- 

low), and the latent transforms to estimate, T 
ξ j 

l 
(x ) . 
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Fig. 3. Example of the observational graph used with C = 2 and P = 3. Arrows show 

all computed registrations in the graph with their corresponding direction and the 

spanning tree is highlighted in black. 
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• c = [ 1 T 
K 
, 0 T 

L 
] T , where 1 K and 0 L are the all-one and all-zero vec-

tors with dimensions K × 1 and L × 1 , respectively. 
• A 1 = [ −I K , −W ] , where I K is the K × K identity matrix. 
• A 2 = [ −I K , W ] . 

Since the vector c zeroes out the second part of y, the objective 

unction of this linear program and Eq. 6 are identical. The inequal- 

ty constraints effectively force the deviations D 

ξ j 

K 
(x ) to be positive 

nd equal to: 

 

ξ j 

K 
(x ) = | R 

ξ j 

k 
(x ) −

L ∑ 

l=1 

W kl T 
ξ j 

l 
(x ) | . 

herefore, the linear program is equivalent to the problem of min- 

mising C � 1 in Eq. 9 , with the difference that we can now use well-

stablished linear programming algorithms to obtain the solution 

which is simply the second part (last L elements) of the optimal 

. 

.5. Spatially-varying subgraphs 

So far we have assumed any location in the image domain 

 x ∈ �) is modelled with the same static graph structure, encoded 

n the matrix W . However, it is desirable to model in the graph

mage features and artefacts that may influence registration. For 

xample, one may want to remove edges from G when modelling 

ixels far away from the masks { M 

c 
n } , which cannot be mapped re-

iably across images, or edges modelling pixels with artefacts such 

s folds and tears. 

To tackle this problem, we propose to build spatially-varying 

ubgraphs of G for each spatial location x ∈ �, which we represent 

s G(x ) . We also build companion matrices W = W (x ) that encode

he relationship between the registrations and the hidden trans- 

orms at each location, considering the structures of G(x ) . These 

ubgraphs G(x ) contain a subset of the edges in G and are built by 

imply removing from G all connections going from I c n (x ) to I c 
′ 

n ′ (x ) ,

or which no tissue is present in the mask or the source image at 

ocation x , i.e., when M 

c 
n (x ) = 0 . 

This approach easily accommodates the algorithm to cases for 

hich we have irregular graphs; e.g., histological contrasts with 

ifferent number of sections or missing correspondence between 

ontrasts. 

.6. Registration networks 

A learning-based strategy inspired by ( Balakrishnan et al., 2019 ) 

s used to compute the SVF maps { R k (x ) } . It consists of a back-

one network (U-Net type, Çiçek et al. 2016 ) that produces a low- 

esolution SVF at 1/8 of the original resolution. Then, a rescaling 

ayer with linear interpolation is used to get a full resolution ve- 

ocity field. “Scaling and squaring” ( Arsigny et al., 2006 ) is used 

o integrate the SVFs and compute the deformation fields {R k (x ) } 
sed for spatial alignment. The inverse deformation field is com- 

uted by integrating the negated SVFs and used to induce symme- 

ry in the training by evaluating the cost function at both reference 

nd target image spaces. A local normalised cross-correlation and 

 smoothness regularisation term constraining the spatial gradient 

f the deformation are used as the composite loss function in in- 

ramodality networks. For intermodality registration, we use our 

ynthesis based method presented in Casamitjana et al. (2021) . In 

hort, this method uses a registration loss for weakly supervised 

mage translation between domains where corresponding images 

xist but the spatial correspondence is not known (i.e., as be- 

ween histology and MRI). The registration loss is complemented 

ith a structure preserving constraint based on contrastive learn- 

ng, and the algorithms produces an inter-modality registration as 

y-product. 
6 
The learning approach is used to train a total of C × (C + 1) / 2

egistration networks on the entire dataset, one for every possi- 

le pair of contrasts. Intermodality networks are trained with ran- 

omly selected pairs of matching images I c n , I 
c ′ 
n at every minibatch 

i.e., with fixed n , and c � = c ′ ). Intramodality networks use ran-

omly selected pairs of images, constrained to be within a max- 

mum number of slices – in practice, we use 4, i.e., I c n , I c 
n ′ , with

xed c and | n − n ′ | ≤ 4 . In order to increase the generalisation

bility of the models, all networks use an augmentation scheme 

hereby images are spatially deformed at every minibatch with 

 random, smooth, nonlinear displacement field, obtained by lin- 

ar interpolation of a low resolution grid of control points ( 9 × 9 ) 

hose strength depends on the image resolution. 

.7. Implementation details and summary of the algorithm 

.7.1. Structure of the observational graph 

As explained in Section 2.1 , we compute K registrations be- 

ween pairs of images in the graph. First, we compute intermodal- 

ty registrations between all pairs of corresponding slices from dif- 

erent contrasts, i.e., between I c n and I c 
′ 

n , with c � = c ′ . And second,

e compute intramodality registrations between every pair of im- 

ges of the same contrast, that are not more than P slices apart, 

.e., between I c n and I c 
n ′ , with | n − n ′ | ≤ P . The maximum separation

 controls the smoothness of the solution (higher values of P yield 

moother reconstruction but also more banana effect). An example 

f observational graph is shown in Fig. 3 . 

.7.2. Optimisation details 

Since registration yields smoothly varying SVF maps (upscaled 

rom 1/8 resolution, as explained in Section 2.6 ), we greatly re- 

uce the computational requirements of our method by running 

he proposed inference algorithm on low-resolution SVFs. As in 

ection 2.6 , we use linear interpolation to upsample the refined 

VFs to the full resolution and use scaling and squaring to com- 

ute the final deformation fields. 

In terms of optimisation approaches, we use different methods 

or the two likelihood models. For the Gaussian likelihood, we use 

n interative coordinate descent approach, where Eq. 7 is used to 

pdate the latent transforms, and a quasi-Newton method (L-BFGS) 

s used to update the model parameters. In the Laplacian likeli- 

ood, we solve the linear program in Section 2.4.2 with the dual 

implex method ( Lemke, 1954 ). 
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.7.3. Summary 

The presented algorithm goes through a sequential number of 

teps. First, we build the graph and its associated spanning tree by 

nding correspondent slices between contrasts ( Section 2.1 ). Then, 

e compute the specified registrations above ( Section 2.7.1 ) using 

he learning based approach introduced in Section 2.6 . With this 

nformation and the likelihood model of choice in hand, we use 

q. 3 to solve the inference problem at each voxel in the space of 

he low-resolution velocity fields. Finally, we upsample the solu- 

ion with linear interpolation and integrate it with the scaling and 

quaring technique ( Arsigny et al., 2006 ) to yield the final estimate 

f the latent deformation fields. 

The package is written in Python and made publicly available 

n https://github.com/acasamitjana/3dhirest . Registration networks 

re optimised using PyTorch and the linear program is solved using 

he implementations found in the Gurobi package https://www. 

urobi.com/downloads/ . 

. Experiments and results 

.1. Data 

To test and evaluate our framework, we use two datasets: 

ne synthetic, which enables evaluation of registration errors with 

ense ground truth, and one real, to test the performance of the 

odel on images with real distortions due to histological process- 

ng. 

.1.1. Synthetic dataset 

The synthetic dataset consists of T1, T2 and FLAIR MRI scans 

rom the training subset ( N = 285 ) of the Brain Tumor Segmen-

ation (BraTS) dataset ( Menze et al., 2014 ). The T1 images with 

ontrast (“T1c”) are used as reference volumes, and the T2 and 

LAIR images are used as a proxy for two histological contrasts. 

he BraTS scans are resampled (by the challenge organisers) to 

mm 

3 isotropic resolution, and we define the z coordinate along 

he inferior-superior (I-S) direction. We generate synthetic 2D non- 

inear deformation fields using a grid of control points and B- 

pline interpolation ( Prautzsch et al., 2002 ), independently for each 

xial slice of the T2 and FLAIR images, in order to mimic ge- 

metric distortion due histological processing (further details in 

ection 3.3 and Figure 7 below). 

.1.2. Real dataset 

The real dataset is a set of publicly available images from 

he left hemisphere from a 34-year-old donor, distributed by the 

llen institute ( Ding et al., 2016 ) at http://atlas.brain-map.org/ . 

he dataset includes a multi-echo flash MRI scan acquired on a 

T scanner at 200 μm resolution, which we use as reference for 

he 3D histology reconstruction. Two different histological con- 

rasts are also available at sub- μm in-plane resolution (which we 

esampled to 250 μm for convenience): 641 Nissl stained coro- 

al sections with 200 μm spacing, and 287 coronal sections with 

00 μm spacing and immunostained using parvalbumin. The cor- 

espondence between histological sections is found by matching 

he closest pair, with errors no superior than 0.1mm. For each sec- 

ion, we generate an associated tissue mask by thresholding and 

orphological operations. The final stacks of histological images do 

ot have regular spacing due to missing sections, and there are a 

umber of gaps of several mm without any sections at all, which 

ivide the hemisphere into six different slabs. 

In order to estimate the linear registration between the ref- 

rence volume and histological stacks, we first used our previ- 

usly presented algorithm ( Tregidgo et al., 2020 ) to co-register the 

issl sections and the MRI. Once the MRI was linearly aligned to 

he stack, we used a block-matching algorithm ( Ourselin et al., 
7 
001 ) (as implemented in NiftyReg, Modat et al., 2010 ) to inde- 

endently compute an affine transform between each histological 

ection and its corresponding resampled MRI slice. Moreover, us- 

ng the left hemisphere from the ICBM nonlinear 2009b symmet- 

ic atlas ( Fonov et al., 2009 ), we compute the projection from the 

ubject space to MNI coordinates. 

Quantitative evaluation for this dataset is carried out using 

andmarks generated as follows. First, one salient point for each 

issl section (details below) is automatically sampled. Next, a first 

bserver (JEI) marked the equivalent locations on the parvalbumin 

ections (where available) and on the resampled MRI. This gen- 

rates a set of 641 pairs of landmarks for Nissl/MRI, and 287 for 

issl/parvalbumin, which can be used for quantitative evaluation. 

he same observer (JEI) reannotated the landmarks on a different 

ay, for estimation of intra-observer variability. A second observer 

AC) also annotated the same landmarks, for estimation of inter- 

bserver variability. 

The reference landmarks on the Nissl sections were sampled in 

 manner that ensured both salience and uniform spatial distribu- 

ion. First, we applied a Harris corner detector ( Harris et al., 1988 )

ith a low threshold on the quality of the corner (0.001) to every 

ection. Next, we randomly sampled a location on every section 

ith a uniform distribution, and centred on it a Gaussian kernel 

ith standard deviation σ= 20 pixels (i.e., 5 mm) in both x and y .

e used this spatial Gaussian distribution to modulate (multiply) 

he scores from the Harris detector, and picked the landmark with 

he highest score. 

.2. Metrics 

The synthetic dataset enables dense quantitative evaluation of 

he 3D reconstruction methods at the pixel level. Let φc 
n (x ) repre- 

ent the ground truth 2D deformation field between the reference 

lice n and histological contrast c, and let ˆ φc 
n (x ) be the deforma- 

ion field estimated by an algorithm. To assess the performance of 

he presented framework, we define different performance metrics. 

We first define the pixel-wise error as the bivariate deviation of 

he estimate from the ground truth deformation field at each pixel. 

ence, for slice n , contrast c, and location x , we have: 

 

c 
n (x ) = φc 

n (x ) − ˆ φc 
n (x ) . (10) 

Based on this error, we define two performance metrics. First, 

he intra-slice error , defined as a global average over all pixels and 

lices of the module of the pixel-wise error. The metric is com- 

uted only within the tissue mask that results from the intersec- 

ion of the reference and registered slices, resulting in a valid do- 

ain �n for each slice: 

 

c 
W 

= 

1 

N 

N ∑ 

n =1 

1 

| �n | 
∑ 

x ∈ �n 

‖ e c n (x ) ‖ (11) 

We also want to measure the consistency across slices, some- 

hing that the intra-slice error doesn’t capture. For this purpose, we 

se a second metric referred to as inter-slice error , which measures 

he error consistency across the direction of the stack. Intuitively, 

he inter-slice error measures the smoothness of the reconstruction, 

y comparing the consistency of the errors across neighbouring 

lices – if errors are consistent, the reconstruction is smooth. Its 

pecific definition is: 

 

c 
B = 

1 

N − 1 

N−1 ∑ 

n =1 

1 

| �n | 
∑ 

x ∈ �n 

‖ e c n ( x ) − e c n +1 ( x ) ‖ . (12) 

hese two metrics complement each other in measuring the trade- 

f between accuracy and smoothness of the recovered 3D volume. 

https://github.com/acasamitjana/3dhirest
https://www.gurobi.com/downloads/
http://atlas.brain-map.org/
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Fig. 4. Top row: the first two columns show the intra-slice and inter-slice error for NiftyReg and RegNet when used in isolation (i.e., for each slice and contrast independently) 

and when refined with the different variants of the algorithms proposed in this paper. The last column shows a summary of previous plots comparing the errors for the 

distorted images, the baseline algorithm (IR), the registration approaches used in isolation, and the proposed approach ST3-L1. Each metric is computed for T2 and FLAIR 

modalities with respect to the T1, as well as for the consistency error between themselves. 

Fig. 5. Inter- (dashed) and intra-slice (solid) errors as a function of neighbours in the observational graph ( P), for the different versions of our algorithm. Setting P = 0 is 

equivalent to running the algorithm independently for each slice. 
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We compute them not only between the reference volume and 

he two (surrogate) histological stains (i.e., T2, FLAIR), but also be- 

ween these two contrasts - which is easily achieved by defining: 

c,c ′ 
n = ( φc 

n ) 
−1 ◦ φc ′ 

n 

 

c,c ′ 
n +1 

(x ) = φc,c ′ 
n (x ) − ˆ φc,c ′ 

n (x ) 

nd use the estimation error to compute E c,c 
′ 

B 
and E c,c 

′ 
W 

.3. Experimental setup 

To generate the synthetic deformations in the BraTS dataset, we 

ndependently deform each axial slice of the T2 and FLAIR with 

D deformation fields generated as follows. First, normally dis- 

ributed, low-resolution deformation fields of size 9 × 9 ×2 are 

enerated independently for each slice, subject and modality (T2, 
8 
LAIR). Each element in the low-resolution field is an indepen- 

ent Gaussian variable with zero mean and a standard deviation 

hich is constant for each slice, and which is sampled from a 

niform distribution U[3 , 7] (in pixels). Each deformation field is 

hen resized to the original image size using B-Spline interpola- 

ion. We explicitly avoid using velocity fields to prevent imitating 

he deformation model used in the algorithm. The final volume is 

uilt by applying the deformations and resampling with bilinear 

interpolation. 

To measure the robustness of our framework against large reg- 

stration errors, we introduce outliers in the synthetic dataset. 

pecifically, we further distort subsets of the T2 and FLAIR slices 

2%, 5%, 10% and 20%, to test scenarios with increasing number of 

utliers) by applying large random rotations ( 90 ◦, 180 ◦, or 270 ◦),

hich lead to large errors in the nonlinear registration algorithm. 

ach modality is distorted independently. Evaluation is carried out 

nly on the undistorted slices. 
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Fig. 6. Comparison of the intra-slice error (top row) and inter-slice error (bottom row) for different level of outliers per modality (0-20%). The baseline method (IR) and 

different configurations of the algorithm using RegNet as base algorithm are tested (ST2-L2, ST2-L1, ST3-L2, ST3-L1) and the errors are independently reported for each 

modality (T2, FLAIR) with respect to the T1, as well as for the consistency error between themselves. 
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In order to analyse the impact of the deep learning registration 

echniques, we consider two additional diffeomorphic registration 

lgorithms: 

• NiftyReg (NR) ( Modat et al. 2012 ): we use NiftyReg with SVF pa-

rameterisation (“–vel” option), control point spacing of 8 pixels, 

local normalised cross correlation similarity metric and bending 

energy penalty term. This setup makes the NR model as similar 

to our deep learning registration framework as possible. 
• Registration Networks (RegNet): we use learning-based registra- 

tion networks, trained as reported in Section 2.6 . 

In our experiments, we compare slice-wise registration using 

hese two algorithms, with different versions of our Spanning Tree 

ramework (henceforth, ST) as well as with a state-of-the-art base- 

ine algorithm: 

• ST2-L2: single-contrast framework presented in 

Iglesias et al. (2018b) using masks in the graph and a Gaus- 

sian likelihood for the registrations. We run the algorithm 

independently for each histological contrast. 
• ST2-L1: same as ST2-L2 but with a Laplacian likelihood. 
• ST3-L2: multi-contrast framework presented in this work (joint 

registration of contrasts) using masks and a Gaussian distribu- 

tion for the registrations. 
• ST3-L1: same as ST3-L2 but with a Laplacian likelihood. 
• IR: finally, we implement a state-of-the-art registration refine- 

ment approach presented in Adler et al. (2014) , which we will 

refer to as “Iterative refinement” (IR). This algorithm uses a dif- 

feomorphic registration method (in our case, NiftyReg) to find 

a deformation that simultaneously aligns each histology sec- 

tion to the correspondent MRI slice and their most immediate 

neighbours, using a coordinate ascent approach. We run 5 iter- 

ations over the stack of histology sections. 
9 
.4. Results on synthetic dataset 

In Fig. 4 we compare different configurations of the algorithm 

sing NR and RegNet as registration methods. RegNet, which is 

rained specifically for the problem at hand (as opposed to used 

 generic optimiser) provides better initial alignment between 

odalities than NR. Over the initial linear alignment, RegNet im- 

roves the intra-slice error by 49% and 42% for T2 and FLAIR 

odalities, respectively, compared to the 37% and 8% using NR. 

oreover, estimation error variability in RegNet is consistently ∼
 x times lower than in NR. According to these results, the de- 

endence of standard intermodality registration algorithms (e.g., 

iftyReg) on the contrast and image appearance can be partly mit- 

gated using learning-based approaches. Further refinement can be 

chieved using the presented framework with different modelling 

ptions. In our previous work, we used a single-contrast approach 

ith the � 2 -norm as a cost function (ST2-L2), yielding around 10% 

xtra improvement in each modality. 

The extensions introduced in this work improve upon that re- 

ult in two ways: (i) the � 1 norm can correct larger registra- 

ion errors with respect to direct registrations (no refinement); 

nd (ii) a multi-contrast framework can correct registration er- 

ors in one modality using redundant measurements from other 

odalities. We perform statistical significance analysis between 

ll methods compared, with the multi-contrast framework using 

he � 1 norm (ST3-L1) significantly outperforming all other algo- 

ithms ( p < . 01 ), both with NR and RegNet. Over the initial regis-

rations, ST3-L1 yield improvements of 19% and 22% (RegNet) and 

3% and 29% (NR) on the intra-slice error, for T2 and FLAIR, respec- 

ively. NR yields smoother reconstructions when combined with 

ur proposed refinement method, while RegNet achieves better 

nter-modality alignment ( Fig. 4 , summary). Apart from the quanti- 

ative evaluation, the smoothness of the reconstruction is apparent 
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Fig. 7. Reconstructed coronal view for the T2 and FLAIR scans of a sample subject from BraTS ( Menze et al., 2014 ). From left to right we show the original image, the original 

image with synthetic deformations using B-Splines, the initial registrations using RegNet, the output of the ST2-L2 / NiftyReg algorithm presented in Iglesias et al. (2018b) , 

the output of the ST3-L1 (RegNet) algorithm presented here, and the ground truth for each contrast. The arrows point at tumorous areas and other regions (e.g., brain stem, 

cerebellum) which are shown to be hard to register. 

Fig. 8. Sagittal and axial views of reference MRI and the reconstruction of the available contrasts (Nissl and parvalbumin), using RegNet combined with ST3-L1. 
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rom the visualisation of the error in the orthogonal planes (see 

ection 2 in the supplementary material). Unless otherwise spec- 

fied, we use RegNet with ST3-L1 as default configuration for the 

roposed method throughout the rest of this paper. 

Fig. 5 shows the results of varying the number of neigh- 

ours in the observational graph, P . This parameter represent 

 trade-off between several factors: smoothness, banana effect, 

-shift error accumulation, accuracy and computational require- 

ents. For example, the larger the redundancy in the graph (larger 

 ) the more robust and smooth the method is at the cost of 

traighten curved structures. The baseline, P = 0 , builds a discon- 

ected graph using the raw intermodality observations from Reg- 

et directly. The results in this figure show that the optimal num- 

er of neighbours depends on the likelihood function. In the � 2 - 

orm case, P = 1 is the optimal number of neighbours for the 

rade-off between smoothness and banana effect. However, the � 1 - 

orm is more robust to errors in intramodality registration with 

ncreased number of neighbours in the observational graph. We 

se a paired t -test to quantify statistically significant mean dif- 

erences and found that P = 2 is the optimal number of neigh- 

ours for both the inter-slice and intra-slice error when using the 

aplacian likelihood; from P ≥ 3 the z-shift error start to accu- 

ulate. Therefore, we will use P = 2 (combined with RegNet and 
10 
T3-L1) throughout the rest of this manuscript, unless explicitly 

pecified. 

In order to test the robustness of the framework against out- 

iers, we used RegNet for the initial registrations and compared dif- 

erent algorithm configurations against increasing rates of outliers. 

ig. 6 shows the inter- and intra-slice error for each contrast as well 

s the error consistency across contrasts. The presented framework 

specially using the � 1 -norm) is more robust than the baseline IR 

ethod, which breaks down for more than 5% of outliers. Errors 

row with the proportion of outliers, as expected, but the rate at 

hich performance decreases is different for the different configu- 

ations. The � 1 -norm appears to be robust to a considerable num- 

er of outliers (up to 10–20%). The � 2 -norm is much more sen- 

itive to outliers and its performance decreases much faster. We 

ote that the higher error of the ST3 configurations is partly due 

o the fact that the higher number of registrations K means that 

ore outliers are present in the observational graph. Nonetheless, 

T3 appears to improve the error consistency and, when combined 

ith the robust � 1 -norm, it boosts the performance of the algo- 

ithm. 

To sum up, the results on the synthetically deformed data show 

hat ST3-L1 with RegNet achieves the highest consistency across 

ontrasts and presents the best trade-off between the different 
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Fig. 9. Close-up of 3D reconstructions produced by linear alignment, RegNet alone and its combination with the proposed approach (ST3-L1). Heterogeneous regions such as 

the cerebellum (red and magenta arrow) or the hippocampus (green and yellow arrows) as well as tissue boundaries (blue and pink arrows) are corrected by the algorithm. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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actors such as accuracy and smoothness. It outperforms our previ- 

us method from Iglesias et al. (2018b) , which is based on NiftyReg 

nd ST2-L2. Qualitative results comparing both algorithms on a 

ase from BraTS are shown in Fig. 7 . 

.5. Results on Allen atlas 

For 3D reconstruction of the histology of the Allen atlas, we use 

egNet as the registration algorithm and ST3-L1 configuration with 

 = 4 neighbours in each of the three stacks of images; we increase

 with respect to the BraTS dataset to compensate for the lower 

pacing between sections. Due to a number of larger gaps between 

ections in this dataset, this process yields a disconnected graph 

ith 5 separate slabs. Therefore, each slab can be processed inde- 

endently, which reduces the memory footprint of the algorithm. 
11 
Qualitative results in the sagittal and axial planes are shown 

n Figs. 8 and 9 , where the reconstructed volumes are resampled 

t 0.25mm isotropic resolution. 3D histology stacks of both Nissl 

nd parvalbumin contrast appear to be aligned with the reference 

olume at the same time that provide smooth reconstructions. A 

lose-up in the temporal lobe shows that, even though RegNet 

rovides good initial alignment in more homogeneous areas (e.g., 

erebral cortex), more jagged reconstructions are recovered in het- 

rogeneous areas such as the hippocampus and the cerebellum. 

he framework presented here is able to smooth out some of these 

ffects. 

The algorithm not only recovers smooth reconstructions, but 

lso produces registrations that are accurate and robust. Fig. 10 

hows the reconstruction of two consecutive heavily damaged 

oronal sections in plane, i.e., in coronal view. Despite the pres- 
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Fig. 10. Coronal view of Nissl staining and MRI for two consecutive sections (number 1564 in (a), number 1568 in (b)), in the presence of artefacts, at high-resolution (8 μm). 

The closeup in (c) shows a well registered area from section 1568 with large registration errors in section 1564 due to severe artefacts (missing tissue), while the closeup in 

(d) focuses on a region with typical histology artefacts (cracks, holes). We have manually traced the white matter surface in the histology and displayed it on the registered 

MRI. The images show that the proposed method is not only robust but also yields accurate reconstructions. Arrows indicate large registration errors due to data artefacts, 

which are neither propagated to the rest of the image nor to the neighbouring sections. 

Fig. 11. Landmark error using RegNet (left) and NiftyReg (right) as base algorithms for alignment between the Nissl/MRI, Nissl/parvalbumin and MRI/parvalbumin. Inter-slice 

and intra-slice errors are computed as stated in Section 3.1.2 . 
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nce of strong artefacts (e.g., cracks, torn and missing tissue), our 

ethod is able to produce smooth reconstructions that are robust 

gainst these artefacts and yield accurate 3D reconstructions. Par- 

icularly, large registration errors ( Fig. 10 a) are not propagated to 

eighbouring sections ( Fig. 10 bc). Moreover, despite the fact that 

econstruction is not accurate around histology artefacts ( Fig. 10 d), 

t can be seen that accurate accuracy is preserved away from the 

egions with artefacts. The correspondence between the three con- 

rasts on a section with severe artefacts as well as the smoothness 

f the deformation field in plane is illustrated in Fig. 4 in the sup-

lementary material. 

Finally, Fig. 11 shows boxplots for the intra-slice errors com- 

uted from the manually placed landmarks, and compares them 

o the inter- and intra-observer variabilities. Even though the me- 

ian error does not improve with respect to RegNet (as it did on 

he synthetic dataset, Fig. 7 ), there is a small decrease in out- 
12 
iers (specially using NR) after refinement of the registrations with 

ur proposed approach. This is despite the fact that the additional 

moothness imposed by our approach (apparent from Figs. 8 and 

 ) necessarily represents a trade-off with accuracy. Compared with 

he initial affine alignment, our method achieves reductions of 19% 

n Nissl/MR registration, 21% in parvalbumin/MRI registration, and 

0% in Nissl/parvalbumin in the median error. While these differ- 

nces may not seem large at first, they have a very noticeable im- 

act on the quality of the output (again, see Figs. 8 and 9 ). 

In absolute terms, our approach achieves median registration 

rrors of approximately 1 mm or below: 0.88 mm for Nissl/MRI, 

.05 mm for parvalbumin/MRI, and 0.83 mm for Nissl/parvalbumin. 

hese are approximately within 0.5 mm of the intra- and inter- 

bserver variability (0.71/0.79 mm for Nissl/MRI, and 0.59/0.73 mm 

or Nissl/parvalbumin). Using NiftyReg as a base algorithm, land- 

ark misalignment is increased mostly due to errors in the initial 
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bservations, with the exception of the Nissl/parvalbumin registra- 

ion that achieves an inter-observer level of error. 

. Discussion and conclusion 

In this manuscript, we have presented a probabilistic model for 

oint registration of image stacks in histology and MRI. Volumetric 

istology reconstruction is posed as a Bayesian inference problem, 

hich can be solved analytically ( � 2 -norm) or with standard lin- 

ar programming techniques ( � 1 -norm). The algorithm effectively 

alances banana effect, z-shift effect and registration accuracy to 

roduce 3D reconstruction that are both smooth and precise –

nd also robust, if the version with the � 1 -norm is used. Correct- 

ng other histology artefacts (e.g., tears or cracks), typically charac- 

erised by sharp transitions, is out of the scope of this work, even 

hough our robust framework minimises their impact on the final 

econstruction. 

A number of assumptions on the data are made in this work. 

irst, we assume smooth transitions between nodes in the graph. 

his smoothness depends directly of the regularity of the anatomy 

nd the spacing between sections. We have presented positive re- 

ults on the Allen datasets, which has spacings (20 0/40 0 μm) that 

re comparable if not larger than those typically used in human 

rain atlasing (e.g., Amunts et al. (2013) ; Iglesias et al. (2015) ;

ushkevich et al. (2021) ). Therefore, we are convinced that the 

moothness assumption will be met but most datasets. We also as- 

ume the availability of an external 3D reference like MRI, which 

s typically acquired in most 3D histology works to avoid z-shift 

nd banana effect Malandain et al. (2004) . This reference volume 

s linearly aligned to the stack of histology sections, a problem 

hat is much simpler than estimating the in-plane non-linear de- 

ormations; iterating between a 3D rigid body transform and the 

D non linear refinement yields very fast convergence of the 3D 

ransform. Finally, we also assume the availability of tissue masks, 

hat are used to reduce the impact of remaining histology arte- 

acts and to reduce the complexity of the problem in inference. In 

ractice, these masks can be easily computed using simple thresh- 

lding and morphological operations thanks to the strong contrast 

etween tissue and the (glass) background. 

Our algorithm builds on standard registration techniques, with 

he only requirement that they parameterise the deformations 

ith stationary velocity fields. This parameterisation and the like- 

ihood models presented here enable us to define a convex prob- 

em with a unique global optimum. Nonetheless, the truncation of 

he BCH formula, despite not being uncommon in the literature 

 Lorenzi and Pennec, 2014 ; Rohé et al. 2016 ; Sivera et al. 2019 ),

ntroduces some error in the calculations. Yet, this error is gen- 

rally quite small (see results in Section 1 of the supplemen- 

ary material) and is outweighed by the benefits in terms of op- 

imisation, i.e., the guarantee that the global optimum will be 

ound. 

In our experiments, we have compared a classical algorithm 

uilding on explicit optimisation (NiftyReg) and an unsupervised 

achine learning approach building on modern neural networks 

RegNet). The latter learns a global, data-dependent deformation 

odel that, in practice, is shown to be more accurate and supe- 

ior to generic optimisation algorithms such as the conjugate gra- 

ient strategy used by NiftyReg. While the neural network requires 

unsupervised) training, it provides quick predictions for the mea- 

urements {R k (x ) } (i.e., the pairwise registrations), which can be 

omputed in the order of seconds to a few minutes, depending 

n the size of the problem (number of images, number of con- 

rasts, size of the images, etc.). NiftyReg is between one and two 

rders of magnitude slower, as it iteratively optimises the defor- 

ation for every R k , such that computing the whole set of reg- 

strations take between minutes and hours. Such differences are 
13 
educed when accounting for network training times, being more 

fficient for larger datasets e.g., several minutes per subjects in the 

raTS dataset. These computed registrations are used to build a 

onnected graph (i.e. all nodes are connected by at least one path) 

efined by the underlying spanning tree; otherwise, if some nodes 

emain isolated, the solution would be ambiguous and extra reg- 

larisation would be required for inference. Spatially varying sub- 

raphs of the initial graph enables faster (avoid regions far from 

issue) and more robust inference (remove observations with arte- 

acts, such as missing tissue or holes). Once the registrations have 

een computed, solving the linear program at the control points 

akes approximately 20 seconds for a BraTS case on an Intel Core 

7-9800X processor with 8 cores (150 minutes if the problem is 

olved at every pixel instead). 

The extension to multiple contrasts has two main implications. 

irst, there is an increasing demand of computation and mem- 

ry, as the number of observations increase quadratically with the 

umber of contrasts. And second, there is an increase of the num- 

er of cycles in the observation graph, making it more redundant 

nd robust. In other words: since the number of latent variables 

ncrease linearly (rather than quadratically), the inference model 

ecomes progressively more overdetermined. Moreover, a multi- 

ontrast framework is shown to improve the consistency between 

econstructed volumes for different histological contrasts as seen 

n Fig. 4 . The use of an � 1 -norm further increases the robustness of

he framework in the presence of low to moderate levels of out- 

iers. No running time difference has been found in practice be- 

ween using an ST3 approach or solving the inference problem in- 

ependently for each contrast using ST2. Overall, we showed that 

ur framework provides a more robust and accurate alternative to 

he baseline iterative method IR. 

The usefulness of the framework we have presented has been 

hown with a publicly available real test case from the Allen hu- 

an brain atlas, which has two available contrasts (stains). De- 

pite the fact that the two stains are sampled at different fre- 

uencies (yielding an irregular graph structure) and that typical 

istology artefacts are found in both contrasts (e.g., tears, folding, 

racks, inhomogeneous staining), our method is able to recover 

he original 3D shape with smooth transitions between slices. 

e have shared our results through the OpenNeuro repository 

https://openneuro.org/datasets/ds003590) along with the mapping 

o MNI space, providing the neuroimaging community with a 

ross-scale link between the two atlases. 

In the modelling step, different assum ptions are made about 

he observed deformation fields, such as the independence be- 

ween registration noise and spatial location, or the conditional in- 

ependence of the observations given the latent variables. While 

hese assumptions are violated to different extents in different sce- 

arios (application, base registration algorithm), the results on the 

wo datasets have shown that our proposed method works well in 

ractice. We speculate that the different degrees of departure from 

he assumptions may be behind some of our empirical results. 

Extensions of this work can follow several directions, being the 

rst one evaluating learning-based registration-by-synthesis ap- 

roaches to improve initial intermodality alignment ( Qin et al., 

019; Xu et al., 2020 ). A second direction is to consider a more re-

listic approach to model the registration errors that accounts for 

patial correlations. A third step would be to integrate intensity 

omogenisation techniques in the framework to jointly correct for 

neven staining. Moreover, imputation methods to fill the gaps and 

mprove continuity between sections may be very well explored. 

We plan to use this framework on the 3D histology recon- 

truction pipeline introduced by Mancini et al., 2020 to build a 

m-resolution probabilistic atlas of the human brain. The accu- 

ate 3D reconstruction of histological atlases with the proposed 

ethod will enable volumetric studies of the whole human brain 
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t the subregion level, with much higher specificity than current 
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