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ABSTRACT

Developing a robust algorithm to diagnose and quantify the severity of the novel coronavirus disease 2019
(COVID-19) using Chest X-ray (CXR) requires a large number of well-curated COVID-19 datasets, which is
difficult to collect under the global COVID-19 pandemic. On the other hand, CXR data with other find-
ings are abundant. This situation is ideally suited for the Vision Transformer (ViT) architecture, where a
lot of unlabeled data can be used through structural modeling by the self-attention mechanism. How-
ever, the use of existing ViT may not be optimal, as the feature embedding by direct patch flattening or
ResNet backbone in the standard ViT is not intended for CXR. To address this problem, here we propose
a novel Multi-task ViT that leverages low-level CXR feature corpus obtained from a backbone network
that extracts common CXR findings. Specifically, the backbone network is first trained with large pub-
lic datasets to detect common abnormal findings such as consolidation, opacity, edema, etc. Then, the
embedded features from the backbone network are used as corpora for a versatile Transformer model
for both the diagnosis and the severity quantification of COVID-19. We evaluate our model on various
external test datasets from totally different institutions to evaluate the generalization capability. The ex-
perimental results confirm that our model can achieve state-of-the-art performance in both diagnosis
and severity quantification tasks with outstanding generalization capability, which are sine qua non of
widespread deployment.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

further spread of disease and thereby reduce the burden on the
saturated health care system.

The novel coronavirus disease 2019 (COVID-19) caused by se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
emerged as one of the deadliest viruses of the century, resulting
in about 137 million people infected with over 2.9 million death
worldwide as of April 2021. In the light of the unprecedented
pandemic of COVID-19, public health systems have faced many
challenges, including scarce medical resources, which are pushing
healthcare providers to face the threat of infection (Ng et al., 2020).
Considering its ominously contagious nature, the early screening of
COVID-19 infection becoming increasingly important to avert the
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Currently, the real-time polymerase chain reaction (RT-PCR) is
considered as the gold standard in the diagnosis of COVID-19 for
its high sensitivity and specificity (Tahamtan and Ardebili, 2020),
but it takes several hours and even days depending on regions to
get the exam results due to overstressed laboratories. Since the
majority of patients with confirmed COVID-19 present positive ra-
diological findings, the radiologic examinations can be useful for
rapid screening of disease (Shi et al., 2020). Although computed
tomography (CT) scan has excellent sensitivity and specificity for
COVID-19 diagnosis (Bernheim et al., 2020), the use of CT is a
major burden because of its high cost and potential for cross-
contamination in the radiology suite. Therefore, Chest X-ray (CXR)
holds many practical advantages as a primary screening tool in the
pandemic situation. In addition, CXR is useful for follow-up, which
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should be inexpensive and low in radiation exposure, to assess re-
sponse to treatment.

Consequently, many studies have reported early application of
CXR deep learning for diagnosis (Wang et al.,, 2020a; Hemdan
et al., 2020; Narin et al., 2020; Oh et al., 2020) or severity quan-
tification of COVID-19 (Cohen et al., 2020a; Signoroni et al., 2020a;
Zhu et al,, 2020a; Wong et al., 2020), but they suffered from in-
eradicable drawbacks of poor generalization capability stemming
from the scanty labelled COVID-19 data (Hu et al., 2020; Zech et al.,
2018; Roberts et al., 2021). The stable generalization performance
on unseen data is indispensable for widespread adoption of the
system (Roberts et al., 2021).

One of the most commonly used measures to solve this prob-
lem is to build a robust model with innumerable training data
(Chen et al., 2020a). However, although plenty of CXRs of COVID-
19 is taken all around the world every day, available datasets are
still limited due to lack of the expert labels and the difficulties in
sharing patient data outside the hospital for privacy issues. The
situation becomes even worse in the current pandemic situation,
hindering the collaboration between different hospitals in differ-
ent countries. As a result, several methods have been proposed
to mitigate the problem by transfer learning (Apostolopoulos and
Mpesiana, 2020), weakly supervised learning (Zheng et al., 2020a;
Wang et al., 2020b), and anomaly detection (Zhang et al., 2020),
but their performances are still suboptimal.

The previous studies mostly utilize convolutional neural net-
work (CNN) models, which were not specially designed for man-
ifestations of COVID-19 which can be characterized by bilateral
involvement, peripheral and lower zone dominance of ground-
glass opacities, and patchy consolidations (Cozzi et al., 2020). Al-
though CNN architecture has shown to be superb in many vision
tasks, it may not be optimal for problems requiring high-level CXR
disease classification, where global characteristics like multiplic-
ity, distribution, and patterns have to be considered. This is due
to the intrinsic locality of pixel dependencies in the convolution
operation.

To overcome the similar limitation of CNN in computer vision
problems that require the integration of global relationship be-
tween pixels, Vision Transformer (ViT) equipped with the Trans-
former architecture (Vaswani et al., 2017) was proposed to model
long-range dependency among pixels through the self-attention
mechanism, showing the state-of-the-art (SOTA) performance in
the image classification task (Dosovitskiy et al., 2020). Since the
Transformer was originally invented for natural language process-
ing (NLP) in order to attend different positions of the input se-
quence within a corpus and compute a representation of that se-
quence, the choice of an appropriate corpus is the prerequisite for
the Transformer design.

In the original paper (Dosovitskiy et al., 2020), two ViT mod-
els were suggested utilizing either direct pixel-patch embedding or
feature embedding by ResNet backbone as corpora for Transformer.
A problem occurs here, however, that neither the direct pixel-patch
embedding nor feature embedding from ResNet may not be the
optimal input embedding for the CXR diagnosis of COVID-19. For-
tunately, several large-scale CXR data sets are constructed before
the COVID-19 pandemic and are publicly available. For example,
CheXpert (Irvin et al., 2019), a large dataset that contains over
220,000 CXR images, provides labeled common low-level CXR find-
ings (e.g. consolidation, opacity, edema, etc.), which is also useful
for the diagnosis of infectious disease. Moreover, an advanced CNN
architecture has been suggested using the same dataset (Ye et al.,
2020), which uses probabilistic class activation map (PCAM) pool-
ing to leverage the class activation map to enhance the localization
ability as well as classification performance. To take the maximum
advantage of both the dataset and the network architecture for
COVID-19, here we propose a novel ViT architecture which utilizes
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this advanced CNN architecture as a feature extractor for low-level
CXR feature corpus, upon which Transformer is trained for down-
stream tasks of diagnosis by utilizing the self-attention mechanism
in Transformer.

It is worth mentioning that our network is basically identical
to the text classification task with Transformer architecture, where
the Transformer not only adds meaning but also takes into account
the location and relationship of words to classify at the sentence-
level. Moreover, our method emulates the clinical experts who de-
termine the final diagnosis of CXR (e.g. normal, bacterial pneu-
monia, COVID-19 infection, etc.) by comprehensively considering
the low-level features with their pattern, multiplicity, location, and
distribution (e.g. Multiple opacities and patch consolidations exist
with lower lung zone dominance: high probability for COVID-19) as
illustrated in Fig. 1.

Another important contribution of this paper is to show that
our ViT framework can be also used for COVID-19 severity quan-
tification and localization, enabling the serial follow-up of sever-
ity and thereby assisting the treatment decision of clinicians
(Cohen et al., 2020b). The severity of COVID-19 can be deter-
mined by quantifying the extent of COVID-19 involvement. Re-
cently, array-based simple severity annotations where 1 or 0
is assigned to every 6 subdivisions of lungs are proposed by
Toussie et al. (2020), and we are interested in utilizing this weak
labeling approach for severity quantification. As the Transformer
output already incorporates the long-range relationship between
regions through self-attention, we use this Transformer output to
design a light-weighted network that can accurately quantify and
localize the COVID-19 extents from weak labels. Specifically, we
adopt the region of interest (ROI) max-pooling of the output Trans-
former feature to bridge the severity map and simple array. Con-
sequently, in addition to the global severity score from 0 to 6, our
model can create an intuitive severity level map where each pixel
value explicitly means the likelihood of the presence of a COVID-19
lesion using the weak array-based labels.

Finally, we have integrated the developed classification and
severity quantification models into multi-task learning (MTL)
framework to enable a single versatile model to perform the clas-
sification and severity quantification simultaneously, to better of-
fer a more straightforward application of the developed system as
well as improving the performances of individual tasks by sharing
robust representation between related tasks.

In summary, our main contributions are as follows.

e A novel ViT model for COVID-19 is proposed by leveraging
the low-level CXR feature corpus that contains the representa-
tions for common CXR findings with the pre-built large-scale
dataset.

e We have not limited our model to classification but expanded

our model to quantify severity to provide clinicians with clinical

guidelines for making treatment decisions.

The classification and severity quantification models were inte-

grated into a single multi-task model for straightforward appli-

cability, which also improved the performances of both tasks.

* We experimentally demonstrated that our method outperforms
the previous models for COVID-19 as well as other CNN and
Transformer-based architectures especially in terms of the gen-
eralization on unseen data.

The remainder of this paper is organized as follows.
Section 2 summarizes the related works. Section 3 and
Section 4 describes the proposed framework and datasets, re-
spectively. Experimental results are presented in Section 5. Finally,
we conclude this work in Section 6.
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Clinical expert diagnose by aggregating of low-level features,
considering their location and multiplicity.

Clinical expert

’ e, «covID-19”

“Multiple opacity and
consolidation in lower lung zone.”

Transformer diagnose by aggregating low-level feature map
(16 x 16 patches) with their location and multiplicity.

Example of feature map

Transformer | “COVID-19”

“Multiple opacity and
consolidation in lower lung zone.”

Fig. 1. The analogy between the diagnosis by a clinical expert and by our method.

2. Related works
2.1. Vision transformer

Transformer (Vaswani et al., 2017), which was originally in-
vented for NLP, is a deep neural network based on a self-attention
mechanism that facilitates appreciably large receptive fields. Af-
ter demonstrating its astounding performance, not only has Trans-
former become a de facto standard practice in NLP, but it has also
motivated the computer vision community to explore its applica-
tions in computer vision by taking advantage of the long-range de-
pendency between pixels (Khan et al., 2021).

The VIiT was the first major attempt to apply a pure Trans-
former directly to an image, suggesting that it can completely re-
place the standard convolution operations by achieving SOTA per-
formance. However, the experimental results showed that training
the vanilla ViT model requires a huge computational cost. There-
fore, the authors also suggested hybrid architecture by conjugating
CNN backbone (e.g. ResNet) to Transformer. With the feature ex-
tracted by ResNet, the Transformer can mainly focus on modeling
the global attention. The experimental results suggest that it was
able to achieve higher performance with the hybrid approach with
a relatively small amount of computations.

After the introduction of ViT, the application of Transformer in
computer vision has become an active area of investigation, re-
sulting in many variant models of ViT showing SOTA performance
in a variety of vision tasks including object detection (Zhu et al.,
2020b), classification (Dosovitskiy et al., 2020; Chen et al., 2020b),
segmentation (Zheng et al., 2020b), and so on.

2.2. Probabilistic class activation map pooling

Class activation map (CAM) is a sort of class-specific saliency
map obtained by quantifying the contribution of a particular area
of an image to the prediction of the network. The most useful as-
pect of CAM is that it enables the localization of the important area

only with weak labels, namely image-level supervision. Despite its
excellent localization ability, most previous works utilized CAM to
generate heatmaps for lesion localization and visualization during
inference. To leverage the localization ability of CAM to enhance
the performance of the network itself, one recent study utilized
the CAM during training in CXR classification and localization tasks
(Ye et al., 2020). They devised a novel global pooling operation
that explicitly leverages the CAM in a probabilistic manner and is
known as PCAM pooling. Different from standard approaches that
use CAM for direct localization, they bound it with an additional
fully connected layer and sigmoid function to get probabilities for
each CXR findings. Then, the normalized attention weights were
obtained from these output probabilities to make weighted feature
maps containing more useful representations for each class. They
showed that PCAM pooling operation can enhance both localiza-
tion and diagnostic performance of the model and achieved first
place in the 2019 CheXpert Challenge. For a detailed process of the
PCAM operation, please refer to Appendix A.

2.3. COVID-19 severity quantification

To build an automated algorithm for severity quantification,
pixel-level annotation such as lesion segmentation labels can offer
plentiful information. However, this type of labeling methods are
labor-intensive and collecting large data with this pixel-level an-
notated label is not feasible under the global pandemic of COVID-
19. To alleviate the problem, simplified severity annotation meth-
ods, such as score-based and array-based methods, have been pro-
posed. For example, Cohen et al. (2020a) suggested a geographic
extent score and a lung opacity score based on a rating system of
lung edema proposed by Warren et al. (2018). A geographic extent
score assigns scores that range from O to 4, while a lung opacity
score assigns values of 0 to 3 based on the severity of involvement
in each lung area. Borghesi and Maroldi (2020) designed Brixia
score, another array-type severity labeling method, dividing lung
with anatomic landmarks and assign a score of 0-3 to each sub-
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division. Similarly, Toussie et al. (2020) suggested an array-based
severity score for COVID-19. After dividing both lungs into six di-
visions, each area is assigned a value of 0 or 1, depending on the
presence of COVID-19 involvement, which adds up to overall sever-
ity of 0 to 6. We adopted the array-based annotation method sug-
gested by Toussie et al. (2020) for severity quantification of COVID-
19.

2.4. Deep learning models for COVID-19

Upon rapid spread of COVID-19, there have been numerous ap-
proaches to enable automated diagnosis and severity prediction
of COVID-19. For diagnosis, Wang et al. (2020a) proposed COVID-
Net that adopted a lightweight projection-expansion-projection-
extension design and long-range connectivity to improve repre-
sentational capacity and showed good performance compared with
standard CNN models. Khan et al. (2020) proposed CoroNet which
was based on Xception (Chollet, 2017) network pre-trained on Im-
ageNet and subsequently fine-tuned with COVID-19 data. Simi-
larly, Minaee et al. (2020) proposed Deep-COVID in which var-
ious data augmentations were used and the last layer of stan-
dard CNNs were fine-tuned for COVID-19 data. Using DarkNet-19
(Redmon and Farhadi, 2017) used for object detection framework,
Ozturk et al. (2020) proposed DarkCOVIDNet.

To quantify the severity of COVID-19 infection on CXR,
Cohen et al. (2020a) devised a network pre-trained to classify 7
pathologies and trained to perform linear regression to predict the
severity scores. Kwon et al. (2020) proposed CheXNet that pre-
trained on ImageNet and subsequently trained to predict COVID-19
severity with their custom dataset. Finally, Li et al. (2020) intro-
duced PXS-score based on a convolutional Siamese network pre-
trained on CheXpert dataset, where two separate images are taken
as inputs and passed through twinned CNN and Euclidean distance
between two outputs are used for calculating the severity scores.

As described above, however, the previous approaches are
mainly based on the standard CNN model pre-training and trans-
fer learning from the irrelevant dataset (e.g. ImageNet), and there-
fore do not guarantee an optimal generalization performance for
COVID-19.

3. Proposed framework

One of the novel contributions of our approach is to show that
we can maximize the performance of the Transformer model by
using the low-level CXR corpus that comes from the backbone net-
work trained with a large well-curated public record to produce
common CXR findings. As the backbone network is trained with a
large number of data, the subsequent models using this backbone
for classification and severity quantification tasks are less prone to
overfitting, even with a smaller number of labeled cases. This is
shown to improve the generalization capability of the network.

After devising the model for classification and severity quantifi-
cation of COVID-19, we further integrated these two models into
a single multi-task model that can do two tasks simultaneously to
offer better applicability as well as to improve the performances of
individual tasks.

3.1. Pre-training backbone network for low-level feature corpus

As a backbone network to extract low-level features, we used
the modified version of the network proposed by Ye et al. (2020).
Firstly, the backbone network was pre-trained to classify 10 com-
mon low-level findings with a large public dataset. As depicted
in Fig. 2, feature maps in each layer can be the candidates for
utilizable feature embedding for the subsequent Transformer, and
we experimentally found that the common embedding before the
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PCAM operation comprises of most useful information. Neverthe-
less, care should be exercised since the PCAM operation for specific
low-level CXR findings (e.g. lung opacity, consolidation, etc.) turns
out to be crucial to achieving the optimal embedding at the inter-
mediate level, as PCAM aligns these features to obtain better per-
formances. Through this operation, more prominent feature repre-
sentations are embedded for each low-level entity, and combining
these low-level feature representations to yield high-level results
of classification and severity quantification with the Transformer is
one of the key ideas of our method. More detailed experimental
results about the role of PCAM operation will be provided within
ablation studies of Section 5.6.2.

3.2. Vision transformer for COVID-19: shared layer

The overall framework and the architecture of our ViT model
is provided in Fig. 3. Since our model use the same pre-trained
backbone and Transformer architecture for two tasks, shared back-
bone layer can be defined as in Fig. 3 (A). Specifically, for a given
H x W size input image x ¢ Rf*W | the backbone network G gener-
ates H' x W’ size feature maps F:

F=g6(x) (1)
Here, the feature tensor F € RH>*W'xC’ is defined as
F=[f, f, Fon] 2)

where f, € R denotes a C-dimensional embedded representation
of low-level features at the nth encoded block. These feature vec-
tors are used to construct the low-level CXR feature corpora for
Transformer.

Then, similar to Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018), our ViT uses Trans-
former encoder layers to the input embedding. Specifically, since
the Transformer encoder utilizes constant latent vector of dimen-
sion D, the extracted C' dimension feature f, eRC is first pro-
jected to a D dimension feature fn e RP using 1 x 1 convolution
kernel. We then prepended learnable [class] token embedding
vector f.,, € RP to projected feature tensor. This leads to the fol-
lowing composite projected feature tensor:

F:[fcls f] fz ]H/XW/] (3)
A positional embedding Eps that has the same shape to the pro-

jected feature tensor F is then added to encode a notion of the
sequential order:

ZO = F + Epes

This is then used as an input to a Transformer composed of L suc-
cessive encoder layers:

zZO =70 (Z(lfl))7 [=1,...,L (4)

where z0 = |20 ZV ... ZQ) ,] and 7@ denotes the Ith
xW

encoder layer. The encoder layers used in our model are the same
as standard Transformer which consists of repeated layers of multi-
head self-attention (MSA), multi-layer perceptron (MLP), layer nor-
malization (LN), and residual connections in each block, as shown
in Fig. 3 (A).

Then, the first column z{" of Z*) represents the Transformer
attended feature vector with respect to the [class] token, which
is used for the classification task. The rest of the Transformer out-
put also produces feature embedding at each block position by tak-
ing into account long-range relations between the blocks. There-
fore, we conjecture that this information is useful for the severity
quantification, as severity is determined by both local and global
manifestations of the disease.
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PCAM operation
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Fig. 2. Backbone network to extract low-level CXR feature corpus.
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Fig. 3. Proposed multi-task Vision Transformer model for diagnosis and severity quantification of COVID-19 on CXR, which consists of (A) shared backbone and Transformer

and (B) task-specific heads for each task.

3.3. Vision transformer for COVID-19: classification

Simply adding linear classifiers to [class] token as the clas-
sification head, we can obtain the diagnosis result y of the input
CXR image x (see Fig. 3 (A)).

For the interpretability of the classification model, we adopted
a visualization method of saliency map tailored for ViT suggested
by Chefer et al. (2020), which computes relevancy for the Trans-
former network. Specifically, unlike the traditional approaches of
gradient propagation methods (Selvaraju et al., 2017; Smilkov et al.,
2017; Srinivas and Fleuret, 2019) or attribution propagation meth-
ods (Bach et al., 2015; Gu et al., 2018), which rely on the heuristic
propagation along with attention graph or the obtained attention
maps, the method in Chefer et al. (2020) calculate the local rele-
vance with deep Taylor decomposition, which is then propagated
throughout the layers. This relevance propagation method is espe-
cially useful for models based on Transformer architecture, as it
overcomes the problem of self-attention operations and skips con-
nections.

3.4. Vision transformer for COVID-19: Severity quantification

As shown in Fig. 3(B), reshaped output features except for
[class] token are combined by an additional lightweight net-
work to produce the COVID-19 severity map.

Specifically, as shown in Figs. 3(b) and 4, we first extract the
Transformer output Z®) except the [class] token position:

Zres = [2 zpw] (5)
which is used as an input to the map head network A/
S = N(Zres) (6)

Then, the network output § € R>12%512 js multiplied pixel-wise
with the segmentation mask M € R512x512 generating the severity
map S ® M. Finally, ROl max-pooling (RMP) is applied to provide

the severity mask Yy € R3%2:
Y5y =RMP(S @ M) (7)

where ® denotes the Hadamard product. In detail, the lung was di-
vided into a total of six subdivisions, by dividing the right and left
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Transformer feature map
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COVID-19 Severity map
(512 x 512)

Medical Image Analysis 75 (2022) 102299

1.0
Input CXR
0.5 CovID-19 ¥
Severity array y - |
0.0 (Label) ( upper
" ,Fi hilar line
COVID-19 0 1 | ! L
Severity array EA) \
L4 | lower
(Pred) 1 1 B % hilar line
min line 0.2]05 ¢ ‘
L TEEYRTRY = 1 1
5/12 line 08|09 Minimize
2/3 line 0.7 0.6 Loss

max line

Lung mask
(512 x 512)

Max pooling

for each of 6 regions

Fig. 4. The procedure of severity prediction and labeling. (A) Map head and ROI max-pooling of the proposed framework. (B) Our severity annotation method for severity

quantification on CXRs.

lungs into three subdivisions (upper, middle, lower zone) with 5/12
and 2/3 lines. Next, the largest values within each six subdivision
were assigned as predicted values of the severity array. Then, the
map head network is trained by minimizing the error of the esti-
mated severity array with respect to the weakly annotated severity
label as in Fig. 4.

For details of the model output and post-processing for the
severity array, refer to Appendix B.

To generate the lung segmentation mask, we used the method
introduced by Oh and Ye (2021). In contrast to the existing ap-
proaches that are prone to under-segmentation for the severely in-
fected lung with large consolidations, this novel approach enables
the accurate segmentation of abnormal lung as well as normal lung
area by learning common features using a single generator with
AdalN layers. Since a single generator is used for all these tasks by
simply changing the AdalN codes, the generator can synergistically
learn the common features to improve segmentation performance
for abnormal CXR data.

3.5. Multi-task learning

Since the classification and severity quantification model shares
the same layers other than task-specific heads, we trained and
evaluated the model with MTL as well as single-task learning (STL)
for both tasks. By the MTL framework, we aimed not only to of-
fer a simpler configuration for better applicability but also to im-
prove the performances of two relevant tasks, COVID-19 classifi-
cation and severity quantification, by learning more robust feature
representation shared between the two related tasks as suggested
in the previous studies (Zhang and Yang, 2017).

4. Datasets

Datasets used for this study can be divided into three: dataset
for pre-training backbone, the datasets for classification, datasets
for severity quantification.

4.1. Dataset for pre-training

For the pre-training of the backbone network to extract the
low-level CXR features, we used CheXpert dataset containing 10
labeled CXR findings: no finding, cardiomegaly, opacity, edema,
consolidation, pneumonia, atelectasis, pneumothorax, pleural ef-
fusion, and support device. With a total of 224,316 CXR images
from 65,240 subjects, the 32,387 lateral view images were ex-
cluded, leaving 29,420 posterior-anterior (PA) and 161,427 anterior-
posterior (AP) view data available. With this large number of CXRs,

it was able to train the backbone network robust to the variation
in subjects, which is one of the key strengths of our model.

4.2. Datasets for classification

Table 1 summarizes dataset resources and partitioning used
for classification. To train and evaluate the Transformer model,
we utilized both public datasets containing labeled cases of nor-
mal and infectious disease (Valencian Region Medical Image Bank
[BIMCV] (De La Iglesia Vaya et al., 2020), Brixia (Signoroni et al.,
2020b), National Institutes of Health [NIH] (Wang et al., 2017),
CheXpert) and deliberately collected CXR data from four hospitals
(Asan Medical Center [AMC], Seoul, Korea; Chonnam National Uni-
verity Hospital [CNUH], Daejeon, Korea; Yeungnam University Hos-
pital [YNU], Daegu, Korea; Kyungpook National University Hospital
[KNUH], Daegu, Korea) labeled by board-certified radiologists for
this study. Finally, the integrated dataset was divided into three
label classes including normal, other infections (e.g. bacterial in-
fection, tuberculosis), and COVID-19 infection, considering the ap-
plication in the real clinical setting. Both PA and AP view CXRs
were utilized to build and evaluate our model in a view-agnostic
setting. We used three institutional data (CNUH, YNU, KNUH) as
external test datasets to evaluate the generalization capability by
using data collected from independent hospitals with different de-
vices and settings, and other data for training and internal valida-
tion of the models.

4.3. Datasets for severity quantification

Table 2 summarizes dataset resources and global severity levels.
Similar to diagnosis, the PA and AP view data were integrated and
utilized without division for severity quantification task since there
is the possibility that follow-up images may be obtained with both
PA and AP view even in a single patient. Two board-certified radi-
ologists labeled the severity for three institutional datasets (CNUH,
YNU, KNUH) using the array-based severity labeling method of
Toussie et al. (2020) as in Fig. 6. We also utilized publicly available
data, Brixia dataset, after translating its severity score the same as
that of the institutional datasets. We alternately used one institu-
tional dataset as an external testset and trained the models with
two remaining datasets together with Brixia dataset to evaluate
the generalization capability in various external settings. Besides,
12 COVID-19 cases from BIMCV dataset were used to compare the
severity map generated by our model to those annotated by clini-
cal experts.
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Table 1
Datasets and label distribution for classification.
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External test

Training and validation

View Total —

CNUH YNU KNUH AMC NIH Brixia BIMCV CheXpert
All views
Normal 26,846 417 300 400 8978 7158 - 93 9500
Other infection 1672 58 220 400 994 - - - -
COVID-19 5755 81 286 293 - - 4313 782 -
Total images 34,273 556 806 1093 9972 7158 4313 875 9500
PA view
Normal 13,649 320 300 400 8861 3768 - - -
Other infection 1468 39 144 308 977 - - - -
COVID-19 2431 6 8 80 - - 1929 408 -
Total images 17,548 365 452 788 9838 3768 1929 408 -
AP view
Normal 13,197 97 - - 117 3390 - 93 9500
Other infection 204 19 76 92 17 - - - -
COVID-19 3324 75 278 213 - - 2384 374 -
Total images 16,725 191 354 305 134 3390 2384 467 9500

Table 2
Datasets and label distribution for severity quantification.
Severity  Total CNUH YNU KNUH Brixia
1 361 26 63 25 247
2 521 11 59 22 429
3 448 8 25 18 397
4 920 7 35 31 847
5 774 12 18 29 715
6 1758 17 86 171 1484
Total 4782 81 286 296 4119

Details of the patient and CXR image characteristics of four
hospitals (CNUH, YNU, KNUH, AMC) datasets are provided in
Appendix C.

4.4. Details of implementation and evaluation

The CXR images were preprocessed via histogram equalization,
Gaussian blurring with 3 x 3 kernel, normalization, and finally re-
sized to 512 x 512. As our backbone network, the modified ver-
sion of the network proposed by Ye et al. (2020), comprises the
DenseNet-121 baseline followed by PCAM operations. Among sev-
eral layers of intermediate feature maps, we used the feature map
of size 16 x 16 x 1024 just before the PCAM operation. For subse-
quent Transformer architecture, we used a standard Transformer
model with 12 layers and 12 heads per layer.

For pre-training of the backbone network, Adam optimizer with
a learning rate of 0.0001 was used. We trained the backbone net-
work for 160,000 optimization steps with a step decay scheduler
with a batch size of 8. Data augmentations including random flip-
ping, rotation, translation were performed to increase the variabil-
ity of training data during pre-training. For the classification task,
stochastic gradient descent (SGD) optimizer with momentum 0.9
was used with a learning rate of 0.001. A max gradient norm of 1
was applied to stabilize training. We trained the model for 10,000
optimization steps with a cosine warm-up scheduler (warm-up
steps = 500) with a batch size of 16. For the severity quantifi-
cation task, a map head with five upsizing convolution layers is
used, with the last block followed by sigmoid non-linearity which
squashes output into [0-1] range. Training of severity quantifica-
tion model was done with SGD optimizer with a learning rate of
0.003 for 12,000 optimization steps with constant learning rate,
and batch size of 4 was used. These optimal hyperparameters were
determined experimentally. Similar to pre-training, various data
augmentation (horizontal flipping, rotation, translation, and scal-
ing) was performed to increase the training data for both tasks. As

the loss functions, binary cross-entropy (BCE) losses were used for
each class label for pre-training and classification task, while BCE
losses for each location array within a CXR were used for severity
quantification task.

In the MTL setting, the shared layers were trained with the op-
timizer, scheduler, and hyperparameter to those of the classifica-
tion task. Considering the scales of loss from each task, the losses
from task-specific heads were scaled to 1:5 for classification and
severity quantification to balance their influence to the shared net-
work layers.

Since our model was trained using both PA and AP CXRs, the
classification, and severity quantification performances were evalu-
ated in a view-agnostic manner with both PA and AP images. How-
ever, we also evaluated and provided the model performances for
PA and AP images separately for the classification task, in which
the diagnostic performance could differ significantly according to
CXR views. We used the area under the receiver operating char-
acteristic curve (AUC) as the evaluation metrics for diagnostic per-
formance of the classification model, but also calculated sensitiv-
ity, specificity, and accuracy after adjusting the thresholds to meet
the sensitivity value of > 80%, if possible. As evaluation metrics for
severity quantification, we used the Mean Squared Error (MSE) as
the main metric, but the Mean Absolute Error (MAE), Correlation
Coefficient (CC), and R? score were also measured and compared.
The performance metrics were reported with estimated 95% confi-
dence intervals (CIs). Model performances were compared statisti-
cally using AUC with DeLong test (DeLong et al., 1988) for classifi-
cation task and using MSE with paired t-test for severity prediction
task, respectively. Statistically significant differences were defined
as p < 0.05.

All experiments including preprocessing, development, and
evaluation of the model, were performed using Python version 3.7
and PyTorch library version 1.7 on NVIDIA Tesla V100, Quadro RTX
6000, RTX 3090, and RTX 2080 Ti.

5. Experimental results
5.1. Benefit of the multi-task learning approach

We first evaluated whether the model trained with the MTL ap-
proach provides better performance than two task-specific mod-
els trained with the standard STL approach. As shown in Tables 3
and 4, the multi-task model for two tasks outperformed the ex-
pert model trained exclusively for each task with statistical signifi-
cance, for both classifications and severity prediction tasks. Hence,
the following experiments were mainly conducted under the MTL



S. Park, G. Kim, Y. Oh et al.

Table 3
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Comparison of the classification performances of single task model for classification and multi-task model for two tasks.

External dataset 1 (CNUH)

External dataset 2 (YNU)

External dataset 3 (KNUH)

AUC (95% CI) AUC (95% CI)

AUC (95% Cl)

Models
Normal Others COVID-19 Normal Others COVID-19 Normal Others COVID-19
Multi-task 0.968 0.926 0.953 0.973 0.935 0.884 0.961 0.861 0.898
model (0.954- (0.893- (0.935- (0.964- (0.914- (0.861- (0.950- (0.837- (0.878-
0.981) 0.959) 0.971) 0.983) 0.955) 0.906) 0.972) 0.885) 0.918)
Single-task 0.918* 0.901 0.876** 0.969 0.925 0.9027 0.895* 0.861 0.808**
model (0.893- (0.850- (0.838- (0.959- (0.903- (0.882- (0.876- (0.837- (0.777-
0.943) 0.951) 0.914) 0.979) 0.947) 0.922) 0.914) 0.885) 0.838)

Note: *, ** denote the better performance of our model, while T, T denote worse performance of our model with statistical significance (p < 0.05, p < 0.001).

CI: confidence interval

Table 4
Comparison of the severity quantification performances of single-task model for
classification and multi-task model for two tasks.

External External External

dataset 1 dataset 2 dataset 3

(CNUH) (YNU) (KNUH)
Models

MSE (95% CI) MSE (95% CI) MSE (95% CI)
Multi-task model 1.441 1.435 1.458

(0.760-2.122) (1.195-1.676) (1.147-1.768)

Single-task model 1.645 1417 1.731*

(0.969-2.320)  (1.138-1.695)  (1.372-2.090)

Note: ** denotes the better performance of our model with statistical significance
(p < 0.001). CI, confidence interval.

setting, and other models used for comparison were also imple-
mented with the MTL approach for a fair comparison.

5.2. Diagnostic performance on external test datasets

The detailed diagnostic performances of the proposed model
are provided in Table 5. On average of 3 label classes (normal,
other infection, COVID-19), our model showed stable performances
regardless of external data with the mean AUCs of 0.949, 0.931,
0.907, sensitivities of 90.2%, 87.0%, 85.1%, specificities of 84.9%.
86.2%, 83.7%, and accuracy of 86.8%, 86.5%, 84.1% for three labels
in three external institutions, which confirmed the stability in per-
formance even with a view-agnostic setting and outstanding gener-
alization capability in clinical situations with different devices and
settings. The diagnostic performances our model evaluated only on
PA and AP view images are also provided in Appendix D.

5.3. Model interpretability results

Figure 5 exemplifies the visualization of saliency maps for each
disease class in the external test datasets. As shown in the exam-
ples, our model well-localized a focal infected area either by a bac-
terial infection (Fig. 5(a)) or tuberculosis (Fig. 5(b)), while it was
also able to delineate the multi-focal lesions in the periphery of
both lower lungs in Fig. 4(c), which is typical findings for COVID-
19 pneumonia.

5.4. Severity quantification results on external test datasets

The results of severity quantification of our model are shown
in Table 6. Our model showed the MSE of 1.441, 1.435, 1.458, the
MAE of 0.843, 0.943, 0.890, correlation coefficient of 0.800, 0.830,
0.731, and R? score of 0.634, 0.633, 0.485 in three external insti-
tutions. Brixia dataset contains a consensus subset of 150 CXR im-
ages labeled by five independent radiologists. Within this subset,
the average MSE between the consensus severity score calculated
from majority voting and each radiologist’s rating is 1.683. As a
result, the MSEs of 1.441, 1.435, and 1.458 in three external institu-
tions show our model’s performance comparable to or better than

(A) Bacterial infection

CXR image

Saliency map

(B) Tuberculosis

CXR image Saliency map

AP

(C) COVID-19 infection

CXR image

Saliency map

-

Fig. 5. Examples of visualization results for each disease class. (A) Bacterial infec-
tion, (B) tuberculosis, and (C) COVID-19 infection.

those of experienced radiologists and generalization capability in
the clinical environment.

Figure 6 illustrates the examples of severity quantification, in-
cluding the predicted scores, arrays, maps, and lesion contours in
one of the external test datasets, which confirms that not only can
our model correctly predict global severity, but it also generates an
intuitive severity map that highlights the affected area, which can
also be used to contour lesions.

Finally, Fig. 7 exemplifies the comparison between the ground
truth segmentation label of the involved area and the model’s pre-
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Table 5
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Diagnostic performance of the proposed model in various external test datasets from three different institutions.

External dataset 1 (CNUH)

External dataset 2 (YNU)

External dataset 3 (KNUH)

Metrics

Normal Others COVID-19 Normal Others COVID-19 Normal Others COVID-19

AUC 0.968 0.926 0.953 0.973 0.935 0.884 0.961 0.861 0.898
(95% CI) (0.954-0.981)  (0.893-0.959) (0.935-0.971)  (0.964-0.983) (0.914-0.955) (0.861-0.906) (0.950-0.972) (0.837-0.885) (0.878-0.918)

93.5 84.5 92.6 95.3 85.5 80.1 91.5 79.7 84.0
Sensitivity ~ (90.7-95.7) (72.6-92.7) (84.6-97.2) (92.3-97.4) (80.1-89.8) (75.0-84.5) (88.3-94.0) (75.5-83.6) (79.3-88.0)
(95% CI)

87.8 82.5 84.4 88.9 87.9 81.7 90.6 78.6 82.0
Specificity  (81.1-92.7) (78.9-85.8) (80.8-87.6) (85.9-91.5) (85.0-90.4) (78.1-85.0) (88.2-92.7) (75.4-81.6) (79.2-84.6)
(95% CI)
Accuracy 92.1 82.7 85.6 91.3 87.2 81.1 90.9 79.0 82.5
(95% CI) (89.5-94.2) (79.3-85.8) (82.4-88.4) (89.2-93.2) (84.7-89.5) (78.3-83.8) (89.1-92.6) (76.5-81.4) (80.1-84.7)

Note: CI: confidence interval.
COVD-19 Severity array Input CXR COVD-19 Severity array

Label Pred
1 0 1 0
1 1 1 1
1 1 1 1

Severity score (Global)
Label Pred

® O

COVID-19 Lesion contour

g P Label Pred
v & | A5 SN o] o o] o
J . ? o

0 0 0 0

1 1 1 1

Severity score (Global)
Label Pred

COVID-19 Severity map COVID-19 Lesion contour

Table 6

Severity quantification performance of the proposed model in various external test

Fig. 6. Examples of severity quantification results of our models on the external dataset.

datasets from three different institutions.

External dataset 1

External dataset 2

External dataset 3

Metrics (CNUH) (YNU) (KNUH)

MSE 1.441 1435 1.458
(95% CI) (0.760-2.122) (1.195-1.676) (1.147-1.768)
MAE 0.843 0.943 0.890
(95% CI) (0.653-1.033) (0.857-1.029) (0.796-0.984)
cc 0.800 0.830 0.731
(95% CI) (0.705-0.867) (0.790-0.863) (0.673-0.780)
R? 0.634 0.633 0.485
(95% CI) (0.512-0.756) (0.566-0.700) (0.404-0.566)

Note: CI: confidence interval.

diction of involvement in BIMCV dataset. As shown in the figure,
the model generally well-localized the areas of involvement.

5.5. Comparison with CNN and transformer-based models

To compare the performance with the other baseline and SOTA
CNN-based models, we adopted the following models: ResNet-
50, ResNet-512, DenseNet-121 as the baseline CNN-based models,
and EfficientNet-B7, NASNet-A-Large, SE-Net-154 as the SOTA CNN-
based models. For comparison with other Transformer-based mod-
els, we used ViT (ViT-B-16) and hybrid ViT (R50-ViT-B-16) models.
All models underwent the same pre-training process on CheXpert
dataset and were subsequently trained, evaluated with datasets
and settings the same as the proposed model for a fair compari-
son. As suggested in Tables 7 and 8, our model outperformed or at

least comparable to both the SOTA CNN-based models as well as
the baseline CNN-based models with statistical significance. When
compared to Transformer-based models, our model showed sta-
tistically better performance than other Transformer-based mod-
els. Note that our model showed superior performance not only
to the models with less complexity (e.g. ResNet-50, DenseNet-121)
but also to those with more complex architectures (e.g. NASNet-
A-Large, SE-Net-154, ViT models). These results suggest that our
model offers better generalization performances in both classifica-
tion and severity quantification tasks compared with the existing
model architectures, which did not result from increased complex-
ity.

5.6. Comparison with previous models in related works

We also compared our model with the tailored models in the
related works of Section 2.4. The tailored models for compari-
son were implemented and trained using the settings proposed
in the original papers (e.g. pre-training, hyperparameters, etc.) on
our dataset the same as the proposed model for a fair compari-
son. As shown in Tables 9 and 10, our model considerably outper-
formed previous models proposed in the related works for both
COVID-19 classification and severity quantification. Although a few
models showed reasonable performances in some test datasets
(e.g. DarkCOVIDNet in YNU dataset and CheXNet in CNUH dataset),
they failed to show stable performances over various external test
datasets. The unstable performances of previous models for COVID-
19 on various external test setting account for why the deep learn-
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Table 7
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Comparison of the classification performance with various baseline and SOTA CNN-based models, and Transformer-based models.

External dataset 1 (CNUH)

External dataset 2 (YNU)

External dataset 3 (KNUH)

Models (Params) AUC (95% CI)

AUC (95% Cl)

AUC (95% CI)

Normal Others COVID-19 Normal Others COVID-19 Normal Others COVID-19
Proposed model 0.968 0.926 0.953 0.973 0.935 0.884 0.961 0.861 0.898
(79.402M) (0.954- (0.893- (0.935- (0.964- (0.914- (0.861- (0.950- (0.837- (0.878-
0.981) 0.959) 0.971) 0.983) 0.955) 0.906) 0.972) 0.885) 0.918)
Baseline CNN-based
ResNet-50 0.946* 0.919 0.916* 0.973 0.879* 0.847* 0.954 0.719* 0.876*
(30.378M) (0.926- (0.887- (0.888- (0.963- (0.851- (0.821- (0.942- (0.685- (0.855-
0.966) 0.951) 0.944) 0.982) 0.907) 0.873) 0.966) 0.752) 0.896)
ResNet-152 0.938* 0.930 0.903** 0.975 0.876* 0.833* 0.970 0.724* 0.852*
(65.014M) (0.916- (0.890- (0.874- (0.965- (0.849- (0.806- (0.961- (0.691- (0.829-
0.960) 0.971) 0.932) 0.985) 0.904) 0.861) 0.979) 0.756) 0.874)
DenseNet-121 0.931* 0.898 0.900** 0.969 0.898* 0.846* 0.956 0.852 0.804*
(13.034M) (0.906- (0.849- (0.868- (0.959- (0.873- (0.820- (0.945- (0.828- (0.777-
0.955) 0.947) 0.933) 0.980) 0.923) 0.872) 0.967) 0.877) 0.831)
SOTA CNN-based
EfficientNet-B7 0.931* 0.920 0.879** 0.981 0.871* 0.863* 0.951 0.850 0.825*
(71.052M) (0.909- (0.878- (0.842- (0.973- (0.844- (0.839- (0.939- (0.826- (0.798-
0.954) 0.963) 0.915) 0.989) 0.898) 0.887) 0.964) 0.874) 0.852)
NASNet-A-Large 0.943* 0.907 0.898** 0.9861 0.912* 0.846* 0.943* 0.8937 0.861*
(98.262M) (0.923- (0.869- (0.866- (0.980- (0.887- (0.821- (0.929- (0.874- (0.838-
0.964) 0.945) 0.931) 0.992) 0.937) 0.872) 0.956) 0.911) 0.884)
SENet-154 0.959 0.929 0.896** 0.977 0.917* 0.838** 0.974% 091171 0.847*
(121.434M) (0.942- (0.893- (0.864- (0.968- (0.895- (0.812- (0.965- (0.894- (0.824-
0.975) 0.964) 0.928) 0.985) 0.938) 0.864) 0.983) 0.929) 0.870)
Transformer-based
ViT-B/16 0.820** 0.865* 0.701* 0.940* 0.830* 0.789* 0.945* 0.815* 0.825*
(91.727M) (0.775- (0.810- (0.635- (0.924- (0.797- (0.758- (0.932- (0.787- (0.797-
0.866) 0.919) 0.767) 0.956) 0.864) 0.821) 0.958) 0.843) 0.852)
R50-ViT-B/16 0.948* 0.915 0.886** 0.975 0.889* 0.851* 0.9807" 0.901 0.845*
(105.58M) (0.931- (0.877- (0.854- (0.966- (0.863- (0.826- (0.973- (0.882- (0.822-
0.966) 0.954) 0.917) 0.984) 0.915) 0.876) 0.987) 0.919) 0.868)

Note: *, ** denote the better performance of our model, while T, T denote worse performance

confidence interval.

Table 8
Comparison of the severity quantification performance with various baseline and
SOTA CNN-based models, and Transformer-based models.

External dataset 1 External dataset 2 External dataset 3

(CNUH) (YNU) (KNUH)
Models (Params) MSE (95% CI) MSE (95% CI) MSE (95% CI)
Proposed model 1.441 1435 1.458

(79.402M) (0.760-2.122) (1.195-1.676) (1.147-1.768)
Baseline CNN-based

ResNet-50 1.489 2.133* 2.128*
(30.378M) (1.016-1.963) (1.847-2.419) (1.837-2.418)
ResNet-152 1.330 2.034* 1.977*
(65.014M) (0.930-1.729) (1.738-2.331) (1.672-2.282)
DenseNet-121 1.580 1.650 1.546
(13.034M) (1.027-2.133) (1.412-1.888) (1.257-1.836)

SOTA CNN-based

EfficientNet-B7 1.457 2.673* 1.270
(71.052M) (0.780-2.135) (2.258-3.089) (1.000-1.540)
NASNet-A-Large 1.401 2.882% 1.894*
(98.262M) (0.927-1.875) (2.449-3.314) (1.593-2.196)
SENet-154 1.163 1.890* 1.899*
(121.434M) (0.698-1.628) (1.597-2.184) (1.566-2.231)
Transformer-based

ViT-B/16 2.529* 3112 2.067*
(91.727M) (1.536-3.522) (2.643-3.580) (1.691-2.442)
R50-ViT-B/16 1.257 1.874* 1.538
(105.58M) (0.734-1.780) (1.618-2.130) (1.203-1.873)

Note: *, ** denote the better performance of ours with statistical significance (p <
0.05, p < 0.001). CI: confidence interval.

ing models readily developed for automated diagnosis and severity
prediction of COVID-19 not lead to the widespread application.

10

of our model with statistical significance (p < 0.05, p < 0.001). CI:

5.7. Simulation of application under real-world prevalence

In experiments of the diagnostic model, the results should be
interpreted with caution, since the actual prevalence of the dis-
ease is not the same as in the experimental dataset collected for
the study. That is to say, in our case, the prevalence of 26.9% for
COVID-19 in the external test set is quite higher than the real-
world prevalence of COVID-19 in any country. Therefore, we evalu-
ated the performance metrics under a range of disease prevalences
of COVID-19 in the external test datasets using bootstrapping with
replacement. As shown in Fig. 8, the proportion of predicted nega-
tive and negative predicted value (NPV) for COVID-19 drastically
increase with decreasing COVID-19 prevalence to real-world re-
ported ranges (Yiannoutsos et al., 2021), from NPV of 93.7% to
99.1% and negatively predicted proportion of 63.9% to 78.6%. Thus,
this simulation suggests that under the real-world prevalence of
COVID-19, about 80% of the RT-PCR test can be spared with the
application of the proposed model as a screening tool with an NPV
over 99%.

5.8. Analysis of failure cases of the proposed model

To have a better understanding of the model’s misprediction,
we exemplified the failure cases by the proposed model for both
classification and severity quantification tasks. As shown in Fig. 9,
though our model failed to offer the correct predictions for the
failure cases, its confusion could be explained with cogent inter-
pretations, and it attends on the lesion of interest in many cases.
Similarly, for severity quantification, it provided the severity array
come close to the label annotation, even in case of the wrong pre-
diction as in Fig. 10.



S. Park, G. Kim, Y. Oh et al.

Table 9
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Comparison of the classification performance of the proposed model with COVID-19 classification models in related works.

External dataset 1 (CNUH)

External dataset 2 (YNU)

External dataset 3 (KNUH)

Models - -
(Params) AUC (95% CI) AUC (95% CI) AUC (95% CI)

Normal Others COVID-19 Normal Others COVID-19 Normal Others COVID-19
Proposed 0.968 0.926 0.953 0.973 0.935 0.884 0.961 0.861 0.898
model (0.954-0.981) (0.893-0.959) (0.935-0.971) (0.964-0.983) (0.914-0.955) (0.861-0.906) (0.950-0.972) (0.837-0.885) (0.878-0.918)
(79.402M)
CoroNet 0.772* 0.760* 0.834* 0.803* 0.708* 0.812* 0.701* 0.753** 0.847*
(33.969M) (0.731-0.813)  (0.689-0.830) (0.796-0.872) (0.774-0.833) (0.667-0.749) (0.780-0.844) (0.669-0.732) (0.723-0.783) (0.823-0.871)
COVIDNet 0.787* 0.744* 0.636* 0.715* 0.586* 0.844* 0.665* 0.491* 0.651**
(11.750M) (0.740-0.834) (0.667-0.822) (0.575-0.697) (0.681-0.750) (0.542-0.630) (0.816-0.872) (0.633-0.696) (0.456-0.526) (0.611-0.690)
DarkCOVIDNet 0.749* 0.708* 0.843* 0.952* 0.898* 0.901 0.466* 0.562** 0.479*
(1.164M) (0.697-0.802) (0.633-0.784) (0.784-0.902) (0.938-0.966) (0.873-0.923) (0.879-0.922) (0.432-0.499) (0.522-0.602) (0.444-0.514)
DeepCOVID 0.711* 0.701* 0.791* 0.893* 0.751* 0.844* 0.690* 0.625* 0.770*
(11.178M) (0.660-0.762)  (0.625-0.777) (0.742-0.841) (0.871-0.916) (0.714-0.789) (0.817-0.870) (0.659-0.721) (0.589-0.660) (0.737-0.803)

Note: *, ** denote the better performance of our model w with statistical significance (p < 0.05, p < 0.001). CI: confidence interval.

Fig. 7. Comparison of localization results in BIMCV dataset. Green: radiologist’s an-
notation. Yellow: model's prediction after thresholding. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

In addition, we further exemplified the cases in which the pre-
vious classification models failed while the proposed model offered
the correct predictions for comparison in Appendix E.

5.9. Ablation studies

To get better understanding about the contribution of individual
components within our model, we conducted a series of ablation
studies as provided inTables 11 and 12. More details are as follows.

1

Prevalence in test dataset Estimated real-world COVID-19 prevalence
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Fig. 8. Simulation under the different prevalence of COVID-19.

Table 10
Comparison of the severity quantification performance of the proposed model with
COVID-19 classification models in related works.

External dataset 1 External dataset 2 External dataset 3

Models (CNUH) (YNU) (KNUH)
(Params) MSE (95% CI) MSE (95% CI) MSE (95% CI)
Proposed model 1.441 1435 1.458
(79.402M) (0.760-2.122) (1.195-1.676) (1.147-1.768)
CheXNet 1.457 5.182* 1.891
(6.961M) (0.854-2.059) (4.472-5.892) (1.398-2.384)
Cohen 3.268* 3.668** 2.043*
(6.966M) (2.548-3.987) (3.249-4.086) (1.724-2.361)
PXS 4227 4.014* 4.965*
(7.979M) (3.196-5.259) (3.533-4.495) (4.558-5.372)

Note: *, ** denote the better performance of ours with statistical significance (p <
0.05, p < 0.001). CI: confidence interval.

5.9.1. Pre-training backbone on large CXR datasets

Pre-training the backbone on a pre-built large CXR dataset
(CheXpert dataset) to extract low-level features is one of the key
ideas of our method. Therefore, we conducted experiments to com-
pare the performances of the proposed model with and with-
out CheXpert pre-trained weights both in the internal validation
dataset and the external test datasets. As shown in Tables 13 and
14, the experimental results suggest the performance increases
with pre-training were prominent in the external test datasets,
while the improvement was not prominent, and even better per-
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Table 11
Ablation study results for classification performance.

Medical Image Analysis 75 (2022) 102299

External dataset 1 (CNUH)

External dataset 2 (YNU)

External dataset 3 (KNUH)

AUC (95% CI) AUC (95% CI)

AUC (95% Cl)

Methods
Normal Others COVID-19 Normal Others COVID-19 Normal Others COVID-19
Proposed 0.968 0.926 0.953 0.973 0.935 0.884 0.961 0.861 0.898
model (0.954- (0.893- (0.935- (0.964- (0.914- (0.861- (0.950- (0.837- (0.878-
0.981) 0.959) 0.971) 0.983) 0.955) 0.906) 0.972) 0.885) 0.918)
w/o 0.898* 0.869* 0.848** 0.962 0.919 0.895 0.887** 0.811* 0.812*
pre-train (0.868- (0.815- (0.806- (0.950- (0.896- (0.873- (0.868- (0.784- (0.783-
0.927) 0.922) 0.891) 0.975) 0.942) 0.917) 0.907) 0.837) 0.841)
w/o Trans- 0.935* 0.893* 0.914* 0.964* 0.899* 0.846** 0.925* 0.791* 0.794*
former (0.914- (0.846- (0.887- (0.953- (0.875- (0.820- (0.910- (0.762- (0.765-
0.957) 0.939) 0.942) 0.975) 0.924) 0.872) 0.940) 0.820) 0.822)
w/o PCAM 0.943* 0.874* 0.911* 0.968 0.911* 0.892 0.938** 0.868 0.817*
(0.921- (0.817- (0.882- (0.957- (0.886- (0.870- (0.924- (0.845- (0.788-
0.965) 0.931) 0.941) 0.979) 0.937) 0.915) 0.952) 0.890) 0.846)
w/o 0.965 0.939 0.940* 0.976 0.925* 0.8931 0.963 0.861 0.878*
position (0.950- (0.909- (0.918- (0.967- (0.902- (0.871- (0.952- (0.838- (0.856-
embedding 0.980) 0.969) 0.963) 0.985) 0.947) 0.914) 0.973) 0.885) 0.901)

Note: *, ** denote the better performance of our model, while T, T denotes worse performance of our model with statistical significance (p < 0.05, p < 0.001).

CI: confidence interval.

Table 12
Ablation study results for severity quantification performance.
External 1 External 2 External 3
(CNUH) (YNU) (KNUH)
Methods MSE (95% CI) MSE (95% CI) MSE (95% CI)
Proposed model 1.441 1435 1.458
(0.760-2.122) (1.195-1.676) (1.147-1.768)
w/o pre-train 1.737 2.319* 1.835*
(1.037-2.437) (1.907-2.732) (1.402-2.268)
w/o Transformer 1.544 1.977 1.374
(0.882-2.206) (1.682-2.272) (1.091-1.657)
w/o PCAM 1.436 2.205* 1.353
(0.777-2.095) (1.881-2.529) (1.058-1.648)
w/o position 1.447 1.504 1.522

embedding (0.838-2.056) (1.257-1.750) (1.237-1.807)

Note: *, ** denote the better performance of ours with statistical significance (p <
0.05, p < 0.001). CI: confidence interval.

formance without pre-trained backbone was observed in the in-
ternal validation dataset. Combined together, these results demon-
strate that the model without CheXpert pre-trained weights is
more prone to overfitting, supporting our arguments that pre-
training the backbone on large-scale CXR is a crucial component
of the model in terms of better generalization capability.

5.9.2. PCAM operation

To support our claim that PCAM operation enables the back-
bone network to embed better feature representations for sub-
sequent tasks, we conducted an ablation study with and with-
out PCAM operation. The experimental results in Tables 11 and
12 show that the model with PCAM operation shows better per-
formances both for classification and severity prediction tasks, but
the benefit was more prominent for classification task. These find-
ings are consistent with the intuition that PCAM operation would

Table 13

Table 14
Severity quantification performance of the proposed model with and without pre-
trained backbone weights on CheXpert dataset.

Internal External 1 External 2 External 3
validation (CNUH) (YNU) (KNUH)
Methods MSE MSE MSE MSE
w pre-train 0.528 1.441 1435 1.458
w/o pre-train 0.607 1.737 2.319* 1.835*

Note: *, ** denote the better performance of ours with statistical significance (p <
0.05, p < 0.001).

be more useful in classification tasks where the robust representa-
tions for various low-level features can be more directly related to
the final diagnosis of a given CXR.

5.9.3. Role of transformer

Another key idea of our approach is that the Transformer is
capable of properly combining the extracted low-level features to
yield high-level outputs. To validate this argument, the ablation
study without the Transformer was conducted, which is identi-
cal to train and evaluate the performance of the CNN backbone
(DenseNet-121 equipped with PCAM) without a Transformer body,
which was trained in a multi-task manner for the classification and
severity quantification tasks. As provided in Tables 11 and 12, the
performances were significantly deteriorated without the Trans-
former architecture, both for the classification and the severity pre-
diction tasks, proving that the Transformer architecture plays a key
role within our method.

5.9.4. Positional embedding
Since a recent study has suggested that ViT model works de-
cently without the positional embeddings (Chen et al.,, 2021), we

Diagnostic performance of the proposed model with and without pre-trained backbone weights on CheXpert dataset.

Internal Validation

External dataset 1 (CNUH)

External dataset 2 (YNU) External dataset 3 (KNUH)

Metrics AUC AUC AUC AUC

Normal Others COVID-19 Normal Others COVID-19 Normal Others COVID-19 Normal Others COVID-19
w pre-train 0.977 0.975 0.986 0.968 0.926 0.953 0.973 0.935 0.885 0.961 0.861 0.898
wj/o pre-train 0.992 0.977 0.998" 0.898"* 0.869* 0.848** 0.962 0.919 0.895 0.887** 0.811* 0.812**

Note: *, ** denote the better performance of our model, while T, T denote worse performance of our model with statistical significance (p < 0.05, p < 0.001).
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(A)

Other infection prediction: COVID-19
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(B) COVID-19

prediction: normal

(©) COVID-19

COoVID-19 prediction: other infection

Fig. 9. Examples of the failure cases of the proposed model for the classification task. (A) The model misclassified a case of tuberculosis as COVID-19, as the location and
distribution of the consolidative lesions resemble those of COVID-19 (lower and peripheral distribution of patch consolidations). (B) The model failed to diagnose a faint
COVID-19 lesion in the right lower lobe of the patients, possibly due to the fact that the COVID-19 lesion was concealed by the opacity of breast tissue. (C) The model failed
to diagnose in a mild COVID-19 case, showing the confusion by the support device. (D) A severe COVID-19 case was confused as other infection, in which an opacity was
located at an unusual location for COVID-19 involvement (right middle lobe), but the model retained proper attention to the abnormal lesions.
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Fig. 10. Example of the failure case of the proposed model for severity quantifica-
tion task. The model confused a faint opacity in the right middle lobe as COVID-19
involvement, yielding an overall score higher than the label. Nevertheless, its pre-
diction came close to the label annotation.

performed an ablation study with and without the positional em-
beddings. As shown in Tables 11 and 12, the model without the
positional embedding showed no statistical difference in severity
prediction task, but provided slightly lower performances for clas-
sification task in some datasets. This is consistent with the in-
tuition that the positional information has meaning for diagnosis
of disease (e.g. tuberculosis often involves the apex of lungs, but
COVID-19 more often presents in the lower periphery), but may
not be important to yield a summed severity score overall lung ar-
eas which can be considered to be permutation-invariant.

13

6. Discussion and conclusion

Increasing concerns on the overestimation of the deep learn-
ing model for COVID-19 now bring the real-world applicability
of the models into question. As pointed out in recent literature
(Wynants et al., 2020), although hundreds of deep learning mod-
els for automated diagnosis of COVID-19 have been suggested so
far, most of them did not work well in a real-world application.
Most of them were sensitive to specific settings of image acqui-
sition, overfit to unimportant findings of image (Roberts et al.,
2021) and therefore showed unpardonable performance deterio-
ration in a different setting. Similarly, in this study, we have ob-
served that previously suggested models for both COVID-19 clas-
sification and severity quantification showed unsatisfactory gen-
eralization performances in various external data. Our model, on
the other hand, showed stable performances in various external
test datasets with different settings and even regardless of PA and
AP view (see Appendix D and Appendix F). This finding is impor-
tant since it will broaden the actual applicability of the developed
model in the clinical setting.

In the current pandemic situation, our method holds great
promise as a screening tool. As shown in the simulation of real-
world COVID-19 prevalence (see Fig. 8), it could reliably depri-
oritize the population with a low risk of infection using readily
obtainable CXRs. With NPV over 99%, the model could spare up
to 80% of the tested population from the molecular test, thereby
prioritize the limited medical resources to subjects more likely to
have COVID-19. In this respect, the application of our model would
be of great value in the resource-constrained area. Supposing it
is used along with the molecular test, it could be utilized to iso-
late the suspected subjects waiting for RT-PCR results, as it was
reported that positive radiological findings precede positive RT-
PCR results in a substantial portion (308 out of 1,014) of patients
(Ai et al.,, 2020). In addition, since our model also provides the es-
timated severity of COVID-19 infection, it is possible to give guid-



S. Park, G. Kim, Y. Oh et al.

ance in treatment decisions or to evaluate the response using our
model for severity prediction of consecutive CXRs.

In summary, we developed a novel ViT model that leverages
low-level CXR feature corpus for diagnosis and severity quantifica-
tion of COVID-19. The novelty of this work is to decouple the over-
all framework into two steps, the first is to pre-train the backbone
network to classify low-level CXR findings with the prebuilt large-
scale dataset to embed optimal feature corpus, which was then
leveraged in the second step by Transformer for high-level diagno-
sis of disease including COVID-19. By maximally utilizing the ben-
efit of the large-scale dataset containing more than 220,000 CXR
images, the overfitting problem of neural networks with limited
numbers of COVID-19 cases can be substantially alleviated. In addi-
tion, we also adapted the proposed method to severity quantifica-
tion problem, demonstrating a performance similar to that of clin-
ical experts, thereby expanding its application in the clinical set-
ting. Not confined to devising the model for each task, we enabled
a novel ViT model to be a multi-task model that can be used for
both classification and severity prediction, offering a simpler con-
figuration and better performances for individual tasks. We per-
formed extensive experiments on various external institutions to
demonstrate the superior generalization performance of the pro-
posed model over the existing models for COVID-19 as well as
other CNN and Transformer-based architectures, which is the sine
qua non of widespread adoption of the system.

Finally, we believe that the novel concept of making higher-
level diagnoses by aggregating low-level feature corpus, which is
readily available with pre-built datasets, can be applied to quickly
develop a robust algorithm against the newly emerging pathogen,
since it is expected to share the common low-level CXR features
with existing diseases.
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Appendix A. Details of PCAM Operation

Figure Al depicts the detailed process of the PCAM operation.
First, the feature map from backbone network is transformed to
a probability map using 1 x 1 convolution and sigmoid layer.
This probability map is then normalized and pixel-wise multiplied
with feature map to generate weighted feature map. Finally, the
weighted feature map is reduced with global average pooling and
passed to final classifier to provide prediction probability.

Input CXR (512 x 512) Feature map
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Appendix B. Details of Model Output for Severity Array

Using the feature map from the Transformer, a map head lever-
aging the five upsizing convolution layers followed by a sigmoid
layer generates an output with a range of [0-1]. This is subse-
quently multiplied by lung mask to provide severity map suitable
for the shape of lung as shown in Fig. B1

Appendix C. Details of four hospital datasets

The details of patient and CXR characteristics of four hospital
data deliberately collected for this study are provided in Table C1.

Appendix D. Classification Results According to Views

Tables D.2 and D.3 shows the classification results evaluated
exclusively on PA and AP view CXRs, respectively. For both PA
and AP view images, our model provided stable performances,
although the diagnostic performance with AP view images was
slightly lower than PA view images. Nonetheless, it still showed
good performance (AUC > 0.800) in the external test dataset, con-
sidering the fact that the diagnosis of infectious disease using only
AP view image is not standard and usually deteriorates the diag-
nostic performance.

Appendix E. Analysis of Failure Cases in Previous Models

For analysis of the failure cases, we additionally analyzed the
failure cases of the previous models using our model for com-
parison. The previous models were visualized with the methods
proposed in the original papers. Note that COVIDNet and CoroNet
could not be implemented since they did not provide the details of
the model visualizations. As shown in Fig. E1, our model success-
fully predicted the correct label and localized the lesion in the fail-
ure cases of the previous models for both COVID-19 and other in-
fections. Similarly, for severity quantification, our model more cor-
rectly predicted ground truth severity annotation than the previ-
ous models as in Fig. E2. In addition, the severity map generated
by our model predicted the locations of the COVID-19 involvement
with the high agreement.

Appendix F. Further Evaluation on Other Datasets

We have further evaluated the generalization performance of
our model in other publicly available datasets. For classification,
we used Actualmed COVID-19 CXR Dataset (DarwinAl et al.) con-
taining 155 PA and 30 AP CXRs. This dataset contains 58 COVID-19
cases and 127 non-COVID-19 cases. Note that classification met-
rics could only be calculated in COVID-19, since the dataset con-
tain only COVID-19 and non-COVID-19 labels. For severity quantifi-
cation, COVID-19 Image Data Collection (Cohen et al., 2020c) was
used which contains 163 images annotated with Brixia severity
score. These scores are converted in accordance with our severity
scoring method. After conversion, it contains 14 (8.6%), 16 (9.8%),
16 (9.8%), 19 (11.7%), 19 (11.7%), 79 (48.5%) cases of severity score
1, 2, 3, 4, 5, 6, respectively.

Weighted
Feature map

16 x 16 x 1024
SR Classifier

\ Classifier i
GAP Probability

(Global
Average 1x1x1024
Pooling)

Pixel-wise
multiplication

16 x 16 x 1024

Fig. A1. Detailed process of Probabilistic Class Activation Map (PCAM) pooling.
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Fig. B1. Details of the model output and post-processing for severity array in the severity quantification task.

Table C1

Details on patient characteristics and CXR images.

Data

CNUH

YNU

KNUH

AMC

Details on patient characteristics
Age
Sex

COVID-19 cases
COVID-19 severity

CT positive cases
Country

Details on CXR images
Number of images
View

Modality

Exposure time (msec)
Tube current (mA)
Bits

479 +£17.2
Male (45.7%), Female
(45.1%), NJA (9.2%)
81
3 (1-6)
NJ/A (100%)
South Korea

365
PA (65.6%), AP (34.4%)
CR (95.0%), N/A (5.0%)
6.7 + 3.4
473.3 + 198.1
12 (12-14)

57.4 + 18.5
Male (52.6%), Female
(47.3%), N/A (0.2%)
286
3 (1-6)
NJA (100%)
South Korea

806
PA (56.1%), AP (43.9%)
CR (99.9%), N/A (0.1%)
165 £ 7.7
307.8 + 36.4
12 (12-12)

53.8 + 18.9
Male (29.8%), Female
(33.6%), N/A (36.6%)
293
6 (1-6)

46.2 + 145
Male (48.9%), Female
(47.1%),N/A (3.9%)

Positive (2.0%), N/A (98.0%) -

South Korea

1093
PA (72.1%), AP (27.9%)
CR (100%)
12.1 + 8.3
311.8 £ 39.6
12 (12-14)

South Korea

9972
PA (98.7%), AP (1.3%)
CR (3.7%), DX (96.3%)
89 439
208.9 + 43.7
14 (10-15)

Note: Values are presented as mean =+ standard deviation or median (range).

Table D.2

Diagnostic performance of the proposed model in various external test datasets from three different institutions (PA).

External dataset 1 (CNUH)

External dataset 2 (YNU)

External dataset 3 (KNUH)

Metrics Normal Others COVID-19 Normal Others COVID-19 Normal Others COVID-19
AUC 0.977 0.969 0.936 0.970 0.968 0.936 0.961 0.891 0.903
(95% CI) (0.959-0.995) (0.948-0.990) (0.870-1.000) (0.951-0.990) (0.950-0.985) (0.841-1.000) (0.947-0.975) (0.865-0.916) (0.864-0.942)
Sensitivity 91.6 89.7 833 943 91.0 87.5 91.5 838 87.5
(95% ClI) (88.0-944)  (75.8-97.1)  (359-99.6)  (91.1-96.7)  (85.1-95.)  (47.4-99.7)  (88.3-940)  (79.2-87.7)  (78.2-93.8)
Specificity 91.1 89.6 83.6 92.8 91.9 86.7 90.7 84.0 84.2
(95% CI) (78.8-975)  (85.7-92.7)  (79.3-87.3)  (87.4-96.3)  (883-947)  (83.2-89.7)  (87.4-93.4)  (80.4-87.1)  (81.3-86.8)
Accuracy 915 89.6 83.6 938 91.6 86.7 91.1 83.9 84,5
(95% CI) (88.2-942)  (86.0-925)  (79.4-87.2)  (912-958)  (88.6-940)  (833-897)  (88.9-93.0)  (81.1-864)  (81.8-87.0)

Note: CI: confidence interval.

Table D.3

Diagnostic performance of the proposed model in various external test datasets

from three different institutions (AP).

External dataset (CNUH)

Metrics

Normal Others COVID-19

AUC 0.918 0.809 0.879
(95% CI) (0.875-0.960) (0.714-0.904) (0.829-0.929)
Sensitivity 88.7 73.7 85.3
(95% CI) (80.6-94.2) (48.8-90.9) (75.3-92.4)
Specificity 88.3 64.0 84.5
(95% CI) (80.0-94.0) (56.3-71.1) (76.6-90.5)
Accuracy 88.5 64.9 84.8
(95% CI) (83.1-92.6) (57.7-71.7) (78.9-89.6)

Note: CI: confidence interval.
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(A) Proposed model DarkCOVIDNet DeepCOVID
COVID-19 prediction: COVID-19 prediction: other infection prediction: normal

A

(B) Other infection Proposed model DarkCOVIDNet DeepCOVID

(tuberculosis) prediction: other infection prediction: normal prediction: normal

Fig. E1. Examples of success with our method when the previous classification models fail. (A) Ground truth is COVID-19, but the previous COVID-19 classification models
failed to make correct diagnoses. On the contrary, our model makes a correct diagnosis of COVID-19. (B) Similarly, when the previous COVID-19 classification models make
wrong diagnoses, our model is able to make a correct diagnosis of other infections.

Annotated severity: 2 Severity map by our model

Fig. E2. Examples of success with our method when the previous severity quantifi-
cation models fail. (A) Annotated severity score is 2, but other models fail to make
the correct prediction (CheXNet, Cohen, PXS scores are 4, 5, 3). On the contrary,
our model predicts a correct severity score while providing a severity map with
high agreement. (B) Also in the severe case with a score of 5, our model makes a
correct prediction of severity while other models fail (CheXNet, Cohen, PXS scores
are 6, 4, 2).

16
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Table F1
Classification performance of the proposed model in other external datasets.

Actualmed COVID-19 CXR dataset

Metrics - -

PA view AP view
AUC (95% CI) 0.838 (0.757 - 0.919) 0.875 (0.724 - 1.000)
Sensitivity (95% CI) 81.3 (63.6 - 92.8) 76.9 (56.4 - 91.0)
Specificity (95% CI) 78.1 (69.7 - 85.0) 100.0 (39.8-100.0)
Accuracy (95% CI) 78.7 (714 - 84.9) 80.0 (61.4 - 92.3)

Note: CI: confidence interval.

Table F2
Severity quantification performance of the proposed
model in other external datasets.

Metrics COVID-19 Image Data Collection

MSE (95% CI)  1.468 (1.089 - 1.847)
MAE (95% CI)  0.890 (0.762 - 1.017)
CC (95% CI) 0.746 (0.669 - 0.807)
R? (95% CI) 0.409 (0.295-0.523)

Note: CI: confidence interval.

As shown in Tables F1 and Table F2, our model provided good performances in both COVID-19 classification and severity quantification
tasks in these datasets from other sources.
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