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A B S T R A C T

Score-based diffusion models provide a powerful way to model images using the gra-
dient of the data distribution. Leveraging the learned score function as a prior, here
we introduce a way to sample data from a conditional distribution given the measure-
ments, such that the model can be readily used for solving inverse problems in imaging,
especially for accelerated MRI. In short, we train a continuous time-dependent score
function with denoising score matching. Then, at the inference stage, we iterate be-
tween the numerical SDE solver and data consistency step to achieve reconstruction.
Our model requires magnitude images only for training, and yet is able to reconstruct
complex-valued data, and even extends to parallel imaging. The proposed method is
agnostic to sub-sampling patterns and has excellent generalization capability so that it
can be used with any sampling schemes for any body parts that are not used for training
data. Also, due to its generative nature, our approach can quantify uncertainty, which is
not possible with standard regression settings. On top of all the advantages, our method
also has very strong performance, even beating the models trained with full supervision.
With extensive experiments, we verify the superiority of our method in terms of quality
and practicality. Code available at: https://github.com/HJ-harry/score-MRI

© 2022

1. Introduction

Reconstruction methods from sub-sampled measurements
for magnetic resonance imaging (MRI) have seen a lot of
progress over the years. Regularized reconstruction methods
exploit the sparsity of hand-crafted priors along with data con-
sistency to arrive at a solution (Donoho, 2006), yet the con-
struction of priors is often non-trivial, and none of them can
properly model the actual complicated data distribution pdata of
MRI scans. Data-driven deep learning methods train the models
either directly (Wang et al., 2016) or indirectly (Oh et al., 2020;
Yaman et al., 2020), yet the methods rely heavily on the super-
vision of a well-curated large database of k-space data, which
is hard to obtain.

Recently, score-based models (Hyvärinen and Dayan, 2005;
Song and Ermon, 2019), and denoising diffusion probabilis-
tic models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al.,
2020) have gained wide interest as a new class of generative
model that achieves surprisingly high sample quality without
adversarial training (Song et al., 2021b; Nichol and Dhariwal,
2021; Dhariwal and Nichol, 2021). Among many works, Song
et al. (2021b) generalized discrete score-matching procedures
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to a continuous stochastic differential equation (SDE), which in
fact also subsumes diffusion models into the same framework.
We refer to score-based SDEs as score-based diffusion models
henceforth to emphasize that our proposed methodology can be
flexibly used with any realizations from the two model classes:
score-based generative models, and diffusion models.

Score-based diffusion models perturb the data distribution
according to the forward SDE by injecting Gaussian noise, ar-
riving at a tractable distribution (e.g. isotropic Gaussian dis-
tribution). In order to sample from the data distribution, one
can train a neural network to estimate the gradient of the log
data distribution (i.e. score function, ∇x log p(x)), and use it to
solve the reverse SDE numerically. Unconditional generation
of samples from p(x) using these score-based diffusion mod-
els have found their applications in image (Song et al., 2021b;
Nichol and Dhariwal, 2021; Dhariwal and Nichol, 2021), au-
dio (Kong et al., 2021), and even graph (Niu et al., 2020) syn-
thesis. Conditional generation from p(x|y) has also been stud-
ied in the context of widely known computer vision problems:
in-painting (Song and Ermon, 2019; Song et al., 2021b), super-
resolution (Choi et al., 2021; Saharia et al., 2021), and image
editing (Meng et al., 2021).

In this work, we propose a framework generally applicable
to solving inverse problems in imaging and especially focus on
the task of MRI reconstruction. Notably, our method requires
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2 Chung and Ye

Fig. 1: Overview of the proposed method. Starting from xT , sampled from the prior distribution, x0 is reached by solving the reverse SDE with score-based
sampling, alternating between the update step, and the data consistency step.

training a single score function with magnitude images only.
With the trained score model at hand using the de-noising score
matching loss, we construct a solver for the reverse SDE from
the variance exploding (VE)-SDE (Song et al., 2021b), which
enables us to sample from the distribution p(x|y), conditioned
on the measurement y. This is done by imposing data consis-
tency step at every iteration, after the unconditional update step.

Despite the fact that the score function was not trained to
solve the image reconstruction task, our method achieves state-
of-the-art performance, even outperforming models that were
trained in a supervised fashion specifically for image recon-
struction tasks for complex images. Furthermore, our model
is agnostic to the sub-sampling pattern used in the acceleration
procedure, as opposed to supervised models which require re-
training every time a new sampling scheme is designed. In ad-
dition, the proposed method can be extended to the reconstruc-
tion of complex-valued MR image acquisition using a single
network that has never seen complex-valued data before. Even
more, our method can be readily applied to practical multi-coil
settings with the same score function, where the update via
score function can be applied in parallel to each coil image.
It is worth mentioning that the generalization capability of the
trained score function is far greater. In fact, when we try the
reconstruction of data that is heavily out of training data distri-
bution (e.g. different contrast, and even different anatomy), we
are still able to achieve high fidelity reconstruction.

Finally, the proposed method is inherently stochastic, and for
that, we can sample multiple reconstruction results from the
same measurement vector y. This is especially useful since we
are able to quantify uncertainty without any specific treatment
(e.g. Monte Carlo dropout (Gal and Ghahramani, 2016), esti-
mating variance directly (Kendall and Gal, 2017)) to the neu-
ral net. We observe that at low acceleration factors, posterior
samples do not deviate much from each other, meaning high
confidence of the network. As the acceleration factor is pushed
to higher values, the variance gradually increases, which can
potentially aid practitioners’ decision-making.

Given the amazing generalization capability and the flexibil-

ity to produce uncertainty maps, we believe that the proposed
score-based approach can be an important framework for com-
pressed sensing MRI. Overview of the proposed method is illus-
trated in Fig. 1, and we detail our proposed method in Section 3.

The manuscript is organized as follows: relevant background
on score-based diffusion models is reviewed in Section 2; de-
tailed procedure and algorithm of the proposed method is pre-
sented in Section 3; specifications about the implementation
and experiments are given in Section 4; experimental results are
featured in Section 5; discussion about the concurrent works of
conditional generation using diffusion models, limitations, and
broader impacts of our work is presented in Section 6; we con-
clude our work in Section 7.

2. Background

2.1. Score-based SDE
One can construct a continuous diffusion process {x(t)}Tt=0

with x(t) ∈ Rn, where t ∈ [0,T ] is the time index of the
progression and n denotes the image dimension. We choose
x(0) ∼ pdata and x(T ) ∼ pT , where pdata, pT refers to the
data distribution of interest, and the prior distribution which are
tractable to sample from (e.g. spherical Gaussian distribution),
respectively. Then, the stochastic process can be constructed as
the solution to the following SDE

dx = f (x, t)dt + g(t)dw, (1)

where f : Rn 7→ Rn and g : R 7→ R correspond to the drift
coefficient, and the diffusion coefficient, respectively, and w is
a standard n−dimensional Brownian motion.

One can construct different SDEs by choosing different func-
tions for f and g. First, by choosing

f = −
1
2
β(t)x, g =

√
β(t), (2)

where 0 < β(t) < 1 is a monotonically increasing function
of noise scale, one achieves the variance preserving (VP)-SDE



Chung and Ye 3

(Ho et al., 2020). In this case, the magnitude of the signal de-
cays to 0, and the variance is preserved to a fixed constant as
t → ∞. In fact, VP-SDE can be seen as the continuous version
of DDPM (Song et al., 2021b; Kingma et al., 2021). Therefore,
while DDPM was developed in a separate variational frame-
work, it can also be seen as a realization of SDE.

On the other hand, variance exploding (VE) SDEs choose

f = 0, g =

√
d[σ2(t)]

dt
, (3)

where σ(t) > 0 is again a monotonically increasing function,
typically chosen to be a geometric series (Song and Ermon,
2019; Song et al., 2021b). Unlike VP-SDE, VE-SDE diffuses
the signal with a very large variance, which explodes as t → ∞,
hence its name. Empirically, we found that using VE-SDE typ-
ically leads to higher sample qualities, and hence focus on de-
veloping our method on top of VE-SDE hereafter. However, we
note that the use of VP-SDE (including the family of DDPMs
developed under the variational framework) is also straightfor-
ward under our framework.

Interestingly, the reverse process of (1) can be constructed
with another stochastic process (Song et al., 2021b):

dx = [ f (x, t) − g(t)2 ∇x log pt(x)︸        ︷︷        ︸
score function

]dt + g(t)dw̄ (4)

=
d[σ2(t)]

dt
∇x log pt(x)︸        ︷︷        ︸

score function

+

√
d[σ2(t)]

dt
dw̄,

where dt is the infinitesimal negative time step, and w̄ is again
the standard n−dimensional Brownian motion running back-
wards. The last equality follows by plugging in Eq. (3) to
Eq. (4).

In order to solve (4), one has to know the score func-
tion for all t. One can estimate this score function with a
time-conditional neural network sθ(x(t), t) ' ∇x log pt(x(t)),
and replace the term in (4). Since we do not know the true
score, we can instead use denoising score matching (Vin-
cent, 2011), where we replace the unknown ∇x log pt(x) with
∇x log p0t(x(t)|x(0)), where p0t(x(t)|x(0)) is the Gaussian per-
turbation kernel which perturbs the probability density p0(x) to
pt(x). Under some regularity conditions, sθ trained with denois-
ing score matching will satisfy sθ∗ (x(t), t) = ∇x log pt(x) almost
surely (Song et al., 2020). Formally, we optimize the parame-
ters θ of the score network with the following cost:

min
θ

Et∼U(0,1)

[
λ(t)Ex(0)Ex(t)|x(0)

[
(5)∥∥∥sθ(x(t), t) − ∇x log p0t(x(t)|x(0))

∥∥∥2
2

]]
,

where λ(t) is an appropriate weighting function, e.g. likelihood
weighting of Song et al. (2021a), which puts different emphasis
according to the time t. In the case of Gaussian perturbation
kernels, the gradient of the perturbation kernel can be formu-
lated explicitly: ∇x log p0t(x(t)|x(0)) = (x(t) − x(0))/σ(t)2. In-
tuitively, one can also understand (5) as training the neural net-
work to de-noise x(t), which was constructed by adding noise
to x(0).

In Song and Ermon (2019), it was shown with an illustrative
toy example that when you add Gaussian noise to the random
variable, you essentially get a blurred version of the original
density, which indeed comes from the property that the addi-
tion of two random variables corresponds to the convolution of
two densities (Loeve, 2017). Hence, when the score function is
trained to denoise the given data across multiple noise scales,
one can start the diffusion process with pure noise and grad-
ually decrease the noise following the gradient information of
the data density. Consequently, one can arrive at high-density
modes of the data distribution.

Once the network is trained with (5), we can plug the ap-
proximation sθ(x, t) ' ∇x log pt(x(t)) to solve the reverse SDE
in Eq. (4):

dx =
d[σ2(t)]

dt
sθ(x(t), t) +

√
d[σ2(t)]

dt
dw̄. (6)

Then, we can solve the SDE numerically, for example, with
Euler-Maruyama discretization (Song et al., 2021b). This in-
volves discretizing t in range [0, 1] uniformly into N intervals
such that 0 = t0 < t1 < · · · < tN = 1, with ∆t = 1/N. Ad-
ditionally, we can correct the direction of gradient ascent with
corrector algorithms such as Langevin MC (Parisi, 1981). Itera-
tively applying predictor and corrector steps yield the predictor-
corrector (PC) sampling algorithm (Song et al., 2021b), as pre-
sented in Algorithm 1. With the algorithm presented in Algo-
rithm 1, we can sample from the distribution p(x). In Section 3,
we extend this sampling scheme to a conditional sampling al-
gorithm, which enables us to sample from p(x|y).

Algorithm 1 Predictor-Corrector (PC) sampling

Require: sθ,N,M, {εi} . step size, {σi} . noise schedule
1: xN ∼ N(0, σ2

T I)
2: for i = N − 1 : 0 do
3: x′i ← xi+1 + (σ2

i+1 − σ
2
i )sθ(xi+1, σi+1)

4: z ∼ N(0, I)

5: xi ← x′i +

√
σ2

i+1 − σ
2
i z

6: for j = 1 : M do
7: z ∼ N(0, I)
8: x′i ← xi + εisθ(xi, σi)
9: xi ← x′i +

√
2εi z

10: end for
11: end for
12: return x0

Predictor

Corrector

3. Main Contributions

3.1. Forward Measurement Model

In accelerated MRI, we consider the following measurement
model

y = Ax (7)
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where y ∈ Cm is the measurement, x ∈ Cn is the latent image,
and a parameterized forward measurement matrix A ∈ Cm×n is
defined as

A := PΩFS, (8)

where S := [S(1); . . . ;S(c)] is the sensitivity map for c different
coils, F denotes Fourier transform, and PΩ is a diagonal matrix
with zeros and ones that represent the sub-sampling operator
with the given sampling pattern Ω. The sensitivity map S are
normalized such that we have

S∗S = I. (9)

In the case of single-coil acquisition, S reduces to identity ma-
trix such that A(sc) = PΩF .

3.2. Reverse SDE for Accelerated MR Reconstruction
A classic approach to find the solution of Eq. (7) is to solve

the following constrained optimization problem:

min
x

Ψ(x) (10)

subject to y = Ax,

where Ψ(·) is, for example, a sparsity promoting regularizer de-
rived from compressed sensing (CS) theory (Donoho, 2006),
such as `1 wavelet (Lustig et al., 2007) and total variation
(TV) (Block et al., 2007). Solving Eq. (10) typically involves
proximal algorithms such as variable splitting (Boyd et al.,
2011) or projection onto the convex sets (POCS) (Samsonov
et al., 2004), which decouples the optimization of the prior
term, and the forward consistency term. Then, one can alternate
between solving the two sub-problems to arrive at the optimum.

In Bayesian perspective, we immediately see that Ψ(x) in
Eq. (10) is the prior model of the data, i.e. p(x). Hence, we can
imagine that by more accurately estimating the complex prior
data distribution, one would be able to achieve higher quality
samples.

That being said, one of the important differences of the
proposed method compared to the classical approaches is that
rather than modeling the prior distribution p(x), we exploit its
stochastic samples. Specifically, the samples from the prior dis-
tribution can be obtained from the reverse SDE in Eq. (4), which
can be discretized as illustrated in Algorithm 1 with

xi ← (σ2
i+1 − σ

2
i )sθ(xi+1, σi+1) +

√
σ2

i+1 − σ
2
i z, (11)

Then, the data consistency mapping on the constraint in (10)
can be implemented by

xi ← xi + λA∗(y − Axi) = (I − λA∗A)xi + A∗y (12)

for λ ∈ [0, 1], where A∗ denotes the Hermitian adjoint of A..
Similar to our companion work (Chung et al., 2021), we im-

pose the constraint on the operator A such that (I − λA∗A) is a
non-expansive mapping (Bauschke et al., 2011):

‖(I − λA∗A)x − (I − λA∗A)x′‖ ≤ ‖x − x′‖, ∀x, x′ (13)

For example, projection onto convex sets (POCS) in (Tang
et al., 2011; Fan et al., 2017) or the one-iteration of the standard

Algorithm 2 Score-based sampling (Real)

Require: sθ,N,M, {εi} . step size, {σi} . noise schedule
Define A := PΩF

1: xN ∼ N(0, σ2
T I)

2: for i = N − 1 : 0 do
3: xi ← Predictor(xi+1, σi, σi+1)
4: xi ← Re(xi + A∗(y − Axi))
5: for j = 1 : M do
6: xi ← Corrector(xi, σi, εi)
7: xi ← Re(xi + A∗(y − Axi))
8: end for
9: end for

10: return x0

gradient descent with controlled step size (Jalal et al., 2021;
Ramzi et al., 2020) corresponds to the non-expansive data con-
sistency mapping. In the following, the normalization step in
(9) is shown essential to ensure that (I − λA∗A) is indeed non-
expansive:

Proposition 1. With the sensitivity normalization in (9), (I −
λA∗A) is non-expansive for λ ∈ [0, 1].

Proof. Using the properties of the spectral norm, we have

‖A∗A‖ = ‖S∗F ∗P∗ΩPΩFS‖
(a)
= ‖S∗F ∗PΩFS‖

(b)
≤ ‖S∗F ∗FS‖

(c)
= ‖S∗S‖

(d)
= 1

where (a)(b) come that the subsampling operator PΩ is a diag-
onal matrix with 0 and 1, (c) is from the orthonormality of the
Fourier transform and (d) is from (9). Therefore, we have

‖I − λA∗A‖ ≤ max{|1 − λ|, 1} ≤ 1

for λ ∈ [0, 1]. Accordingly,

‖(I − λA∗A)x − (I − λA∗A)x′‖ ≤ ‖I − λA∗A‖‖x − x′‖ ≤ ‖x − x′‖
(14)

This concludes the proof.

Application of Eqs. (11) and (12) correspond to the predic-
tor step. When using the additional corrector steps as in Algo-
rithm 1, one can also apply the same treatment to the discrete
corrector step

xi ← xi+1 + εisθ(xi+1, σi+1) +
√

2εi z (15)
xi ← xi + λA∗(y − Axi),

where εi is the step size at the ith iteration. Iteratively applying
predictor and corrector steps as in PC algorithm gives rise to the
inference algorithm, which is described formally in Algorithm 2
when λ = 1.

Unfortunately, this algorithm can only be used when we
know a priori that the signal only contains real values, and care
must be taken since in most practical situations of MRI recon-
struction, the signal that we would like to reconstruct is com-
plex. This introduces a caveat when reconstructing the data
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Algorithm 3 Score-based sampling (SENSE-type)

Require: sθ,N,M, {εi} . step size, {σi} . noise schedule
1: if parallel imaging (PI) then
2: A := PΩFS

3: else
4: A := PΩF

5: end if
6: xN ∼ N(0, σ2

T I)
7: for i = N − 1 : 0 do
8: Re(xi)← Predictor(Re(xi+1), σi, σi+1)
9: Im(xi)← Predictor(Im(xi+1), σi, σi+1)

10: xi = Re(xi) + ι Im(xi)
11: xi ← xi + A∗(y − Axi)
12: for j = 1 : M do
13: Re(xi)← Corrector(Re(xi), σi, εi)
14: Im(xi)← Corrector(Im(xi), σi, εi)
15: xi = Re(xi) + ι Im(xi)
16: xi ← xi + A∗(y − Axi)
17: end for
18: end for
19: return x0

with the score function because the original theory of score-
based SDEs (Song et al., 2021b) did not consider complex sig-
nals.

One approach that is feasible is to train a score function so
that it handles complex signals, was proposed in (Ramzi et al.,
2020). Implementation-wise, this corresponds to considering
real and imaginary parts of the signal as separate channels and
applying the de-noising score matching objective to handle 2 ×
H×W sized image, where H and W are the height, and the width
of the image, respectively. However, we empirically found that
this treatment reduces the stability of network training, and also
hurts the performance of the reconstruction using Algorithm 2.
We further note that this treatment limits the practicality since
the model now requires raw k-space data for training.

To overcome these limitations, we propose a simple fix to
Algorithm 2, which provides a way to use the score function
sθ trained with magnitude images only, and use it to recon-
struct complex images. The method is presented in Algorithm
3, where we split the image into real and imaginary parts, and
apply the predictor-corrector step separately to each part. Ac-
cordingly, we can use the same score function that was trained
with magnitude images to deal with complex image data in a
seamless way. This simple fix works surprisingly well, and
we show in Section 5.2 that reconstruction of complex-valued
coil data with Algorithm 3 even outperforms the standard feed-
forward neural network trained with explicit supervision. Being
able to utilize score functions trained with magnitude-only data
to reconstruct complex-valued data is a great advantage since
we can use only the DICOM data to train the neural network.
This is advantageous because the plethora of MR scans exist
in the form of DICOM (Zbontar et al., 2018), while the raw k-
space data are usually discarded due to their excessive memory
size.

Algorithm 4 Score-based sampling (SSOS-type)

Require: sθ,N, {εi} . step size, {σi} . noise schedule
1: Define A := PΩF

2: x(k)
N ∼ N(0, σ2

T I)
3: for i = N − 1 : 0 do
4: for k = 1 : c do (parallel)
5: Re(x(k)

i )← Predictor(Re(x(k)
i+1), σi, σi+1)

6: Im(x(k)
i )← Predictor(Im(x(k)

i+1), σi, σi+1)
7: x(k)

i = Re(x(k)
i ) + ι Im(x(k)

i )

8: x(k)
i ← x(k)+A∗(y(k)−Ax(k)

i )
i

9: Re(x(k)
i )← Corrector(Re(x(k)

i ), σi, εi)
10: Im(x(k)

i )← Corrector(Im(x(k)
i ), σi, εi)

11: x(k)
i = Re(x(k)

i ) + ι Im(x(k)
i )

12: x(k)
i ← x(k)

i + A∗(y(k) − Ax(k)
i )

13: end for
14: end for
15: x0 =

√∑c
k=1 |x

(c)
0 |

2 . SSOS
16: return x0

Algorithm 5 Score-based sampling (Hybrid-type)

Require: sθ,N,M,m, {εi} . step size, {σi} . noise schedule
Define A(sc) := PΩF

1: Define A(mc) := PΩFS

2: x(k)
N ∼ N(0, σ2

T I)
3: for i = N − 1 : 0 do
4: for k = 1 : c do (parallel)
5: Re(x(k)

i )← Predictor(Re(x(k)
i+1), σi, σi+1)

6: Im(x(k)
i )← Predictor(Im(x(k)

i+1), σi, σi+1)
7: x(k)

i = Re(x(k)
i ) + ι Im(x(k)

i )

8: x(k)
i ← x

(k)+A∗(sc)(y
(k)−A(sc) x(k)

i )
i

9: Re(x(k)
i )← Corrector(Re(x(k)

i ), σi, εi)
10: Im(x(k)

i )← Corrector(Im(x(k)
i ), σi, εi)

11: x(k)
i = Re(x(k)

i ) + ι Im(x(k)
i )

12: x(k)
i ← x(k)

i + A∗(sc)(y
(k) − A(sc)x(k)

i )
13: end for
14: if mod(i,m) == 0 then
15: xi = [x(1), x(2), . . . , x(c)] . Aggregation
16: xi ← xi + λA∗(mc)(y − A(mc)xi)
17: end if
18: end for
19: x0 =

√∑c
k=1 |x

(c)
0 |

2 . SSOS
20: return x0

3.3. Diffusion model meets Parallel Imaging (PI)

While the proposed score-based framework for the recon-
struction of complex-valued data is extremely useful, most
modern MRI scanners (Zbontar et al., 2018) have multiple re-
ceiver coils, which capture the signal with different sensitiv-
ities. Since the birth of PI (Deshmane et al., 2012), myriad
of techniques to reconstruct the true latent signal have been
proposed in the literature, two of the most prominent being
SENSE (Pruessmann et al., 1999), and GRAPPA (Griswold
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Fig. 2: Illustration of parallel imaging applications. (a) SSOS-type sampling.
Coil images are reconstructed separately, then merged with the SSOS operation.
(b) Hybrid-type sampling. Dependency between the coil images is injected
every m steps of iteration.

et al., 2002). The former approach requires estimation or cal-
ibration of coil sensitivity maps, which are incorporated in the
forward model specified in (7). Contrarily, the latter approach
drops the need for the sensitivity maps, by simply taking the
sum-of-root-sum-of-squares (SSOS) of each reconstructed coil
image (Roemer et al., 1990). This approach is one of the most
widely used methods in clinical practice due to several ad-
vantages including implementation ease. Here, we show that
our score-based method can be integrated seamlessly into the
SSOS-type approach.

Specifically, as introduced in Algorithm 4, our objective is
to reconstruct the data coil-by-coil. For PI, we set the number
corrector step to one for brevity, i.e. M = 1. More specifically,
unlike GRAPPA, instead of estimating of the GRAPPA kernels,
we simply apply Algorithm 3 separately to each coil image, as
illustrated in Fig. 2 (a). Notably, although our score function
estimator sθ(x, t) ' ∇xt log p(x) were not trained with separate
coil images, since the distribution of independent coil images
does not deviate much from p(x), simply applying Algorithm 3
to each coil image induces a very accurate reconstruction.

One downside of Algorithm 4 is that there exists no cross-

talk between the coil reconstructions. This may be suboptimal,
because the reconstruction process does not take into account
that all the coil images come from the same image. Instead,
in order to properly leverage the correlation between different
coil images, we additionally implement a hybrid-type method
in Algorithm 5 by incorporating the SENSE type constraint.
Specifically, for every m steps of individual coil updates, we
coerce dependency between the coils with the following update:

xi ← xi + λA∗(mc)(y − A(mc)xi), (16)

where λ ∈ [0, 1] decides the extent to which data consistency
is imposed, and A(mc) is the standard multi-coil forward mea-
surement matrix as defined in (8). Once this is done, we arrive
at the final result with SSOS operation. See Fig. 2 (b) for an
illustration. By applying update steps of (16) in between with
linearly decreasing the value of λ as the iteration progresses, we
observe improved performance and sharper reconstructions.

Among the different sampling patterns, we see that Algo-
rithm 5 generally performs better with 1D sampling patterns,
whereas Algorithm 4 performs better with 2D patterns. Hence,
we report on reconstructions with Algorithm 5 for 1D under-
sampling, and Algorithm 4 for 2D under-sampling. One caveat
for the SSOS-type, and hybrid-type approaches are the slow
inference speed. Naively implementing the algorithms will in-
duce c times longer computation time compared to the single-
coil reconstruction. However, this can be much relieved by per-
forming parallel computation with each coil data, since no com-
putation needs to be shared across the threads. Given sufficient
GPU resources, we expect that the computation time needed for
PI reconstruction will be reduced down to the time needed for
single-coil reconstruction.

4. Methods

4.1. Experimental data

The main experiments, including the training of the score
function, were performed with fastMRI knee dataset (Zbon-
tar et al., 2018), which is publicly available1. We trained the
network with 320 × 320 size target image magnitude, given
as the key reconstruction esc. We note that it is pos-
sible to train the score function with the same target from
reconstruction rss of the multi-coil dataset, but we
found no significant difference in the performance.

Among 973 volumes of training data, we dropped the first
and last five slices from each volume, to avoid training the
model with noise-only data. This results in approximately 25k
slices of training data. For testing, we randomly sampled 30
volumes from the validation set, and dropped the first and last 5
slices from each volume. For PI experiments, we resorted to 10
volumes, due to the computational limitations.

1https://fastmri.org/

https://fastmri.org/
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4.2. Implementation details
We follow similar procedures to train VE-SDE as advised in

(Song et al., 2021b). Specifically, we train the network with the
objective given in Eq. (5), with setting λ(t) = σ2(t). Note that
this specific choice of λ(t) stabilizes the noise scale across t, and
theoretically corresponds to likelihood weighting, as proven
in (Song et al., 2021a). Plugging in the weighting function,
we can train the model with the following cost:

min
θ
Et∼U(ε,1)Ex(0)∼p0Ex(t)∼N(x(0),σ2(t)I)

[
(17)∥∥∥∥∥σ(t)sθ(x(t), t) −

x(t) − x(0)
σ(t)

∥∥∥∥∥2

2

]
,

with setting ε = 10−5 to circumvent numerical issues.
For the step size εi used in the Langevin MC corrector step,

we follow what is advised in (Song et al., 2021b), and set

εi = 2r
‖z‖2

‖sθ(xi, σi)‖2
, (18)

where r = 0.16 is set to a constant value. For noise variance
schedule, we fix σmin = 0.01, σmax = 378, which is similar to
what is advised in the technique of (Song and Ermon, 2020),
then take the geometric series with the following form:

σ(t) = σmin

(
σmax

σmin

)t

. (19)

We take the batch size of 1, and optimize the network using
the Adam optimizer (β1 = 0.9, β2 = 0.999). We use a linear
warm-up schedule for the parameters for the first 5000 steps
of optimization, reaching 2e-4 at the 5000th step. We apply
gradient clipping with the maximum value of 1.0 (Arjovsky
et al., 2017). Exponential moving average with rate 0.999 is
applied to the parameters. Optimization was performed for 100
epochs, and it took about 3 weeks of training the score func-
tion with a single RTX 3090 GPU. All code was implemented
in PyTorch (Paszke et al., 2019).

For all algorithms, we use N = 2000,M = 1 iterations for
inference as default, unless specified otherwise. For the hybrid-
type Algorithm 5, we start with λ = 1.0 in the first iteration, and
linearly decrease the value to λ = 0.2 at the last iteration. Single
forward-pass through sθ is required for both predictor and cor-
rector steps, which takes about 150 ms with a commodity GPU.
Summing up, this results in about 10 minutes of reconstruction
time for real-valued images, and 20 minutes of reconstruction
time for complex-valued images. We discuss ways for speeding
up inference, and some potential directions for future studies in
Section 6.1.

4.3. Model Architecture
We base the implementation of the time-dependent score

function model ncsnpp 2 as suggested in (Song et al., 2021b).
The model architecture stems from U-Net (Ronneberger et al.,
2015), and the sub-block which consist U-Net are adopted from

2https://github.com/yang-song/score sde pytorch

residual blocks of BigGAN (Brock et al., 2019). The skip con-
nections in the residual blocks are scaled by 1/

√
2 as in (Karras

et al., 2017, 2019, 2020). For pooling and unpooling, we adopt
anti-aliasing pooling of (Zhang, 2019). The resulting U-Net has
4 different levels of scale, with 4 residual networks at each level.
Conditioning of network with the time index t is performed with
Fourier features (Tancik et al., 2020), where the conditional fea-
tures are added to the encoder features. For further details, see
Appendix.

4.4. Comparison study
To verify superiority over the current standards, we per-

form comparison studies with baseline methods used in (Zbon-
tar et al., 2018). We choose total variation (TV) recon-
struction (Block et al., 2007) as the representative CS re-
construction method, where we use the implementation in
sigpy.mri.app.TotalVariationRecon3. We per-
form grid search on the hyper-parameter lambda, and report
only the best results among them.

For a representative deep learning approach, we use su-
pervised learning-based reconstruction using U-Net (Zbontar
et al., 2018). While we could use the open-sourced4 pre-trained
model, we re-implemented the model to achieve better perfor-
mance.

We additionally compare against the state-of-the-art super-
vised methods. For the real-valued simulation study and single-
coil experiment, we compare against DuDoRNet (Zhou and
Zhou, 2020). We use the official implementation5, with 4 re-
current blocks and default parameters. We resort to the same
proton density (PD)/ proton density fat suppressed (PDFS) im-
age for prior information. For state-of-the-art parallel imag-
ing method, we use end-to-end variational network (E2E-
varnet) (Sriram et al., 2020), which simultaneously estimates
the sensitivity maps. We use the official fastMRI github with
default parameters as advised with the fastMRI knee dataset.
For all the deep learning comparison studies, we train the net-
work with Gaussian 1D random sampling masks.

4.5. Measurement of Reconstruction Quality
To quantify the proximity of the reconstructions to the target,

we use the standard metrics - peak signal-to-noise ratio (PSNR),
and structural similarity index (SSIM). We further test the sta-
tistical significance of the differences using repeated measures
analysis of variance (RM-ANOVA) with the MedCalc soft-
ware (Schoonjans et al., 1995). While these are the two most
widely used metrics in the community, it is also well known
that these metrics hardly line up with the radiologists’ scoring
on the image quality Mason et al. (2019).

To fully capture the superiority of the proposed method, we
focus on the fact that good reconstructions are the ones that can
be used for accurate diagnosis. If the reconstruction quality
closely matches the ground truth, there should be no degen-
eration in the performance of the downstream tasks - in our

3https://github.com/mikgroup/sigpy
4https://github.com/facebookresearch/fastMRI
5https://github.com/bbbbbbzhou/DuDoRNet

https://github.com/yang-song/score_sde_pytorch
https://github.com/mikgroup/sigpy
https://github.com/facebookresearch/fastMRI
https://github.com/bbbbbbzhou/DuDoRNet
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case diagnosis. In order to compare against ground truth, the
diagnostic ability of each reconstruction, we leverage the re-
cent fastMRI+ (Zhao et al., 2021) dataset. For fastMRI knee
data, fastMRI+ annotations provide bounding boxes around the
pathologic region. We train a standard object detection model
using the ground truth (fully sampled) images and use this net-
work to compare how well the model performs on pathology
detection with reconstructions using different methods. By do-
ing so, we can measure the amount of distribution shift that oc-
curs with each reconstruction method. The less the difference in
the performance, we conclude that there is less distribution shift
from the fully-sampled data. For detailed experimental proce-
dures, see the following section, i.e. Section 4.6. From the ex-
periments, we quantify three standard metrics from the object
detection literature - mean average precision (mAP), precision,
and recall.

4.6. Pathology Detection
For the object detection model, we use the state-of-the-art

YOLO v56. We use the default configuration of YOLOv5m,
which is a medium-sized model, often suggested as the baseline
model when you do not have a sufficient amount of data. When
trying to fit larger versions of the model, namely YOLOv5l,
YOLOv5x, etc., we found that overfitting occurs and the per-
formance drops by a small margin.

For training data of the YOLOv5 model, we use all the train-
ing data with annotations in fastMRI+, which consists of 8053
images in total. We do not include any images without annota-
tions in the training set. For testing, we select 15 random cases
out of the validation set.

Model weights were fine-tuned from the open-source pre-
trained model, and were trained for 300 epochs using the batch
size of 16. Training took about a day on 2×2080Ti GPU.

4.7. Generalization to different anatomy and contrast
One observation that can be made is that the proposed

method, which utilizes the score function as the main
workhorse of the algorithm, is robust to distribution shifts.
Otherwise, Algorithms 3,4,5 would not have worked in
the first place, since the training data distribution and the
inference data distribution are different. Subsequently,
one might wonder how far we are able to push this dis-
crepancy and still achieve satisfactory results. To further
investigate the generalization capability of the proposed
method, we ran extensive experiments with data collected
from different anatomy and contrast. To achieve maxi-
mal diversity, we collected data from various open-source
database, including mridata (Flynn et al.), human connectome
project (HCP) MRI dataset (http://db.humanconnectome.org,
http://github.com/hkaggarwal/modl, and MASSIVE7

(http://massive-data.org/index.html). For experiments, all data
were retrospectively down-sampled from the fully-sampled
k-space.

6https://github.com/ultralytics/yolov5
7Multiple Acquisition for Standardization of Structural Imaging Validation

and Evaluation

5. Results

5.1. Real-valued Simulation study
First, we show the results of the simulation study using ret-

rospectively under-sampled fastMRI real-valued data of size
320×320 in Fig. 3. In the first row, we see reconstructions from
2D ×8 Gaussian random sampling, which is the sub-sampling
pattern that induces the least aliasing artifact. Here, we see
that the proposed performs nearly perfect reconstruction, where
we see virtually no structural difference even in the zoomed-
in image. Reconstruction through total variation (TV) induces
cartoon-like artifacts, and cannot remove the overall foggy ar-
tifacts across the whole image. U-Net and DuDoRNet produce
blurry reconstructions that are suboptimal, which indicates that
they cannot adapt to different sampling patterns that were not
seen from the training process.

In the second row, we compare the reconstructions from ac-
celeration using ×4 uniform random sampling with 4% of the
phase encoding lines kept as the autocalibrating signal (ACS)
region, producing moderate aliasing artifacts. Even at this level,
our method is able to provide accurate reconstruction, captur-
ing most of the high-frequency details of the ground truth. In
this acceleration factor, TV is not able to completely remove
the aliasing artifacts. The averaging effect of supervised recon-
struction now becomes more clear, often omitting the important
details of the scan. Reconstruction with DuDoRNet also suffers
from leftover aliasing artifacts in this regime, even though this
is just a slight difference in the sampling pattern.

The third row shows ×8 Gaussian random sampling (4%
ACS region). TV only partially removes the artifacts, while in-
troducing quite an amount of cartoon-like artifacts. Supervised
U-Net and DuDoRNet smooths away a lot of details, producing
unrealistic texture. Surprisingly, even at this level of acceler-
ation factor, our method provides a fairly accurate reconstruc-
tion, matching most of the details from the ground truth.

In the last row, we see the most aggressive under-sampling
factor - ×15 variable density poisson disk under-sampling.
Thanks to the evenly spread out k-space samples, this sam-
pling scheme is considered one of the state-of-the-art amongst
the various sampling patterns, which produce the least artifacts
given the same budjet (Dwork et al., 2021). Here, similar to
what was seen with 2D Gaussian sampling, only the proposed
method is able to produce high-fidelity image reconstruction.
Other methods still suffer from severe artifacts, with blurred-
out details.

We provide a thorough comparison of quantitative metrics on
the test set in Table 1. On all the different sampling patterns,
our method significantly outperforms the comparison meth-
ods and is on par with the state-of-the-art DuDoRNet (Zhou
and Zhou, 2020) in Gaussian 1D sampling pattern. Results of
RM-ANOVA also indicates that the superiority of the proposed
method is statistically significant against all other methods in
most cases.

It is worth mentioning the overall difference between the
reconstructions through supervised methods (i.e., U-Net, Du-
DoRNet), and the proposed method. We observe that the recon-
structions using supervised U-Net become blurrier as we push
the acceleration factor to higher values. This is a widely known

http://db.humanconnectome.org
http://github.com/hkaggarwal/modl
http://massive-data.org/index.html
https://github.com/ultralytics/yolov5
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Fig. 3: Reconstructions of the real-valued simulation study. (a) Sub-sampling mask used to generate under-sampled image, (b) TV, (c) supervised learning (U-Net)
(d) DuDoRNet (Zhou and Zhou, 2020), (e) proposed method, and (f) ground truth. 1st row: 2D ×8 Gaussian random sampling, 2nd row: 1D ×4 uniform random
sampling, 3rd row: 1D ×8 Gaussian random sampling, 4th row: ×15 variable density poisson disk sampling. Green box: Zoom in version of the indicated yellow
box, Blue box: Difference magnitude of the inset (in Viridis colormap). Yellow numbers in the upper right corner indicate PSNR [db], and SSIM, respectively.

effect for models that are trained with supervision using L1 loss,
L2 loss, etc (Ledig et al., 2017). Typically, this behavior stems
from the models collapsing to a single mode of the distribu-
tion, whereas the actual distribution is highly multi-modal. On
the contrary, our method does not show such an effect, visiting
the modes of high probability in each sample. For that matter,
our method is able to 1) reconstruct high-frequency details even
at high acceleration factors, and 2) quantify uncertainty, as we
discuss in-depth in Section 5.5

5.2. Complex-valued Single-coil Reconstruction

In Fig. 4, we illustrate the reconstruction results of the pro-
posed method using Algorithm 3, along with the baseline com-
parisons. In the first row, we have ×8 2D Gaussian random
sampling acceleration. The proposed method performs a very
accurate reconstruction, without inducing any additional blur-
riness from the reconstruction process. TV, supervised U-Net,
and DuDoRNet fall largely behind the proposed method both in
terms of perceptual quality and quantitative metrics.
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Fig. 4: Single-coil complex-valued image reconstruction results. (a) Sub-sampling mask used to generate under-sampled image, (b) TV, (c) supervised learning
(U-Net) (d) DuDoRNet (Zhou and Zhou, 2020), (e) proposed method, and (f) ground truth. 1st row: 2D ×8 Gaussian random sampling, 2nd row: 1D ×4 Gaussian
random sampling, 3rd row: 1D ×8 uniform random sampling, 4th row: ×15 variable density poisson disk sampling. Green box: Zoom in version of the indicated
yellow box, Blue box: Difference magnitude of the inset (in Viridis colormap). Yellow numbers in the upper right corner indicate PSNR [db], and SSIM,
respectively.

In the second row, we have×4 1D Gaussian random sampling
(8% ACS region) acceleration. Again, the proposed method re-
constructs the aliased image with high accuracy and has higher
quality than the comparison methods.

The third row shows ×8 1D uniform random sampling (4%
ACS region). The proposed method is still able to reconstruct
the aliased image with virtually no degradation in the high-
frequency details. On the other hand, supervised U-Net recon-

struction produces horizontal strip artifacts, hampering the vi-
sual quality. DuDoRNet does not remove the aliasing artifacts
completely. TV hardly produces satisfactory results. The fi-
nal row shows reconstructions with ×15 VD poisson sampling.
Due to the bias toward 1D sampling patterns, both U-Net and
DuDoRNet produce unsatisfactory results with washed-out de-
tails. Our method is able to preserve sharp edges and texture,
clearly depicting the anatomical structure. Quantitative metrics
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TV Supervised U-Net DuDoRNet Proposed p∗ < 0.0001

Simulation (real)

Uniform 1D
× 4 PSNR [db] 27.55 ± 1.60 29.21 ± 2.09 30.79 ± 0.91 31.10 ± 1.60 TV, U-NetSSIM 0.667 ± 0.045 0.788 ± 0.030 0.796 ± 0.022 0.795 ± 0.036

× 8 PSNR [db] 26.35 ± 1.74 27.40 ± 2.39 24.08 ± 1.80 28.37 ± 1.97 TV, U-Net, DuDoRNetSSIM 0.631 ± 0.052 0.722 ± 0.042 0.603 ± 0.037 0.771 ± 0.051

Gaussian 1D
× 4 PSNR [db] 30.77 ± 1.24 32.85 ± 1.25 33.01 ± 1.05 33.32 ± 1.22 TV, U-Net, DuDoRNetSSIM 0.752 ± 0.029 0.829 ± 0.023 0.858 ± 0.016 0.825 ± 0.028

× 8 PSNR [db] 28.87 ± 1.56 30.81 ± 1.37 30.46 ± 1.28 30.94 ± 1.17 TV, DuDoRNetSSIM 0.70 ± 0.041 0.779 ± 0.029 0.776 ± 0.025 0.761 ± 0.025

Gaussian 2D
× 8 PSNR [db] 23.19 ± 2.30 21.92 ± 4.51 25.29 ± 4.16 29.95 ± 2.04 TV, U-Net, DuDoRNetSSIM 0.599 ± 0.082 0.573 ± 0.173 0.643 ± 0.077 0.701 ± 0.071

× 15 PSNR [db] 18.20 ± 2.80 17.43 ± 0.45 21.24 ± 2.09 29.58 ± 1.47 TV, U-Net, DuDoRNetSSIM 0.456 ± 0.096 0.451 ± 0.158 0.518 ± 0.046 0.678 ± 0.052

VD Poisson disk
× 8 PSNR [db] 21.26 ± 0.96 23.47 ± 1.07 23.22 ± 0.93 31.83 ± 1.15 TV, U-Net, DuDoRNetSSIM 0.516 ± 0.038 0.606 ± 0.083 0.516 ± 0.063 0.769 ± 0.030

× 15 PSNR [db] 19.56 ± 0.51 20.97 ± 1.73 22.84 ± 2.34 30.46 ± 1.21 TV, U-Net, DuDoRNetSSIM 0.517 ± 0.042 0.620 ± 0.054 0.561 ± 0.063 0.709 ± 0.035

Single-coil

Uniform1D
× 4 PSNR [db] 27.13 ± 1.91 30.90 ± 1.78 30.43 ± 0.79 31.95 ± 1.45 TV, U-Net, DuDoRNetSSIM 0.636 ± 0.041 0.801 ± 0.027 0.793 ± 0.024 0.812 ± 0.036

×8 PSNR [db] 24.38 ± 2.01 27.48 ± 1.66 24.72 ± 1.89 27.97 ± 2.03 TV, DuDoRNetSSIM 0.601 ± 0.090 0.720 ± 0.039 0.641 ± 0.055 0.738 ± 0.053

Gaussian 1D
× 4 PSNR [db] 28.39 ± 1.09 32.86 ± 1.23 33.46 ± 1.35 33.96 ± 1.27 TV, U-Net, DuDoRNetSSIM 0.679 ± 0.077 0.828 ± 0.024 0.856 ± 0.022 0.858 ± 0.028

× 8 PSNR [db] 25.91 ± 3.21 30.80 ± 1.34 29.65 ± 1.76 30.82 ± 1.37 TV, DuDoRNetSSIM 0.622 ± 0.050 0.777 ± 0.028 0.777 ± 0.028 0.762 ± 0.034

Gaussian 2D
× 8 PSNR [db] 20.09 ± 6.13 19.99 ± 5.12 21.53 ± 10.86 29.45 ± 2.97 TV, U-Net, DuDoRNetSSIM 0.592 ± 0.140 0.520 ± 0.187 0.541 ± 0.152 0.676 ± 0.118

× 15 PSNR [db] 17.99 ± 3.15 17.24 ± 4.01 18.86 ± 5.51 26.15 ± 4.44 TV, U-Net, DuDoRNetSSIM 0.460 ± 0.250 0.436 ± 0.156 0.490 ± 0.192 0.587± 0.148

VD Poisson disk
× 8 PSNR [db] 20.90 ± 3.92 19.67 ± 1.72 22.91 ± 2.54 31.50 ± 1.24 TV, U-Net, DuDoRNetSSIM 0.626 ± 0.101 0.604 ± 0.067 0.643 ± 0.041 0.762 ± 0.030

× 15 PSNR [db] 22.13 ± 1.92 21.67 ± 1.06 23.95 ± 1.13 30.66 ± 1.30 TV, U-Net, DuDoRNetSSIM 0.616 ± 0.089 0.573 ± 0.098 0.593 ± 0.032 0.706 ± 0.035

Table 1: Quantitative metrics of real-valued simulation study and single-coil complex-valued image experiment. Numbers are presented as mean value ± unit
standard deviation. Numbers in bold face indicate the best metric out of all the methods. p-values indicate results from RM-ANOVA. Proposed method statistically
relevant against methods listed in the last column in terms of PSNR. ∗: Bonferroni corrected.

TV Supervised U-Net E2E-Varnet Proposed p∗ < 0.0001

Multi-coil

Uniform 1D
× 4 PSNR [db] 27.32 ± 1.30 31.77 ± 2.30 32.96 ± 1.46 33.25 ± 1.42 TV, U-NetSSIM 0.662 ± 0.112 0.846 ± 0.031 0.856 ± 0.072 0.857 ± 0.201

× 8 PSNR [db] 25.02 ± 2.90 29.51 ± 3.99 31.98 ± 1.59 32.01 ± 1.55 TV, U-NetSSIM 0.532 ± 0.158 0.780 ± 0.058 0.828 ± 0.051 0.821 ± 0.071

Gaussian 1D
× 4 PSNR [db] 30.55 ± 1.75 32.66 ± 1.18 33.15 ± 2.92 34.25 ± 1.74 TV, U-Net, E2E-VarnetSSIM 0.789 ± 0.128 0.866 ± 0.020 0.878 ± 0.062 0.885 ± 0.024

× 8 PSNR [db] 27.98 ± 2.12 31.64 ± 1.27 33.15 ± 2.64 32.43 ± 1.69 TV, U-NetSSIM 0.747 ± 0.114 0.841 ± 0.021 0.868 ± 0.069 0.855 ± 0.021

Gaussian 2D
× 8 PSNR [db] 29.20 ± 1.85 24.51 ± 3.16 20.97 ± 2.98 31.43 ± 1.70 TV, U-Net, E2E-VarnetSSIM 0.781 ± 0.012 0.724 ± 0.103 0.642 ± 0.085 0.831 ± 0.036

× 15 PSNR [db] 26.28 ± 1.02 14.93 ± 0.95 16.66 ± 3.01 29.17 ± 2.19 TV, U-Net, E2E-VarnetSSIM 0.547 ± 0.072 0.372 ± 0.070 0.435 ± 0.106 0.704 ± 0.042

VD Poisson disk
× 8 PSNR [db] 29.52 ± 1.39 20.89 ± 1.10 20.70 ± 1.20 31.98 ± 2.07 TV, U-Net, E2E-VarnetSSIM 0.562 ± 0.078 0.576 ± 0.063 0.592 ± 0.045 0.816 ± 0.022

× 15 PSNR [db] 26.19 ± 1.19 16.01 ± 1.95 18.82 ± 1.85 29.59 ± 2.22 TV, U-Net, E2E-VarnetSSIM 0.510 ± 0.093 0.537 ± 0.077 0.548 ± 0.050 0.702 ± 0.028

Table 2: Quantitative metrics of multi-coil parallel imaging. Numbers are presented as mean value ± unit standard deviation. Numbers in bold face indicate the best
metric out of all the methods. p-values indicate results from RM-ANOVA. Proposed method statistically relevant against methods listed in the last column in terms
of PSNR. ∗: Bonferroni corrected.

in Table 1 also confirm the superiority.

As mentioned earlier, all the results depicted in Fig. 4 were
generated using the single score function, trained with DI-
COM images only. This means that the model has never seen
complex-valued data before, and yet the quality of reconstruc-
tion is surprisingly high. This is an important advantage of our

model over conventional DL methods. Most DL methods re-
quire raw k-space data to train the network, and this is hard to
achieve since most raw data are discarded after the scan (Zbon-
tar et al., 2018). In contrast, DICOM images are relatively much
easier to collect, and this enables practitioners to collect a large
database for training.
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5.3. Complex-valued Multi-coil Reconstruction

We compare the results of PI reconstruction in Fig. 5. Consis-
tent with the results from the prior sections, our method signif-
icantly outperforms other methods and is the only method that
produces high fidelity reconstructions regardless of the sam-
pling pattern. This can also be seen in Table 2, where we
see that our method is on par with the SOTA E2E-varnet on
1D sampling patterns, while significantly outperforming all the
methods in 2D sampling patterns.

The bias towards 1D sampling pattern for the deep-learning
based method is much larger in the multi-coil case. This can
be seen in the severe artifacts that can be seen in reconstruc-
tions via E2E-varnet (Fig. 5 (d)). We conjecture that this is
because the sensitivity map estimation module of E2E-varnet
fails dramatically with 2D sampling patterns, leading to hori-
zontal streaking artifacts. Furthermore, although U-Net does
not explicitly deal with sensitivity maps, the bias towards cer-
tain sampling patterns seems to be greater than in the single-coil
experiments, showing reconstructions with heavy artifacts. On
the other hand, our score-based method is agnostic to sampling
patterns, clearly outperforming the comparison methods in all
cases.

However, in the case of PI, we do observe some potential
limitations of our method. Namely, since we consider stochas-
tic samples from the conditional distribution for each coil, and
then take the SSOS of the coil images at the last step to form the
reconstruction, we recognize a small amount of averaging effect
compared to single-coil reconstruction cases. Nevertheless, we
emphasize that our method was not trained with multi-coil data,
and is yet able to reconstruct PI data with state-of-the-art perfor-
mance. Our method works with any arbitrary number of coils,
without the need to calibrate sensitivity maps, thereby enabling
a practical application to any type of scan.

5.4. Pathology detection

Overall results on the pathology detection task is illustrated
in Fig. 6, and the quantitative metric is shown in Fig. 7. The
images in Fig. 6 (a-d) were reconstructed from ×4 1D Gaus-
sian random under-sampling (8% ACS region), (e) is the detec-
tion result using fully-sampled data, and (f) is the ground-truth
bounding boxes along with the corresponding labels.

The patient scan in the first row of Fig. 6(f) shows grade
1 sprain on the posterior cruciate ligament (PCL). Moreover,
both on the medial and the lateral side of the cartilage, partial-
thickness loss/defect is observed. This is accurately captured
in Fig. 6 (e), where all three bounding boxes are correctly
predicted. Reconstruction with the proposed method come as
close, with virtually no difference with the fully-sampled ref-
erence (see Fig. 6(c)). Reconstruction with supervised U-Net
performs much worse on this downstream task, missing the
cartilage partial thickness loss/defect (Fig. 6(b)). DuDoRNet
reconstruction gets only one of the cartilage partial thickness
loss/defect, while falsely detecting meniscus tears. As ex-
pected, diagnosis with TV reconstruction performs even worse,
falsely predicting meniscus tear on both medial/lateral sides.

The patient scan in the second row of Fig. 6(f) show a
grade 1 sprain on the anterior cruciate ligament (ACL). On

both fully-sampled data, and reconstruction using the proposed
method in Fig. 6(e),(d), respectively, the model correctly pre-
dicts ACL low-grade sprain, with small differences in the size
of the bounding box. Both models also falsely predict menis-
cus tear, which seems reasonable given that the model is not
perfect. Contrarily, reconstruction using supervised U-Net in
Fig. 6(b) does not capture ACL low-grade sprain, and only
falsely estimates meniscus tear. DuDoRNet comes similar to
fully-sampled data, but is confused at the exact location of the
meniscus tear. TV reconstruction in Fig. 6(a) only falsely pre-
dicts cartilage loss/defect, missing the true lesion.

As can be seen from standard metrics in Fig. 7, the mAP met-
ric using the fully-sampled data reaches 0.754, which serves as
the upper bound for the detection model. Detection using the
proposed reconstructions performs on par, or sometimes even
better than the fully-sampled reference. Since the model is im-
perfect and the test dataset size is relatively small, this does not
mean that the proposed method is better than the fully-sampled
data. However, it does mean that reconstruction via the pro-
posed method does not hamper the diagnostic capability, which
is important in clinical practice. On the other hand, the compar-
ison methods do limit the diagnostic capability, and thus should
be questioned before usage in clinical practice. For further sta-
tistical analysis, see Appendix.

5.5. Quantifying uncertainty of the prediction

Our method is a generative algorithm, with two sources of
stochasticity. First, the sample starts from a randomly sampled
vector xN . Second, both predictor and corrector steps involve
sampling random noise vectors and adding them to the estimate.
Therefore, the iterative procedure of the proposed algorithms
typically converges to different outcomes.

Due to this generative nature, we can run multiple reconstruc-
tions in parallel, and quantify the uncertainty of the prediction,
as depicted in Fig. 8. Here, the ground truth, and the aliased
images are shown in Fig. 8 (a),(b), respectively. For the exper-
iment, we take a batch size of 8, and run the reconstruction in
parallel. The mean value of the reconstruction is shown in Fig. 8
(c), and the pixel-wise standard deviation values are shown in
Fig. 8 (d). At low acceleration factors (×2), we see very little
variation between the different reconstructions. This indicates
high confidence of the model, and hence we can conclude that
the reconstruction is exact in all parts of the image. As the
acceleration factor is increased, and the degree of aliasing arti-
facts become more severe, we see that the uncertainty increase
in specific regions. Potentially, this measure of uncertainty can
inform the practitioners on how much they should rely on the
reconstruction, thereby deciding whether to use a different diag-
nostic tool. We additionally provide specific realizations, rather
than the mean of the reconstruction, at each acceleration factor
in supplementary video 1.

5.6. Reconstruction out-of-distribution (OOD) data

In Fig. 9, we present reconstruction results, which are heavily
out of distribution. Note that our score function has only learnt
the distribution of proton density (PD) / proton density fat sup-
pression (PDFS) coronal knee scans. Nevertheless, we observe
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Fig. 5: Multi-coil reconstruction results. (a) Sub-sampling mask used to generate under-sampled image, (b) TV, (c) supervised learning (U-Net), (d) E2E-varnet (Sri-
ram et al., 2020), (e) the proposed method, and (f) the ground truth. 1st row: 2D ×8 Gaussian random sampling, 2nd row: 1D ×4 Gaussian random sampling, 3rd

row: 1D × 4 uniform random sampling, 4th row: ×8 variable density poisson disk sampling. Green box: Zoom in version of the indicated yellow box, Blue box:
Difference magnitude of the inset (in Viridis colormap). Yellow numbers in the upper right corner indiate PSNR [db], and SSIM, respectively.

that with the proposed method, we are able to achieve high fi-
delity reconstructions regardless of the anatomy and contrast.
While other methods such as U-Net and DuDoRNet general-
izes to a certain extent, we can clearly observe leftover alias-
ing artifacts. On the other hand, the proposed method clearly
outperforms all the other methods with minimal residuals and
sharp contrast. We recently found that this observation was also
made independently in (Jalal et al., 2021), where the authors
partially proved that posterior sampling is indeed highly robust

to distribution shifts. This property is indeed very advantageous
in real-world settings, since one may be able to use a single
neural network regardless of the specific anatomy and contrast.
For further experimental results of different anatomy, please see
Fig. 14 and Fig. 15 in the Appendix.
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Fig. 6: Results of pathology detection. Detection using (a) TV reconstruction, (b) supervised U-Net, (c) DuDoRNet, (d) proposed method, (e) fully-sampled
images. Ground-truth label for the pathologies are shown in (f). (Yellow green box): Cartilage partial thickness loss/defect, (Pink box): Meniscus tear, (Purple box):
Ligament PCL Low-Mod grade sprain, (Skyblue box): Ligament ACL low grade sprain.

Fig. 7: Quantitative metrics of pathology detection.

6. Discussions

6.1. Speeding up inference
One obvious limitation of using score-based diffusion mod-

els for image reconstruction is the time required for inference.
As stated in Section 4.2, it requires about 10 minutes of infer-
ence time for using N = 2000 discretization steps. A naı̈ve
way for faster inference is to reduce the number of discretiza-
tion steps, and we provide the trade-off between image quality
vs. steps in Fig. 10. Here, we observe that naı̈vely interleav-
ing the discretization steps work quite well, with minimal com-
promise in image quality. This is especially the case of low
acceleration factors (e.g. ×4), where we achieve highly accu-
rate reconstruction only with 50 iterations. As the acceleration
factor gets aggressive, our method typically requires more iter-
ations for maximal performance. However, from the figure, we
see that the performance caps at about N = 500. One could
possibly adjust this as a hyperparameter on-the-fly, according
to the degree of acceleration at hand.

One can also employ the state-of-the-art acceleration strat-
egy of diffusion models for inverse problems, called come-

Fig. 8: Quantifying the uncertainty of reconstruction. (a) Ground truth, (b)
aliased image from sub-sampling, (c) mean of the reconstruction, (d) standard
deviation of the samples: range is set to [0, 0.02] (on Viridis colormap).
From the 1st row to the 4th row, the acceleration factor grows from ×2 to ×8.

closer-diffuse-faster (CCDF), which was recently proposed in
our companion work (Chung et al., 2021). Specifically, CCDF
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Fig. 9: Reconstruction results of various anatomic structure/contrast. (a) TV, (b) U-Net, (c) DuDoRNet, (d) proposed method, (e) ground truth. 1st row: HCP axial
brain scan, 2nd row: MRI scan of left leg collected from (Flynn et al.), 3rd row: axial knee scan from (Flynn et al.), 4th row: MASSIVE coronal brain scan. 1D
Gaussian ×4 under-sampling was performed.

Fig. 10: Tradeoff between number of iterations vs. PSNR [db]. Errorbars in-
dicate unit standard deviation. Sampling scheme used for this ablation study is
1D Gaussian random under-sampling.

states that there is no need to use the full reverse diffusion pro-
cedure. Rather, one can start to apply reverse diffusion from a
forward-diffused image from better an initialization to achieve
reconstruction performance that is one par or better. The re-

Algorithm 6 CCDF sampling (Chung et al., 2021)

Require: sθ,N′,M, {εi}
N′
i=1, {σi}

N′
i=1, x0

1: Define A := PΩF

2: xN′ ← x0 + σN′ z
3: for i = N′ − 1 : 0 do
4: xi ← Predictor(xi+1, σi, σi+1)
5: xi ← Re(xi + A∗(y − Axi))
6: for j = 1 : M do
7: xi ← Corrector(xi, σi, εi)
8: xi ← Re(xi + A∗(y − Axi))
9: end for

10: end for
11: return x0

sulting short partial time horizon significantly accelerates the
reconstruction time. The strategy is backed by rigorous proofs
using the theory of stochastic contraction. Interested readers are
referred to Chung et al. (2021).

More specifically, one specifies a significantly short timestep
t0 < T (in the discretized setting, this corresponds to N′ :=
t0N). Then, the initial reconstruction x0 is forward-diffused
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with the prescribed forward SDE in a single step. In the case of
VE-SDE, this corresponds to

xN′ = x0 + σN′ z, z ∼ N(0, I).

One can then follow the reverse SDE for t ∈ [0, t0] running
backwards in time as in Algorithms 2,3,4,5.

For simplicity, here we present CCDF adopted to Algo-
rithm 2, which is shown in Algorithm 6. For the initialization
of x0, we resort to U-Net. With this simple combination of the
pre-trained feed forward neural network, we observe that it is
possible to use as little as 40 iterations (corresponding to 0.02×
NFEs8) with similar or better performance, as reported in Ta-
ble 3.

method TV U-Net DuDoRNet proposed
(2000)

CCDF
(40)

× 4 30.77 32.85 33.01 33.32 34.11
× 8 28.87 30.81 30.46 30.94 32.08

Table 3: Effect of acceleration using the CCDF Chung et al. (2021) strategy to
the proposed method. PSNR(↑) on Gaussian 1D under-sampling masks with
different acceleration factors are reported. Number in parenthesis indicate the
number of iterations used. Numbers in boldface indicate the best results among
the rows.

6.2. Conditional generation with diffusion models

Score-based diffusion models are now one of the most pop-
ular methods in the context of image synthesis, matching the
image fidelity of state-of-the-art GANs (Dhariwal and Nichol,
2021), and achieving the state-of-the-art log-likelihood on var-
ious datasets (Kingma et al., 2021; Kim et al., 2021). The
interest in using these models for conditional image genera-
tion is also rising. Song and Ermon (2019) first proposed to
use score models trained with discrete de-noising score match-
ing for image inpainting. This was further developed in (Song
et al., 2021b) for image colorization, and class-conditional im-
age synthesis, using continuous-time score models. The same
group published a work for image editing (Meng et al., 2021)
using VE-SDEs, which uses a similar algorithm to image in-
painting used in (Song and Ermon, 2019; Song et al., 2021b).
ILVR (Choi et al., 2021) adopts diffusion models (Ho et al.,
2020) for image super-resolution and image translation. All
these works require training of a score model irrelevant to the
actual objective task, and are thus flexible. Nevertheless, all the
prior works have focused on applications where the condition
also stays in the image domain, which makes the problem eas-
ier to solve. Our method adds further flexibility by showing that
conditions can be applied in measurement domains that are not
necessarily in the same image domain.

We are aware of one prior work which used denoising score
matching for MRI reconstruction (Ramzi et al., 2020). The au-
thors of (Ramzi et al., 2020) use amortized residual de-noising
autoencoder (AR-DAE) score matching loss (Lim et al., 2020)
to train the score function, then uses annealed Hamiltonian

8short for Neural Function Evaluations

MC (Neal et al., 2011) to perform reconstruction from mea-
surement. However, (Ramzi et al., 2020) reported that their
method falls behind supervised learning approaches by a large
margin, especially when considering single samples. Moreover,
the training methodology in (Ramzi et al., 2020) targets sepa-
rate channel complex-valued data, which limits their applica-
tion. Our method, on the other hand, beats neural networks
trained with supervision, and requires only the magnitude im-
ages for training. It is also notable that the proposed method is
applicable to PI.

After the submission of this paper, we found two independent
works that are closely related to the proposed work. Jalal et al.
(2021) proposes to use score-based generative models to train
a score function that is similar to ours, and sample by taking
annealed Langevin dynamics (ALD) (Song and Ermon, 2019)
together with the gradient information with respect to the data
fidelity term by assuming Gaussian measurement noise. As was
also shown in our work, Jalal et al. (2021) illustrates the robust-
ness of using a score-based generative model for reconstruc-
tion over different sub-sampling patterns and diverse anatomy.
The largest difference between us and Jalal et al. (2021) comes
from the fact that our method only requires DICOM images
for training the score function. This is in stark contrast with
Jalal et al. (2021), as they require fully-sampled k-space data for
training the score function. Furthermore, our work is based on
the continuous version of score matching (Song et al., 2021b),
whereas the work of Jalal et al. (2021) is based on a discrete
version (Song and Ermon, 2020). It is also worth mentioning
that we use an advanced sampler (PC), and a more efficient
network architecture, which was shown to improve the perfor-
mance of generative modeling by a large margin (Song et al.,
2021b). Finally, Jalal et al. (2021) introduces annealing the
data fidelity gradient terms which require specifying the vari-
ance schedule per each noise scale. Our method does not have
additional hyper-parameters, and is hence easier to implement.

Song et al. (2022) is perhaps the most related to our work,
in that the authors also propose to use VE-SDE of (Song et al.,
2021b), and they use the same network architecture together
with the PC sampler, as in our work. The crucial difference
of our work from Song et al. (2022) is that we derive solvers
that are capable of reconstructing complex-valued data, and
also multi-coil data. Song et al. (2022) only focused on solv-
ing simulated reconstructions from real-valued images, which
limits the practicality. Moreover, the data fidelity imposing step
differs slightly from our work.

6.3. Energy based models
Energy-based models (EBMs) are non-normalized proba-

bilistic models, which have the advantage of circumventing the
need to compute the normalizing constant (i.e. the partition
function) (Song and Kingma, 2021). Our work relies on denois-
ing score matching to estimate the score, which also belongs
to the category of EBMs. There are, of course, other ways to
train EBMs, and one of the most widely known methods other
than score matching, is contrastive divergence (CD) (Carreira-
Perpinan and Hinton, 2005).

Concurrent to our work, an MR acceleration algorithm utiliz-
ing CD was proposed (Guan et al., 2021). This work grounds
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their method on an EBM, trained with persistent contrastive
divergence (PCD), which is a variant of CD using sample
buffers (Du and Mordatch, 2019). Specifically, a parameter-
ized energy function Eθ(·) is trained such that it takes low values
when the input to the function is likely to be in the data distribu-
tion, and high values when this is not the case. Once the energy
function is trained, one can generate unconditional samples via
MCMC, or apply data consistency projection in between the
MCMC update steps to sample from a conditional distribution.

This procedure is in fact similar to our method, with the
trained functions forming the relationship of ∇x log pθ(x) =

−∇xEθ(x). However, we note two key differences of the pro-
posed method from (Guan et al., 2021). First, in order to train
Eθ with CD, one has to produce negative samples with MCMC
at every iteration of training, which is non-trivial and costly.
Several heuristics need to be applied to make the algorithm
work. In contrast, the training of our score function is much
more straightforward and robust, breaking down to an explicit
form of the loss function, as formulated in Eq. (17). Second, our
method only requires magnitude (DICOM) images for training,
whereas (Guan et al., 2021) requires raw data.

6.4. Generative models for inverse problems
Before the recent surge of diffusion models, there have been

several approaches to use generative models, especially gen-
erative adversarial networks (GAN) (Goodfellow et al., 2014)
as priors for solving inverse problems (Marinescu et al., 2021;
Asim et al., 2020). These methods offer improved flexibility
over supervised models which are trained for specific problems.
Rather, one can leverage a well-trained generator Gϕ, which
was trained without the knowledge of the forward physics. In
essence, in order to solve inverse problems with GAN prior, one
would typically optimize for the following:

min
z
‖AGϕ(z) − y‖, (20)

where A and y are as defined in eq. (7), and z denotes the latent
(noise) vector. This corresponds to finding the correct latent
vector z which minimizes the data fidelity. One can also try

min
ϕ
‖AGϕ(z) − y‖, (21)

which corresponds to tweaking the model parameters ϕ so that
the generator adapts to the forward physics of the problem.
Once the optimization via (20) or (21) is complete, a single
forward pass through the generator Gϕ is sufficient for recon-
struction. Unfortunately, there are several problems with these
methods.

First, both the problems (20) and (21) are nontrivial to solve,
and require several heuristics such as using a sophisticated loss
function (Marinescu et al., 2021; Asim et al., 2020). Consid-
ering that GANs themselves are also notoriously hard to train,
methods that rely on GAN priors are relatively hard to repro-
duce. Second, the final reconstruction step involves a single for-
ward pass through Gϕ. For highly ill-posed problems, it could
be particularly hard to generate high-quality samples from this
single pass, which could be a reason why it is hard to achieve a
reconstruction with both high quality and data fidelity.

The proposed method, which proposes to use diffusion mod-
els instead of GANs, solves both problems. Diffusion models
have a relatively well-defined loss and are thus easier to train.
Moreover, the sampling procedure can easily be done with the
most basic method of solving inverse problems. Further, with
diffusion models, one can achieve fine-grained control since we
iteratively refine our reconstruction.

6.5. Broader Impact

The proposed method can be readily applied to other prob-
lems in computational imaging, with well trained score function
and the right modifications to the inference procedure. A single
score function has already shown broad applicability: SR (Choi
et al., 2021; Saharia et al., 2021), image reconstruction, and oth-
ers. This could potentially shift the current paradigm of deep
learning in biomedical imaging. For example, one can train a
single score function for the imaging modality, and use it as a
universal problem solver, given enough capacity.

6.6. Limitations

Fig. 11: Limitations of the proposed method. 1. OOD reconstruction with 1D
under-sampling pattern. (a) zero-filled, (b) proposed reconstruction, and (c)
ground truth. Yellow arrows indicate the artifacts. 2. Extreme reconstruction
(Uniform 1D ×15 acc.) (a) zero-filled, (b) ground truth, and (c) - (i vi) posterior
samples. Red dotted box indicates the posterior sample of the worst quality.
Yellow and red arrows mark regions with high alteration.

For completeness, here we list two limitations of the current
work. First, when we attempt to reconstruct OOD data with 1D
under-sampling pattern, we sometimes observe mild aliasing-
like artifacts in local edges. As illustrated in Fig. 11 (1. OOD
recon), the artifact is not significant. However, care should be
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taken when extending the proposed framework to OOD data,
as the robustness will be compromised. We note that such an
artifact is not observed in 2D sampling patterns, as was shown
in Fig. 9.

Second, when pursuing extreme-condition reconstruction, as
in Fig. 11 (2. Extreme recon), we occasionally acquire results
that are unsatisfactory (e.g. sample marked with the red dot-
ted line). Moreover, we observe that the detailed structure has
high variance within the posterior samples, due to the high ill-
posedness. Hence, care should be taken when pushing the ac-
celerating factor to very high values, by, for example, sampling
multiple reconstructions and considering the uncertainty as was
discussed in section 5.5.

7. Conclusion

In conclusion, we propose a novel score-based reconstruction
method for accelerated MRI. We train the gradient of the log
data distribution with continuous-time denoising score match-
ing using the magnitude data. Using the learned score as the
prior, one can sample from the conditional distribution given the
measurement by simply applying data consistency projection at
every step. Our method produces reconstructions of high accu-
racy, whether it be single-coil, or multi-coil cases. Compared to
prior arts, we show the superiority of our method both in terms
of quality, and practicality.

We believe that our method opens up a new generation of
methods for inverse problems in imaging. Direct application
of our method to other venues to test the generality is an inter-
esting direction of future research. Other than that, there still
remain unanswered questions, for example, reducing the recon-
struction speed gap between our method and feedforward neural
network approaches. We expect that many interesting questions
and answers will be actively discussed in the near future.
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Appendix

Details of network architecture

In this section, we elaborate on the ncsnpp network archi-
tecture used for constructing the score function sθ, especially
focusing on the way the network incorporates time conditions.
Overall illustration of the architecture is depicted in Fig. 12.
The network takes in as input, xt, and t. Note that since we are
solving for a continuous SDE, the additional time conditioning
variable is important. For the time condition t, it passes through
the time conditioning module, as shown in Fig. 12 (c), utilizing
the Fourier features introduced in Tancik et al. (2020). In the
figure, this is given as the Gaussian Fourier Projection (GFP)
module, which can be mathematically written with:

GFP(a) :=[sin(2πw1a), sin(2πw2a), . . . , sin(2πwda),
cos(2πw1a), cos(2πw2a), . . . cos(2πwda)],

where the weights w1,w2, . . . ,wd are non-trainable ran-
dom initialized network parameters that are initialized with
torch.randn(d) * scale, and we set scale to be 16.
Subsequently, the embedding vector passes through a few lay-
ers of MLP to match the size of the channel dimension of input
image features. Finally, the temporal feature vectors are broad-
casted across the H,W dimensions to be added to the image
features via residual blocks at each level.

Statistical analysis of pathological detection

Bland-Altman plot of the pathologic detection task is shown
in Fig. 13. For individual data points, we resort to the mAP50
score for each class. With the plots, we can check for the
agreement of each reconstruction method with the fully sam-
pled data. Consistent with the observations that were made in
the main text, we see that the most agreeing method is the pro-
posed method, which shows the least variance in the difference.
DuDoRNet and UNet both have higher variance, and TV is rad-
ically different from the fully sampled data.

Additional results

Additional reconstruction results of different anatomies are
presented in Fig. 14 and Fig. 15.
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