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ABSTRACT

Skin cancer is one of the most common types of malignancy, affecting a large population and causing a
heavy economic burden worldwide. Over the last few years, computer-aided diagnosis has been rapidly
developed and make great progress in healthcare and medical practices due to the advances in artificial
intelligence, particularly with the adoption of convolutional neural networks. However, most studies
in skin cancer detection keep pursuing high prediction accuracies without considering the limitation
of computing resources on portable devices. In this case, the knowledge distillation (KD) method has
been proven as an efficient tool to help improve the adaptability of lightweight models under limited
resources, meanwhile keeping a high-level representation capability. To bridge the gap, this study
specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic
KD framework for skin diseases classification. Our method models an intra-instance relational feature
representation and integrates it with existing KD research. A dual relational knowledge distillation
architecture is self-supervisedly trained while the weighted softened outputs are also exploited to
enable the student model to capture richer knowledge from the teacher model. To demonstrate the
effectiveness of our method, we conduct experiments on ISIC 2019, a large-scale open-accessed
benchmark of skin diseases dermoscopic images. Experiments show that our distilled lightweight
model can achieve an accuracy as high as 85% for the classification tasks of 8 different skin diseases
with minimal parameters and computing requirements. Ablation studies confirm the effectiveness of
our intra- and inter-instance relational knowledge integration strategy. Compared with state-of-the-
art knowledge distillation techniques, the proposed method demonstrates improved performances.
To the best of our knowledge, this is the first deep knowledge distillation application for multi-
diseases classification on the large-scale dermoscopy database. Our codes and models are available
at: https://github.com/enkiwang/Portable-Skin-Lesion-Diagnosis.

1. Introduction

Benefiting from the unprecedented advances in optical
imaging techniques, huge amounts of high-quality skin im-

Skin cancer is among the most common human ma-
lignancies globally, especially among the fair-skinned pop-
ulation. Over the past decades, skin cancer has pervaded
different cultures and caused a huge economic burden in
the healthcare maintenance. Meanwhile, both malignant
melanoma (MM), which causes most deaths in skin cancers,
and keratinocyte carcinomas (squamous cell carcinoma and
basal cell carcinoma) have a promising prognosis if they are
detected and well treated at the early stage (Apalla, Lallas,
Sotiriou, Lazaridou and Ioannides, 2017). Therefore, early
diagnosis plays an essential role in skin cancer’s efficient
management and successful treatment.
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ages were collected in multiple modalities. Dermoscopy, a
noninvasive digital imaging technique, has been widely used
for skin cancer diagnosis since it allows the in vivo evalua-
tion of colors and structures of the epidermis that are hard to
be visualized by the naked eye (Celebi, Codella and Halpern,
2019; Barata, Celebi and Marques, 2018). In traditional
skin cancer diagnosis, expert dermatologists can inspect
the skin lesions following valid algorithms such as ABCD
rules (Nachbar, Stolz, Merkle, Cognetta, Vogt, Landthaler,
Bilek, Braun-Falco and Plewig, 1994), 7-point Checklist
(Argenziano, Fabbrocini, Carli, De Giorgi, Sammarco and
Delfino, 1998) using dermoscopy images. However, such
time consuming and expensive diagnostic methods cause a
great burden on clinical diagnosis. Therefore, automatic skin
cancer detection is in urgent need to relieve dermatologists’
heavy work pressure in clinical diagnosis.

Convolutional neural networks (CNN) have been widely
used in computer-aided diagnosis (CAD) for skin cancer
detection and achieved remarkable performance, because
of its excellent and robust capability in feature extraction
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and categorical classification (Esteva, Kuprel, Novoa, Ko,
Swetter, Blau and Thrun, 2017; Litjens, Kooi, Bejnordi, Se-
tio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken and
Séanchez, 2017; Brinker, Hekler, Utikal, Grabe, Schadendorf,
Klode, Berking, Steeb, Enk and Von Kalle, 2018). In recent
years, more and more research efforts have been made to
develop advanced deep CNN architectures to improve their
diagnostic performance for skin cancer detection. Esteva
et al. (Esteva et al., 2017) involved the pre-trained Incep-
tion V3 models in skin lesions’ classification and presented
dermatologist-leveled prediction results for the first time.
Abbas et al. (Abbas and Celebi, 2019) proposed the Der-
moDeep framework for the classification of melanoma and
nevus that consisted visual-features fusion and deep learning
without pre- and post-processing steps. Kawahara et al.
(Kawahara, BenTaieb and Hamarneh, 2016) found that the
features extracted from the ImageNet pre-trained model out-
performed general handcrafted features in skin lesion classi-
fication tasks. With the further development of deep learning
technology, more novel structures have also been proposed
and being used in this task. The integration strategies of
various deep learning models and the interpretive analysis of
the predictions they produce have also been extensively stud-
ied. For example, Gessert et al. (Gessert, Nielsen, Shaikh,
Werner and Schlaefer, 2020) proposed an ensemble frame-
work for skin lesion classification using multi-resolution
Efficient Net architectures with a search strategy. Barata et
al. (Barata, Celebi and Marques, 2021) came up with an
explainable framework that can provide insightful informa-
tion about deep learning models’ decisions by incorporating
the taxonomies information and special attention blocks.
Meanwhile, the exploration of the combined effect of mul-
tiple modalities and the introduction of clinical diagnostic
knowledge have further promoted the development of deep
learning in the diagnosis of skin diseases. Kawahara et al.
(Kawahara, Daneshvar, Argenziano and Hamarneh, 2018)
proposed a multi-task deep convolutional neural network
containing clinical, dermoscopic images and patient meta-
data. Their approach incorporated clinical rule-based knowl-
edge into deep learning and demonstrated benchmark results
for 7-point criteria and diagnostics. Based on this study, Bi
et al. (Bi, Feng, Fulham and Kim, 2020) further considered
the feature information that multi-modal input can share in
the training phase of deep learning architecture and achieved
further improvement in melanoma detection. Pacheco et
al. (Pacheco and Krohling, 2021) proposed a MetaBlock
module to improve classifiers’ performance by utilizing the
clinical metadata. Wang et al. (Wang, Cai, Louie, Wang
and Lee, 2021) proposed a novel method that introduced
the inter-dependencies between different criteria using a
constrained classifier chain, which made the resulting pre-
dictions more acceptable to physicians. Tang et al. (Tang,
Yan, Nan, Xiang, Krammer and Lasser, 2022) came up with
a new algorithm that fused both feature-level and decision-
level information from multiple modalities and achieved
state-of-the-art performance in skin cancer diagnosis.

These remarkable achievements using varieties of CNN
architectures have a great impact on the progress of auto-
mated skin cancer diagnosis. However, these research works
related to CNNs also indicate that sophisticated models
with more neural network layers and blocks tend to have
better predictive performance with sufficient training data
and proper training procedures. These works further suggest
that, CNNs necessitate a huge number of parameters and
massive floating point operations to obtain a satisfactory
performance. For example, ResNet50 (He, Zhang, Ren and
Sun, 2016), as one of the most well-known and effective
deep learning models, has about 25.6 millions of parameters,
which requires 98 MB and 4.11 GFlops to process the algo-
rithm. Although these complex and powerful deep learning
models can allow us to obtain better prediction results, they
also require significant computing resources (e.g., memories
and hardware resources). These strict requirements may
impede their practicability in restrained environments and
the embedded devices that have limited computation power
and memories. Therefore, exploring portable and efficient
networks with comparable performance for skin cancer auto-
detection that can work on embedded equipment or limited
resources has both practical and theoretical significance.

Knowledge Distillation (KD), proposed as an extended
model compression method, can transfer the learned knowl-
edge from a complicated model (the teacher) to a simple
model (the student) by sharing the soft labels during the
training phase, thus improving the representation power of
the lightweight CNNs preferably (Hinton, Vinyals, Dean
et al., 2015; Tung and Mori, 2019). In recent years, many
novel and practical deep learning models based on KD ideas
have been proposed. Romero et al. (Romero, Ballas, Kahou,
Chassang, Gatta and Bengio, 2015) proposed the FitNet, an
approach that added an additional requirement of predicting
the outputs of the intermediate layers to the traditional KD
algorithm and made it suitable for thin and deep networks.
Yimet al. (Yim, Joo, Bae and Kim, 2017) measured a flow of
feature correlations among adjacent layers in residual blocks
and transferred them to a student network, then Liu et al.
(Liu, Cao, Li, Yuan, Hu, Li and Duan, 2019) extended it
to a dense cross-layer transfer scenario. Park et al. (Park,
Kim, Lu and Cho, 2019) built a dubbed relational KD deep
learning framework that considered both distance-wise and
angle-wise distillation losses and improved the prediction
ability of student models significantly. Peng et al. (Peng,
Jin, Liu, Li, Wu, Liu, Zhou and Zhang, 2019) proposed
a correlation congruence distillation scheme to model the
relation between samples in the kernel form. Xu et al. (Xu,
Liu, Li and Loy, 2020) further found that self-supervision
signals can effectively transfer the hidden information from
the teacher to the student via their proposed SSKD archi-
tecture, which substantially benefited the scenarios with
few-shot and noisy-labels. Ding et al. (Ding, Wang, Xu,
Wang and Welch, 2021c) proposed an data augmentation-
based knowledge distillation framework for classification
and regression tasks via synthetic samples (Ding, Wang, Xu,
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Welch and Wang, 2021d; Ding, Wang, Wang and Welch,
2021b).

Meanwhile, KD has been proven effective in the com-
pression of deep learning network structures on the basis of
ensuring model prediction and learning capabilities among
varieties of areas (Gou, Yu, Maybank and Tao, 2021; Wang
and Yoon, 2021). In particular, KD shows great potential
for applications in computer-aided diagnostics. For exam-
ple, Qin et al. (Qin, Bu, Liu, Shen, Zhou, Gu, Wang, Wu
and Dai, 2021) proposed an efficient architecture by distill-
ing knowledge from well-trained medical image segmenta-
tion networks to train a lightweight network and obtained
significant improvements for the segmentation capability
while retaining the runtime efficiency. Abbasi et al. (Ab-
basi, Hajabdollahi, Khadivi, Karimi, Roshandel, Shirani and
Samavi, 2021) implemented knowledge distillation on unla-
beled medical data via an unsupervised learning manner and
showed a significant improvement in the prediction of dia-
betic retinopathy. Chen et al. (Chen, Gao, Li and Shen, 2022)
compared multiple deep learning models’ performance re-
garding cervical cells classification using knowledge distil-
lation and showed the importance of model selection. At
the same time, knowledge distillation methods have also
shown great potential in the field of skin disease diagnosis
although there still exists quite limited attention in this area.
Back et al. (Back, Lee, Shin, Yu, Yuk, Jong, Ryu and Lee,
2021) used an ensemble learning strategy to help a student
network learn from multiple teacher networks progressively
in the portable diagnosis of herpes zoster skin disease using
clinical images, and achieved robust performances. To our
best knowledge, however, there are still no studies on the
classification of multiple skin diseases based on large-scale
dermocopy image datasets.

Despite that these innovative studies have advanced the
application of KD in the field of computer-aided diagno-
sis, they still mainly rely on the sharing and transferring
the subject-level category information between the teacher
network and the student network. In detail, existing skin
diagnosis KDs have largely ignored the inter and intra re-
lations within input samples, which may preserve impor-
tant knowledge to diagnose skin diseases from the teacher
network. This work explores the intra-instance relational
knowledge, as well as its integrated analysis with traditional
inter-instance relational knowledge and dark knowledge,
to enhance the effectiveness of information transfer from
the teacher network to the student network. Consequently,
the proposed diverse knowledge-aware KD can effectively
improve the predictive capabilities of the student model.

In this work, we develop a novel knowledge distillation
framework, termed SSD-KD, that integrates diverse conven-
tional knowledge with a novel type of intra-instance rela-
tional knowledge to improve the auto-diagnosis of multiple
types of skin diseases based on lightweight deep learning
models. Specifically, we formulate a dual relational knowl-
edge distillation architecture introducing different relational
representations and softened network outputs to distill and
transfer diverse knowledge from the teacher model to student

model. Moreover, we also incorporate the self-supervised
knowledge distillation strategy into the framework to en-
able the student model capture richer structured knowl-
edge from the self-supervision predictions of the teacher
model. Additionally, to make the proposed SSD-KD frame-
work more suitable for the skin lesions auto-detection task,
which always suffers from data imbalance problems, we re-
place the general cross-entropy loss function in conventional
KDs with an improved weighted version to benefit the skin
disease categories with less subjects. We have evaluated
our proposed method in the publicly available skin lesion
datasets ISIC 2019, which contains over 20000 dermoscopy
images and 8 types of skin diseases. The comparison with
state-of-the-art methods and ablation studies are also per-
formed to demonstrate the effectiveness of our proposed
framework.

The main contributions of this study can be summarized
as follows:

e We propose a novel self-supervised diverse knowl-
edge distillation method for lightweight multi-class
skin diseases classification using dermoscopy images,
named SSD-KD. We replace the traditional single
relational modeling block with dual relational blocks
in our method, which assists the student model cap-
ture both intra- and inter-instance relational infor-
mation from the teacher model. Hence, our diverse
knowledge-integrated KD can further improve the
transferable ability of KD and the performance for
skin disease classification.

e We employ the self-supervision based auxiliary learn-
ing strategy in our knowledge distillation framework,
which enables richer structured knowledge to be trans-
ferred, and stabilizes the training dynamics of the
intra- and inter-instance relational distillation scheme.

e We utilize the weighted cross entropy loss function
and combine it with our SSD-KD structure to assist
the lightweight student model better mimic the be-
havior of the teacher model in capturing additional
information from the diseases with limited subjects.

e The results demonstrate that our carefully designed
method can help the student model achieve compara-
ble or even better performance than the teacher model
in the multi-class skin lesion classification task. From
a practical clinical point of view, our proposed method
can further advance the application of remarkable
deep learning models in scenarios with limited com-
puting resources.

The rest of the paper is organized as follows: the detailed
introduction of the proposed method is presented in the
second section, followed by the experiment setup and results
analysis in the third section. The discussion and the future
works are shown in the fourth section while the conclusion
of the study is put in the last section.
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Figure 1: An illustration of the proposed knowledge distillation framework that distills and transfers diverse knowledge to the
student model for skin cancer diagnosis. The upper branch (in green) denotes the pretrained teacher classification model, and the
lower branch (in blue) denotes the untrained student classification model. Both models consist of a set of convolutional blocks
to extract feature maps of a batch of skin images, followed by average pooling operations to produce embeddings, and a fully
connected (FC) layer to yield logits for skin disease classification. The three types of knowledge and corresponding loss functions
are quantified based on channel feature maps, embeddings and logits, respectively. In particular, our novel channel relational
distillation loss is defined in the feature map stream. Finally, the diverse knowledge-integrated distillation loss is computed and
backpropagated (along dashed reverse arrow lines) to train the student network. The self-supervised learning strategy can be

conveniently incorporated to further boost the training of the student model.

2. Methodology

In this section, we describe the proposed method that
aims to develop an effective knowledge distillation frame-
work for skin disease detection. The overall pipeline of the
proposed method is shown in Figure 1. In the proposed
framework, we distill and transfer three types of knowledge
from a large and pretrained teacher model to a portable
student model that will be trained from scratch. The first type
of knowledge adopts a customized version of the conven-
tional knowledge distillation scheme (Hinton et al., 2015)
that defines the “dark knowledg” via logits (i.e., the output
vector from the last layer of a CNN model). The second type
of knowledge utilizes the inter-instance relational knowledge
(Park et al., 2019) to model the relationship of a batch
of training samples at the penultimate layer. In addition,
we define the intra-instance relational knowledge between
channel feature maps of each sample at the last convolutional
layer. This type of knowledge further exploits the inherent
structures within model responses to facilitate the training
of the student model.

For convenience, we introduce some notations to be
used in the following section. Let us denote the overall
training set of skin images as X with groundtruth labels
as Y. Following the general routine in deep learning, we
split the training set (X, )) into non-overlapping subsets
randomly. The number of skin images (i.e., batch size) in
each subset is denoted as B, i.e., {(x1,¥1),,(xp,¥p)} C
&X. For an input sample x; (i = 1,---, B), we denote its

logits vector by I(x;), the embedding vector by e; (i.e., e(x;)
for brevity), and channel feature maps by f(x;), respec-
tively. Here I(x;) = [/;(x;), -+, lc(x;)], where C represents
the number of unique classes of skin images; f(x;) =
Lf1Gep), -+, Fr (] with f(x,) € RTPYr (ke =1, K),
where H ;, W denote the height and width of a feature map,
respectively.

2.1. Logit-based dark knowledge

Hinton et al. (2015) proposed a logit-based knowledge
distillation method (a.k.a BLKD). Essentially, BLKD uti-
lizes the (softened) logits of a teacher model as informative
knowledge, which is then transferred to assist the training of
a student model.

BLKD includes two loss terms: 1) a term that matches
the softened logits of a teacher model with those of a
student one, and 2) a regular classification term that matches
the predictions of a student model with the groundtruth
label. For an image x;, denote its softened logits from a
model as p(x;,T) at a temperature T, where p(x;,T) =
[p(x;,T),,pc(x;,T)]. Here p.(x;,T) denotes the soft
probability that x; belongs to a class c¢. With the softmax
function, p.(x;,T) can be computed via the logit /,(x;),

el T) = e/ ()
Ej:] eXp(lj(xi)/T)

where a higher temperature T' provides softer probabilities
for class predictions, and tends to indicate richer informative
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structures between classes. In BLKD, the loss of the first
term measures the distribution differences of soft proba-
bilities from a teacher (i.e., p’(x;,T)) and a student (i.e.,
p’(x;,T)) using the Kullback—Leibler (KL) divergence,

B

Lgp =Y Dip(p'(x.T) || p(x;. T))
i=1

@

&

C t
pl(x;,T)
= ! 4’T 1 e
2, 2, lGxp T log p(x,T)

i=1 c¢=1

where Ly denotes the loss of the first term in BLKD that
are computed on a batch of images.

The predictions of a model can be obtained by simply
setting T = 1 in Eq. (1). Then, as the second loss term
in BLKD, a cross entropy loss can be computed between
model predictions and groundtruth labels. Unlike general
computer vision tasks, however, the second loss term is not
well suited for our skin cancer diagnosis problems. This
is mainly due to the data imbalance issue in skin disease
application, namely, we may only have few skin images
for some diseases. Therefore, in this case, we turn to the
weighted cross entropy (WCE). Denote by w, the weight
for a class ¢, where w, can be computed as the inverse of
the frequency for a disease class ¢ over the training dataset.
Denote also the one-hot encoded label of x; as y(x;) =
[y.(x;), -+, yc(x;)]. Then, the WCE loss is expressed as,

B C
Lycp =2, Y —w, - y(x) log pi(x,, T =1)  (3)

i=1 c=1

Then, the customized overall loss term of BLKD equals,

Lgrkp =0 =4 Lwce + 4a - Lxp 4)

where A, is a hyperparameter to balance the two loss terms
in BLKD.

2.2. Inter-instance relational knowledge

An inter-instance relational knowledge was proposed to
model the structural relations among a batch of training
data (Park et al., 2019), termed data relational knowledge
distillation (DRKD). Though there exist different variants of
inter-instance knowledge (e.g., a kernelized form in (Peng
et al., 2019)), this study selects to use the popular DRLK
due to its effectiveness and computational efficiency. To deal
with the data scarcity challenge in skin cancer diagnosis,
we also utilize such knowledge to additionally supervise the
training of the student model.

DRKD maps the embeddings of different instances
(within a batch) into relational representations, then it min-
imizes the structural differences of such representations
between the teacher and student models, such that the student
can better mimic the teacher. Given instances {x, -, xp}
and their embeddings denoted by {e;,::-,ep}, Park et al.
(2019) defined two types of inter-instance relational knowl-
edge: the distance-wise relation y,(e;, e;) between any

two instances, and the angle-wise relation y,(e;, e i e)
between any three instances. Here the potential functions
wq(e;, e;)and y,(e;, e;, e;) are computed based on network
embeddings e;, e;, e, via the normalized Euclidean distance
and angular distance, respectively. The loss term of DRKD
is defined as,

Lprkp = 44 - Z

2
(x,-,xj)EXB

+A D

(xi,xj,xk)ek’g

I(yi(e; e, wile;e))
I(yi(e; e e, wiie; e ep))

®

where X'y represents a training subset comprised of a batch
of instances, / denotes the Huber function (Huber, 1992);
Ag» A, denote the weight for the distance-wise loss and the
angle-wise loss (Park et al., 2019), respectively.

2.3. Intra-instance relational knowledge

To further improve the performance of a student model,
we propose to exploit the intra-instance relational knowledge
using channel feature maps for each instance. We term
this novel type of knowledge distillation method as channel
relational knowledge distillation (CRKD). This work only
extracts channel relations of feature maps at the last convo-
lutional layer, since these feature maps contain more fine-
grained and critical features for making final predictions. It
is worth mentioning that the instance-level congruence term
in (Peng et al., 2019) actually refers to the KL divergence
of logits between a teacher and a student (i.e., as in Eq. 2),
which is clearly different from our formulation.

As illustrated in Figure 1, given an input image x;, a
(teacher or student) model extracts high-level features f; (x;)
for k = 1, -+, K. Then, CRKD can be performed following
two sequential steps: the channel adaptation step, and the
intra-instance relation generation step. Since the number of
channels of a student model may not be equal to that of
a teacher model, it is infeasible to align the intra-instance
relations from two models directly. Therefore, for the student
model, we adopt an adaptation module to match its channel
number with that of the teacher. Specifically, we utilize a
1 X 1 convolution (Lin, Chen and Yan, 2014) that linearly
projects the channel feature maps of the student model to a
space that shares a same channel number with the teacher
model (Romero et al., 2015).

In the second step, we will model the relation between
an arbitrary (vectorized) feature map pair of an instance x;
as (Vec(fi(x;)), Vec(fis(x,))) utilizing the un-normalized
cosine similarity metric,

r(fe(x)s frr(x)) = (Vee(fi(x;), Vee(fiu(x)))  (6)

Denote the overall intra-instance relational matrix as R €
RX*K 'then R can be generated with entries R, ;s as,

Ry o (x) = r(fr(xp), fu(x), kK € {1, K} (7

A more computationally efficient way is adopt the Grammian
matrix (Johnson, Alahi and Fei-Fei, 2016; Ding, Wang,
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Yuan, Jiang, Wang, Huang and Wang, 2021a) to generate
this relational matrix. To encourage the student learn the
intra-instance relations of the teacher, we define the CRKD
loss term over a batch of samples,

B
1
Lcrgp = I s
; KH Wy

Ry - RG], ®)
where F denotes the Frobenius norm of matrices; H I 14
refer to the height and width of a feature map of the teacher
model, respectively.

The intra-instance relation formulation above appears
to resemble the angle-wise relation in DRKD, but here we
are considering a two-tuple relation scenario. Another major
distinction is that we are modeling the relation between any
two channel feature maps of one instance rather than the
embeddings from different instances. Our CRKD also differs
from (Yimetal.,2017) and (Liu et al., 2019) that aim to mea-
sure the correlations across different network layers which
tend to involve considerably more computational costs and
instability issues. Besides, without the channel adaptation
module as in our method, they require a similar network
architecture (e.g., from a same architecture family) for the
teacher and student models. This strict requirement, how-
ever, restrains their applicability in our considered scenario
to establish more portable skin lesion diagnosis models.

A physical interpretation of our intra-instance relational
modeling is to extract the texture information of an input
image x; in the feature space. The extracted textures have
been demonstrated crucial in computer vision tasks, such
as image recognition (Geirhos, Rubisch, Michaelis, Bethge,
Wichmann and Brendel, 2018) and visual tracking attacks
(Ding et al., 2021a). Since textural features also contain
important discriminative knowledge in the skin lesion diag-
nosis task, this type of relation and knowledge can provide
auxiliary favorable cues to facilitate the training of our
student model.

2.4. Diverse knowledge integration

To further boost the student training process, we in-
tegrate diverse levels of knowledge and transfer them to
the student model. As depicted in Figure 1, our diverse
knowledge distillation (D-KD) loss can be expressed as,

Lp_xp = 4ika Lprkp+2arka- Lprkp+Acrka  Lerk D

&)

where Ay 45 Agrkas Aeriq denote the hyperparameter to bal-
ance the loss terms for BLKD, DRKD, and CRKD, respec-
tively.

In addition, we can incorporate the self-supervised train-
ing strategy (Xu et al., 2020) into the diverse knowledge-
integrated distillation loss Lp_gp to additionally improve
the training dynamics of the student model. Self-supervised
learning (SSL) is an effective strategy to learn generic visual
representations from unlabeled data for downstream tasks
(e.g., image classification, semantic segmentation) in the

Algorithm 1: The algorithm of our method.

Data: A training dataset (X, V), a pretrained teacher model, an
untrained student model, batch size B, the maximum
number of training epochs N, hyperparameters
Apikd> Adrkds Aerkds Asskq» @ minibatch stochastic gradient
descent optimizer, an early stop epoch K.

1 Initialize the student model using random initialization, set the

early stopping flag as False;

2 Split (X, Y) into [ N /B] non-overlapping batches randomly;

3 forn=1to N do

Reset the knowledge distillation loss L as 0;

for iter = 1 to [N /B] do

Draw a batch of skin images {x;, -+, xg};

Input the image batch into the teacher model, computes
intra, inter-instance relational knowledge, and
logit-based knowledge;

8 Input the image batch into the student model, computes

intra, inter-instance relational knowledge, and

logit-based knowledge;

N v e

9 Compute the knowledge distillation loss using Eq. (10)
for SSD-KD;
10 Update the student model using the optimizer;
11 end
12 If loss not decrease within K, epochs: stop the program;
13 Else: continue the program;
14 end

15 Return: An optimized portable student model.

computer vision field (Chen, Kornblith, Norouzi and Hinton,
2020; He, Fan, Wu, Xie and Girshick, 2020; Jing and Tian,
2020). Moreover, a very recent work (Liu, HaoChen, Gaidon
and Ma, 2022) shows that this learning strategy can well al-
leviate the data imbalance issue, which further validated our
motivation to incorporate the self-supervision knowledge.

A typical SSL scheme is to employ a contrastive loss
(Van den Oord, Li and Vinyals, 2018) that maximizes the
agreement in feature space of positive sample pairs gen-
erated from different augmentation transformations on a
same image (He et al., 2020; Jing and Tian, 2020). For the
first time, Xu et al. (Xu et al., 2020) introduced SSL into
knowledge distillation (SSKD), and conducted a thorough
study on the effectiveness of this learning strategy in the KD
setting. To perform the self-supervision, SSKD pre-trains a
teacher model with the contrastive loss, then transfers the
self-supervised predictions from the teacher to the student.
Following (Xu et al., 2020), we integrate the self-supervised
training strategy into our D-KD framework. Then, the loss
function for the self-supervised diverse knowledge distilla-
tion (SSD-KD) is,

Lssp-xp =Lp-kp*+ Asska - Lsskp (10)

where A ; denotes the hyperparameter for the self-supervision

regularizer.
In Algorithm 1, we describe the details of the proposed
method.

3. Experiments and results

In this section, we conduct experiments to empirically
demonstrate the effectiveness of the proposed method. We
will describe in detail our experimental setup, evaluation
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(BKL) (DF) (VASCO) Carclnoma (SCO)

5
€
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exposure body sites.

3323

The second most
common form of skin
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usually caused by
vascular malformations.

253 628

Figure 2: Example images along with their detailed information from the ISIC 2019 dataset.

metrics, and then present the comparison results and our
analysis.

3.1. Dataset

The dataset we used in this study is ISIC 2019 (Tschandl,
Rosendahl and Kittler, 2018; Codella, Gutman, Celebi,
Helba, Marchetti, Dusza, Kalloo, Liopyris, Mishra, Kit-
tler et al.,, 2018; Combalia, Codella, Rotemberg, Helba,
Vilaplana, Reiter, Carrera, Barreiro, Halpern, Puig et al.,
2019), the large-scale publicly available dermoscopy imag-
ing database, that contains 25331 dermoscopic images
acquired from different resources along with their diagno-
sis labels as their ground truth. Part of the images also
have corresponding meta information, such as gender, age,
anatomy site, etc. The ISIC 2019 contains 8 different skin
diseases including malignant melanoma (MM), melanocytic
nevus (MN), basal cell carcinoma (BCC), actinic keratosis
(AK), benign keratosis (BKL), dermatofibroma (DF), vas-
cular lesion (VASC) and squamous cell carcinoma (SCC).
An overview of details for each diseases along with the
exampled images is presented in Figure 2.

3.2. Implementation details

In the experiment part, we selected ResNet50 as the
teacher model while MobileNetV2 was chosen as the student
model. ResNet50 is one of the most powerful convolutional
neural network (CNN) architectures and has demonstrated
outstanding representation and generalization abilities in
medical imaging analytic area (Raghu, Zhang, Kleinberg
and Bengio, 2019; Zhang, Xie, Wu and Xia, 2019; Xie,
Niu, Liu, Chen, Tang and Yu, 2021). However, ResNet50
increases the complexity of architecture and requires huge
computational power during training. Therefore, ResNet50
is a suitable choice for teacher model in our project. On
the other hand, MobileNetV?2, as an advanced version of
MobileNet, benefits from its reduced network size and num-
ber of parameters, and it has been proven as an effective
feature extractor for object detection for mobile applica-
tions (Sandler, Howard, Zhu, Zhmoginov and Chen, 2018;
Togacar, Comert and Ergen, 2021; Srinivasu, SivaSai, [jaz,
Bhoi, Kim and Kang, 2021). In this project, the carefully
selected teacher model and student model not only have huge
differences in model size, but also process of dramatic dis-
tinctions in the backbone structure. Unlike other knowledge
distillation studies that only focus on the same structure with
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different number of layers, our task is more challenging and
this setup can better validate the practicality and applicabil-
ity of the KD methods in the field of dermoscopy imaging.

We implemented our proposed SSD-KD method using
PyTorch (Paszke, Gross, Massa, Lerer, Bradbury, Chanan,
Killeen, Lin, Gimelshein, Antiga et al., 2019) on one NVIDIA
Tesla V100 GPU card (32 GB memory) card at the UBC
ARC Sockeye, which is a high-performance computing
platform available to UBC researchers across all disciplines.
For a total of 25331 images from the ISIC2019, following
general practices, we randomly selected 10% of the images to
compose a test set, while the rest images were also randomly
divided into training and validation with a ratio of 8: 2.
Before feeding images into the deep learning models, we
uniformly resized all the images to 224 X 224 and applied
data augmentation using common image processing opera-
tions, including horizontal and vertical flips, adjustments in
brightness, contrast, saturation, image scaling, and random
noise. The teacher and student models were pre-trained on
ImageNet (Deng, Dong, Socher, Li, Li and Fei-Fei, 2009)
with the weights gathered from torchivision API and then
fine-tuned for 150 epochs using the mini-batch SGD opti-
mizer with an initial learning rate of 0.001, momentum of
0.9, and the weight decay of 0.001. For hyperparameters in
D-KD and SSD-KD, we used default values for parameters
within modules BLKD (Hinton et al., 2015), DRKD (Park
et al., 2019), and SSKD (Xu et al., 2020). Then for D-KD,
we set Aygs Aarkas Aerka @ 1, 1, and 1000, respectively.
The parameters were tuned on the validation dataset with
grid search. In SSD-KD, since the SSKD module already
included BLKD in it (Xu et al., 2020), we therefore treated
SSKD as a whole module and used their default parameters.
We then set 4,145 Acrica»> Assia @S 1, 1000 and 1, respectively.

In the training phase, we used a conditional reduction
strategy for the adjustment of the learning rate. If the model
did not improve for 10 consecutive epochs, the learning
rate value was reduced by a rate of 0.1. Early stopping
was also used for every 15 consecutive epochs if the model
did not improve. In the initial experiments, we found that
increasing the batch size within a certain range will signifi-
cantly improve the learning ability of the model. Therefore,
while considering the computational cost, on the premise of
obtaining a better teacher model, we set the batch size as 128.
Additionally, because of the severe data imbalance problems
between different skin diseases, we used the weighted cross-
entropy as the loss function. The weights are determined
according to the frequency of diagnosis labels and thus
assigning more attention to the classes that less appeared in
the training dataset.

3.3. Evaluation metrics

We employed four widely used metrics to evaluate
the prediction performance for multi-classes skin diseases
of our proposed method. The metrics include Accuracy
(ACC), Balanced Accuracy (BACC), mean Average Preci-
sion (mAP), and Area Under the Curve (AUC).

3.4. Comparison of the teacher and student
models

To clearly indicate the differences between the teacher
model and the student model in various indicators, we com-
pared the classification accuracy along with the computa-
tional costs in detail. In Table 1, we measured the compu-
tational costs by four commonly used complexity standards,
including model size, number of parameters, time for every
inference step, and the flops. Both teacher model and student
model were trained without any knowledge of distillation. As
shown in Table 1, the teacher model achieved much better
performance in skin lesion classification with an accuracy
of 82.0% , while the lightweight student model only got
75.4% in the same task. However, the model size of the
teacher model reached 98M and the number of parameters
was 25.6M, which was over 6 times that of the student
model. In addition, the time for each inference step of the
teacher model was 58.2ms, while the student model only
used half of this time. The flops, which were used to measure
the number of operations of the network, indicated that the
teacher model owned over 10 times of complexity in terms of
the operation numbers. The above data comparison showed
that the teacher model can indeed achieve an essential im-
provement in the model’s predictive ability, but it is also
accompanied by a greater computational requirement. This
is well aligned with our assumptions for this project.

3.5. Comparison with other KD methods

To demonstrate the effectiveness of our proposed method,
several popular representative knowledge distillation meth-
ods were listed for comparison. All these listed methods
followed exactly the same training settings as introduced
above to make sure the comparison was fair and the results
were listed in Table 2, Figure 3, and Figure 4. As we can
see, all knowledge distillation methods greatly improved
the prediction performance of the student model, where
the accuracy improvement ranged from 5% to 9% and the
balanced accuracy improvement ranged from 4% to 8%. The
increase in mean average precision even reached a maximum
of 18%. These results were comparable to the teacher model,
and some parts were even higher than the teacher model. It
proved that the KD method can improve the representative
ability of the lightweight student model with the help of the
teacher model in the classification task for multiple skin
diseases via the dermoscopy imaging technique. Among
all the methods listed in Table 2, we also found that our
proposed method achieved the best performance in ACC,
BACC, and mAP, and the second-best in AUC. Especially
in the balanced accuracy, the obvious improvement indicated
that our method is more suitable for the classification of
multiple skin diseases with unbalanced sample numbers. In
Figure 3 and Figure 4, we presented the detailed confusion
matrix of prediction and the ROC curves along with the AUC
values for each diseases, which also supported our above
analysis.
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Table 1

The comparison of the prediction accuracy and computation costs on ISIC 2019 between the teacher model(ResNet50)

and the student model (MobielNetv2).

Model Input Size  ACC Model Size  Number of parameters  Time per inference step  GFlops
ResNet50 224 x 224 0.820 98MB 25.6M 58.2ms 411
MobileNetV2 224 x 224 0.754 16MB 3.5M 22.9ms 0.31
Table 2

Comparison of single teacher/models and other state-of-the-art knowledge distillation methods. Best results are

highlighted in bold for each column.

Teacher Student KD Method ACC BACC AUC mAP
ResNet50 N/A N/A 0.820 0.822 0.975 0.740
MobileNetV2 N/A N/A 0.754 0.767 0.959 0.625
ResNet50 MobileNetV2 BLKD (Hinton et al., 2015) 0.838 0.824 0.976 0.751
ResNet50 MobileNetV2 FitNet (Romero et al., 2015) 0.807 0.806 0.971 0.700
ResNet50 MobileNetV2 DRKD (Park et al., 2019) 0.816 0.804 0.972 0.744
ResNet50 MobileNetV2 SSKD (Xu et al., 2020) 0.840 0.840 0.978 0.759
ResNet50 MobileNetV2 SSKD+DRKD+CRKD (ours) 0.846 0.843 0.977 0.796

3.6. Ablation studies

As introduced in the methodology section, our proposed
method was based on BLKD, while adding the distilled
knowledge between instances and within the channels, along
with a self-supervised learning strategy. Therefore, it was
essential to explore the roles and effects of different com-
ponents of the overall framework. In Table 3, we conducted
ablation studies to compare the performance of different
methods with different modules. In the training phase, we
also fixed all the training optimization parameters and set-
tings to make sure the comparison was fair.

Firstly, we removed self-supervision mechanism and
trained BLKD along with DRKD and CRKD separately as
shown in the first two rows of the Table 3. Compared with
BLKD, we found that both DRKD and CRKD methods con-
sistently improved the accuracy, balanced accuracy, AUC,
mAP values. Based on this result, we drew preliminary
conclusions that the incorporation of relational-based KD
can benefit the predictive ability of the student model by
introducing more knowledge. Next, we involved the self-
supervision in BLKD, which is noted as SSKD in the Ta-
ble 2 and Table 3. DRKD and CRKD methods were also
considered individually in this scenario. According to the

Table 3

third and forth rows of the comparison, we noticed that the
self-supervised method further improved the results while
DRKD and CRKD methods were included, especially the
ACC and BACC. This results demonstrated that while in-
troducing DRKD and CRKD method to knowledge distilla-
tion, the adoption of the SSKD module can achieve further
improvement of representative ability of the student model.
Finally, we carried out another two sets of experiments that
introduced both DRKD and CRKD modules and trained
them with and without the self-supervision strategy to fur-
ther validate our hypothesis. As shown in the last two rows
of the Table 3, our jointly optimized knowledge distillation
methods achieved the best performance with the highest
prediction accuracy and balanced accuracy, which agreed
with our preliminary conclusions mentioned above. Each
component of our architecture contributed to the improved
performance of the lightweight student model, thus making
the proposed method more effective.

3.7. Visualizations of class activation maps

In addition to the analysis and comparisons, we further
observed the prediction performance of the test set samples
before and after using our knowledge distillation method.
We noticed that the skin lesion classes of many samples in

Comparison of different modules equipped in SSD-KD for ablation studies. Best results are highlighted in bold for

each column.

Teacher Student KD Method ACC BACC AUC mAP
ResNet50 MobileNetV?2 BLKD+DRKD 0.839 0.827 0.977 0.755
ResNet50 MobileNetV?2 BLKD+CRKD 0.839 0.824 0.977 0.773
ResNet50 MobileNetV2 SSKD+DRKD 0.841 0.840 0.978 0.769
ResNet50 MobileNetV?2 SSKD+CRKD 0.842 0.839 0.977 0.773
ResNet50 MobileNetV?2 BLKD+DRKD+CRKD (D-KD) 0.844 0.839 0.978 0.788
ResNet50 MobileNetV2 SSKD+DRKD+CRKD (SSD-KD) 0.846 0.843 0.977 0.796
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Figure 3: Visualizations of confusion matrices from skin lesion classification models that are trained: without KD (as shown in
subfigures (a) — (b)), and with different KDs (as shown in subfigures (c) — (1)).

the test set were correctly predicted by the teacher model
and the student model with knowledge distillation, but are
diagnosed as the wrong classes by the student model without
the knowledge distillation. For example, 17 melanomas were
predicted as benign keratoses by the student model without
any knowledge distillation but they were classified correctly
after the implementation of our KD method. To show how
the KD methods helped the learning of the student model,
we visualized the class activation mapping (CAM) from the

teacher model, the student model before the implementation
of KD, and the student model after using KD applying
Grad-CAM (Selvaraju, Cogswell, Das, Vedantam, Parikh
and Batra, 2017), which was commonly used to locate dis-
criminative regions for object detection and classification
tasks. As presented in Figure 5, the located discriminative
areas of student model after the KD implementation was
more align with the teacher model’s activation maps; Hence,
it enhanced the performance of the student model.
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Figure 4: Visualization of ROC curves from skin lesion classification models that are trained: without KD (as shown in in subfigures
(a) = (b)), and with different KDs (as shown in subfigures (c) — (I)).

4. Discussion and future works

The multi-class classification task has made great progress
in recent years due to the in-depth research of medical
imaging and deep learning technology. However, excel-
lent model capabilities are often accompanied by complex
structures and high training and storage costs, which limit
their practical applications in the scenarios with restricted
computational resources, such as portable devices. Cor-
respondingly, although the small lightweight model can

greatly reduce the computational cost, it cannot extract
more representative features, so that the predictive ability
of the model is degraded. For example, in this paper,
both ResNet50 and MobileNetV2 are trained on the large-
sacle dataset of ISIC. However, the prediction accuracy of
ResNet50 can reach 82%, while the lightweight MobileNet
can only reach 75%. It can be seen that using the KD methods
to improve the learning performance of lightweight models
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(b) Teacher

(a) Original

(c) Student before SSD-KD

(d) Student after SSD-KD

Figure 5: Visualization of class activation mapping (CAM). The example images are correctly predicted by the teacher model
and the student model only after implementing our proposed method. (a) is the original dermoscopy image while the other three
subfigures (b)-(d) denote their corresponding CAM ouput from different models.

while maintaining the complexity advantage is an important
direction in both theoretical and application levels.

Considering the morphological characteristics of skin
lesions, we added a number of modules based on the tra-
ditional KD framework, including the widely used DRKD
and SSKD, as well as CRKD and weighted soften knowledge
that were specifically designed for skin lesions classification
via dermoscopy imaging. While the number of skin cancer
lesions is far less than that of benign skin lesions, in our
proposed method, we integrated weighted softened output
and generic feature representations in a self-supervised man-
ner, and also improved the ability of a lightweight model
to obtain more useful information from classes with fewer
subjects. Therefore, our proposed method can better help
the lightweight student model to extract features, thereby
achieving improved results. In addition, when we performed
ablation studies, we also noticed that although the KD meth-
ods improved the student model substantially, the improve-
ment brought by adding different modules to BLKD was
not very obvious. To verify that the presented results are
sufficiently convincing, we tried ten experiments under the
same conditions and calculated the standard deviation of all
calculated metrics. The standard deviation values were all
less than 0.01, demonstrating the robustness of the trends
shown by our results. In fact, further tuning of the hyper-
parameters should make the model perform better when
adding a combination of different modules, but in this paper
we fixed the hyperparameter values of all modules for a
completely fair comparison.

Additionally, after a series of pre-experiments, we se-
lected the two most representative models, based on their
distinct characteristics, as the teacher model and the student
model. As the shown in table 1, our criteria for selecting
models was to ensure that the teacher model has excellent
performance, while the complexity of the student model
is suitable for practical portable applications. Although we
achieved our expectation of improving the predictive power
of the student model, we strongly believed that this was
only a starting point for this line of research. In our future
works, we plan to further introduce other architectures, such
as multi-teacher KD and KD with the help of the teaching
assistant mechanism, so as to improve the generalizability
of the obtained results. Moreover, our proposed method
can also be applied to other medical problems with similar

scenarios after fine-tuning, helping to improve lightweight
models in other areas.

5. Conclusion

In this paper, we proposed an efficient knowledge dis-
tillation framework, called SSD-KD, which aimed to ad-
dress the challenging task of multi-class classification of
dermoscopic skin lesion imaging by lightweight deep learn-
ing models. Different from existing KD methods, SSD-KD
considered both intra- and inter-instance based knowledge
to guide the lightweight model capture richer structural
knowledge that are important for skin lesion diagnosis. Ad-
ditionally, the self-supervised auxiliary training strategy and
weighted cross entropy loss were also involved to further
boost its performance.

We conducted experiments to evaluate our proposed
method on the large-scale open-accessed dermoscopic skin
lesion imaging dataset ISIC 2019, and we presented detailed
comparisons with the existing KD methods. We also applied
a CAM method to visualize the changes of activation maps
generated by the models. Experiments demonstrated the ef-
fectiveness of our proposed SSD-KD with a promising result
in multi-diseases classification. With low model complexity
and storage requirements while improving predictive perfor-
mance, our method could greatly assist in the promotion of
deep learning techniques to clinical practices.
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