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A B S T R A C T

Assessment of myocardial viability is essential in diagnosis and treatment
management of patients suffering from myocardial infarction, and classification
of pathology on myocardium is the key to this assessment. This work defines
a new task of medical image analysis, i.e., to perform myocardial pathology
segmentation (MyoPS) combining three-sequence cardiac magnetic resonance
(CMR) images, which was first proposed in the MyoPS challenge, in conjunction
with MICCAI 2020. Note that MyoPS refers to both myocardial pathology seg-
mentation and the challenge in this paper. The challenge provided 45 paired and
pre-aligned CMR images, allowing algorithms to combine the complementary in-
formation from the three CMR sequences for pathology segmentation. In this
article, we provide details of the challenge, survey the works from fifteen partic-
ipants and interpret their methods according to five aspects, i.e., preprocessing,
data augmentation, learning strategy, model architecture and post-processing.
In addition, we analyze the results with respect to different factors, in order to
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examine the key obstacles and explore the potential of solutions, as well as to
provide a benchmark for future research. The average Dice scores of submit-
ted algorithms were 0.614 ± 0.231 and 0.644 ± 0.153 for myocardial scars and
edema, respectively. We conclude that while promising results have been re-
ported, the research is still in the early stage, and more in-depth exploration is
needed before a successful application to the clinics. MyoPS data and evalua-
tion tool continue to be publicly available upon registration via its homepage
(www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/).

© 2023 Elsevier B. V. All rights reserved.

1. Introduction

1.1. Clinical background

Myocardial infarction (MI) is a major cause of mor-
tality and disability worldwide (Thygesen et al., 2008).
Assessment of myocardial viability is essential in the di-5

agnosis and treatment management for patients suffering
from MI. In particular, the position and distribution of my-
ocardial infarct (also known as “scar”) and edema could
provide important information for selection of patients and
delivery of therapies of MI. Specifically, myocardial scars10

refer to the area where the left ventricle loses viability
and is a prominent cause of serious complications, such as
heart failure and ventricular arrhythmias (Delgado et al.,
2011). Edema is induced by ischemia and reperfusion, and
its size reflects the area of ischemic injury in early acute15

(per-acute) MI (Ruder et al., 2013). The presence of my-
ocardial edema may be associated with a higher hazard
of cardiovascular event or death (Friedrich, 2010; Raman
et al., 2010). Hence, characterizing the evolution of my-
ocardial scars and edema has important prognostic value20

and can be used to evaluate the efficacy of future therapies.
Cardiac magnetic resonance (CMR) imaging can be

used to determine the effects of acute MI in vivo, as Fig-
ure 1 shows. For example, the balanced steady-state free
precession (bSSFP) sequence can be used to analyze the25

left ventricular (LV) volume and wall thickness, as it pro-
vides a clear LV boundary. Late gadolinium enhancement
(LGE) CMR imaging can visualize infarction, while T2-
weighted CMR can depict myocardial edema referring to
the area at risk after acute MI. To accurately differenti-30

ate nonviable infarct myocardium from viable peri-infarct
tissues, Kidambi et al. (2013) defined infarct zone on the
90-day LGE images and peri-infarct zone on the 2-day T2-
weighted images acquired from the same patient. There-
fore, the edema can be divided into two regions of interest35

around the infarction: the infarct zone and peri-infarct
zone, as Figure 2 (a) shows. The task of our challenge is
to segment myocardial pathology by combining the three-
sequence CMR images from the same patient, assuming
the three sequences are aligned prior to pathology seg-40

mentation. This task is illustrated in Figure 1.

1.2. Challenge

As manual segmentation is time-consuming and subjec-
tive, automatic myocardial pathology segmentation (My-
oPS) is highly demanded. However, automating this seg-45

mentation remains challenging, due to the large shape
variability of myocardium, indistinguishable boundaries,
and the possible poor image quality. Particularly, there
are three challenges for the automatic multi-image-based
pathology segmentation. Firstly, the intensity distribu-50

tion of the pathological myocardium in LGE and T2 CMR
images is heterogeneous. Secondly, the enhancements of
pathologies can be highly variable and complex. The lo-
cation, shape and size of infarcts and edemas vary greatly
across different patients. Finally, the misalignment of inter-55

sequence images introduces new challenges to combine them
for the pathology segmentation.

To the best of our knowledge, few works have been
reported for MyoPS combining multi-sequence CMR im-
ages (Li et al., 2022a). Most works only segments single60

pathology, i.e., scars or edema, based on a single CMR
sequence. This could be due to the difficulty of correct-
ing the misalignment among different sequences. There-
fore, we defined the task of MyoPS where three-sequence
CMR images from the same subject were pre-aligned in65

the challenge event. This was to mitigate the difficulty of
misalignment and data missing (Zhuang, 2019), and to en-
courage the participants to solely focus on the algorithms
of MyoPS.

1.3. Motivation70

We therefore organized the MyoPS challenge 2020 in
conjunction with MICCAI 2020. Specifically, the challenge
provided three-sequence CMR from 45 subjects and was
aimed to encourage the development of new segmentation
algorithms which could combine the complementary in-75

formation from the three CMR sequences. Twenty-three
submissions were evaluated before the deadline, and fif-
teen teams presented their work at the conference event.
In this paper, we introduce the related information, review
the methodologies, and analyze their results in detail. Our80

target is to raise interest in studies on pathology segmenta-
tion of myocardium combining multi-source images, which

stsaftar
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Figure 1. Visualization of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images
acquired from the same patient (figure designed referring to Zhuang (2019)).

has been employed for studies of other organs, such as seg-
mentation of brain tumor (Du et al., 2016) and prostate
cancer (Vall and Lemaitre, 2016).85

The rest of this paper is structured as follows: Section 2
presents an overview of related work in the previous chal-
lenges of MICCAI and their benchmarks, as well as the
difficulties and current solutions. Section 3 provides de-
tails of the materials and evaluation framework from the90

challenge. Section 4 summarizes the current methods for
MyoPS. Section 5 describes the results, followed by dis-
cussions in Section 6. Finally, we conclude this work in
Section 7.

2. Related work95

2.1. Related challenges and benchmarks

In recent years, there are many challenges of computa-
tional modeling, segmentation and computer-aided diag-
nosis for cardiovascular problems. Thanks to those chal-
lenges, researchers can develop, test and compare compu-100

tational algorithms on the same dataset. Table 1 presents
the recent challenges and public datasets for cardiac seg-
mentation. One can see that only Karim et al. (2016) and
Karim et al. (2013) focused on the LV/ left atrial (LA) scar
segmentation from LGE CMR. None of them was aimed105

to combine multi-source images. Though there was a chal-
lenge with multi-sequence CMR images, it was aimed to
segment myocardium from LGE CMR by referring to the
training images from other sequences (Zhuang et al., 2022).
In contrast, MyoPS challenge was aimed to segment and110

classify the pathology of myocardium combining the com-
plementary information related to the pathology and mor-
phology from the three-sequence CMR, i.e., the bSSFP,
T2 and LGE CMR.

Current pathology segmentation challenges combining115

multi-modality images mainly came from brain image anal-
ysis. For example, multi-modal brain tumor segmenta-
tion (BraTS) challenge was organized in conjunction with
the MICCAI 2012-2020 conferences. The BraTS challenge
provided native (T1), post-contrast T1-weighted (T1Gd),120

T2-weighted (T2), and T2 fluid attenuated inversion recov-
ery (T2-FLAIR) MR images for the brain tumor segmen-

tation. The first corresponding benchmark study (Menze
et al., 2014) summarized eleven submitted algorithms, which
were all conventional methods, such as fuzzy clustering,125

level set, and support vector machine. It found that dif-
ferent algorithms could achieve high performance on a spe-
cific subregion, but no one performed consistently better
than the others for all subregions. The next benchmark
study (Bakas et al., 2018) of the challenge aimed to assess130

the state-of-the-art machine learning methods for multi-
modal brain tumor segmentation, during BraTS challenge
2012-2018. Ischemic stroke lesion segmentation (ISLES)
challenge offered at least the set of T1-weighted, T2, diffu-
sion weighted imaging (DWI) and FLAIR MR sequences135

for each case with a diagnosis of ischemic stroke. Their
benchmark study found that no algorithmic characteristic
of any methods was proved better than others, and empha-
sized the importance of the characteristics of stroke lesion
appearances, their evolution and the observed challenges140

(Maier et al., 2017).
Other related challenges for other organs include the

I2CVB (Vall and Lemaitre, 2016) and CHAOS (Kavur
et al., 2021). I2CVB provided a multi-parametric MR im-
age dataset, including T2 MR, dynamic contrast enhanced145

(DCE) MR, DWI MR and MR spectroscopic imaging data,
and was aimed for prostate cancer segmentation (Vall and
Lemaitre, 2016). CHAOS combined CT and MR images
from the abdomen for organ segmentation, including liver,
kidneys and spleen (Kavur et al., 2021). To the best of150

our knowledge, there is still no challenge/ public avail-
able dataset on cardiac pathology segmentation combining
multi-source images.

2.2. State-of-the-art myocardial pathology segmentation

A short overview of previously published algorithms155

related to MyoPS is presented here, and summarized in
Table 2. One can see that only Baron et al. (2008) seg-
mented both myocardial scar and edema, respectively from
LGE CMR and T2 CMR. Other studies only focus on
one of them. In specific, for scar segmentation the most160

widespread methods are mainly based on thresholding,
such as n-SD and full-width-at-half-maximum (FWHM)
(Karim et al., 2016; Sandfort et al., 2017). It is mostly
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Table 1. Summary of previous challenges related to the cardiac segmentation from MICCAI/ ISBI society. LV: left
ventricle; Myo: myocardium; RV: right ventricle; LA: left atrium; WHBP: whole heart blood pool; WH: whole heart;
SM: single modality; MM: multi-modality; MI: myocardial infarction; MH: myocardial hypertrophy; ConHD: congenital
heart disease; DCM: dilated cardiomyopathy; CorHD: coronary heart disease; AF: atrial fibrillation; HCM: Hypertrophic
cardiomyopathy; HHD: Hypertensive Heart Disease; ARV: abnormal right ventricle; AHS: athlete’s heart syndrome; IHD:
ischemic heart disease; LVNC: left ventricle non-compaction; ‡: multi-center datasets.

Challenge Year Source Data info Target Pathologies

Radau et al. (2009) 2009 SM 45 bSSFP CMR LV, Myo MI, MH
Suinesiaputra et al. (2011) 2011 MM 200 bSSFP CMR LV, Myo MI
Petitjean et al. (2015) 2012 SM 48 bSSFP CMR RV ConHD
Karim et al. (2016) 2012 SM 30 LGE CMR LV scars MI

Karim et al. (2013) 2013 SM‡ 60 LGE CMR LA scar AF
Tobon-Gomez et al. (2015) 2013 MM 30 CT, 30 bSSFP CMR LA AF
Karim et al. (2018) 2016 MM 10 CT, 10 black-blood CMR LA wall AF
Moghari et al. (2016) 2016 SM 20 bSSFP CMR WHBP, Myo ConHD
Bernard et al. (2018) 2017 SM 150 bSSFP CMR LV, Myo, RV MI, MH, DCM, abnormal RV

Zhuang et al. (2019) 2017 MM‡ 60 CT, 60 bSSFP CMR WH AF, ConHD, CorHD
Xiong et al. (2020) 2018 MM 150 LGE CMR LA AF
Zhuang et al. (2022) 2019 MM 45 bSSFP, LGE, T2 CMR LV, Myo, RV MI
Lalande et al. (2020) 2020 SM 150 LGE LV scars MI

Campello et al. (2021) 2020 SM‡ 150 bSSFP CMR RV, LV, Myo
HCM, DCM, HHD, ARV,
AHS, and IHD

Table 2. Summary of current myocardial pathology segmentation algorithms. CF: connectivity filtering; RG: region growing;
Error: error in predicted scar/edema percentage; RF: random forest; RMSE: root mean squared error; HD: Hausdorff
distance; LCE: late contrast enhancement; ICC: intraclass correlation coefficient; GMM: Gaussian mixture model.

Reference Data Target(s) Method Results

Baron et al. (2008) 22 LGE CMR
+ T2 CMR

Scar +
Edema

Fuzzy clustering Volume correlation: r > 0.8

Tao et al. (2010) 20 LGE CMR Scar Otsu + CF and RG
Dice = 0.83 ± 0.07 & 0.79 ± 0.08;
Error = 0.0 ± 1.9% & 3.8 ± 4.7%

Lu et al. (2012) 9 LGE CMR Scar Graph-cuts N/A

Sandfort et al. (2017) 34 LCE CT Scar Adaptive threshold
Dice = 0.47;
ICC (volume/area) = 0.96/0.87

Xu et al. (2018) 165 cine CMR Scar LSTM-RNN + optical
flow

Accuracy = 0.95; Kappa = 0.91;
Dice = 0.90; RMSE = 0.72 mm;
HD = 5.91 mm

Kurzendorfer et al. (2018) 30 LGE CMR Scar Fractal analysis + RF Dice = 0.64 ± 0.17

Moccia et al. (2019) 30 LGE CMR Scar FCN Sensitivity = 0.881; Dice = 0.713

Zabihollahy et al. (2019) 34 LGE CMR Scar CNN
Dice = 0.936 ± 0.026;
Jaccard = 0.881 ± 0.470

Kadir et al. (2011) 16 T2 CMR Edema Morphological filtering +
threshold

Volume correlation: r > 0.8;
Error = 9.95± 3.90%

Gao et al. (2013) 25 T2 CMR Edema Rayleigh-GMM Dice = 0.74

attributed to the relatively evident intensity contrast be-
tween scarring areas and background inside the myocardium.165

Instead of simply using thresholding, Tao et al. (2010)
combined it with connectivity filtering and region growing.
Other conventional methods were also employed, such as
fuzzy clustering (Baron et al., 2008), graph-cuts (Lu et al.,
2012), and fractal analysis with random forest (Kurzendor-170

fer et al., 2018). Recently, thanks to the great advance in
deep learning (DL), Moccia et al. (2019) and Zabihollahy
et al. (2019) employed fully convolutional networks (FCN)
and convolutional neural networks (CNN) for LV scar seg-
mentation. One can see that most works extracted scars175

from LGE CMR or late contrast enhancement CT, where

scars are enhanced to distinguish them from non-scarring
areas of the myocardium. However, for the patients with
chronic end-stage kidney diseases, the administration of
gadolinium contrast agent is dangerous. Therefore, Xu180

et al. (2018) proposed an effective method to directly ob-
tain the position, shape, and size of an infarction area from
a raw CMR sequence, i.e., cine CMR. Compared with LV
scar segmentation, there were few works on LV edema seg-
mentation. The two works listed in Table 2 for edema185

segmentation were both based on conventional segmenta-
tion methods, and no DL-based method was reported, to
the best of our knowledge. Note that here we only focus
on the LV myocardial pathology, and for the literature of
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Figure 2. (a) Illustration of the relationship between myocardial infarct (also referred to as scars) and edema; (b)-(d) exem-
plary three-sequence CMR images superimposed with contours of gold standard segmentation at different slice positions.

another similar topic (i.e., LA myocardial pathology) one190

could refer to the review (Li et al., 2022b).

3. Materials and setup

3.1. Data

MyoPS challenge provides 45 paired three-sequence CMR
images (bSSFP, LGE and T2 CMR) acquired from the195

same patient. The three CMR sequences were all breath-
hold, multi-slice, acquired from the cardiac short-axis views
using Philips Achieva 1.5T. All patients are male with
acute MI, and the average age and weight are 56.2± 7.92
years and 74.4±5.65 kg, respectively. Table 3 provides the200

acquisition parameters of the three CMR sequences. The
data acquisition had been anonymized, and approved by
the institutional ethics board. All the data have been pre-
processed using the MvMM method (Zhuang, 2019), to
align the three-sequence images of the same patient into a205

common space and to resample them into the same spa-
tial resolution. Each sequence typically contains 2–6 slices
with an in-plane resolution of 0.73-0.76 × 0.73-0.76 mm
and image size ranging from 412× 408 to 512× 515. Fig-
ure 2 (b)-(d) provide the exemplary images of the three210

sequences, with contours of gold standard segmentation
results superimposed on, from respectively the apical, mid-
dle and basal slices.

For generating the gold standard segmentation, three
observers were employed to manually label the LV blood215

pool, right ventricular (RV) blood pool, and LV myocardium
(Myo) from all the three CMR sequences. In addition,
LV myocardial scar and edema were manually delineated
from LGE and T2 CMR images, respectively. The ob-
servers were well-trained raters who were post-graduate220

students either in biomedical engineering or medical imag-
ing field. They followed the provided instructions: (1) The
position of myocardial scars and edema must be located in-
side the myocardium, which includes the papillary muscle.
(2) Cine CMR image was utilized as a reference to delimit225

the myocardial and LV/ RV regions of LGE and T2 CMR.
T2 was used to guide the scar segmentation of LGE, and
LGE was also employed to guide the edema annotations
of T2. (3) The annotation of scars is contained in that of
edema. The manual labeling was performed slice-by-slice230

using a brush tool in the software ITK-SNAP (Yushkevich
et al., 2006). All the manual segmentation results were val-
idated by three experts in cardiac anatomy before used in
the construction of gold standard segmentation. The final
segmentation was obtained by averaging the multiple man-235

ual delineations using a shape-based approach (Rohlfing
and Maurer, 2006). The inter-observer variations of man-
ual scar and edema segmentation in terms of Dice overlap
were 0.569 ± 0.198 and 0.701 ± 0.168, respectively. The
manual segmentation of edema was evidently more con-240

sistent between the raters than that of scar segmentation,
probably due to the fact that the regions of edema are gen-
erally larger (in terms of size) and less patchy (in terms of
shape) from T2 images.

Finally, for the challenge event we split the data into245

two sets, i.e., the training set, including validation images
and consisting of 25 pairs, and the test set composed of 20
pairs.

3.2. Evaluation metrics

Though the labels of LV, RV and Myo were provided for
the training data, the evaluation of test data only focused
on the myocardial pathology segmentation, i.e., scars and
edema. To evaluate the segmentation accuracy, we cal-
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Table 3. Image acquisition parameters of the MyoPS challenge data and image parameter before pre-processing. ED:
end-diastolic.

Sequence Imaging type TR/ TE (ms) Slice spacing (thickness + gap) In-plane resolution

LGE T1-weighted 3.6/ 1.8 5 mm 0.75× 0.75 mm
T2 T2-weighted, black blood 2000/ 90 12-20 mm 1.35× 1.35 mm
bSSFP Cine sequence (ED phase) 2.7/ 1.4 8-13 mm 1.25× 1.25 mm

culated the Dice score of scar and edema segmentation
separately,

Dice(Vseg, VGD) =
2 |Vseg ∩ VGD|
|Vseg|+ |VGD|

, (1)

where VGD and Vseg denote the gold standard and auto-250

matic segmentation, respectively. Note that without spe-
cific indication, these metrics are generally calculated in
a 3D volumes, by considering all slices of the target im-
age at the same time, namely subject-wise evaluation. We
compute them for 2D slices only when comparing the per-255

formances with regard to different slice positions, namely
slice-wise evaluation. Moreover, Dice score of scars is an-
notated as Dice� when the ground truth contains no scar.

In addition, we employed three statistical measurements,
i.e., Accuracy (ACC), Sensitivity (SEN), and Specificity
(SPE) of the pathology (positive) and healthy myocardium
(negative) classification, which are defined as,

ACC =
TP + TN

TP + FP + FN + TN
, (2)

SEN =
TP

TP + FN
, (3)

and

SPE =
TN

TN + FP
, (4)

where TP and FP respectively stand for the number of
voxels of true and false positive myocardial pathologies;260

and TN and FN denote the true and false negatives, re-
spectively. Note that in this task, the participants were
required to solely report the segmentation on pathologies,
i.e., to output the voxels labeled as scars or edema in the
images, thus the remaining voxels of myocardium not clas-265

sified as pathologies by an algorithm were then considered
as TN . Furthermore, there were cases without pathology,
for which we define the sensitivity of a segmentation result
to be one, i.e., SEN=1.

We also consider three clinical indices, i.e., transmu-270

rality, surface area and volume of myocardial pathologies,
which could be of important clinical value in MI (Ortiz-
Pérez et al., 2007). For example, transmurality could be
associated with the severity of ventricular wall motion ab-
normalities at rest (Schuijf et al., 2004). The transmurality275

of myocardial pathology was computed for each segment
as the ratio (percent) of hyper-enhanced to non-hyper-
enhanced areas (Ørn et al., 2007). The average transmu-
rality for each patient was then calculated as the average
of the transmurality of all segments with non-zero trans-280

Transmurality =
𝑀𝑎𝑠𝑠𝐬𝐜𝐚𝐫

𝑀𝑎𝑠𝑠𝐬𝐜𝐚𝐫+𝑀𝑎𝑠𝑠scar sector
∗ 100%

Surface area = scar surface area on the 

reconstructed 3D volume

Volume = σ𝑥𝑖∈𝐬𝐜𝐚𝐫1 ∗ 𝑉unit, where 𝑉unit refers to

the unit volume of each pixel

Projection
Non-scarring Myo ScarScar sector

𝑥𝑖
𝑥𝑖

Figure 3. Sketch map of clinical measures employed in My-
oPS evaluation. Note that here we only employ the clinical
measure calculation for scars as an example.

murality. The surface areas of myocardial pathology were
calculated based on the 3D reconstruction of the identi-
fied myocardial scar/ edema (Tao et al., 2015). As for the
volume, it is defined as the product of the number of vox-
els belonging to scar/ edema and the unit volume of each285

voxel. The reader is referred to Figure 3 for an illustration
of each index.

3.3. The MyoPS challenge

3.3.1. Organization

We submitted a proposal to the MICCAI challenge sub-290

mission system to apply for our MyoPS challenge. One
can access our challenge proposal in the zenodo website.
At the same time, we applied for a CMT platform to run
this challenge, mainly managing the paper submission. Af-
ter preparing all the dataset, we scheduled a timetable for295

the challenge, including the date of data release (1st April,
2020), result/ paper submission (22nd/ 29th July, 2020),
associated workshop and result release (4th Oct, 2020).
Besides, we designed the task, the distribution of dataset
and evaluation metrics. Note that the organizers were not300

allowed to participate the challenge.

3.3.2. Registration and submission

To access the challenge dataset, researchers were re-
quired to sign a data agreement file and return it to the
organizers. Before the conference, participants can train305

their model with the training data, and submit their re-
sults to the organizers for evaluation. Each team was al-
lowed to submit their testing results 2 times at most. Af-
ter the conference, we have released the encrypted ground
truth of test data and corresponding evaluation tool to310

simplify the evaluation step for subsequent participants.
Therefore, in principle they can evaluate their models un-
limited times.

The participants were encouraged to summarize their
methods and results by submitting a paper to the CMT-315

MyoPS platform. The format should follow the LNCS
style according to the main MICCAI conference guidelines,

https://www.biomedical-challenges.org
https://www.biomedical-challenges.org
https://www.biomedical-challenges.org
https://zenodo.org/record/3715932#.YEXCiWgzZnI
https://cmt3.research.microsoft.com/MyoPS2020
https://cmt3.research.microsoft.com/MyoPS2020
https://cmt3.research.microsoft.com/MyoPS2020
https://cmt3.research.microsoft.com/MyoPS2020


Lei Li et al. / Medical Image Analysis (2023) 7

Table 4. Summary of source code from the participants of MyoPS 2020 challenge.

Team Code Reference

UESTC https://github.com/HiLab-git/MyoPS2020 Zhai et al. (2020)
UBA https://github.com/cmartin-isla/MYOPs-challenge-StackedBCDUnet Mart́ın-Isla et al. (2020)
NPU https://github.com/jianpengz/EfficientSeg Zhang et al. (2020a)
UHW https://github.com/chfc-cmi/miccai2020-myops Ankenbrand et al. (2020)
FZU https://github.com/kakazxz/myops Zhang et al. (2020c)
NJUST https://github.com/JunMa11/MyoPS2020 Ma (2020)
CQUPT I https://github.com/fly1995/2020MyoPS-MF-DFA-Net Li and Li (2020)
LRDE https://github.com/Zhaozhou-lrde/myops2020 code Zhao et al. (2020)
CQUPT II https://github.com/LynnHg/cmsunet Li et al. (2020b)
HNU https://github.com/APhun/MyoPS20-HNU Liu et al. (2020)
Edin https://github.com/falconjhc/MFU-Net Jiang et al. (2020)
UBO https://github.com/tewodrosweldebirhan/scar segmentation myops2020 Arega and Bricq (2020)
ITU https://github.com/altunokelif/MyoPS2020-CMRsegmentation Elif and Ilkay (2020)
UOA https://github.com/Voldemort108X/myops20 Zhang et al. (2020b)

but we did not constraint the pages. For the submitted
manuscripts, they will be firstly reviewed by the organiz-
ers who will ensure the quality of the paper reaches the320

publication standard. Then, each paper will be reviewed
by more than two reviewers. The review procedure will be
double-blinded, similar to the MICCAI submissions. Cur-
rently, researchers can still download the MyoPS data and
evaluation tool via the challenge webpage.325

3.3.3. Participants

As an ongoing event, the challenge has received seventy-
six requests of registration before the submission of this
manuscript, among which sixty-five teams participated the
event before the date of the workshop (Oct 4th, 2020).330

Twenty-three submitted results were evaluated before the
submission deadline, and fifteen algorithms were included
for this benchmark work. Note that the team abbreviations
in the remaining of this paper refer both to the teams and
their corresponding methods, as listed in Table 4. USTB335

(Yu et al., 2020) is not listed here as they did not provide
open source code of their algorithm.

4. Survey of the methods

For the task of MyoPS, deep learning has attracted the
most attention and has also shown great potentials. Simi-340

lar to other segmentation tasks, the key to success includes
the adoption of preprocessing, appropriate architecture of
networks and loss function, data augmentation, learning
strategy, and post-processing. In this section, we survey
the benchmarked methods according to these five aspects.345

Table 5 and Table 6 summarize the key techniques of them,
particularly the latter focuses on architecture and training
details of the deep neural networks.

4.1. Preprocessing

Preprocessing can reduce the complexity of data, and350

facilitate the models to learn the target knowledge with-
out considering the unnecessary variations. The widely

adopted techniques include cropping regions of interest
(ROI) and intensity normalization.

As the pathology to be segmented exists only in the LV,355

most of the peripheral areas of the background are in fact
redundant. To reduce the complexity from background,
all the teams cropped ROIs from the original images prior
to the MyoPS. For example, USTB cropped ROIs of 256×
256 pixels (Yu et al., 2020), and FZU cropped a small360

ROI and resized into images of 128 × 128 pixels (Zhang
et al., 2020c). Another method was to perform a coarse
segmentation on the images, to localize the position of
LV, and then extract ROIs automatically. For example,
UBA adopted a U-Net to predict the myocardial region,365

and then cropped the smallest bounding box around the
myocardium with a small margin of 10 pixels (Mart́ın-Isla
et al., 2020). As cine CMR presents clear structures of
LV while lacking appearance of pathological regions, they
chose this modality as the input of the localization U-Net.370

Similarly, NJUST used a U-Net to segment the whole LV,
and then cropped LV ROI into 112 × 112 from LGE and
T2 CMR based on the segmentation results (Ma, 2020).

Intensity normalization aims to transform the inten-
sity ranges of images into the same one. Z-score is a com-375

mon and simple method, which normalizes the data into
zero mean and unit standard deviation; another one is
to linearly transform the intensity range of an image into
[0, 1], which was used by UBA. More advanced prepro-
cessing involves the application of contrast enhancement380

to the images. For example, USTB and UHW employed
the method of contrast limited adaptive histogram equal-
ization (CLAHE) (Pizer et al., 1987), which is particularly
useful for images with low contrast; and UBA further used
histogram equalization on the cropped ROIs to enhance385

the contrast. For a summary of all the teams, one can
refer to Table 5 for details.

4.2. Architecture and loss function
The most common architecture in the benchmarked

algorithms is U-Net, which extracts multi-scale features390

and combines them together with a skip connection strat-
egy. For example, UESTC used U-Net for both coarse and

https://github.com/HiLab-git/MyoPS2020
https://github.com/cmartin-isla/MYOPs-challenge-StackedBCDUnet
https://github.com/jianpengz/EfficientSeg
https://github.com/chfc-cmi/miccai2020-myops
https://github.com/kakazxz/myops
https://github.com/JunMa11/MyoPS2020
https://github.com/fly1995/2020MyoPS-MF-DFA-Net
https://github.com/Zhaozhou-lrde/myops2020_code
https://github.com/LynnHg/cmsunet
https://github.com/APhun/MyoPS20-HNU
https://github.com/falconjhc/MFU-Net
https://github.com/tewodrosweldebirhan/scar_segmentation_myops2020
https://github.com/altunokelif/MyoPS2020-CMRsegmentation
https://github.com/Voldemort108X/myops20
http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/
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Table 5. Summary of the benchmarked algorithms. EM: equalization matching; HE: histogram equalization; IN: intensity
normalization; RGT: random gamma technique; CLAHE: contrast limited adaptive histogram equalization; SA: simple
augmentation techniques, including random rotation, random flipping, random scaling, ransom shifting, random cropping,
random warping and horizontally flipping.

Team Pre-processing Method type Data augmentation Post-processing

UESTC crop two-stage,
weighted
ensemble

SA None

UBA crop, IN into
[0,1], HE

two-stage, en-
semble

SA, image synthesis anatomical constraints, mor-
phological operations

NPU crop, z-score end-to-end SA remove small isolated regions

USTB crop, z-score,
CLAHE, EM

end-to-end SA, brightness, contrast shift, non-rigid
transformation

remove outliers and discon-
nected regions

UHW crop, CLAHE end-to-end,
ensemble

SA, brightness, contrast shift, transfor-
mation with simulated MR artifacts

None

FZU crop two-stage SA None

NJUST crop, z-score two-stage SA, brightness, contrast shift None

CQUPT I crop, z-score end-to-end SA, contrast adjustment, transpose None

LRDE crop, z-score end-to-end,
cascaded

None keep the largest connected
component

CQUPT II crop, z-score end-to-end SA, mirror, reverse None

HNU crop, HE, RGT two-stage SA None

Edin crop end-to-end SA None

UBO crop, z-score end-to-end,
cascaded

None connected component analy-
sis, morphological operations

ITU crop, IN with
zero mean

end-to-end SA, elastic transformation, image drop-
ping out

None

UOA crop, IN end-to-end SA retain the largest connected
component and remove holes

fine segmentation stages. NPU adopted EfficientNets (Tan
and Le, 2019) as the encoder to extract features from the
CMR sequences. The other useful techniques for feature395

extraction are the dense connection and attention strat-
egy. For example, UBA employed the BCDU-Net (Azad
et al., 2019) to segment the pathologies. BCDU-Net is
an extension of U-Net and reuses feature maps via dense
connections. USTB embedded a channel attention mod-400

ule and a space attention module at the bottom layer of a
U-Net model. The former module can selectively empha-
size feature association among different channel maps, and
the latter captures the long-range dependencies on feature
maps. The effectiveness of these modules was verified in405

their ablation study. Moreover, FZU extracted features
from the three sequences separately. To avoid information
redundancy of these features, they adopted the channel at-
tention to emphasize the informative features and suppress
useless ones.410

As to the selection of loss functions, the most com-
monly used are Dice loss and cross entropy loss. Never-
theless, boundary loss can also be used to boost the model
performance, which is demonstrated in the work of FZU.
This could be attributed to its ability to enforce the model415

to pay more attention to boundary regions. Finally, Ta-
ble 6 provides a summary of model designing and training
for the benchmarked methods.

4.3. Data augmentation

As the shapes of the myocardium and their pathologies420

have large variations, the training images could be insuffi-
cient, leading to the over-fitting problem of deep learning.
Data augmentation has proven to be effective in improving
the generalization ability of resulting models (Takahashi
et al., 2019). We group the augmentation techniques into425

two categories, i.e., online and offline augmentation.
The online augmentation includes the random rotation,

scaling, shifting, flipping, non-rigid transformations, as
well as brightness and contrast adjustment. For example,
USTB adopted the elastic-transform, grid-distortion and430

optical-distortion to transform the training images non-
rigidly. Experiments showed that this augmentation im-
proved the Dice score by about 8% for scar segmentation
(Yu et al., 2020).

The offline augmentation mainly refers to image syn-435

thesis. UBA did a comprehensive synthesis operation (Mart́ın-
Isla et al., 2020). They utilized the semantic image synthe-
sis with spatially-adaptive normalization (SPADE) method
(Park et al., 2019), to achieve style transfer, pathology ro-
tation, epicardial warping and pathology dilation/ erosion.440

Their ablation study demonstrated that these morpho-
logical and style transformations could improve the per-
formance significantly. Interestingly, they found that the
style transfer was the most effective, while morphological
augmentations, such as the scar and edema dilation and445

erosion, had limited gains.
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Table 6. Network architectures and training details of the benchmarked algorithms. CE: cross entropy; BCE: binary cross
entropy; MI: mutual information; SE: Squeeze-and-Excitation. Here, x (*) refers to the number of ensemble models, and
Efficient-B1/B2/B3 refer to the EfficientNet with different scales.

Team Architecture Ensemble
(size)

Batch size Patch
size

Loss function Optimizer Learning rate Device

UESTC U-Net x (10) 1 160× 160 CE and Dice loss SGD 6e-3 (decay) NVIDIA GeForce RTX
2080 Ti

UBA U-Net, BCDU-Net x (15) 8 256× 256 weighted BCE and
Dice loss

Adam 1e-4 NVIDIA 1080 GPU

NPU EfficientNet for encoder,
BiFPN for decoder

Efficient-
B1/B2/B3

64/48/32 for
B1/B2/B3

288× 288 CE, Dice and bound-
ary loss

Adam 1e-4 (decay) RTX 2080 Ti

USTB Dual attention U-Net None 8 256× 256 Dice loss SGD 1e-3 (decay) NVIDIA TITAN RTX
UHW U-Nets (resnet34 back-

bone)
x (6) 12 256× 256 CE and Focal loss Adam 1e-3 (decay) NVIDIA Tesla K80

FZU Channel attention based
CNN

None 16 128× 128 Dice loss Adam 1e-3 NVIDIA GeForce RTX
2080 Ti

NJUST 2D nnU-Net x (10) 6 112× 112 CE and Dice loss SGD 1e-3 NVIDIA V100
CQUPT I U-Net and a dense con-

nected path
None 4 256× 256 Weighted CE and Dice

loss
Adam 1e-4 (decay) NVIDIA Geforce RTX

2080 Ti
LRDE Cascaded U-Net None 1 240× 240 BCE Adam 1e-4 NVIDIA Quadro

P6000 GPU
CQUPT
II

Multi-scale U-Net None 6 256× 256 CE and Dice loss Adam 1e-4 (decay) NVIDIA Geforce RTX
2080 Ti

HNU U-Net, attention-based
M-shaped network

None 20 256× 256 Focal Dice and MSE
loss

Adam 3e-4 NVIDIA TITAN V
GPU

Edin Max-Fusion U-Net None 4 102 × 102
to
288 × 288
(96+16i,1 ≤
i ≤ 12)

Tversky, focal, and un-
supervised reconstruc-
tion loss

Adam 1e-4 TitanX

UBO Densenet with inception
and SE block

None 16 350× 350 Logarithmic Dice and
region MI loss

Adam 1e-3 NVIDIA Tesla K80

ITU Residual U-Net None 8 256× 256 Dice loss Adam 1e-3 (decay) NVIDIA Quadro RTX
6000

UOA A linear encoder and de-
coder, with a network
module consisting of U-
Net, Mask-RCNN and U-
Net++

None 8, 2, 8 for the
three compo-
nents in the
network module,
respectively

256× 256 Dice loss for U-Net
and U-Net++; classifi-
cation loss, bounding-
box loss and CE loss
for Mask-RCNN

Adam 1e-5,1e-3,1e-5
for the three
components
in the net-
work module,
respectively

Tesla P100

4.4. Specification of the learning process

As Table 5 shows, five teams implemented their works
in a two-stage manner (coarse-to-fine), by extracting ROIs
on the myocardium prior to a fine process of pathology450

segmentation. The others conducted their models in an
end-to-end fashion. In addition, the way of utilizing the
extracted ROIs were different, which might explain the
discrepancies of their results. For example, after obtaining
the mask including the RV, LV and Myo, UESTC cropped455

the ROI from all the three sequences and concatenated
them using this mask. They took the concatenation as an
input for the final prediction of pathologies. This strategy
can help the segmentation model to take advantage of the
extracted knowledge. Their experiments on the validation460

dataset have shown advantages of this setting, particularly
on the edema with more than 2% Dice improvement. Sim-
ilarly, FZU first learned the mask of LV and Myo, and then
did an element-wise multiplication between this mask and
the image sequences. LRDE used three U-Nets to obtain465

the mask covering the LV and RV, the mask of Myo, and
the mask of all three structures from cine and T2 CMR.
These masks were concatenated with the LGE CMR, and
then fed into two U-Nets to predict the mask of scar and
edema, respectively. In contrast, UBA solely got the mask470

of LV, and used it to crop the three sequences. NJUST ob-

tained a mask of LV and Myo from cine CMR, and used it
to crop the other two sequences for prediction of patholo-
gies.

4.4.1. Ensemble learning strategy475

Given the limited training data in this study, it is dif-
ficult to know the best model in advance. Also, mod-
els trained with different samples or images from differ-
ent views could learn diverse knowledge. Therefore, sev-
eral ensemble learning strategies have been employed to480

reduce uncertainty in models and increase generalization
capabilities in this challenge. For example, UESTC per-
formed a weighted ensemble strategy on the predictions of
2D and 2.5D networks. Their experimental results showed
that this ensemble strategy delivered better results. UBA485

adopted a different strategy by generating a number of
datasets with synthesized images, and they trained fifteen
models using different training data. As their ablation
study demonstrated, this ensemble could capture a greater
number of non-trivial unconnected components. Similarly,490

UHW trained 21 models, but they solely selected the 6
top-performing models for the final aggregation.

4.5. Post-processing

Post-processing can be used to remove redundant small
patches and refine or regularize the shape of segmentation495
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results to be more realistic. Among all the benchmarked
algorithms, only four conducted post-processing to refine
their segmentation results. Specifically, UBA firstly re-
constructed the myocardium mask into a ring shape by
extracting a skeleton. They calculated the distances of500

pixels around myocardium to the skeleton, and those with
distance less than a threshold were then categorized into
edema. For the scar segmentation, 3D components smaller
than 100 voxels were excluded. Finally, they did the re-
finement of the joined edema-scar mask by excluding those505

3D components of size smaller than 300 voxels. The ex-
periments showed that with this post-processing, the Dice
of scar segmentation was improved by almost 3%. NPU
simply removed the small isolated segmentation regions.
USTB discarded the pixels outside the target area as well510

as unreasonable and unconnected pathological components,
and further filled them with adjacent category pixels. Ex-
periments showed both could improve the pathology seg-
mentation. UOA employed a post-processing step to solely
retain the largest connected component of the predicted515

LV blood pool and LV epicardium. Besides, they applied
an operation to remove holes that appear inside the fore-
ground masks before the linear decoder.

4.6. Summary

So far, we have presented the technical trend in the520

community of MyoPS ranging from preprocessing to post-
processing. Firstly, one can see that to achieve satisfactory
accuracy, it is better to simplify the input images as much
as possible, such as cutting out redundant information via
cropping. Moreover, two-stage frameworks which segment525

the target structure in a coarse-to-fine manner by local-
izing the target areas beforehand also have been demon-
strated to be useful by UESTC and UBA (Zhai et al.,
2020; Mart́ın-Isla et al., 2020). Secondly, data augmen-
tation could be very beneficial to boost the robustness of530

segmentation models. For example, UBA proposed four
types of offline augmentation, each of which was demon-
strated to be effective (Mart́ın-Isla et al., 2020). Thirdly,
the predicted segmentation map can be refined according
to the characteristics of the ROI, such as removing the535

outliers. Finally, ensemble learning strategies were also
effective for both scar and edema segmentation, as they
could reduce uncertainty in models. Note that although
each technique was demonstrated by the participants to
be beneficial to boosting the model performance in their540

dedicated framework, how to combine these techniques in
an optimal manner remains unclear.

5. Results

In this section, we present the results of the evaluated
algorithms for comparisons, and then analyze several pos-545

sible factors that may affect the MyoPS performance.
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Figure 4. The boxplots of the average Dice and ACC of
pathology segmentation obtained by each algorithm.
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Figure 5. The boxplots of the average Dice of pathology seg-
mentation with respect to different slice positions obtained
by each algorithm.

5.1. Overall performance

We present the quantitative results of each team in
Table 7 and Table 8. One can see that although the best
results of different tasks (i.e., scar or edema segmentation)550

and metrics were achieved by different teams, UESTC and
UBA performed consistently better than others or compa-
rably with the best one or ground truth without statistical
difference, except for the SPE of edema. By comparing
these methods that achieved the best result in any met-555

ric or index, we conclude that the most recommendable
strategies could be the two-stage coarse-to-fine procedure,
model ensemble and data augmentation. Next, we will
analyze both segmentation accuracy and clinical index re-
sults in detail, but we will mainly focus on the discussion560

on segmentation accuracy.

5.1.1. Result of segmentation accuracy

Table 7 presents the quantitative results of the eval-
uated algorithms for MyoPS. The average of Dice scores
of the evaluated methods are 0.614 and 0.644 for scar and565

edema segmentation, respectively; and the average of ACC
are 0.836 and 0.743 for scar and edema segmentation, re-
spectively. Figure 4 provides the boxplots of Dice scores
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Table 7. Summary of the quantitative evaluation results of scar and edema segmentation by the fifteen teams. Note that
column Dice�reports the results excluding case #207, which contains no scar; and the average Dice changes from 0.614±0.075
to 0.583 ± 0.072 if case #207 is included. Asterisk (*) indicates the method obtained statistically poorer results (p < 0.01)
compared to the best performance in terms of corresponding metrics. ACC: accuracy; SEN: sensitivity; SPE: specificity.

Team
Scar Edema

Dice� ACC SEN SPE Dice ACC SEN SPE
UESTC 0.708± 0.191 0.870± 0.082 0.737± 0.185 0.925± 0.054 0.731± 0.109 0.797± 0.095 0.724± 0.134 0.847± 0.095∗

UBA 0.701± 0.189 0.851± 0.075 0.791± 0.175 0.867± 0.070∗ 0.698± 0.129 0.762± 0.102 0.748± 0.152 0.770± 0.099∗

NPU 0.681± 0.240 0.857± 0.105 0.734± 0.253 0.902± 0.096 0.709± 0.122 0.777± 0.112 0.703± 0.148 0.819± 0.133∗

USTB 0.668± 0.255 0.852± 0.095 0.764± 0.257 0.872± 0.093∗ 0.688± 0.148 0.748± 0.135 0.741± 0.164 0.736± 0.184∗

UHW 0.652± 0.195 0.848± 0.092 0.695± 0.232 0.891± 0.108∗ 0.665± 0.137∗ 0.742± 0.102∗ 0.722± 0.193 0.744± 0.169∗

FZU 0.627± 0.215 0.848± 0.086∗ 0.632± 0.221 0.931± 0.043∗ 0.686± 0.123∗ 0.777± 0.084∗ 0.663± 0.151 0.844± 0.076∗

NJUST 0.658± 0.241 0.877± 0.074 0.642± 0.269∗ 0.952± 0.032 0.599± 0.200∗ 0.771± 0.088 0.501± 0.211∗ 0.943± 0.057
CQUPT I 0.637± 0.227∗ 0.858± 0.084 0.626± 0.223∗ 0.938± 0.051 0.656± 0.138 0.766± 0.096 0.606± 0.179 0.863± 0.107∗

LRDE 0.617± 0.233∗ 0.809± 0.142 0.690± 0.237∗ 0.849± 0.154∗ 0.639± 0.141∗ 0.709± 0.131∗ 0.698± 0.165 0.716± 0.199∗

CQUPT II 0.612± 0.237∗ 0.857± 0.084∗ 0.575± 0.242∗ 0.951± 0.048 0.725± 0.110∗ 0.796± 0.100 0.709± 0.156∗ 0.846± 0.136∗

HNU 0.581± 0.243∗ 0.825± 0.090∗ 0.543± 0.225∗ 0.923± 0.060 0.619± 0.166∗ 0.751± 0.110∗ 0.544± 0.190∗ 0.886± 0.081
Edin 0.600± 0.261∗ 0.836± 0.106∗ 0.626± 0.294∗ 0.925± 0.085 0.603± 0.182∗ 0.733± 0.113∗ 0.572± 0.220∗ 0.843± 0.127∗

UBO 0.595± 0.244∗ 0.806± 0.096∗ 0.682± 0.281 0.851± 0.087∗ 0.664± 0.150∗ 0.740± 0.116∗ 0.716± 0.219 0.760± 0.142∗

ITU 0.595± 0.229∗ 0.824± 0.098∗ 0.632± 0.258∗ 0.898± 0.079∗ 0.612± 0.160∗ 0.739± 0.112∗ 0.575± 0.199∗ 0.838± 0.102∗

UOA 0.493± 0.251∗ 0.817± 0.110∗ 0.453± 0.273∗ 0.952± 0.036 0.557± 0.183∗ 0.718± 0.127∗ 0.479± 0.189∗ 0.881± 0.092

Average 0.614± 0.231 0.836± 0.096 0.643± 0.255 0.904± 0.088 0.644± 0.153 0.743± 0.112 0.645± 0.200 0.803± 0.148

Table 8. Summary of the clinical measures of automatic scar and edema segmentation from the fifteen teams and manual
segmentation. Asterisk (*) indicates the method obtained statistically different results (p < 0.01) compared to ground
truth. Here, the results with the largest coefficient of determination r2 in the correlation study between the prediction
and the ground truth are marked in bold.

Team
Scar Edema

Transmurality Surface area (cm2) Volume (cm3) Transmurality Surface area (cm2) Volume (cm3)
UESTC 0.727± 0.177 53.4± 23.7 1.32± 0.558 0.730± 0.175 150± 49.9 2.12± 0.697
UBA 0.601± 0.270 47.7± 32.8 1.14± 0.738 0.674± 0.196 146± 74.9 1.78± 0.836
NPU 0.723± 0.213∗ 58.3± 31.5 1.40± 0.659 0.719± 0.193 164± 73.0 2.15± 0.755
USTB 0.696± 0.240 61.5± 31.7 1.67± 0.878 0.720± 0.187 169± 72.3∗ 2.73± 1.32∗

UHW 0.681± 0.240 57.1± 40.5 1.46± 0.985 0.738± 0.227 162± 89.1 2.52± 1.09
FZU 0.721± 0.234∗ 60.9± 33.0 1.68± 0.932 0.792± 0.202 184± 74.3∗ 2.98± 1.29∗

NJUST 0.622± 0.257 43.4± 28.6 1.11± 0.618 0.827± 0.147∗ 136± 57.1 2.28± 0.815
CQUPT I 0.664± 0.245 42.5± 25.2 1.02± 0.575∗ 0.826± 0.148∗ 139± 65.8 2.12± 0.926
LRDE 0.763± 0.232∗ 62.1± 37.0 1.59± 0.818 0.849± 0.142∗ 170± 81.3 2.58± 1.11
CQUPT II 0.691± 0.221 51.8± 33.2 1.11± 0.601 0.675± 0.200 157± 80.0 1.80± 0.832
HNU 0.673± 0.178 42.9± 18.9 1.08± 0.388 0.583± 0.301 131± 47.2 1.54± 0.544∗

Edin 0.707± 0.169 59.4± 30.3 1.73± 0.854∗ 0.786± 0.178 162± 53.6 2.47± 0.820
UBO 0.762± 0.210∗ 62.7± 32.1 1.56± 0.703 0.598± 0.308 174± 70.1 2.35± 0.828
ITU 0.749± 0.186∗ 54.1± 27.4 1.30± 0.680 0.714± 0.202 152± 68.7 1.82± 0.797
UOA 0.645± 0.216 32.0± 20.2∗ 0.750± 0.415∗ 0.716± 0.202 117± 55.8 1.37± 0.550∗

Ground truth 0.606± 0.224 53.6± 30.7 1.44± 0.893 0.658± 0.203 149± 64.9 2.24± 0.874

and ACC of each team. The best Dice scores (0.708±0.191
and 0.731±0.109 for scar and edema segmentation, respec-570

tively) were both achieved by UESTC; but the best ACC,
SEN and SPE were accomplished by NJUST & UESTC,
UBA, and NJUST, respectively. In general, the evaluated
methods achieved worse performance for scar segmenta-
tion than for edema segmentation in terms of Dice, but575

not in terms of the other three metrics. In fact, the same
metric and value could often refer to different degrees of
clinical acceptability for different tasks, depending on the
size and shape of the target object and the complexity
of form (Li et al., 2020a). For example, Dice tends to580

be more sensitive to the small deviations in segmentation
for small sparse objects than for large, compact objects,
which may explain the better Dice results for edema, which
has a larger volume and is less patchy from T2 CMR
images. This conclusion is more evident when we com-585

pare the inter-observer of scar and edema in terms of Dice

(0.569 ± 0.198 vs. 0.701 ± 0.168). Interestingly, one algo-
rithm could perform well in terms of Dice in one pathol-
ogy but not necessarily in another, for example, CQUPT
II excelled in edema segmentation but performed poorly in590

scar segmentation. Moreover, these algorithms generally
showed different segmentation capabilities across different
slices. Figure 5 illustrates the performances of each team
on basal, middle and apical slices, respectively. One can
see that the pathologies in the middle areas were much595

easier to segment than that at either end slice, while the
results in the basal areas usually deviated significantly. In
general, the algorithms that performed well overall also
presented a similar competitive performance on challeng-
ing apical and/ or basal slices (please refer to Section 5.2600

for further analysis). For more details on the performance
of each team, please refer to the Supplementary Material,
where we further provided the HD and precision values.

Figure 6 provides boxplots of Dice and ACC from the
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for anatomy reference.
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evaluated algorithms on each test case, where the ratios605

of pathologies to myocardium are provided for reference.
One can see that there exist large variations of the per-
formance among different cases in terms of both Dice and
ACC. The position, shape and extent of pathologies all
could affect the performance, and will be analyzed in Sec-610

tions 5.2, 5.3 and 5.4, respectively. Particularly, the slices
without pathology could confuse the algorithms, of which
most segment pathology slice-wisely, i.e., an algorithm seg-
ments the CMR images slice by slice instead of as a whole
volume. Note that the situation of a slice without pathol-615

ogy is more often than that of a subject without pathology.
In the test data, only one special subject (#207) has no
scar (see Figure 7). For this case, it could easily induce
a Dice score of zero for the evaluation of an algorithm if
it misclassifies even only one voxel, according to its defini-620

tion.
Figure 7 visualizes the segmentation results of the mid-

dle slice of the special case (#207) and the median case
(#208). Most methods achieved good results for the me-
dian case (#208), although some contained patchy noises.625

Specifically, the results of median case by USTB, HNU,
Edin and UOA contain significant amount of outliers of
edema, and parts of scars are evidently mis-classified into
edema by USTB, FZU and NJUST. For the special cases
(#207), false positives of scar classification were the ma-630

jor errors. Only UHW, NJUSTM CQUPT II and HUN
contained no false positive of scar classification, and thus
were evaluated with ACC of 1.000; UBA and UBO mis-
took edema as scars, but still obtained high Dice scores
for the segmentation of edema which includes both scar-635

ring and peri-infarct region. Nevertheless, this indicates
the difficulty of differentiating the scars and peri-infarct
regions, which is currently out of the scope of this study.

5.1.2. Result of clinical indices

Table 8 compares the average clinical measure results of640

the evaluated algorithms and manual segmentation. One
can see that most teams could obtain similar values com-
pared to ground truth, which can be further proved in the
correlation studies. Readers can refer to Figures 1, 2 and 3
in the Supplementary Material for more details on the cor-645

relation analysis between the clinical indices obtained by
each method and the ground truth. We found that in gen-
eral the top-performed teams in terms of Dice presented
good consistency with the ground truth on the clinical
index measurement. This is reasonable as the measure-650

ment was calculated based on the segmentation results.
Nevertheless, there still exists inconsistency between the
segmentation accuracy and surface area/ volume. For ex-
ample, the edema surface area and volume of USTB were
significantly different from the ground truth, even though655

its segmentation accuracy was promising. This could be
due to the fact that the slice spacing of images is quite
large, which may introduce non-negligible evaluation bi-
ases. Hence, even though several methods obtained in-
accurate segmentation, such as UBO and ITU, their area660
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Figure 8. The boxplots of the average Dice and ACC of
pathology segmentation with respect to different slice posi-
tions.

or volume predictions could still present a small difference
from the ground truth.

Moreover, most methods can obtain relatively accu-
rate surface area and volume, but performed badly on the

665 transmurality prediction, as proved in the correlation stud-
ies. For example, the coefficient of determination r2 is
quite low for all methods in terms of “transmurality of
edema” (r2<0.29). Compared to surface area and volume,
transmurality is a more local measurement, as it considers

670 the location of pathology. One can see that the prediction
of transmurality is more consistent with the segmentation
accuracy than surface area and volume across all methods.
For example, the top-performed methods in terms of Dice
generally have slopes closer to 1 in the correlation analysis

675 of transmurality. In contrast, for surface area and volume,
both slopes and r2 show less variation among these teams,
which complicates the clinical translatability evaluation.

5.2. Performance versus position of pathology

To analyze the correlation between the performance
of MyoPS and the position of pathologies, we generated680

the boxplots of Dice and ACC of MyoPS at different slice
positions, as shown in Figure 8. It is evident that the re-
sults of different slices were different, representing varying
types of challenges, which is consist with aforementioned
observation. From the Dice results, which represent over-685

lap of pathologies from two segmentation results, the best
performance was observed in the middle slices. This is
reasonable as the ventricles in apical and basal slices usu-
ally exhibit more irregular and small-shaped pathologies,
which may introduce additional challenges for the segmen-690

tation. Moreover, the performances of basal present par-
ticularly poor results with low mean values and large vari-
ance. This could be due to less presence of pathologies in
basal slices, which is visualized in Figure 9, and a few poor
cases inducing particularly low segmentation Dice. From695

the ACC results, whose calculation considers the classifi-
cation on both of the positives and negatives of pathologi-
cal segmentation, Basal has higher-valued box plots. This
could be again attributed to the rare cases of pathologies
occurred in basal slices, which should be discussed below.700

Figure 9 visualizes the distribution maps of pathologies
from the 20 test subjects, and the SEN and SPE maps of



14 Lei Li et al. / Medical Image Analysis (2023)

Distribution map of edema

Spe

Sensitivity map of scars Sensitivity map of edema

Specificity map of scars Specificity map of edema

1

2

9 16 11
3 5

6
7

8 1213
14

15 17

18

 Apical (A)

13 A anterior

14 A anteroseptal 
15 A inferoseptal 
16 A inferior

17 A inferolateral 
18 A anterolateral

 Basal (B)

1 B anterior

2 B anteroseptal 
3 B inferoseptal 
4 B inferior

5 B inferolateral 
6 B anterolateral

 Middle (M)

7 M anterior

8 M anteroseptal 
9 M inferoseptal 
10 M inferior

11 M inferolateral 
12 M anterolateral

10

4

Bulls eye plot illustration

Pixels 
without 
pathology 
in all 
cases 

Sen

0.25

0.45

0.65

0.85

0.05

0.1

0.2

0.3

0.4

0.5

0.0+

Distribution map of scars

0.80

0.90

1.00

0.70

Ratio
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MyoPS using 2D bull’s eye plots. As there are various
slice numbers among different cases, we normalized the
slice positions for each case referring to Liu et al. (2016)705

and Zhuang et al. (2011), and the maps were averaged
from the set of segments from different slices, subjects and
different classification results by the benchmarked meth-
ods (only for SPE and SEN maps). From the distribution
maps, one can see that scars mainly occur in the infero-710

lateral regions and anterior segments of middle slices in
this test dataset; and edema extends to more regions of
basal slices and almost all segments of apical and middle
slices. From the SEN (true positive rate) and SPE (true
negative rate) maps of pathologies, one can observe that715

the regional values of SPE were generally higher than that
of SEN, which could be due to the definition of classifica-
tion, namely the pixels not segmented as pathologies by
an algorithm were regarded as negatives by default.

For scar segmentation, we found that the SEN values720

were higher in middle septum segments. It could be at-
tributed to the good contrast from C0 and T2 for my-
ocardium segmentation of septum, leading to an easier
scar segmentation task from LGE myocardium. By con-
trast, the low values in SEN maps of both scar and edema725

are distributed in the area of basal inferoseptal segments,
where there should be few cases having pathology, and the
models to segment these areas were under trained. This
explains the particularly low Dice of the first quartile in the
Dice boxplot of Basal slices in Figure 8. Similarly, one can730

observe from both of the sensitivity and specificity maps
that the performance of MyoPS on near-endocardium ar-
eas was generally better than that on the near-epicardium
regions. Here, near-endocardium and near-epicardium ar-
eas refer to the regions near the inner and outer layer735

of the heart, respectively (inner and outer race of bull’s
eye plots in Figure 9) (Virmani et al., 1990). This could

be due to the better contrast in the areas between my-
ocardium and ventricular blood pools than that between
myocardium and adjacent tissues (liver and lung) in all740

the three CMR sequences.

5.3. Performance versus shape of pathology

Figure 10 presents the correlations between the mean
segmentation accuracy (Dice or ACC) and the shape of
pathologies. Here, we employed compactness to quantify745

the shape of pathologies in a slice, which is defined to the
ratio of the area of an object to the area of a circle with
the same perimeter (Bogaert et al., 2000). As a circle is
regarded as the object with the most compact shape, the
measure normally takes a maximum value of 1 for a circle.750

One can see that there are positive correlations between
the pathology shape and the performance, which is evident
for ACC though marginal for Dice. This could reveal that
the pathologies with asymmetric shapes could be more eas-
ily mis-classified by the benchmarked algorithms.755

5.4. Performance versus extent of pathology

Figure 11 presents the correlations between the mean
segmentation accuracy (Dice or ACC) and the extent of
pathologies. We analyzed the correlations from two per-
spectives, i.e., subject-wise correlation and slice-wise cor-760

relation, respectively. The subject-wise computation refers
to the computation on a subject, which may include 3-5
slices, while the slice-wise computation refers to the com-
putation on a slice. Compared to subject-wise computa-
tion, slice-wise computation may be more robust as more765

instances can be included. Also, the distribution of pathol-
ogy is heterogeneous across slices (see Figure 9). One can
see that the ACC values of the pathology segmentation
were negatively correlated with extent of pathologies in
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Figure 10. The scatter point plots and correlation between the performance of pathology segmentation with respect to the
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excluded in the computation of correlation with Dice.

both the subject-wise and slice-wise studies, but no ev-770

ident correlation in terms of Dice was observed in either
study. Note that non-pathological myocardium pixels were
defined as negatives by default, and the cases having large
area of negatives tended to have higher ACC values due to
this definition. In contrast, the variation of pathology sizes775

did not have an evident influence on the final performance
in terms of Dice. Overall, the subject-wise and slice-wise
correlations were consistent, especially in terms of ACC.

6. Discussion

6.1. Variation of manual segmentation versus performance780

and variation of automatic segmentation

All the reviewed algorithms were based on supervised
learning, so their performance could depend on the qual-
ity of labels. For MyoPS, the inter-observer variability is
generally large due to the poor image quality and small785

volume of targets. In other words, different experts could
offer variable manual segmentation results under the in-
fluence of background knowledge and levels of expertise of
raters. To analyze the effect of inter-observer variations on
the segmentation performance of automated algorithms,790

we first performed a correlation analysis between the inter-
observer variations and the average performance of all sub-
mitted models from participants; and we further analyzed
the relationship between the inter-observer variations and
the inter-participant variations. Here, inter-observer/ par-795

ticipant variations are defined to the average Dice� or Dice
scores between different segmentation results.

Figure 12 presents results of correlation studies. The
inter-observer variation can be considered as a represen-
tation of uncertainty of manual segmentation, which may800

reveal the difficulties of segmentation. However, the aver-
age Dice scores of the automatic models were not strongly
relevant to inter-observer variations. Note that the high r2

value for Scar could be attributed to the three special cases
highlighted by the red arrows in Figure 12. Similarly, the805

inter-participant variations can be regarded as the uncer-
tainties of automatic models, which nevertheless had weak

correlation to the uncertainties of manual segmentation in
this study.

6.2. Discussion of pre-alignment and MyoPS of CMR810

We visually checked each case the alignment result of
the three-sequence CMR, and assigned a score, ranging
from 0 to 5, to represent the quality of alignment. The
score of 5 indicates perfect alignment, 1 to 4 denotes mis-
alignment from severe to marginal, and 0 suggests com-815

pletely failed alignment. The majority of cases were well
aligned, as Figure 13 presents, and the average scores were
4.50 ± 0.931 and 4.68 ± 0.789 in the training set and test
set, respectively.

One can see that the alignment score is ordinal data820

in a non-Gaussian distribution. Therefore, to analyze the
effect of pre-alignment on the automatic segmentation, we
performed a Spearman’s rank correlation analysis (Sedg-
wick, 2014), on the alignment scores and average Dice�(for
scar) or Dice (for edema). The Spearman coefficient for825

scar and edema segmentation were respectively -0.207 (p-
value = 0.740) and -0.143 (p-value = 0.252), indicating no
evidence of significant relationship between these figures.

The limitation comes from the fact that majority of the
cases were well pre-aligned, followed by the segmentation830

combining the three-sequence MRI. Hence, future studies
should include the original images without alignments for
both training and testing of DL-based models. Also, since
DL-based method has a great potential to achieve com-
bined computing of simultaneous registration and segmen-835

tation. Such strategy of combined computing for MyoPS
could be further explored in the future.

6.3. Discussion of evaluation metrics and ranking

As Table 7 presents, different evaluation metrics could
lead to different ranking results for an algorithm or team,840

indicating potential limitation of the metrics and unfair-
ness of ranking. Particularly, classification metrics could
be misleading for assessment of semantic segmentation.
For example, ACC is sensitive to the volume of targets,
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Figure 11. The scatter point plots and correlation between the performance of pathology segmentation with respect to
the size of the pathologies for patient-wise and slice-wise computation. Again, note that the subjects without pathology,
indicated by light pink hollow scatter points, are excluded in the computation of correlation with Dice.

and Dice score will fail to act as a metric when the tar-845

get manual segmentation is none, as discussed in Section
3.2 and Figure 7. Moreover, the classification metrics may
also be misleading when considering its accuracy of clini-
cal index calculation. Therefore, we argued that method-
ology survey and case studies could be more valuable and850

convincing for benchmark, than ranking the methods ac-
cording to the figures of evaluation.

6.4. Clinical translatability

There are several key points to consider in determining
how current MyoPS algorithms fit into the clinical work-855

flow. (1) Accuracy. Several clinical indices, such as scar/
edema area, transmurality and positions, are very impor-
tant for the diagnosis and surgical assessment of MI. To
obtain this information, accurate segmentation of scar and
edema is required. (2) Generalizability. Due to differ-860

ent data acquisition protocols, test data may differ signifi-
cantly in quality or appearance from training data, which
can lead to significant degradation in performance. There-
fore, the trained model requires sufficient generalization to
apply to test data outside the training data distribution.865

(3) Time efficiency. Tolerable computation time is quite
important in a real-time system.

The best performances on scar and edema were respec-
tively 0.708±0.191 and 0.731±0.109 in terms of Dice score.

The results have already presented promising potential,870

particularly when comparing with the inter-observer Dice
scores of scars and edema, which are 0.569 ± 0.198 and
0.701 ± 0.168, respectively. We also calculated the clin-
ical indices for the evaluated algorithms, most of which
were comparable to the ground truth results. As no extra875

dataset from other center/ vendor was provided for evalu-
ation, we can not analyze the generalizability of submitted
algorithms. The processing in test stage consists of data
preprocessing, prediction, and post-processing, which all
contribute to the spent time. In this challenge, for data880

preprocessing, we have registered the three sequences in
advance, which makes the subsequent segmentation task
easier. However, registration is indeed time-consuming
(7.57±2.51 min on a system with a i7-7700k 4.2GHZ CPU
and 16GB RAM). Therefore, how to effectively fuse the885

information in these sequences needs to be investigated in
the future.

6.5. Limitation and future prospects

There is a gap between technique design and clinical
prior knowledge of manual segmentation. In the clinic,890

the criteria used to determine the presence of scar/ edema
partially relies on the anatomical knowledge of the my-
ocardium. Specifically, the LV myocardium can be di-
vided into unified 18 segments, displayed on a circumfer-
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(scored from 0 to 5) in training and test sets of MyoPS
dataset.

ential polar plot, as shown in Figure 9. Despite variability895

in the coronary artery blood supply to myocardium, it
was believed that every segment can be supplied by spe-
cific coronary artery territories (Cerqueira et al., 2002).
There are three major coronary arteries, each of which
supplies its own specific coronary artery territories. For900

example, segments 1, 2, 7, 8, 13 and 14 (left area in bulls-
eyes plots) are supplied by the left anterior descending
coronary artery. With these artery territory knowledge,
it is known that the ischemia area (including the scar-
ring/ edema area) generally does not cross two territories,905

since the successive ischemia is commonly caused by a sin-
gle vascular occlusion. Hence, the predicted area across
territory should be penalized. However, current methods
did not consider this anatomical knowledge of pathology
when designing their algorithms. Therefore, in the future910

we expect more research on novel methodologies to com-
bine this anatomical knowledge into their framework for
more accurate and clinical-related MyoPS results. More-
over, in this challenge only the short-axis image is used for
analysis, while the complementary information from long915

axis is also crucial in clinical practice for scar localization
(Chan et al., 2006). In the future, we expect the methods
to combine multi-view CMR images for this task.

7. Conclusion

This paper surveys the submitted works from the My-920

oPS challenge, which provides 45 sets of three-sequence
CMR images. Fifteen algorithms were benchmarked for
comparisons, and their methodologies and segmentation
performance were then analyzed and examined. To the
best of our knowledge, this is the first work to evalu-925

ate simultaneous scar and edema segmentation combining
multi-source images. All the benchmarked methods fully
utilized the complementary information of the pre-aligned
three-sequence CMR images. However, none of them con-
sidered the problem of misalignment between the images930

or used other data sources. These are the main limita-
tions of this study, and the problems remain to be further
explored. In the future, we expect more research on si-
multaneous registration and fusion of multi-source data for
pathology segmentation. Note that the data and evalua-935

tion tool continue as ongoing resources for the community.
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1. Results of additional evaluation metrics

Table 1 presents the 95% Hausdorff distance (HD) and precision values of the evaluated algorithms. One
can see that the best 95% HD value for edema was 6.42 ± 7.02 mm, which was worse than that for scars
(4.79 ± 5.88 mm). This is due to the fact that edema generally has larger surface bordering with complex
tissues, which could confuse the segmentation models. However, the average precision on edema was much5

better than that on scars (0.773± 0.156 vs 0.729± 0.290 ). It reveals the difficulty of identifying scars from
noisy areas, which severely introduces false positives.

2. Correlation studies of clinical indices

To evaluate the performance of the benchmark methods on estimating the clinical indices, we performed
correlation studies by comparing the prediction with the ground truth for each case. In total, we consider10
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Table 1: Summary of the quantitative evaluation results of scar and edema segmentation by the fifteen teams. Asterisk (*)
indicates the method obtained statistically poorer results (p < 0.01) compared to the best performance in terms of corresponding
metrics. HD: Hausdorff distance.

Team
Scar Edema

95% HD (mm) Precision 95% HD (mm) Precision
UESTC 5.54 ± 7.80 0.705 ± 0.242 6.42± 7.02 0.754 ± 0.135
UBA 9.28 ± 10.6 0.696 ± 0.269 10.9 ± 8.38 0.707 ± 0.150
NPU 7.17 ± 10.9 0.668 ± 0.290 7.85 ± 9.44 0.740 ± 0.145
USTB 6.35 ± 8.47 0.610 ± 0.317∗ 8.69 ± 9.81 0.670 ± 0.156∗

FZU 7.74 ± 7.96 0.641 ± 0.238 12.1 ± 11.0∗ 0.624 ± 0.156∗

NJUST 6.78 ± 9.03 0.729± 0.290 6.92 ± 7.58 0.717 ± 0.137
CQUPT I 4.96 ± 7.49 0.720 ± 0.278 6.69 ± 8.87 0.773± 0.156
LRDE 8.43 ± 11.2 0.578 ± 0.271∗ 12.6 ± 9.95∗ 0.624 ± 0.129∗

CQUPT II 5.19 ± 6.07 0.697 ± 0.257 7.70 ± 7.18 0.764 ± 0.109
HNU 9.28 ± 13.2 0.667 ± 0.276 9.12 ± 10.5 0.753 ± 0.110
Edin 6.75 ± 10.3 0.628 ± 0.320∗ 8.58 ± 8.50 0.664 ± 0.134∗

UBO 9.83 ± 10.3 0.572 ± 0.328∗ 10.9 ± 10.3 0.669 ± 0.158
UHW 4.79± 5.88 0.669 ± 0.290 8.28 ± 6.86 0.649 ± 0.127∗

ITU 8.87 ± 10.9 0.626 ± 0.295∗ 8.39 ± 7.44 0.698 ± 0.193
UOA 10.5 ± 11.7∗ 0.672 ± 0.287 10.4 ± 9.94 0.726 ± 0.151

Average 7.43 ± 9.62 0.659 ± 0.283 9.04 ± 8.94 0.702 ± 0.151
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Figure 1: The scatter point plots and correlations between the transmurality of predicted and manual pathology segmentation.

three commonly used clinical indices, i.e., transmurality, surface area, and volume, for myocardial pathol-
ogy analysis. Figure 1, Figure 2 and Figure 3 present the correlations of the three indices measured from
automatic segmentation methods and manual segmentation. The correlation studies can be used as comple-
ments to the mean value based evaluation for two study groups (automatic vs. ground truth). For example,

15 according to Table 8, for the clinical index “volume of scar”, Edin has the best correlation with ground truth
(in bold), but is statistically different compared to the mean of ground truth (marked with an asterisk).
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Figure 2: The scatter point plots and correlations between the surface area of predicted and manual pathology segmentation.
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Figure 3: The scatter point plots and correlations between the volume of predicted and manual pathology segmentation.
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