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Searching through large volumes of medical data to retrieve relevant information is a challenging yet crucial task for clinical
care. However the primitive and most common approach to retrieval, involving text in the form of keywords, is severely limited
when dealing with complex media formats. Content-based retrieval offers a way to overcome this limitation, by using rich
media as the query itself. Surgical video-to-video retrieval in particular is a new and largely unexplored research problem with
high clinical value, especially in the real-time case: using real-time video hashing, search can be achieved directly inside of the
operating room. Indeed, the process of hashing converts large data entries into compact binary arrays or hashes, enabling large-
scale search operations at a very fast rate. However, due to fluctuations over the course of a video, not all bits in a given hash are
equally reliable. In this work, we propose a method capable of mitigating this uncertainty while maintaining a light computational
footprint. We present superior retrieval results (3-4 % top 10 mean average precision) on a multi-task evaluation protocol for
surgery, using cholecystectomy phases, bypass phases, and coming from an entirely new dataset introduced here, surgical events
across six different surgery types. Success on this multi-task benchmark shows the generalizability of our approach for surgical
video retrieval.

1. Introduction

In recent years, content-based retrieval has emerged as an
important topic for research, as well as an increasingly pow-
erful reference tool for the general public. Services known as
reverse image search engines such as TinEye, Bing or Google
Image Search are able to quickly sift through vast quantities
of images to return those most similar to a picture submitted
by their users. This search modality truly captures the visual
content of the query, and can be used to quickly collect rich
information on any object or scene encountered, to a degree
unachievable by the conventional text-based method.

A reference tool of this caliber based on video, which is a
much more informative medium than static image data, could
provide similar convenience and versatility in the context of
laparoscopic surgery. Useful post-operative applications in-
clude surgical training, in order to find cases of interest to
study; or reporting and patient data indexing, in order to trace
the history of incidents and other important landmarks in pro-
cedures. In practice, this can take the form of an interface
displaying similar cases, refreshing search results automati-
cally; this can be shown directly to surgeons in an operating
room, or broadcast to an external monitoring setup acting as
a ”surgical control tower” (Mascagni and Padoy, 2021). Con-
sidering the high growth potential of surgical video data repos-
itories (for example, over 1M laparoscopic cholecystectomies
are performed in the United States each year (Pucher et al.,
2017)), efficient navigation tools will be required in order
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to support the applications mentioned above. In that regard,
unsupervised content-based video retrieval is particularly fit-
ting: since no manual tags or annotations are required, this
approach easily scales up to immense quantities of untagged
data.

Intraoperative use cases are even more interesting to con-
sider for laparoscopy, due to the technically challenging na-
ture of this type of procedure: for all its clinical benefits, such
as decreased pain, shorter recoveries and decreased infection
risks, operating with an unintuitive set of instruments and indi-
rect vision can be a source of confusion and errors (Mascagni
et al., 2020). Those can be alleviated by adequate reference
tools: assuming a large enough database of recorded surg-
eries is available, quick navigation based solely on the video
feed of the current procedure could provide reference exten-
sive enough to cover any clinical scenario encountered. This
would include unusual patient anatomies as well as rare inci-
dents such as cases of severe bleeding, device failure or surgi-
cal errors; most interestingly, matching surgeries with adverse
post-operative outcomes may be signaled to surgeons.

Yet, research on surgical activity understanding has only
studied video retrieval to a very minor extent. Early work
in this area consisted of a few studies involving handcrafted
features and relatively small amounts of data (Droueche et al.,
2014; Amanat et al., 2018). Other tasks explored similar con-
cepts for visual queries in surgical video content (Twinanda
et al., 2014; Funke et al., 2018; Petscharnig and Schöffmann,
2018). Long after those, the one major study comes from
Wang et al. (2022) as a research effort parallel to ours. The
rest of surgical activity understanding is mostly focused on
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recognition-based approaches, where computer vision algo-
rithms explicitly name activities appearing in the current
frame of the laparoscopic video feed, according to a prede-
termined set of classes. For example, recent works have suc-
cessfully trained classifiers to recognize surgical phases, steps
and even individual actions. However this type of approach
is by design quite narrow and rigid: a true reference tool, just
like modern search engines, would be expected to insight on
surgical video content richer than just a category it belongs to.
Additionally, should a new event, object or activity require to
be identified, a entirely new classifier needs to be trained, with
new annotations.

Non-clinical computer vision research, on the other hand,
did give attention to video retrieval with approaches based on
deep video hashing Liong et al. (2017); Zhang et al. (2016);
Song et al. (2018); Li et al. (2019). This technique uses deep
neural networks to extract compact binary representations or
hashes from videos. Assuming the hashes reflect the visual
content, they can be used to quickly find similar videos, even
in very large databases However, proposed approaches until
recently presented a key limitation which conflicted with in-
traoperative use: no live video sources were ever considered.

This raises the first of several challenges posed by intra-
operative video retrieval for laparoscopy. This particular ap-
plication scenario, characterized by strict timings, would re-
quire a highly responsive and dynamic retrieval system. As-
suming queries are performed with video clips from the la-
paroscopic stream that are long enough to be informative (∼
30s), displaying search results after the full duration of a clip
- or even immediately at the end may not be enough. A true
real-time search engine should be reactive enough to find rel-
evant videos far before the end of the clip, anticipating for
future content in order to adapt to real-time conditions. We
refer to this as the live video retrieval task.

Video hashing, where the video content submitted as query
is represented by a binary hash, adds another challenge. In
this particular form of retrieval, nearest-neighbor search is per-
formed based on the Hamming distance between hashes, i.e.
the number of conflicting bits. The hash adapts to real-time
conditions, with bits fluctuating based on the new content seen
from the laparoscope. For hashes in the database to search
from, which are extracted at one particular point in time, the
value of individual bits should be examined with caution when
searching, with a method accounting for their uncertainty. Ad-
ditionally, this method should add as little overhead as possi-
ble on top of hashing, whose main advantages are its speed
and low space consumption.

Finally, an efficient retrieval method should be as general as
possible. First, the training process should be unsupervised.
More importantly, the search results also need to be clinically
relevant from a wide variety of perspectives, and not just ac-
cording to one particular set of labels. Assessing this quanti-
tatively is a difficult issue, which has not yet been thoroughly
addressed in the literature on video retrieval.

This work introduces a new triple benchmark for surgical
video retrieval in surgery. The relevance of search results re-
turned by the same model is measured according to:

• cholecystectomy phases, using the Cholec80 dataset

• bypass phases, using the Bypass40 dataset

• surgical events, with the CEV64 dataset

With relevant search results across this wide range of clini-
cal semantics, this ensures the generality of our surgical video
retrieval method.

The last dataset listed contains 10 types of intraopoerative
events found in 6 different types of surgery such as active
bleeding or incising. As explained in Figure 3, each of these
events carries specific risk factors making them particularly
important to identify, emphasizing the importance of this type
of study in the community moving forward.

The retrieval method proposed extends our previous work
Yu and Padoy (2020), focused on non-clinical computer vi-
sion datasets; the technical contribution of this method en-
ables retrieval during a video in real time, and uses antici-
patory mechanisms to compensate for inaccessible future in-
formation. Now equipped with the ability to perform video
retrieval from live sources such as a laparoscope, we add as
technical contributions improvements that mitigate uncertain
bits. We first formally define bit uncertainty from two perspec-
tives, depending on the bit encoder employed. Accounting for
both, we then define for each hash a combined uncertainty pat-
tern, which is itself binary in order to limit its computational
footprint. We decrease that same footprint even further with
a compression technique based on combination ranking, and
analyze the corresponding gains.

Our contributions can be broken down as follows:

1. We propose an unsupervised video hashing method com-
patible with live video sources, that uses anticipation for
enhanced retrieval results

2. We introduce the problem of live video retrieval to the
surgical domain

3. We introduce the concept of uncertainty in video hashing,
then account for it using a new lightweight method to
drive up video retrieval performance

4. We introduce a general benchmark for surgical video re-
trieval incorporating a wide variety of clinical semantics

5. We use retrieval to study surgical events, via the CEV64
dataset

2. Related work

Even though the problem at hand is new, the work presented
in this paper connects to several other research areas, both
clinical and non-clinical.

2.1. Early activity recognition
Methods presented in the computer vision community

rarely factor in live conditions to a significant extent. The one
subdiscipline where those play a major role is early activity
recognition, where models observe an action in progress in a
video and attempt to identify it before it ends. This severely
cuts down the visual content available to the predictor, re-
quiring approaches tailored to those challenging conditions
instead of ordinary activity recognition methods. Addition-
ally, evaluation requires a dedicated protocol, with inference



repeated either at various levels of observation - i.e. ratio of
total video duration - or regular time intervals. One solution
for early recognition is to increase the contribution of predic-
tions made earlier in the video, as done by Akbarian et al.
(2017) with a time-modulated loss or Hu et al. (2019) using
time-based soft labels.

A different way to proceed is to attempt to synthesize con-
tent from the video’s future. Rodrı́guez et al. (2019) and
generate future frames using generative adversarial networks.
Gammulle et al. (2019) use separate visual and temporal gen-
erative models to synthesize future frame embeddings.

Finally, teacher-student distillation methods rely on a pair
of models; only one - the teacher - has access to all the frames,
generating representations the other model - the student - then
has to copy from a partial video. Kong et al. (2017) apply this
principle to 3D CNN models, while Wang et al. (2019) do so
with a pair of LSTM models, bidirectional for the teacher and
unidirectional for the student. The one existing study of early
activity recognition in surgery falls into this category as well,
with a teacher LSTM that is given access to a certain number
of future frames (Kannan et al., 2020).

2.2. Video hashing

Retrieval by similarity is a long-standing problem in com-
puter vision, with recent progress made through the combi-
nation of two techniques: deep neural networks, to convert
data entries into vector representations that capture the origi-
nal visual content; and hashing, to generate compact binary ar-
rays or hashes from those representations to facilitate search.
Single-image hashing has been the main focus in the litera-
ture; except for our method (Yu and Padoy, 2020), the few
works addressing video hashing do so from a static viewpoint,
considering full videos only.

Pooling-based approaches (Liong et al., 2017; Wu et al.,
2017, 2019) extract features from video frames, then binarize
their temporal average. To improve the quality of the hash, ge-
ometric transformations (Wu et al., 2017, 2019) can be applied
to the features.

Other methods offer more substantial temporal modeling:
Zhang et al. (2016) used an encoder based on a differentiable
binary LSTM unit, where the hash itself serves as the memory.
Similar methods followed (Song et al., 2018; Li et al., 2019),
with variations on the same principle.

2.3. Surgical activity understanding

In recent years, surgical activity understanding has been
dominated by deep neural networks solving classification
tasks. Depending on how such tasks are defined, the result-
ing description of the activity taking place can be more or less
granular.

The Cholec80 dataset was first introduced by Twinanda
et al. (2016a), to train models capable of recognizing, among
7 existing surgical phases for laparoscopic cholecystectomy,
the correct one. Subsequent works (Twinanda et al., 2016b;
Jin et al., 2018; Hajj et al., 2018; Jin et al., 2020; Czem-
piel et al., 2020) proposed, for this same task and on the
same dataset, increasingly refined models derived from the

LRCN concept (Donahue et al., 2015): a convolutional neu-
ral network as a visual feature extractor, followed by a deep
temporal model. Similar phase recognition studies using the
CATARACTS dataset (Al Hajj et al., 2019) were conducted
for cataract surgery

Ramesh et al. (2021) introduced a new dataset and a finer
level of granularity: Bypass40, with 40 videos of Roux-en-
Y gastric bypass, provided step annotations in addition to
phases. Finally, Nwoye et al. (2020) introduced the surgical
action triplet recognition task on a subset of Cholec80, offer-
ing the most detailed description of surgical activity achieved
so far.

2.4. Medical content retrieval

Retrieving information from medical databases is a research
topic that has been actively explored in recent years, albeit
on a smaller scale, with less challenging data and very rarely
for surgery. Biomedical and diagnostic images have been the
main areas of focus instead, involving various medical special-
ties and modalities. In radiology, Goldminer (Kahn and Thao,
2007) introduced an early concept of text-based search engine
specifically for X-ray images. Content-based approaches us-
ing hashing followed later for chest X-ray (Conjeti et al., 2017;
Chen et al., 2018).

Other types of images involved include MR, with Gao
et al. (2015) using retrieval with multi graph learning for
early diagnosis of Alzheimer’s disease, CT for liver lesions
(Costa et al., 2011) and ultrasound Lin et al. (2009) for liver,
kidney and pelvis. Microscopy in biomedical research re-
ceived the attention of several retrieval methods: Gu et al.
(2017); Mesbah et al. (2015); Peng et al. (2019) targeted
digestive tract endomicroscopy, neuron and histopathology
images respectively, with the last two relying on hashing.
Large databases spanning multiple modalities were used for
research on content-based retrieval: the Yale Image Finder
from Xu et al. (2008) combined OCR with text-based search.
Stathopoulos and Kalamboukis (2012) used latent semantic
analysis, while Haas et al. (2011) used interest points based
on superpixels.

Surgery, in contrast, has only seen sporadic uses of retrieval
or similar tasks. Droueche et al. (2014) presented a content-
based retrieval method for cataract surgery videos with hand-
crafted features, based on MPEG video encodings. Another
approach with handcrafted features was introduced by Amanat
et al. (2018) on videos of knee surgery. Looking at laparo-
scopic surgery specifically, true video retrieval works are al-
most non-existent: the one example available comes from re-
search efforts parallel to ours Wang et al. (2022), with a video
hashing method separating motion and background for retriev-
ing clips from the Cholec 80 dataset. Intra-video task bound-
ary retrieval as done by Twinanda et al. (2014), and frame
attribution as featured in Funke et al. (2018); Petscharnig and
Schöffmann (2018) are the closest related work otherwise.

2.5. Position of our work

Deep hashing methods clearly stand out as the main di-
rection in the current research on content-based retrieval, in-
cluding in the medical field where image retrieval has been a



very active research topic across many specialties of medicine
(Section 2.4). With the deep hashing method shown here, we
continue in this direction with surgical videos, a challenging
type of media overlooked by the current literature.

In contrast, from the standpoint of surgical activity under-
standing (Section 2.3), our work clearly departs from the cur-
rent trend of explicit recognition which is currently heavily fo-
cused on refining the recognition task. Every new refinement
requires new classes to be defined by clinicians, new anno-
tations to be provided and new models to be trained and de-
ployed. In that regard, retrieval methods, which are obtained
independently of any activity class definitions in the unsuper-
vised case, provide much more flexibility. This class-agnostic
trait of retrieval is what we demonstrate with our multi-task
benchmark.

Real-time aspects of video data are addressed in recognition
problems (Section 2.1), but not in the more complex prob-
lem of retrieval (Section 2.2). Comparison of our method
against existing video hashing works would only stand for
static, full video observations. Instead, our experiments ad-
dress the pending issues of the real-time case: searching from
a live video source, anticipating the rest of a video query and
accounting for hash variability over the course of a video -
these constitute our work’s main technical contributions.

3. Methods

3.1. Overview

Figure 1 provides an overview of the approach: two hash
function models, trained with self-supervision, read video
clips and output binary codes as the video plays; the second
does so in a way that predicts the missing content. For eval-
uation, performed on three separate test sets, each video clip
from a database is read by the first model in its entirety, and
mapped to its corresponding hash. During this process, fluc-
tuations in each bit of the hash are observed; locations of un-
certain bits are stored in an array, which is then compressed.
The hash, along with its corresponding uncertainty pattern, are
then stored together in the gallery or codebook. We search
into this database using a separate set of video clips; hashes
computed by the second model throughout each of those query
videos are compared bit for bit against all database hashes.
This computation discounts uncertain bits, which are found
by reading the uncertainty pattern corresponding to each hash.

3.2. Data preparation

Complete surgical procedures are recorded at a 25 Hz fram-
erate, with varying resolutions; cropping and rescaling to
224× 224 is applied prior to our experiments. We divide them
into clips of approximately 30s, in order to achieve large num-
bers of data entries for retrieval, decent granularity with re-
spect to surgical activities or events, as well as sufficient con-
text. Those clips are used throughout this entire study, serv-
ing either as training material, queries or database entries to
search. The entirety of the video data used here is sourced
from Endocorpus and its various annotated subsets, described
below.

The Endocorpus dataset. Despite the limited size of current
public surgical video datasets (e.g. Cholec80), endoscopic
surgery has high potential for video data collection on a very
large scale, as it is by nature video-monitored. In that re-
gard the Endocorpus dataset provides a preview of the vol-
umes of data achievable: containing 1558 full recordings of
surgical interventions, its total runtime reaches approximately
3700 hours, for an average duration of 2 h 20 min. 12 types
of intervention are featured as shown in 2, covering most ex-
isting practices in abdominal endoscopy. No annotations are
available for the vast majority of the dataset - from the unan-
notated videos, we sample 81000 clips for training and 16000
for validation across all 12 types of surgery. Annotated subsets
described below are used for testing: each one is split in two
parts, one for queries and the other for building the codebook
or database to search into. To avoid any contamination, the
codebook set and the query set are isolated from each other:
if clips from a given surgical intervention appear in the query
set, none of its clips appear in the codebook set and vice-versa.

Cholec80. The Cholec80 dataset Twinanda (2017), a classic
benchmark in surgical activity recognition, is a subset of En-
docorpus. Those are, among the available cholecystectomy
videos, 80 annotated with surgical phases. Those 7 phases are
presented in the supplementary material. 307 clips are used as
queries, to search into a database of 908 clips.

Bypass40. 40 of Endocorpus’ gastric bypass videos are an-
notated with surgical phases as well, forming the Bypass40
dataset (Ramesh et al., 2021). With 11 phases (see supple-
mentary material, Section A) the workflow of this procedure
is much more complex. The clip count is 284 for queries, and
1409 for the database.

CEV64. Multi-procedure datasets are scarce in the surgical
computer vision community, with studies mostly focusing on
one particular procedure. The purpose of CEV64 (Collected
Events in surgery) is to study more general traits of laparo-
scopic surgery, with annotations for events found across sev-
eral procedure types. In addition to a background class, we
report 10 event categories, with details provided in Figure
3. Since all these events carry high clinical significance, re-
trieving them automatically could be particularly useful. The
queries and the database contain 580 and 1659 clips respec-
tively, both sampled evenly across event classes in order to
counteract the imbalance shown in Figure 3.

3.3. Feature extraction
Visual feature extraction follows the same incremental sam-

pling scheme we introduced in (Yu and Padoy, 2020). As
shown in Figure 4, we use a spatio-temporal model: an I3D
3D convolutional neural network (Carreira and Zisserman,
2017) pretrained on the Kinetics dataset progressively reads
the video in chunks of 32 frames 4, or 1.3 s of video at 25
fps. Video chunks are consecutive, i.e. without overlap, so as
to avoid redundency. For each chunk, a 4096-D feature vec-
tor is generated, capturing the video’s fine-grained temporal
dynamics. Unlike the original sampling scheme found in pre-
vious hashing studies (Liong et al., 2017; Zhang et al., 2016;
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Fig. 1. Experimental pipeline overview. The primary (P) and secondary (S) encoders are trained with self-supervision. During evaluation, the primary
generates hashes for the database, which are stored in the codebook. The secondary reads any query video in real time, generating a hash that is
compared against codebook entries in a way that considers bit uncertainty.
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Bypass40 Cholec80

Database Query setTrain / validation

Fig. 2. Endocorpus splitting for retrieval experiments (the size of graphi-
cal elements in the diagram does not reflect data amounts). The training
set draws from all 12 types of surgery. Three annotated test sets are part
of Endocorpus: CEV64, spanning 6 types of surgery; Cholec80 and By-
pass40

Song et al., 2018; Wu et al., 2017, 2019; Li et al., 2019), ours
does not discard any visual information, and is applicable in
real time since the rate is fixed. Using this process, we take
each of our video clips - containing exactly 768 frames, for
a duration of 30.72s - to a sequence of 768 / 32 = 24 feature
vectors. A series of side experiments using a different clip
duration (30 feature vectors, or 38.4s) is presented in the sup-
plementary material, Section C.

Clips are assigned classes according to the temporal anno-
tations of their respective dataset - phase for Bypass40 and
Cholec80, event for CEV64. A clip is marked with a particu-
lar label if more than half of it is contained in a corresponding
surgical phase or event.

3.4. Real-time video retrieval
Our approach uses an encoder built around a binary LSTM

Zhang et al. (2016), generating hashes from the visual fea-
ture sequences extracted by I3D. This is nearly identical to a
conventional LSTM, with two key differences: binarization
operation is applied to the hidden state 6, turning it into a
hash; this hash then serves as the LSTM’s state, and is up-
dated as the video advances in order to account for the new
content seen. The second major difference is in the backprop-
agation; gradients nullified by the binarization are replaced

Event type Description Motivation # of 
clips

Abdominal 
access

Trocar insertion or 
removal

Perforation injury risk 
(insertion), abdominal wall 
hemostasis (removal)

185

Anastomosing Hollow organ 
approximation

Injury risk, leaks

73

Approximating Sutures for leaks & 
hernia defects

Injury risk, leaks

102

Bleeding Active bleeding 
requiring cauterization 
and/or cleanup

Factor in recovery and 
clinical outcome 116

Dividing Transection of tissue Injury risk

96

Idle Prolonged inactivity or 
waiting period

Workflow interruption

87

Incising Cuts made without full 
transection

Injury risk

69

Mesh 
placement

Placement of mesh for 
damaged tissue support

Primary goal of abdominal 
wall procedures 98

Out of body Laparoscope exiting the 
abdominal cavity

Privacy threat

516

Sealing Application of clips or 
sutures for vessel 
ligation

Injury risk, leaks

34

Fig. 3. The 10 surgical events reported in CEV64.

with a hardtanh artificial gradient. Training such a model can
be done in an autoencoder-type setup (Figure 5). For instance
in the SSTH-RT+ (Self-Supervised Temporal Hashing Real-
Time Plus) baseline approach from our previous work (Yu and
Padoy, 2020), the input sequence is first randomly truncated to
a ratio or level of observation α, then fed to the encoder. The
final hash returned serves as a representational bottleneck; the
decoder LSTM reads the hash and attempts to reconstruct the
truncated sequence. This coerces the encoder into incorpo-
rating as much visually discriminative information as possible



I3D I3D I3D I3D

sliding window

4096-D rich
feature sequence

Fig. 4. Incremental feature extraction. The I3D convolutional neural net-
work moves in a sliding window over consecutive video chunks.

into the hash. Additionally, truncating sequences ensures the
encoder has seen incomplete videos, which are expected in
real-time conditions; this truncation process is the distinctive
trait of SSTH-RT+.

Using this as a starting point, a more advanced method
for real-time retrieval can be proposed. When performing re-
trieval from a live video source, visual information from future
frames is missing. LA-CODE or Look-Ahead Code, introduced
in our previous work Yu and Padoy (2020), counteracts this
deficit by explicitly enforcing anticipation. This is a distilla-
tion method using two encoders: the first one, or primary, is
trained with SSTH-RT+; we use it to encode database videos
into the codebook. The second one, or secondary encoder
is responsible for encoding query videos, which are incom-
plete in a real-time scenario. We initialize the secondary with
the primary’s weights then train it further with an anticipation
loss (Equation 1): a video is given whole to the already trained
primary, and truncated to the secondary.

Formally, let P and S be the primary and secondary en-
coders respectively; a video V of total duration T observed
until some instant t is noted Vt. For a random observation
level α used for truncating the secondary’s input, the loss to
minimize is:

L = ∥S(VαT ) − P(VT )∥2. (1)

This is the squared difference between the secondary’s output
before binarization, termed pre-hash in Figure 5 and the pri-
mary’s output. The end goal is to obtain better matches with
the codebook, which is built using complete videos fed to the
primary, when only part of the query video is available.

3.5. Uncertainty
When hashing live video sources dynamically using real-

time approaches, the expected behavior is that the hash func-
tion updates the bit representation of the video content it has
seen so far at regular time intervals (approximately 1.3 s in
our case). Over the course of a given video, any given bit in
the representation may flip several times. While this behav-
ior is what makes our approach dynamic and fit for real-time
use, fluctuations may occur due to the evolving video content,
making the value of a few bits uncertain. This uncertainty has
been overlooked so far: in the codebook’s hashes, every bit
is taken at face value and stored as is, regardless of its fluctu-
ations over the course of the video. This negatively impacts
the query process: when querying, the Hamming distance be-
tween the query’s hash and every codebook hash is computed,
then used for ranking results since it reflects visual similarity.
However in that computation, bits that are uncertain contribute
as much as those that are reliable.

In the case of LA-CODE, introduced above, two indicators
of bit uncertainty are at play. First, we can look at the his-
tory of a bit over the course of a video in the primary’s hash:
if the value registered in the codebook for that bit conflicts
with that history, we can consider it uncertain. Second, any
bit where the primary and the secondary often enter in con-
flict can be assumed to cause mismatches when querying, and
should therefore be considered untrustworthy.

From now on, we will refer to those as type I uncertainty
and type II uncertainty respectively (Figure 7). We provide
a formal definition for these quantities in the following lines.

Considering a sequence of features representing a video clip
V = V1, ...VT of duration T , we write the t−th subclip as Ut =

(V1, ...Vt). Assuming we use d bits, let P and S be LA-CODE´s
primary and secondary encoders. Then throughout the course
of the video V , P outputs the hash sequence:

P(U1),P(U2), ...P(Ut), ...P(UT ). (2)

P(UT ) in particular is the one stored in the codebook. For
any timestep t, the i−th bit in the primary´s hash is written as
Pi(Ut). S for the secondary follows the same notation.

Type I uncertainty for video V at bit i is defined as follows:

pi(V) =
1

T − 1

T−1∑
t=1

Pi(UT ) ⊗ Pi(Ut). (3)

⊗ is the bitwise XOR operation. Concretely speaking, this is the
fraction of the time the primary spends in disagreement with
the hash stored in the codebook. By measuring how steady
an individual bit remains over the course of the video, this
value can be used as a measure of uncertainty as well. Type
II uncertainty, on the other hand, is defined as:

si(V) =
1
T

T∑
t=1

Pi(VT ) ⊗ Si(Vt). (4)

Or, more simply, the fraction of the time the secondary spends
disagreeing with the hash stored in the codebook. p and s
can then be blended into a single uncertainty score, using a
balance factor θ:

µ(V, θ) = θ · p(V) + (1 − θ) · s(V). (5)

Storing µ itself along with P(UT ), however, would be an ex-
tremely disproportionate way of communicating uncertainty
(d floating-point values for d bits; with 32-bit floats that would
be a factor 32). A much more space-efficient way to proceed
is, for a given bit skepticism level Kbs (i.e. presumed number
of untrustworthy bits in a hash), to flag the position of the Kbs

most uncertain bits:

F (V, θ,Kbs) = ΦKbs (µ(V, θ)). (6)

The i-th coordinate of ΦKbs (X) is 1 if Xi is in X’s top Kbs val-
ues, 0 otherwise. This is simply a binary mask suppressing
non-top K entries.

With this information at our disposal, the querying mech-
anism can be readjusted to account for uncertainty: consider
a query video Q at time t, and a database entry R to compare
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Fig. 6. Binary LSTM architecture. This is nearly identical to a conven-
tional LSTM, with binarization applied to the hidden state.

it to. In LA-CODE, the Hamming distance H would be com-
puted as the number of conflicting bits between the query and
the database entry’s representations. Assuming hashes of size
d:

H(Qt,R) =
d∑

i=1

Pi(R) ⊗ Si(Qt), (7)

Using the binary uncertainty F and a discounting factor γ, we
can modulate the contribution of each bit in the sum:

∆(Qt,R, γ) =
d∑

i=1

[Pi(R) ⊗ Si(Qt)] · (1 − γ · Fi(V, θ,Kbs)). (8)

In summary, our new method, which we will refer to as
ULA-CODE for Uncertain LA-CODE, performs the following
steps:

• compute Type I and Type II uncertainty values P,S

• blend the two using a balance factor θ

• flag the position of the top Kbs uncertain bits

• when querying, discount uncertain bits in the hamming
distance computation by a factor γ

The 3 free hyperparameters of the method are the discount-
ing factor γ, the balance factor θ, and the bit skepticism level
Kbs.

3.6. Computational footprint of uncertainty awareness
Accounting for bit uncertainty during retrieval comes at a

certain cost, both in terms of time and space. With execution
speed and compactness both being key advantages of hashing,
it is crucial that the impact of our upgrades on the overall com-
putational footprint is kept at a minimum in order to preserve
scalability.

This is formalized by the two following constraints:

1. Redundancy limit: the additional space consumed re-
mains strictly under dN bits (i.e. the size of the original
codebook)

2. Speed conservation: the number of additional bit oper-
ations required per query is small compared to dN (the
number of xor operations for hamming distance compu-
tations required in the original algorithm)

SSTH-RT++, a greedy baseline presented in Yu and Padoy
(2020), evidently contradicted both; with ndupl truncated du-
plicates, both the space consumption and the number of op-
erations were multiplied by ndupl. Careless tampering with
the codebook purely for the sake of retrieval performance can
therefore severely undercut computational performance. We
propose a method for avoiding this with ULA-CODE.

We first examine the redundancy limit constraint. Commu-
nicating the position of Kbs uncertain bits in an array of d bits
can trivially be done with another d-bit array acting as a binary
mask, set at 1 at uncertain bit positions. Doing so for each of
the N codebook therefore requires d·N additional bits - exactly
the limit. However keeping the space consumption strictly
underneath is possible by compressing the uncertainty pat-
tern.

The number of possible binary masks of d bits is of course
2d. Yet, among those, we only need to account for the
ones with a predetermined number k = Kbs of bits set to 1.
This drops the number of possibilities to the number of k-
combinations of d elements, also known as the binomial coef-
ficient

(
d
k

)
= d!

k!(d−k)! . Encoding an uncertainty pattern for k bits

therefore only requires du = ⌈log2

(
d
k

)
⌉ bits instead of d. Com-

paring these two values to evaluate the corresponding space
gain is not straightforward - we provide examples in Table 1.
However we are able to provide a lower bound for the number
of bits we are able to save:

d − log2

(
d
k

)
>

1
2

log2(
π · d

2
). (9)
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k log2
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d = 64 8 33 16 49 24 58 32 61
d = 96 12 50 24 75 36 89 48 93

d = 128 16 67 32 101 48 119 64 125
d = 192 24 101 48 152 72 180 96 188
d = 256 32 136 64 204 96 241 128 252
d = 384 48 201 96 307 144 361 192 380

Table 1. Selected examples for log2
(
d
k

)
; d indexes rows, k is expressed as a

ratio of d in each column.
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the lexicographic order. This rank is then written in base 2. In this case
this saves two bits over the original pattern.

A proof sketch for this result is given in the supplementary
material, section E.

Practically speaking, any of the 2du binary masks of k un-
certain bits can be indexed by a binary array of size du; we
propose to do this using the lexicographic order position writ-
ten in base 2 (Figure 8).

Storing this compressed mask instead of the mask itself
preserves space - however restoring the mask using its index
is not trivial: this is referred to as the combination unranking
problem.

For very low values of k, one can maintain a look-up table
during retrieval. Looking up a mask costs O(1); space com-

plexity, however, is Cs = d ·
(

k
d

)
bits. In the worst case of k = d

2 ,
we can use Stirling’s approximation to gauge this quantity:

Cs ∼ 4d

√
d
π
. (10)

This is roughly exponential; to provide one example, a look-
up table for uncertainty patterns of 48 bits in arrays of 96
bits would approximately consume 3.5 · 1058 bits of mem-
ory (4.3 · 1045 TB). For this reason, algorithms for unrank-
ing combinations on the fly have been developed. Notably,
Donnot et al. Genitrini and Pépin (2021) proposed a fast al-
gorithm named unranking factoradic with O(d2 · log2(d))
complexity in bit operations. Even then, unranking for all N
codebook entries would raise the overall time complexity from
O(d ·N) to O(d2 · log2(d) ·N), clearly violating the second con-
straint.

However, partial sorting can be used to drastically cut
down the overall number of operations. In practice, N is ex-
tremely large - applications to very large databases is indeed
a key motivation of hashing. In comparison the number K
of top items to retrieve should be negligible, especially under
real-time circumstances.

It is therefore safe to assume we can find K′ such that
N ≫ K′ ≫ K. Using partial sorting, N − K′ irrelevant items
can then be filtered out based on the raw Hamming distance,
without accounting for uncertainty. This costs the same d · N
XOR operations as previously. Within the remaining K′ items,
using uncertainty only requires an additional O(d2 ·K′), which
can be considered small next to d · N.

The overall encoding and retrieval pipeline for ULA-CODE,
including the use of compressed uncertainty, is shown in Fig-
ure 10.

3.7. Encoder training & codebook preparation & evaluation
Hashes of size 96, 128, 192, 256 are employed. The same

model trained on the 81000 clips from the training set is eval-
uated across the three test sets described in Section 3.2, to as-
sert the versatility of the retrieval system. As stated in Section
3.4, we first train SSTH-RT+ as the primary for LA-CODE. This
time, the secondary is trained for a maximum of 30 epochs,
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with early stopping based on bitwise accuracy measured on
the validation set. Batch size is set to 86; the learning rate is
1e−3.
ULA-CODE reuses LA-CODE’s pair of encoders; the differ-

ence is in the way the codebook is built, since we incorpo-
rate the uncertainty defined above. ULA-CODE’s fairly narrow
hyperparameter space is explored with all 80 combinations
shown in Figure 9.

Testing follows the same protocol found in Yu and Padoy
(2020), by separating the test set in two according to the splits
established in Section 3.2. Videos in the first part serve as
queries while the second part plays the role of the database to
search into, or codebook.

As usually done in video retrieval evaluation (Zhang et al.,
2016), we report the Mean Average Precision in the top K
search results (mAP@K), with mAP@10 as the main refer-
ence. Even though we use clips of uniform duration, the in-
cremental nature of our methods enable efficient retrieval in
real time, at any point inside the clip; a possibility that was
not offered in other video hashing studies (Zhang et al., 2016;
Song et al., 2018; Wu et al., 2017, 2019; Li et al., 2019). By
doing so during testing, we essentially try to examine the re-
trieval system’s dynamic behavior in response to the context;
after watching only a portion of a clip, can the system quickly
return relevant videos? We therefore report mAP@10 for one
third and two thirds of a clip, in addition to the entirety of the
clip (roughly 10, 20 and 30s respectively).

4. Results

Bypass40 Cholec80 CEV64
γ θ Kbs γ θ Kbs γ θ Kbs

64 1 0 24 1 0.5 16 0.75 0 24
96 1 0 24 0.5 0 36 0.75 0.25 36

128 0.75 0 48 0.75 0.25 64 0.75 0 48
192 0.75 0.5 48 0.5 0.25 72 0.75 0 96
256 1 0 64 1 0 96 1 0 64
384 0.75 0.25 144 0.5 0.25 96 0.75 0.25 144

Table 2. ULA-CODE optimal parameter combinations for each bitcode size
and test protocol.

4.1. Main comparison against baselines

We start with a global comparison of ULA-CODE against the
baseline methods, SSTH-RT+ and LA-CODE. mAP@10 results
are displayed in Figure 11. Since ULA-CODE depends on hy-
perparameters γ, θ,Kbs, we provide two ways of observing its
performance. Results for max ULA-CODE show the method at
its best, with an optimized set of hyperparameter values shown
in Table 2. Results for avg ULA-CODE, on the other hand,
show the average performance over the entire hyperparame-
ter space. mAP@10 is plotted with levels of observation on
the x-axis, at 10s, 20s and the end of the clip. All hash sizes
are shown, one in each row.

Results for avg ULA-CODE surpass our previous approach
LA-CODE by 1 to 2 %. This means, even with a random choice
of γ, θ,Kbs, ULA-CODE improves performance on average. An
optimized choice of parameters doubles those gains, beating
LA-CODE by a 3 to 4 % margin. The performance order be-
tween the approaches is mostly consistent - best ULA-CODE,
followed by average ULA-CODE, then LA-CODE and finally
SSTH-RT+. For surgical events, across all hash sizes and levels
of observation, avg ULA-CODE exceeds the baseline LA-CODE
by a mostly consistent 2% margin. Globally, performance is
slightly higher for Cholec80 (especially for 128 and 192 bits),
possibly due to a simpler workflow than Bypass40, and visu-
ally simpler content than CEV64.

Interestingly, performance does not necessarily increase
with the observation level α. This could be due to the fact
that the end of video clips can sometimes be close to a sur-
gical phase or critical event boundary, where discriminative
information disappears and more ambiguous information can
be present; for Cholec80 this is particularly noticeable.

Overall, mAP@10 retrieval results for surgery are roughly
on par with results shown on generic activities (Yu and Padoy,
2020), which suggests video retrieval is viable in the surgical
domain as well. Along with this statement, it is important to
keep in mind the key differences between surgical data and
generic data: on the one hand, the higher number of classes
(∼ 200) in generic video datasets such as FCVID (Jiang et al.,
2018) or ActivityNet (Heilbron et al., 2015) adds to the diffi-
culty of the problem. On the other hand, surgery videos are
much harder to interpret: visual cues for a phase or an event
can be sparse, if not misleading - as evidenced in the qualita-
tive results shown later (Section 4.3). Context also plays an
important role: by using all the frames from the beginning of
the surgery, Twinanda et al. (2016b); Jin et al. (2018); Czem-
piel et al. (2020); Ramesh et al. (2021) were able to achieve
state-of-the-art surgical phase recognition results. Short clips
are an appropriate format for retrieval in real time due to the
fast pace of this task, but they inevitably miss the overarching
workflow they are a part of.

4.2. Influence of hyperparameters

We then examine each of the three hyperparameters in
ULA-CODE separately, to understand how they affect retrieval
performance. Results are plotted in Figure 12. Here max

ULA-CODE is obtained by fixing the value of one hyperpa-
rameter, then taking the maximum over hyperparameter com-
binations featuring that value. Similarly, avg ULA-CODE is
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now defined by fixing a hyperparameter’s value averaging over
all corresponding combinations. LA-CODE without any uncer-
tainty sets our baseline. Results for 256 bits are displayed in
Figure 12. In this figure, a performance data point is obtained
for every:

• protocol (Bypass40, Cholec80, CEV64) - plot grid col-
umn

• hyperparameter value - x-axis

• observation level α - line color

• approach type (LA-CODE, avg ULA-CODE or max

ULA-CODE) - line texture

Results for other hash sizes (64, 96, 128, 192, 384) are shown
in the supplementary material, section B.

Across all hyperparameters, max ULA-CODE is obviously
superior to avg ULA-CODE, which is itself in most cases
above LA-CODE. For 256 bits on Bypass40 at full observation,
LA-CODE achieves 38%, which is beaten by avg ULA-CODE

with a 1.2% minimum margin, and by max ULA-CODE by
2 to 3%. For the same code size and observation level
on Cholec80, LA-CODE sets the baseline at 39%, again sur-
passed by avg ULA-CODE (41.5%) and max ULA-CODE (41.3
to 42%). Similar observations can be made for surgical events,
with LA-CODE at 38.8%, avg ULA-CODE ranging from 39.5 to
41% and max ULA-CODE ranging from 40.2% to 42.2%.

For the γ parameter (Figure 12), we can see a slight trend
favoring higher values: for instance, for 256 bits on surgical

events at 2/3 observation, max ULA-CODE goes from 41.2% at
γ = 0 to 41.5% at γ = 1. In general, this suggests stricter
suppression of uncertain bits improves retrieval performance.

For θ, it appears that lower values generally lead to higher
mAP@10; such as for surgical events with 256 bits at 2/3 ob-
servation, the dropoff from θ = 0 to θ = 1 is over 2%. We can
therefore assume that Type II uncertainty is in general more in-
formative, and has higher odds of pointing towards faulty bits
in the hash. Retrieval is performed by matching a code from
the secondary with codes from the primary, giving a possible
explanation as to why Type II is a slightly better uncertainty
measurement.

The trend for Kbs is more subtle: results slightly lean to-
wards higher values. This trend implies the number of un-
trustworthy bits is generally close to half the size of the hash,
introducing a slight downside: the compressibility of the un-
certainty pattern decreases as the number of uncertain bits to
report gets close to d/2.

For every code size and protocol, we are able to obtain
an optimal value based on the highest mAP@10 achieved by
ULA-CODE, averaged over all levels of observation. These are
the optimal hyperparameters are reported in Table 2. The com-
binations found seem to confirm the trends observed: higher
values of γ and Kbs, lower values for θ.

4.3. Additional results

While retrieval mAP can be relied upon for quantitative
evaluation, the in-depth behavior of our method can be dif-
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ficult to grasp based on these measurements only. To pro-
vide more insight, we first present a per-class breakdown of
retrieval results for ULA-CODE in the supplementary material,
Section D. We also provide qualitative results in Figure 13
for surgical video retrieval, comparing search results returned
by LA-CODE and ULA-CODE. Three clips are used as queries,
taken from the CEV64 dataset: mesh placement, dividing and
incising. Green indicates an event correctly matching with the
query; red, an incorrect search result. We display the hash cor-
responding to a video next to its thumbnail: white is a 0, black
a 1. In hashes for the top 5 search results, uncertain bits ap-
pear in purple: clear for an uncertain 0, dark for an uncertain 1.
The raw Hamming distance to the query, used by LA-CODE, is
shown at the top left of the thumbnail; while the Hamming dis-
tance modulated by uncertainty used by ULA-CODE is shown
at the top right. The code size used is 128; for ULA-CODE, the
parameters used are γ = 0.75, θ = 0, Kbs = 64.

The purple bits, marked as uncertain according to our
method, do turn out to be misleading: due to them, LA-CODE
returns several irrelevant results - e.g. in the second row,
bleeding instead of dividing. By ignoring them, ULA-CODE
is able to find two more correct videos. In the last
row, LA-CODE’s top result (background) is pushed down by
ULA-CODE to number 4; LA-CODE’s fourth best (abdominal
access) exits ULA-CODE’s top 5.

More importantly, those queries exemplify the difficulty of
video retrieval in surgery; search results marked as incorrect
are often understandable, and make sense visually to some ex-
tent. During body exits, the laparoscope is placed on a cloth
that resembles the mesh employed in abdominal wall proce-
dures, hence the confusion in the first row. Bleeding inevitably
occurs during tissue division; in the second row this introduces
ambiguity with CEV64’s actual bleeding event, defined as ac-
tive bleeding. Even abdominal access in the third row features
a trocar resembling the shaft of an instrument.

For more dynamic and in-depth qualitative results, a video
with side-by-side comparisons of LA-CODE and ULA-CODE is
provided in the supplementary material. Note that this video
is rendered offline, with videos retrieved instantly as soon as
the hash is regenerated; real-time inference would add some
amount of latency. Using our setup (Intel i7-6800k CPU,
NVIDIA 1080 Ti GPU), elements from the entire inference
pipeline (I3D feature extraction, hash generation, search with
uncertainty) altogether do not exceed 1s of inference time.

4.4. Discussion & future work

As evidenced by the qualitative results, evaluation of video
retrieval systems - not only in surgery, but in general - is a
challenging open problem. One important path to explore in
future work would be to design quantitative evaluation pro-
tocols that better capture the usability of the system than the
current one based on retrieval mAP. While, on average, our
method solidly outperforms baselines that do not factor in un-
certainty, more expressive means of evaluation would enable
looking into possible failure cases (e.g. events in the video
having their contribution to the hash wrongly decreased).

Performance-wise, a few possibilities may be considered
for future improvements: the current method being completely

unsupervised, mixing in some form of human-labeled super-
vision (surgical phase, actions, instruments for example) is
likely to enhance retrieval - this of course introduces a tradeoff
between performance and cost of annotations, and might affect
generalizability by favoring a particular set of labels. New
work on self-supervised learning (Ramesh et al., 2022) also
hints at interesting possibilities. The current visual backbone
is pretrained on Kinetics; self-supervised pretraining on sur-
gical videos might result in increased performance by making
the backbone more domain-specific, without requiring manual
labels.

Conclusion

This work targets the task of live video-to-video retrieval on
diverse, large-scale surgical video data. We perform live sur-
gical video retrieval with the LA-CODE method on datasets of
recorded surgeries. Additionally, we expose and addresses the
problem of uncertain bits used in the codebook by measuring
their degree of uncertainty, then reporting it in the codebook
in a highly compressed manner. This awareness of uncertain
bits is the core of our proposed ULA-CODE method, which pro-
vides up to 4 % improvement in terms of retrieval mAP@10,
measured using three semantic contexts in surgery: phases
for cholecystectomy, phases for bypass and surgical events,
introduced for the first time in our work. Usability on this
wide range of semantics, across many types of workflows and
procedures is promising in terms of generalizability for our
method.
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