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Abstract

Generalization to previously unseen images with potential domain shifts and different styles is essential for clinically applicable
medical image segmentation, and the ability to disentangle domain-specific and domain-invariant features is key for achieving
Domain Generalization (DG). However, existing DG methods can hardly achieve effective disentanglement to get high generaliz-
ability. To deal with this problem, we propose an efficient Contrastive Domain Disentanglement and Style Augmentation (CDDSA)
framework for generalizable medical image segmentation. First, a disentangle network is proposed to decompose an image into a
domain-invariant anatomical representation and a domain-specific style code, where the former is sent to a segmentation model that
is not affected by the domain shift, and the disentangle network is regularized by a decoder that combines the anatomical and style
codes to reconstruct the input image. Second, to achieve better disentanglement, a contrastive loss is proposed to encourage the
style codes from the same domain and different domains to be compact and divergent, respectively. Thirdly, to further improve gen-
eralizability, we propose a style augmentation method based on the disentanglement representation to synthesize images in various
unseen styles with shared anatomical structures. Our method was validated on a public multi-site fundus image dataset for optic
cup and disc segmentation and an in-house multi-site Nasopharyngeal Carcinoma Magnetic Resonance Image (NPC-MRI) dataset
for nasopharynx Gross Tumor Volume (GTVnx) segmentation. Experimental results showed that the proposed CDDSA achieved
remarkable generalizability across different domains, and it outperformed several state-of-the-art methods in domain-generalizable
segmentation. Code is available at https://github.com/HiLab-git/DAG4MIA
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1. Introduction

Deep learning with Convolutional Neural Networks (CNNs)
has achieved remarkable performance in medical image seg-
mentation [1, 2, 3], and most existing models are built on the
assumption that training and testing images are from the same
domain and have very similar, if not the same, distributions.
However, in clinical practice, this assumption does often not
hold due to several factors such as the differences in scanning
devices, imaging protocols, patient groups and image quality
between training and testing images, where the testing images
are usually acquired from a different medical center than the
training set. Such differences (a.k.a domain shift [4]) can sub-
stantially degrade the model’s performance at test time [5, 6].
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To address this problem, many Domain Adaptation (DA)
methods have been explored to transfer knowledge from a set
of labeled images in a source domain to images in a target do-
main [7, 8, 9]. However, the DA methods need to tune the
model’s parameters based on a set of images in the target do-
main, which is not only time-consuming but also impractical
if the the target domain is not known in advance [10]. What’s
more, the model needs to be adapted to each target domain re-
spectively, and is faced with the problem of catastrophic forget-
ting on previous domains, which is not scalable when applied
to a range of new unknown domains.

In contrast to DA, Domain Generalization (DG) that encour-
ages a model to be generalizable to unseen domains is more
appealing and efficient as it does not need to tune the model
after training. Recently, domain generalization has attracted in-
creasing attentions in the field of both computer vision [11] and
medical image analysis [12, 13]. Existing DG methods mainly
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include image- and feature-based approaches. For image-based
approaches, data augmentation has been widely used for im-
proving the generalizability of a model, and [14] proposed Bi-
gAug that uses a series of stacked transformations to augment
the training images, with the assumption that the shift between
source and target domains could be simulated through extensive
data augmentation. However, the configuration of data augmen-
tation requires empirical settings and could be data-specific.
In contrast, feature-based methods mainly focus on represen-
tation learning to extract most representative features for bet-
ter generalization across domains [15, 13]. [15] introduced a
domain-oriented feature embedding method that dynamically
enriches image features with domain prior knowledge learned
from multi-site domains to make the semantic features more
discriminative. [13] developed a Domain Composition and At-
tention Network (DCA-Net) that represents features in a certain
domain as a linear combination of a set of basis representa-
tions in a representation bank, where the combination coeffi-
cients are obtained by an attention module. Both methods rely
on a domain knowledge pool or a representation bank to in-
fer the domain-specific knowledge to make the network aware
of the domain of an input image, which helps to improve the
generalizability. However, they are limited by the capacity and
representation power of the knowledge pool/bank, and have a
limited ability to recognize the invariant features across differ-
ent domains.

Recently, disentanglement has been introduced to computer
vision that aims to explicitly decompose features into domain-
invariant contents and domain-specific styles [16]. It has
also been employed to learn domain-invariant features for do-
main adaptation on multi-modality medical image segmenta-
tion datasets. [17] applied disentangled representations to un-
supervised domain adaptation for liver segmentation. They de-
composed the images from two domains into a shared domain-
invariant content space and a domain-specific style space, and
used representations in the content space for segmentation. [18]
used disentangled domain-invariant and domain-specific fea-
tures for cardiac image segmentation across two modalities, and
introduced a zero-loss to enhance the disentanglement. How-
ever, most existing disentangling methods are based on Gen-
erative Adversarial Networks (GAN), where a content encoder
and a style encoder need to be trained for each known modal-
ity/domain, and multiple discriminators are involved, leading to
a complex training process. Despite their suitability for domain
adaptation, the GAN-based disentanglement methods are not
scalable, as the number of required content/style encoders and
discriminators will increase with the grow of domain number.
What’s more, such a paradigm cannot be applied to unseen do-
mains as it requires the encoders for each domain to be trained
in advance. Therefore, they are not applicable to DG problems.

In this work, we propose a novel GAN-free disentanglement
framework named as Contrastive Domain Disentanglement
and Style Augmentation (CDDSA) for domain-generalizable
medical image segmentation. As shown in Fig. 1, it de-
composes medical images in different domains into domain-
invariant anatomical representations and domain-specific style
codes with only one pair of anatomy Encoder and style encoder,

which is regularized by a decoder that accepts an anatomical
representation and a style code to reconstruct an image. The
encoders and decoder are shared across different domains, with-
out adversarial learning and domain-specific training, which is
efficient and scalable to multiple domains. Our method was
inspired by Spatial Decomposition Network (SDNet) [19] that
implements feature disentanglement without GAN. Note that
SDNet [19] was proposed for semi-supervised learning, modal-
ity transformation and multi-modal image segmentation, and
it can only perform disentanglement and image reconstruction
on seen domains with poor generalizability in unseen domains.
The main reason is that SDNet lacks effective constraints on
the style codes to encourage them to be domain-specific, which
limits the ability to extract domain-invariant feature represen-
tations. In addition, it restricts the anatomical representations
as binary codes, leading to a limited representation ability for
effective image reconstruction.

Differently from SDNet [19], our CDDSA is proposed for
domain-generalizable segmentation of medical images. To im-
prove the disentanglement performance, we relax the anatom-
ical representation to soft values and propose a domain style
contrastive learning loss to encourage the style codes in dif-
ferent domains to be discriminative from each other, which
improves the model’s ability to recognize domain-invariant
anatomical representations that is sent to a segmentor to ob-
tain segmentation results. As the segmentor is not affected by
domain-specific features, it has a high generalizability across
different domains. In addition, based on the extracted style
codes in training domains, we can generate a new random style
code and combine it with an existing anatomical representation
to simulate images in an unseen domain with a new styles using
the decoder, i.e., style augmentation, which further improves
the generalizability of our framework.

To the best of our knowledge, this is the first work in the liter-
ature to propose feature disentanglement learning for domain-
generalizable medical image segmentation. The contributions
of our method are summarised as follows:

1) We introduce a novel framework CDDSA using GAN-
free disentanglement for domain generalization in medical
image segmentation. It achieves generalizability by seg-
mentation from decomposed domain-invariant representa-
tions extracted by a single anatomy Encoder that is shared
across domains and more efficient and scalable than GAN-
based disentanglement.

2) To make the disentangled domain-specific style codes
more representative and distinguishable, we propose do-
main style contrasitve learning, which forces the style
codes from the same domain and different domains to be
similar and dissimilar, respectively.

3) We propose style augmentation based on the disentangled
anatomical representations and style codes to simulate im-
ages from unseen domains with different styles, which fur-
ther improves the generalizability of the disentanglement
and segmentation models.
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Figure 1: Workflow of our proposed Contrastive Domain Disentanglement and Style Augmentation (CDDSA) method. (a) shows the disentanglement and seg-
mentation networks, where an anatomy encoder and a style encoder obtains anatomical representations and style codes respectively, and they are regularized by a
decoder to reconstruct the input image. The segmentor takes domain-invariant anatomical representations as input to obtain the segmentation results. (b) represents
the style augmentation strategy, where we combine anatomical representations from a given image with augmented style codes to generate images in a new domain.

4) Comprehensive experimental results on multi-domain fun-
dus images and multi-domain nasopharyngeal carcinoma
magnetic resonance images (NPC-MRI) showed that our
proposed CDDSA achieved high generalization on unseen
domains, and it outperformed several state-of-the-art do-
main generalization methods.

2. Related Works

2.1. Domain Generalization for Medical Image Analysis

Recently, domain generalization has attracted increasing at-
tentions to avoid dramatic performance degradation when infer-
ring with images from unseen domains [20]. It aims to learn a
model from a single or multiple source domains to make it di-
rectly applicable for unseen target domains without extra train-
ing [21, 12, 11]. Existing DG methods mainly include meta-
learning methods, data-based methods and feature-based meth-
ods. Meta-learning [22, 12] splits a set of source domains into
meta-train and meta-test subsets, and adopts meta-optimization
that iteratively updates model parameters to improve perfor-
mance on the meta-test subset to simulate the situation when in-
ferring on unseen domains. [23] combined meta-learning with
federated learning to achieve privacy-preserving generalizable
segmentation through continuous frequency space interpolation
across clients. However, meta-optimization process is highly
time-consuming since all potential splitting results of meta-
train and meta-test should be considered during training [12].

Data-based approaches usually use different data augmenta-
tion strategies for improving the model’s generalizability. [14]
a deep stacked transformation assuming that the shift between
different domains can be simulated by extensive data augmen-
tation on a single domain. [24] utilized Cycle-GAN [25] to
transform images from one certain domain to other domains for

augmentation. [26] proposed Mixed Task Sampling (MTS) to
enhance the variety of task-level training samples. Mixup in
frequency domains [23, 27] has also been used to synthesize
new images for model generalization. However, the efficiency
of data augmentation largely depends on the ability to cover the
data distribution in unseen domains, hence requiring empirical
settings and even data-specific modifications.

Feature-based approaches use domain-adaptive feature cal-
ibration or learn domain-invariant features to deal with do-
main generalization [15, 28, 29]. [15] introduced a domain-
oriented feature embedding framework that dynamically up-
dates the domain-specific prior knowledge to make the seman-
tic features more discriminative. [30] proposed a dynamic con-
volutional head to make the model’s convolutional parameters
adaptive to unseen target domains. [13] proposed a domain
composition and attention method that calibrates the input fea-
ture based on attention coefficients represented by a represen-
tation bank. However, these methods did not explicitly ob-
tain domain-invariant features for domain generalization, and
they did not separate features into purely domain-specific and
domain-invariant representations well, leading to limited per-
formance on domain generalization.

2.2. Disentanglement Representation Learning
Disentanglement explicitly decomposes features into

domain-invariant contents and domain-specific styles [31, 32].
In addition to applications such as image synthesis [19],
artifact removal and multi-task learning [33] for medical image
analysis, it is widely adopted for domain adaptation [17, 18].
[17] used disentanglement to obtain domain-invariant content
features for liver segmentation with domain adaptation. [34]
used disentanglement to improve the performance of image
translation for domain adaptation, and they disentangled the
content features from domain information for both the source
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and translated images. [18] applied disentanglement-based
domain adaptation for cardiac image segmentation, and
introduced a zero loss to enhance disentanglement. [35]
proposed a bidirectional unsupervised DA framework based
on disentangled representation learning for equally competent
two-way DA performances on cardiac image segmentation.
Despite their good performance on DA, theses works achieve
disentanglement based on GAN, where multiple discriminators
are needed in the adversarial training process that is complex
and tricky to optimize. What’s more, they need to have
access to images for target domains during training, and are
not applicable to DG tasks that involves unseen domains.
[19] proposed a GAN-free Spatial Decomposition Network
(SDNet) that decomposes an input image into a spatial factor
(anatomy) and a non-spatial factor (style), and applied it to
semi-supervised segmentation and image synthesis. However,
it performs disentanglement and reconstruction well only on
seen domains can hardly deal with unseen domains that are not
involved in training.

2.3. Contrastive Learning

Contrastive learning is a self-supervised learning method to
learn feature representations by enforcing positive pairs to be
close and negative pairs to be distant [36]. Previous contrastive
learning methods were mainly proposed to pre-train a powerful
and representational feature extractor that can distinguish sim-
ilar and dissimilar samples [37, 38]. For computer vision and
medical image analysis, contrastive learning has been mainly
used for annotation-efficient learning. For example, [39] pro-
posed a contrastive adaptation network that minimizes the intra-
class domain discrepancy and maximizes the inter-class domain
discrepancy. [40] used contrastive learning of global and local
features sequentially for 3D medical image segmentation with
limited annotations. [41] proposed contrastive learning of rel-
ative position regression for one-shot object localization in 3D
medical images. [42] proposed a contrastive voxel-wise repre-
sentation learning to effectively learn low-level and high-level
features for semi-supervised medical image segmentation. Un-
like these works, we design a contrastive learning strategy to en-
hance disentanglement between domain-invariant and domain-
specific features to deal with domain generalization problems.

3. Methods

For the domain generalization problem, the training set con-
sists of images from D domains and can be denoted as D =

{(xd
i , y

d
i )}Nd

i=1 (d = 1, 2, ...,D), where xd
i depicts the i-th train-

ing sample from the d-th source domain with its corresponding
ground-truth annotation yd

i . Nd denotes the number of training
samples in domain d.

Our proposed Contrastive Domain Disentanglement and
Style Augmentation (CDDSA) framework is illustrated in
Fig. 2. Firstly, we employ a disentangle network containing
an anatomy encoder Eana and a style encoder Esty to decom-
pose an image into a domain-invariant anatomical representa-
tion and a domain-specific modality representation (i.e., style

code), and they can be used to reconstruct the input image based
on a decoder Drec. We further send the disentangled anatomi-
cal representation into a segmenter S to predict the segmenta-
tion mask. Secondly, to boost the disentanglement performance
with more discriminative style codes across different domains,
we introduce domain style contrasitve learning that forces the
decomposed modality representations to have low intra-domain
discrepancy and high inter-domain discrepancy. Thirdly, to fur-
ther enhance model generalization, we proposed a style aug-
mentation strategy to randomly generate style codes and com-
bine them with given anatomical representations to reconstruct
images with new styles that are not present in the training set.

3.1. Domain Disentangle Network.

As shown in Fig. 2, for an input image xd
i , we send it to

an anatomy encoder Eana and a style encoder Esty to obtain
an anatomical representation f d

i,a and a modality representation
(style code) f d

i,s, respectively. Then f d
i,a and f d

i,s are sent to a
decoder Drec to reconstruct an input-like images x̂d

i , and a re-
construction loss Lrec is used to encourage the consistency be-
tween xd

i and x̂d
i . A segmentor S takes f d

i,a as input to obtain the
segmentation result.

3.1.1. Anatomy Encoder and Segmenter
To decompose domain-invariant anatomical representations,

we employ U-Net [1] as the backbone to implement Eana. We
modify U-Net by setting the output channel of the last layer as
T and use tanh as the activation function in that layer. Let H and
W represent the height and width of the input image xd

i respec-
tively, the output of Eana is denoted as f d

i,a ∈ [−1, 1]H×W×T , and
we assume that each channel of f d

i,a emphasizes some anatom-
ical information. Differently from SDNet [19] that constrains
f d
i,a to take binary values that may lose many details of ob-

ject structures, we aim to reserve enough structural informa-
tion for accurate image reconstruction and further style aug-
mentation, and therefore soften the anatomical representation
with a tanh(x) = ex−e−x

ex+e−x activation function in the last layer.
The anatomical representation extraction procedure is formu-
lated as:

f d
i,a = Eana(xd

i ) (1)

Then, the decomposed anatomical representation f d
i,a is fed

into a segmentation network S to obtain a segmentation proba-
bility map pd

i = S ( f d
i,a). Let yd

i denote the ground truth, and the
supervised segmentation loss for domain d is:

Lseg =
1

2Nd

Nd∑
i=1

(
LDice(pd

i , y
d
i ) +Lce(pd

i , y
d
i )

)
(2)

where we use a hybrid segmentation loss that consists of a Dice
loss LDice and a cross-entropy loss Lce.

3.1.2. Style Encoder
The domain-specific modality representations are obtained

by a style encoder Esty that is implemented by a Variational
Autoencoder (VAE) [43]. The VAE learns a low dimensional
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Figure 2: Overview of the proposed Contrastive Domain Disentanglement and Style Augmentation (CDDSA) network for multi-domain generalizable segmentation.
We use an anatomy encoder Eana and a modality encoder Esty to extract anatomical representations f d

a and style codes f d
s , respectively. A reconstruction decoder

Drec takes f d
a and f d

s as input and obtains a reconstructed image x̂d . The decomposed anatomical representations f d
a is further used for segmentation. x̂d̃ is our

simulated image using domain-augmentation strategy. x̂d̃ will further input into Eana to get its anatomical representation f d̃
a . Lsaac is used to encourage the

consistency between f d̃
a and f d

a .

latent space so that the learned latent representations match a
prior distribution of an isotropic multivariate Gaussian p(z) =

N(0, 1). Given the input xd
i , Esty predicts the mean ud

i and vari-
ance vd

i of the distribution of a latent code z ∈ R1×Z , where Z is
the length of the latent code. The style code f d

i,s of an input im-
age xd

i,s is sampled from the distribution characterized by mean
ud

i and variance vd
i . VAE is trained to minimize a reparameteri-

zation error, and a KL divergence loss is computed between the
estimated Gaussian distribution q(z|ud

i , v
d
i ) and the unit Gaus-

sian p(z):

Lkl = Dkl
(
q(z|ud

i , v
d
i )‖p(z)

)
(3)

where Dkl(p‖q) =
∑

p(x)log p(x)
q(x) . When training is finished,

sampling a vector from the unit Gaussian over a latent space can
obtain a new style code, and we send it together with an anatom-
ical representation to the decoder to obtain a reconstructed im-
age, where the decoder is used as a generative model, as de-
tailed in the following.

3.1.3. Reconstruction Decoder
Fig. 3 shows the structure of our reconstruction decoder Drec

to generate an image x̂d
i given two decomposed representations

f d
i,a and f d

i,s. The collaboration of the two representations acts
as a repainting mechanism where the anatomical representation
f d
i,a is used to derive the anatomical content, and the modality

representation f d
i,s is used to color the style distribution on the

whole image [44].
Specifically, the decoder uses four convolutional blocks to

map f d
i,a to a reconstructed image conditioned on three Style

Reconstruction Modules (SRM), as shown in Fig. 3. For
the intermediate feature map obtained by each convolutional

𝒇𝒇𝒊𝒊,𝒔𝒔𝒅𝒅

SRM SRM SRM

𝛾𝛾2 𝛽𝛽2 𝛾𝛾3 𝛽𝛽3

3×3, T

𝛾𝛾1 𝛽𝛽1

3×3, T 3×3, T 3×3, Co �𝒙𝒙𝒊𝒊𝒅𝒅𝒇𝒇𝒊𝒊,𝒂𝒂𝒅𝒅

FC: 16 × 256 ReLU FC: 256 × T

𝑫𝑫𝒓𝒓𝒓𝒓𝒓𝒓

Architecture of SRM network:

𝒇𝒇𝒊𝒊,𝒔𝒔𝒅𝒅 𝛾𝛾,𝛽𝛽

3×3, T 3×3 convolutional block 
with T-channel output

Adaptive normalization
FC Fully connected layer

Figure 3: Framework of the reconstruction decoder Drec. T is the channel of
feature maps and Co represents the channel of output reconstructed image.

block in the decoder, we apply Adaptive Instance Normaliza-
tion (AdaIN) to control the output style, where the affine trans-
formation parameters (scale and bias) are predicted by an SRM
that takes f d

i,s as input. Let Fi,c represent the c-th channel of the
intermediate feature map, we use two Fully Connected (FC)
layers with a ReLU activation to implement the SRM that maps
the modality representation f d

i,s to the scale γi,c and bias βi,c that
are used by affine transformation of AddIN:

AdaIN(Fi,c|γi,c, βi,c) = γi,c
Fi,c − µ(Fi,c)
σ(Fi,c)

+ βi,c (4)

where each channel of the intermediate feature map is normal-
ized separately, and we apply AddIN with SRM after each of
three convolutional blocks in the decoder respectively, as shown
in Fig. 3. By mapping f d

i,s to the scale and bias values for each
intermediate feature map, the reconstruction decoder Drec adap-
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tively repaints style distribution on the anatomical representa-
tion f d

i,a in a coarse-to-fine manner. We use x̂d
i to denoted the

reconstructed image based on f d
i,s and f d

i,a, and it is obtained by:

x̂d
i = Drec( f d

i,s, f d
i,a) (5)

As f d
i,s and f d

i,a are obtained from xd
i , the reconstructed image

x̂d
i should be as close as possible to xd

i . Therefore, a reconstruc-
tion loss is employed to train the anatomy encoder Eana, style
encoder Esty and reconstruction decoder Drec:

Lrec =
1

Nd

Nd∑
i=1

∣∣∣xd
i − x̂d

i

∣∣∣ (6)

where we simply define the reconstruction loss as the Mean
Absolute Error (MAE) loss due to its robustness to outliers.

3.2. Domain Style Contrastive Learning
An effective disentanglement expects that the style code f d

i,s
to be domain-specific, but the reconstruction loss Lrec does
not provide sufficient supervision for achieving domain-specific
style codes. To address the problem and make the model de-
compose more discriminative modality representations for dif-
ferent domains, we propose a domain style contrastive learning
strategy to explictly constrain the disentangled style code f d

i,s.
Let xd

i and xd
j represent two different samples from the same

domain d in the training set, and their style codes obtained
by Esty are denoted as f d

i,s and f d
j,s, respectively. We define

( f d
i,s, f d

j,s) as a positive pair for maximizing their similarity. At
the same time, for N samples each from a different domain d′

(d′ ∈ [0, 1, ...,D] and d′ , d), their corresponding style codes
compose a negative set Nd

i for f d
i,s, and each element in Nd

i
should have a minimized similarity compared with f d

i,s. Fol-
lowing the standard formula of self-supervised contrastive loss
InfoNCE [45, 46], we define our domain style contrastive loss
as:

Ldsct = −log
esim( f d

i,s, f
d
j,s)/τ

esim( f d
i,s, f

d
j,s)/τ +

∑
f∈Nd

i
esim( f d

i,s, f )/τ
(7)

where sim(·, ·) is the cosine similarity, and τ = 0.1 is the temper-
ature scaling parameter. In practice, to save the computational
cost during training, we fetch b samples for each domain in a
mini-batch, and their style codes are saved in a list Q. Let Q̃ de-
note a permuted version of Q, the corresponding elements with
the same index in the two lists are used as a positive pair, i.e., b
positive pairs are considered for each domain in a mini-batch.
The style codes of the b(D − 1) samples from domains other
than domain d are used as the negative set for xd

i .

3.3. Style Augmentation with Anatomical Consistency
Based on the disentangled anatomical representations, style

codes and the decoder, we can augment the style of an image
by replacing its style code during image reconstruction, and
therefore propose a style augmentation strategy to automati-
cally generate images in new domains with different styles. At
each iteration of training, we denote the style codes of a batch

Table 1: Statistics of retinal fundus images in four domains used in our experi-
ment following [15].

Domain No. Dataset Cases (train / test) Scanner
Domain 1 Drishti-GS 50 / 51 Aravind eye hospital
Domain 2 RIM-ONE-r3 99 / 60 Nidek AFC-210
Domain 3 REFUGE-train 320 / 80 Zeiss Visucam 500
Domain 4 REFUGE-val 320 / 80 Canon CR-2

as a style code bank F = { f d
i,s|i = 1, 2, ..., B; d = 1, 2, ...,D},

where the batch has B samples for each domain. Based on the
style codes in F , we obtain a new style code using a linear
combination of them with random weights:

f d̃
s =

|F |∑
i=1

αiFi (8)

where f d̃
s is a generated style code that is assumed to be from

an unseen domain d̃. Fi is the i-th element in the style code
bank, and the weight αi ∈ [−1, 1] is randomly sampled from a
uniform distribution.

Given an anatomical representation f d
i,a from an image in the

source domain, we repaint it with the new style code f d̃
s to gen-

erate a new image x̂d̃
i :

x̂d̃
i = Drec( f d̃

s , f d
i,a) (9)

Since the generated image x̂d̃
i and the real image xd

i share the
same anatomical representation f d

i,a, we introduce an anatomical
consistency loss Lsaac that forces the anatomy encoder Eana to
obtain domain-invariant anatomical representations in spite of
the different styles between x̂d̃

i and xd
i :

Lsaac =
1

Nd

Nd∑
i=1

∣∣∣ f d
i,a − Eana(x̂d̃

i )| (10)

where the MAE loss is used for the anatomical consistency.

3.4. Overall Loss
As a summary of the proposed CDDSA framework, the over-

all loss function for training is formulated as:

L = Lseg + λ1Lkl + λ2Lrec + λ3Ldsct + λ4Lsaac (11)

where Lseg is the supervised segmentation loss (Eq. 2), Lkl is
the KL divergence loss for style encoder (Eq. 3), Lrec is the im-
age reconstruction loss (Eq. 6). Ldsct and Lsaac are the domain
style contrastive loss (Eq. 7) and style augmentation-based
anatomical consistency loss (Eq. 10), respectively. λ1, λ2, λ3
and λ4 act as trade-off parameters for different loss terms.

4. Experiments and Results

4.1. Datasets and Implementation Details
In this study, we evaluated our proposed CDDSA and com-

pared it with several state-of-the-art DG methods on a pub-
lic multi-domain fundus image dataset and an in-house multi-
domain nasopharyngeal carcinoma MRI dataset.
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Table 2: Statistics of the in-house multi-domain nasopharyngeal carcinoma MRI dataset [47]
.

Domain No. Sequence Slice thickness (mm) Volumes (train / test) Slices (train / test) Total Volumes (train / test) Total slices (train / test) Scanner
Domain 1 T1 6 - 7.75 39 / 26 305 / 201

114 / 75 1427 / 994

SPPH - Siemens
Domain 2 CE-T1 3 27 / 18 359 / 234 WCH - Siemens
Domain 3 T1-water 3 24 / 15 402 / 302 WCH - Siemens
Domain 4 T2-water 3 24 / 16 361 / 257 WCH - Siemens

Multi-domain Fundus Image Dataset: For a fair compar-
ison with state-of-the-art DG methods, we evaluated our ap-
proach for Optic Cup (OC) and Disc (OD) segmentation on a
public multi-domain retinal fundus image dataset 1 [15]. The
dataset was collected from four public fundus image datasets
obtained by different scanners at different sites that have distinct
domain discrepancies in visual appearance and image quality:
Domain 1 is from the Drishti-GS [48] dataset containing 50
and 51 images for training and testing, respectively; Domain 2
is from the RIM-ONE [49] dataset containing 99 and 60 im-
ages for training and testing, respectively; and the Domain 3
and 4 are from REFUGE [50] challenge’s training and valida-
tion datasets, respectively, and both of them contain 320 and 80
images for training and testing.

To evaluate generalizability of OC/OD segmentation mod-
els in unseen domains, we followed the leave-one-domain-out
cross validation strategy in DoFE [15], where each time three
domains were used for training and the other domain was used
as the unseen testing domain. In total, there are 789 and 271 im-
ages for training and testing, respectively. The statistics of these
multi-domain retinal fundus images are summarized in Table 1.
For preprocessing, we adopted a series of basic data augmenta-
tions to enhance the diversity of training samples as conducted
by DoFE [15], and the images were randomly cropped with a
size of 256 × 256 during training.

Multi-domain Nasopharyngeal Carcinoma MRI Dataset:
We collected an in-house multi-domain Nasopharyngeal Carci-
noma (NPC) MRI dataset for nasopharynx Gross Tumor Vol-
ume (GTVnx) segmentation. It was collected from two hospi-
tals with four different imaging protocols [47] (i.e., four do-
mains): T1-wighted imaging, gadolinium contrast-enhanced
T1-weighted (CE-T1) imaging, T1 water imaging and T2 wa-
ter imaging, respectively. Images in Domain 1 were collected
from Sichuan Provincial People’s Hospital (SPPH) with slice
thickness of 6 - 7.75 mm, and images in Domain 2-4 were col-
lected from West China Hospital (WCH) with slice thickness of
3 mm. In total, there were 189 volumes each from a specific pa-
tient, and they were split to 114 for training and 75 for testing.
The corresponding slice numbers for training and testing were
1427 and 994, respectively. The volume and slice numbers for
each domain are detailed in Table 2.

For preprocessing, we unified the orientation of different vol-
umes into the standard RAI (right to left, anterior to posterior,
inferior to superior in the x-, y-, and z-axes, respectively). The
voxel intensity was clipped by the 0.1 and 99.9 percentiles of
each volume and then normalized to [0, 255]. Each volume

1https://github.com/emma-sjwang/Dofe

was firstly cropped along z axis based on the slices containing
GTVnx delineation, and then center-cropped with a 256 × 256
window in x-y plane. We used 2D networks for the GTVnx
segmentation in each slice and stacked the results into a 3D
volume for evaluation, and a leave-one-domain-out cross vali-
dation strategy was also employed during the experiment.

Implementation Details: Training and inference were im-
plemented on one NVIDIA GeForce GTX 1080 Ti GPU. The
anatomical representation Eana was implemented by U-Net [1]
as the backbone, with channel numbers of 16, 32, 64, 128 and
256 at five resolution scales, respectively. We set the channel
number of anatomical representations as T = 8. The segmenter
S consists of two convolutional blocks. The first block has a
convolution layer with a kernel size of 3 × 3 followed by BN
and LeakyReLU (sloop = 0.2), and the second block has a 1×1
convolution layer followed by Softmax to obtain a segmenta-
tion probability map. The style encoder Esty has convolutional
blocks each with a down-sampling layer to reduce the resolu-
tion, and the output of the last convolutional block is sent to
two fully connected layers to obtain the mean and variance of
a Gaussian distribution for the latent style code, and the size of
the latent style code was set as Z = 16.

The weights in the total loss function were: λ1 = 1.0,
λ2 = 0.001, λ3 = 0.01 and λ4 = 1.0 , respectively. The net-
works were trained with the Adam optimizer, and the learning
rate was initialized to 10−3 and decayed to 95% when the per-
formance did not improve in 8 epochs. In a mini-batch, the
image/slice number for each domain was 8 and 6 for the fundus
image and NPC-MRI datasets, respectively. The epoch number
was 200 and 400 for the fundus image and NPC-MRI datasets,
respectively. To measure the segmentation performance quanti-
tatively, we adopt the Dice score (Dice) and Average Symmetric
Surface Distance (ASSD) for evaluation.

4.2. Fundus Image Segmentation

4.2.1. Comparison with State-of-the-art DG Methods
For domain generalization study, we conducted leave-one-

domain-out cross validation on the multi-domain fundus image
dataset. We first considered all the available training domains
as a single dataset (i.e., ignoring the domain shift in training
set) and trained a U-Net [1] using a standard Dice loss, and
directly applied it to the unseen domain, which is referred to
as ‘Inter-domain’ and serves as a lower bound of the exper-
iment. Then, for each domain, we trained and tested the U-
Net [1] with the training and testing sets respectively, i.e., no
unseen domain involved, which serves as the upper bound for
DG and is referred as ‘Intra-domain’. For DG methods, we
compared our proposed CDDSA with four representative state-

7



Table 3: Comparison of Dice (%) by different DG methods on the multi-site fundus image dataset. CDDSA� means that the new style code for style augmentation
was randomly sampled from a Gaussian distribution rather than obtained by a random linear combination of style codes in the source domains.

Methods Domain 1 Domain 2 Domain 3 Domain 4 Avg
cup disc cup disc cup disc cup disc cup disc

Lower bound (Inter-domain) 74.38±12.96 96.67±2.04 77.71±20.84 85.05±14.67 79.72±9.51 90.01±5.81 86.63±8.52 89.55±3.26 79.61 90.32
Upper bound (Intra-domain) 83.35±13.99 96.10±1.88 81.53±9.42 94.62±3.01 87.57±7.59 95.91±1.85 88.88±7.10 95.58±1.98 85.33 95.55
BigAug [14] 82.36±11.74 93.73±9.29 75.45±15.01 87.83±11.17 84.32±9.45 91.99±10.72 85.32±7.50 92.97±6.58 81.86 91.63
DoFE [15] 80.25±10.84 95.61±1.45 78.97±14.80 88.74±4.58 84.81±7.71 92.81±2.63 86.65±6.39 93.46±2.43 82.67 92.66
FedDG [23] 79.84±13.55 93.50±4.11 76.57±13.95 88.74±4.91 84.23±6.80 93.73±3.22 85.33±10.19 94.03±4.14 81.49 92.50
DCA-Net [13] 82.16±12.23 94.39±2.94 80.63±15.58 91.50±2.78 84.48±7.77 91.63±4.38 87.11±12.67 93.05±4.98 83.60 92.64
Baseline 80.63±11.55 95.02±2.65 79.35±13.66 89.76±3.20 83.29±8.04 93.67±3.36 84.12±11.33 93.51±4.03 81.85 92.99
+Ldsct 80.64±11.94 96.11±2.95 80.13±17.39 88.27±1.23 85.20±8.06 92.36±2.59 86.33±9.12 93.36±2.60 83.08 92.53
+Lsaac 84.28±11.56 96.13±1.35 81.95±12.60 88.18±3.50 84.59±8.11 92.95±3.30 86.49±9.69 93.27±3.40 84.33 92.63
+Ldsct+Lsaac (CDDSA�) 85.53±11.37 96.74±1.70 76.39±17.45 88.25±6.91 84.60±7.76 92.34±4.08 86.56±9.75 92.63±3.39 83.27 92.49
+Ldsct+Lsaac (CDDSA) 85.75±12.31 96.79±1.53 81.04±13.63 89.71±3.60 86.94±7.94 93.25±3.55 86.86±8.97 94.44±3.96 85.15 93.55

Table 4: Comparison of ASSD (pixel) by different DG methods on the multi-site fundus image dataset.

Methods Domain 1 Domain 2 Domain 3 Domain 4 Avg
cup disc cup disc cup disc cup disc cup disc

Lower bound (Inter-domain) 22.35±9.74 6.47±3.80 15.77±20.21 18.25±19.60 12.30±5.82 12.33±5.03 7.45±4.60 9.27±2.62 14.47 11.58
Upper bound (Intra-domain) 16.04±6.65 7.84±3.87 13.10±7.68 8.55±5.80 8.41±5.02 6.32±4.02 6.07±3.41 5.46±2.48 10.91 7.04
BigAug [14] 17.91±10.11 8.67±4.08 22.33±15.26 19.77±6.69 13.51±7.67 14.46±4.96 8.90±5.02 8.77±6.63 15.66 12.92
DoFE [15] 17.16±9.40 7.62±2.38 15.28±12.94 14.52±5.36 10.73±6.22 10.11±5.11 7.18±3.23 7.60±3.64 12.59 9.96
FedDG [23] 18.97±12.82 7.83±3.11 15.34±9.33 13.74±6.79 12.21±5.57 9.71±5.63 9.21±6.62 8.15±5.89 13.93 9.86
DCA-Net [13] 17.19±7.64 9.32±4.70 12.39±12.32 10.46±3.23 11.28±5.21 11.32±5.54 7.37±6.51 7.22±4.75 12.06 9.58
Baseline 17.33±8.58 8.21±4.61 13.10±6.66 11.79±3.90 11.03±5.22 9.31±4.23 8.04±6.42 7.43±4.89 12.38 9.18
+Ldsct 18.21±8.05 7.52±5.85 13.33±13.43 14.10±13.50 10.09±5.42 9.98±3.11 7.30±3.88 7.03±2.57 12.23 9.66
+Lsaac 15.77±6.93 7.14±2.59 11.04±5.91 12.97±3.94 10.58±5.21 9.60±3.71 7.22±5.31 7.51±4.10 11.15 9.31
+Ldsct+Lsaac (CDDSA�) 14.85±6.87 6.78±3.47 15.35±12.98 14.61±12.51 10.72±5.25 9.92±4.07 7.35±4.44 7.75±3.77 12.07 9.77
+Ldsct+Lsaac (CDDSA) 14.65±8.39 6.54±3.74 12.91±10.79 13.06±8.60 9.38±5.40 9.32±4.11 7.28±5.85 6.87±5.03 11.06 8.95
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Figure 4: Visual comparison between our proposed CDDSA and BigAug [14], DoFE [15], FedDG [23] and DCA-Net [13] on multi-domain fundus image segmen-
tation.
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Table 5: Comparison between different activation functions used by the output of Eana for multi-domain OC/OD segmentation. Gumbel-H and Gumbel-S are two
variants of gumbel softmax that return discrete one-hot values and soft continuous values, respectively.

Metric Activation Domain 1 Domain 2 Domain 3 Domain 4 Avg
cup disc cup disc cup disc cup disc cup disc

Dice

Gumbel-H 82.29±11.97 96.46±2.11 78.67±18.79 86.21±5.06 85.40±8.14 93.36±3.19 87.89±7.67 93.22±3.16 83.56 92.31
Gumbel-S 82.88±11.28 96.71±1.65 80.22±13.76 89.11±3.52 83.20±8.90 92.59±4.91 86.41±9.88 94.39±3.53 83.18 93.20
softmax 85.22±10.46 96.94±1.26 80.72±16.09 88.42±12.16 85.22±7.43 93.13±3.75 85.34±10.07 93.23±3.78 84.13 92.93
tanh 85.75±12.31 96.79±1.53 81.04±13.63 89.71±3.60 86.94±7.94 93.25±3.55 86.86±8.97 94.44±3.96 85.15 93.55

ASSD

Gumbel-H 18.31±8.49 6.65±4.11 14.60±17.21 18.13±16.60 9.92±5.45 9.10±3.66 6.67±3.96 6.97±3.02 12.38 10.21
Gumbel-S 17.22±6.91 6.33±2.83 12.30±6.02 12.98±5.03 10.94±5.57 9.78±5.85 7.52±5.42 6.89±4.77 12.00 9.00
softmax 14.40±6.36 6.67±2.53 12.61±12.71 13.28±12.93 10.01±5.14 9.90±5.09 8.28±5.90 7.67±4.73 11.33 9.38
tanh 14.65±8.39 6.54±3.74 12.91±10.79 13.06±8.60 9.38±5.40 9.32±4.11 7.28±5.85 6.87±5.03 11.06 8.95

of-the-art approaches: BigAug [20] based on data augmenta-
tion, DoFE [15] based on domain-oriented feature embedding,
DCA-Net [13] based on domain composition and attention, and
FedDG [23] that is a federated learning-based domain general-
ization method.

Table 3 and Table 4 show the quantitative evaluation re-
sults of OC/OD segmentation in terms of Dice and ASSD,
respectively. Intra-domain achieved the highest performance
among the compared methods, with an average Dice of 85.33%
and 95.55% for the OC and OD across the four domains. In
contrast, the average Dice achieved by Inter-domain was only
79.61% and 90.32% in OC and OD segmentation, respectively,
showing the performance gap caused by domain shift. Bi-
gAug [20] obtained a slight improvement from Inter-domain,
suggesting that aimlessly conducting data augmentation in the
image domain has a limited performance. Among the compared
existing methods, DCA-Net [13] achieved the highest perfor-
mance, with an average Dice of 83.60% and 92.64% for OC and
OD, respectively. In contrast, our proposed CDDSA outper-
formed the existing methods, with an average Dice of 85.15%
and 93.55% for OC and OD, respectively. The average ASSD
obtained by our method was 11.06 and 8.95 pixels for OC and
OD, respectively, which also outperformed the compared meth-
ods, as shown in Table 4. Fig. 4 shows a visual comparison be-
tween our proposed CDDSA and BigAug, DoFE, FedDG and
DCA-Net for images from the four testing domains, respec-
tively. It shows that the segmentation results obtained by our
proposed CDDSA had boundaries that are closer to the ground
truth, while the other DG methods have more over- and under-
segmented regions than ours.

4.2.2. Ablation Studies
Effectiveness of Domain Style Contrastive Learning and

Style Augmentation: We conducted ablation studies to evalu-
ate the effectiveness of the components of our CDDSA frame-
work, where the baseline was only training Eana, Esty, Drec and
S with basic loss functions of Lseg, Lkl and Lrec, following
SDNet [19]. We use +Ldsct and +Lsaac to denote adding the
domain style contrastive learning and domain style augmenta-
tion with anatomical consistency to the baseline, respectively.
+Ldsct +Lsaac means our proposed CDDSA.

Quantitative evaluation results in terms of Dice and ASSD
of these variants are shown in the last section of Table 3 and
Table 4, respectively. The baseline’s average Dice across OC

and OD was 87.42%, and combining the baseline with Ldsct

improved it to 88.81%, indicating that encouraging the network
to obtain more discriminative style codes leads to better gen-
eralization performance. Baseline + Lsaac also improved the
two classes’ average Dice to 88.48%, and our method using
Ldsct and Lsaac further improved the average Dice to 89.35%
(85.15% for OC and 93.55% for OD), showing the extra im-
provement brought by the proposed style augmentation.

To additionally evaluate the effectiveness of our proposed
random linear combination for generating new style code dur-
ing style augmentation, we compared it with an alternative
method that randomly samples the style code from a Gaussian
distribution, which is denoted as CDDSA� in Table 3 and Ta-
ble 4. The results showed CDDSA� performed slightly worse
than CDDSA, but outperformed most existing DG methods,
proving that our proposed random linear combination was bet-
ter for style augmentation than randomly sampling the style
code from a Gaussian distribution.

Reconstruction and Style Augmentation Quality: Since
the decomposed anatomical representation fa serves as the in-
put of the segmentor S and the reconstruction decoder Drec, the
quality of the anatomical representation has an impact on the
performance of S and Drec. To explore the influence of differ-
ent formats of the anatomical representation on reconstruction
and segmentation quality, we compared four activation func-
tions at the end of Eana: 1) the gumbel softmax [51] returning
discrete one-hot values, which is referred to as Gumbel-H; 2)
the gumbel softmax returning continuous soft values, which is
referred to as Gumbel-S; 3) Softmax and 4) Tanh. Quantitative
comparison of these actuation functions in the fundus image
segmentation task is shown in Table 5. We found that Gumbel-
S obtained a better segmentation performance than Gumbel-H
(83.56% and 92.31% vs 83.18% and 93.20% of average Dice
score). Softmax and tanh further improved the model’s perfor-
mance. Notably, Tanh achieved the highest average Dice score
of 85.15% in OC and 93.55% in OD and the lowest average
ASSD (11.06 pixels in OC and 8.95 pixels in OD) among the
compared activation functions. The results show that using con-
tinuous soft values for anatomical representations led to better
segmentation performance, as soft representations are more in-
formative compared with binary representations [52].

To further investigate how the activation function used by
Eana affects the reconstructed images and style augmenta-
tion, we compared the original training image with the im-
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Figure 5: Visual comparison of reconstructed and augmented fundus images with different activation functions at the end of anatomy Encoder. The original images
are from domain 4. For each method, the first row (red rectangles) shows images reconstructed from the disentangled anatomical representation and style code, and
the second row (green rectangles) shows style-augmented images that are generated based on the anatomical representation from the original images and changed
style codes.

Table 6: Quantitative comparison of different DG methods on the multi-domain NPC-MRI image dataset for GTVnx segmentation.

Methods Domain 1 Domain 2 Domain 3 Domain 4 Avg
Dice (%) ASSD (pix) Dice (%) ASSD (pix) Dice (%) ASSD (pix) Dice (%) ASSD (pix) Dice ASSD

Lower bound (Inter-domain) 65.44±13.35 2.37±1.52 76.65±7.75 1.70±1.06 81.17±7.01 1.61±0.77 61.62±13.66 3.38±1.47 71.22 2.27
Upper bound (Intra-domain) 79.19±6.35 1.13±0.54 82.89±7.54 1.58±1.75 86.30±3.25 1.26±0.48 79.46±7.40 2.09±1.48 81.96 1.52
BigAug [14] 75.63±5.97 1.67±1.01 78.51±7.89 1.65±0.99 82.30±5.05 1.82±0.66 63.88±12.32 4.05±1.71 75.08 2.30
DoFE [15] 78.44±6.97 1.27±0.99 75.00±4.95 1.80±0.85 79.66±5.77 1.66±0.68 64.71±15.06 2.57±1.91 74.45 1.83
FedDG [23] 65.07±11.59 2.58±1.63 78.90±6.11 1.67±1.09 81.57±6.05 1.79±0.79 72.38±12.13 3.91±2.64 74.48 2.49
DCA-Net [13] 77.27±6.66 1.27±0.99 77.14±7.53 1.80±0.85 81.63±6.20 1.66±0.68 69.32±10.08 2.57±1.91 76.34 1.83
Baseline 76.63±5.74 1.53±1.23 77.93±5.99 1.41±0.72 82.77±4.65 1.55±0.55 62.71±11.63 3.07±1.91 75.01 1.89
+Ldsct 77.02±6.09 1.56±1.09 77.11±7.15 1.71±0.89 83.02±3.62 1.45±0.41 63.88±12.74 2.81±1.66 75.26 1.88
+Lsaac 77.74±5.67 1.35±0.82 76.33±8.37 1.66±0.83 83.23±5.38 1.44±0.56 68.43±12.92 3.45±1.99 76.43 1.98
+Ldsct+Lsaac (CDDSA�) 77.77±6.65 1.36±0.97 78.00±7.74 1.52±0.86 83.10±5.18 1.60±0.63 66.39±10.88 3.50±1.62 76.32 2.00
+Ldsct+Lsaac (CDDSA) 78.34±5.14 1.37±0.82 79.16±6.68 1.61±1.19 83.53±4.55 1.48±0.54 69.53±10.28 2.46±1.50 77.64 1.73
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Figure 6: Visual comparison between different DG methods for multi-domain NPC GTVnx segmentation.

age reconstructed from disentangled fa and fs and the style-
augmented image in Fig 5, where we show the differences be-
tween Gumbel-H, Gumbel-S and Tanh. First, for image recon-
struction (even rows), it can be observed that using Gumbel-H
only reconstructed coarse-grained images and only roughly re-
trained the overall content without detailed structures. Gumbel-
S achieved a better quality with more details than Gumbel-H.
However, the reconstructed images have some noticeable arte-
facts compared with the original images. In contrast, Tanh
obtained a much higher quality than Gumbel-H, and the re-
constructed images were closer to the original inputs in terms
of both anatomical structures and styles. Second, for style
augmentation (odd rows), Gumbel-H can not keep the same
anatomical structure after changing the style, and led to unreal-
istic images in the augmented domain, especially in cases 5, 7,
8 and 10 in the third row of Fig. 5. Gumbel-S has a better ability
to remain the anatomical structures, but the augmented images
have a lot of artefacts with unrealistic appearance. In contrast,
Tanh achieved very high quality in the style-augmented images
with realistic appearances. They have quite different styles with
shared anatomical structures compared with the original im-
ages, as shown in the last row of Fig. 5. The results show the
advantage of our proposed style augmentation strategy, which
can successfully generate new samples in an unknown domain
with anatomical structures unchanged, which is beneficial for
enhancing the model’s generalizability.

4.3. NPC GTVnx Image segmentation

4.3.1. Comparison with State-of-the-art DG Methods
For the multi-domain GTVnx segmentation task, we em-

ployed the same set of methods as in Section 4.2.1 for com-
parison, and the quantitave evaluation results are shown in Ta-
ble 6. First, Intra-domain (upper bound) achieved the highest
performance with average Dice of 81.96% and average ASSD
of 1.52 mm across the four domains. In contrast, Inter-domain
(lower bound) only obtained an average Dice of 71.22% and

ASSD of 2.27 mm. The performance gap between them was
over 10% in average Dice, indicating the large shift among the
different domains. All the four existing DG methods achieved
great improvements compared with the Inter-domain that does
not consider the differences across domains. DoFE [15] and
FedDG [23] had a similar segmentation performance, with av-
erage Dice score of 74.45% and 74.48%, respectively. Bi-
gAug [14] achieved an average Dice of 75.08%, indicating that
some augmentation strategies are beneficial for GTVnx seg-
mentation in cross-modality MRI images. DCA-Net [13] ob-
tained an average Dice of 76.34%, which outperformed the
other three existing DG methods. In contrast, our proposed
CDDSA based on domain-invariant feature learning obtained
higher generalizability, achieving an average Dice of 77.64%
and ASSD of 1.73 mm, which outperformed the state-of-the-
art DG methods.

Fig. 6 provides a visual comparison between our proposed
CDDSA and the four state-of-the-art DG methods on the multi-
domain NPC GTVnx segmentation dataset. Fig. 6(a) shows that
the 2D segmentation boundaries of our CDDSA are closer to
the ground truth than those of the other methods. The 3D vi-
sualization in Fig. 6 (b) shows that our CDDSA achieved high-
quality segmentation results, while the other DG methods have
more noises in the results.

4.3.2. Ablation Studies
Effectiveness of Domain Style Contrastive Learning and

Style Augmentation: Similar with multi-site fundus image
segmentation. We also proved the effectiveness of our proposed
domain style contrastive learning and style augmentation strat-
egy in multi-site NPC GTVnx segmentation. Quantitative re-
sults are shown in Table 6. The baseline, i.e., re-implementation
of SDNet [19] based on our network structures, obtained an
average Dice of 75.01%, and combining it with our domain
style contrastive learning Ldsct improved it to 75.26%. Com-
bining it with our domain augmentation method Lsaac achieved
an average Dice of 76.43%. In contrast, our proposed method
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Table 7: Comparison between different activation functions used by the output of Eana for multi-domain NPC GTVnx segmentation.
Activation Domain 1 Domain 2 Domain 3 Domain 4 Avg

Dice (%) ASSD (pix) Dice (%) ASSD (pix) Dice (%) ASSD (pix) Dice (%) ASSD (pix) Dice (%) ASSD (pix)
Gumbel-H 75.60±6.20 1.61±1.15 72.69±9.42 1.60±0.76 82.81±7.67 1.62±0.58 64.73±13.53 2.90±1.88 73.96 1.93
Gumbel-S 76.54±6.39 1.48±1.10 78.40±6.48 1.57±0.88 83.23±4.54 1.47±0.52 65.24±11.78 2.73±1.43 75.88 1.81
softmax 77.46±5.40 1.57±1.01 79.87±4.70 1.46±0.74 82.85±4.89 1.89±0.91 62.59±12.48 3.08±1.59 75.69 2.00
tanh 78.34±5.14 1.37±0.82 79.16±6.68 1.61±1.19 83.53±4.55 1.48±0.54 69.53±10.28 2.46±1.50 77.64 1.73
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Figure 7: Comparison of reconstructed images with different activation functions at the end of Eana. For each method, the first column shows the reconstructed
images based on the disentangled anatomical representation and style code, and the second column shows the absolute difference between the reconstructed and
original images.

Original Gumbel Hard Gumbel Soft Tanh

D
om

ai
n 

1
D

om
ai

n 
2

D
om

ai
n 

3
D

om
ai

n 
4

Original Gumbel Hard Gumbel Soft Tanh

Figure 8: Visual comparison of style-augmented images with different activation functions at the end of Eana.
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that uses Ldsct and Lsaac simultaneously improved the aver-
age Dice to 77.64%, which is the highest among the compared
variants and significantly better than the baseline (p-value <
0.05). Table 6 also shows that CDDSA performed better than
CDDSA� (77.64% vs 76.32%) in terms of Dice, indicating that
our style augmentation based on random linear combination of
the style codes was better than directly sampling style codes
from a Gaussian distribution for style augmentation.

Reconstruction and Style Augmentation Qualities: Sim-
ilar to Section 4.2.2, we compared four different activation
functions at the end of Eana to represent fa on the NPC-MRI
dataset. The corresponding NPC-MRI GTVnx segmentation
results are shown in Table 7. It can be observed that Gumbel-S
had a higher performance than Gumbel-H (75.88% vs 73.96%
in terms of average Dice). Using Tanh further improved the av-
erage Dice to 77.64%, which was significantly better than the
other activations.

Fig. 7 shows a visual comparison of these activation func-
tions in reconstructing the original image after disentanglement.
It can be observed that when Gumbel-H is used, the recon-
structed images have a large difference from the original im-
ages. Gumbel-S has a lower reconstruction error than Gumbel-
H. However, it is inferior to our method using Tanh, showing
that Tanh is more suitable to obtaining anatomical representa-
tion in disentanglement for high-fidelity reconstruction.

In addition, Fig. 8 shows a visual comparison of style-
augmented images when different activation functions are used
at the end of Eana. We found that all the methods can generate
new-style images based on the augmented domain style code
f̃s and the anatomical representation fa of the input. However,
Gumbel-H and Gumbel-S led to obvious artifacts in the aug-
mented images. In contrast, our method can change the style of
an input image while better retaining the anatomical structures.

5. Conclusion

In this paper, we present a Contrastive Domain Disentangle-
ment and Style Augmentation (CDDSA) framework to tackle
the domain generalization problem in medical image segmen-
tation. We introduce a GAN-free efficient disentangle method
to decompose medical images from multiple domains into
a domain-invariant anatomical representation and a domain-
specific style code, where a segmentor works on the anatom-
ical representation to achieve generalizability. To improve the
disentanglement and segmentation performance, we use a soft
representation for the anatomical representation based on Tanh,
and propose domain style contrastive learning to minimize the
similarity of style codes in different domains. Based on the
disentanglement, we propose a style augmentation strategy that
changes the style of an image with remained structure informa-
tion for augmentation, which can further improve the model’s
generalizability. Quantitative experimental results on a multi-
site fundus image dataset and a multi-domain NPC MRI dataset
showed that our CDDSA outperformed several state-of-the-art
multi-domain generalization methods. In the future, it is of in-
terest to apply our CDDSA framework to other multi-domain
medical image analysis tasks.
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