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ABSTRACT

Performance metrics for medical image segmentation models are used to measure the
agreement between the reference annotation and the predicted segmentation. Usually,
overlap metrics, such as the Dice, are used as a metric to evaluate the performance of
these models in order for results to be comparable.

However, there is a mismatch between the distributions of cases and the difficulty level
of segmentation tasks in public data sets compared to clinical practice. Common met-
rics used to assess performance fail to capture the impact of this mismatch, particularly
when dealing with datasets in clinical settings that involve challenging segmentation
tasks, pathologies with low signal, and reference annotations that are uncertain, small,
or empty. Limitations of common metrics may result in ineffective machine learning
research in designing and optimizing models. To effectively evaluate the clinical value
of such models, it is essential to consider factors such as the uncertainty associated with
reference annotations, the ability to accurately measure performance regardless of the
size of the reference annotation volume, and the classification of cases where reference
annotations are empty.

We study how uncertain, small, and empty reference annotations influence the value
of metrics on a stroke in-house data set regardless of the model. We examine metrics
behavior on the predictions of a standard deep learning framework in order to identify
suitable metrics in such a setting. We compare our results to the BRATS 2019 and Spinal
Cord public data sets. We show how uncertain, small, or empty reference annotations re-
quire a rethinking of the evaluation. The evaluation code was released to encourage fur-
ther analysis of this topic https://github.com/SophieOstmeier/UncertainSmallEmpty.git

1. Introduction

The performance of machine learning algorithms is assessed
by metrics. The optimal choice of metrics depends on the data
set and the machine learning task to guarantee that the predic-
tions accurately describe the intended phenomenon (Taha and
Hanbury, 2015). Metrics can be used in two different ways.
First, as the criteria that the models try to optimize as a loss
function. Second, as a way of validating and evaluating the per-
formance of the model. This work focuses on the latter, referred
to as performance metrics.

**Corresponding author:
e-mail: sostm@stanford.edu (Sophie Ostmeier)

Performance metrics differ in their characteristics. The corre-
lations between them determine the additional information re-
vealed. Therefore, the appropriate selection of a performance
metric for a specific task ensures consistency in model perfor-
mance between development and deployment. For example,
physicians that potentially use model predictions for treatment
decisions of patients rely on an optimization and evaluation pro-
cess of the models towards reliable and meaningful clinical in-
formation.

For data sets with uncertain (inter-expert variability), small (
e.g. < 1% of organ), or empty reference annotations, common
metrics may penalize or misinterpret clinically meaningful in-
formation. Prior studies have described the importance of quan-
tifying uncertainty in the reference annotation (Mehta et al.,
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Fig. 1(a) Row 1: Uncertainty: Non-contrast Computed To-
mography from an acute stroke patient within 16h. Row 2:
Segmentation of all experts. The segmentations of all experts
do not completely overlap.
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Fig. 1(c) Empty reference annotations: Row 1, Segmentation
of all experts is “empty”. Row 2, predicted voxel probabilities
(softmax output values) of the models (low to high probability
indicated by blue to red colors)). All colored pixels may be
“false positives”.

2022), the dependency of metric values on the segmentation
size and degree of class imbalance (Taha and Hanbury, 2015;
Liu et al.| 2021; |(Commowick et al., 2018)), the equal weight-
ing of all regions of misplaced delineation independently of
their distance from the surface (Nikolov et al.l 2018) or missing
definition for empty reference annotations (Commowick et al.}
2018; Maier-Hein et al.| |2022).

The failure to describe uncertain, small, or empty segmen-
tations may lead to irrelevant and misleading optimization and
evaluation procedures in segmentation models.

Here, we determine how to implement clinically meaningful
metrics for medical segmentation models with the UncertainS-
mallEmpty (USE)-Evaluator. We analyze the behavior of es-
tablished metrics on benchmark deep learning models trained
on four data sets with and without uncertain, small, and empty
reference annotations (in-house and public).

1.1. Uncertain Reference Annotations

While experts annotations may exhibit variations in the vol-
ume and location of segmented objects, we assume that each
expert possesses the highest level of human ability for the given
task and, as a result, their judgments are considered equally
valid (Jungo et al.,|2018). Identifying a superior expert who can
definitively determine the correctness among the experts would
require someone with even higher human ability. However, the
process of appointing such an overruling expert would necessi-
tate another individual with even greater abilities to make this
judgment, leading to an infinite loop. Consequently, in the con-
text of our study, we assume the absence of an overruling ex-
pert.

For volume agreement, the reference annotation’s classifica-
tion of a voxel can be true, and the segmentation of another ex-
pert or the prediction of the models can be false or vice versa.
In practice, the spectrum ranges from a worst-case to a best-
case scenario. In the best-case scenario, all false positives (¥ P)
are truly positives. In the worst-case scenario, all F'P are truly
FP. For example, in Figure [T(a)] the union annotation of an
acute stroke from experts A, B, and C (blue, green, and red) is
larger than the majority vote (green and red). Some blue vox-
els at the border of the segmentation might falsely or truly be
part of acute stroke (F'P or TP). Another example is shown in
Figure Experts reference annotation is empty (first row).
However, the prediction (second row) is not empty. Visual in-
vestigation shows an ambiguous lesion that was not segmented
by the experts making all voxels F'P but maybe truly 7P. The
underlying low signal-to-noise ratio of stroke on Non-contrast
Computed Tomography (NCCT) and the continuous transition
from healthy to pathological brain tissue inevitably prevent a
precise membership of these voxels.

For location agreement, the distance between voxels from the
reference annotation to another expert or prediction might be
longer or shorter. For example, in Figure[I(a)|the surface voxels
of the green voxels will have a different distance than the blue
surface voxels to the surface voxels of a predicted segmentation.

In the BRATS 2019 data set, we reproduce an underlying low
signal-to-noise ratio and a more continuous transition by using
the non-enhancing tumor segmentation on native T1 as refer-
ence annotation. We compare to a high signal-to-noise ratio
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setting with a more discrete transition by using the whole tu-
mor segmentation on T1, T1 enhanced, T2-flair, and T2 MRI
images and Spinal Cord white matter segmentation on T2 MR
images.

We propose the Uncertainty score (U-score) as a quantifying
measure of reference annotations uncertainty.

1.2. Small Reference Annotations

Depending on the clinical context, small reference annota-
tions may be defined as relative to the total size of the studied
body region. (e.g. less than 1%). For the brain, 1% is about
13 ml (Akeret et al., [2021). The distributions of reference an-
notation volumes vary across medical image data sets and seg-
mentation tasks (Figure (Bakas et all, 2018, [2017; Menze
et al., 2015} |Prados et al.,[2017).

We hypothesize that the distribution of reference annotation
volumes influences the value of metrics independently from the
model’s performance (Figure [I(a))(Maier-Hein et al 2022).
For example, an acute ischemic stroke patient with a suspected
large vessel occlusion undergoes emergent imaging to quantify
the extent of the irreversible brain injury. The stroke volume
is often quite small (1-5 ml in volume (Powers et al.| 2018))).
Models may segment a 1-2 ml lesion volume that has poor over-
lap with the segmentation by a neuroradiologist and have a low-
performance metric despite properly identifying the volume. A
slight difference in volume location within the brain is highly
unlikely to influence a physician’s decision to treat the patient.

We describe how the distribution of reference annotation vol-
umes produces different metrics values, irrespective of the level
of location and volume agreement between the model’s predic-
tions and the annotations.

1.3. Empty Reference Annotations

Images with empty reference annotations are described as
masks in which the object of interest could not be identified
by the annotators. The object might have been invisible at the
time of the segmentation (Figure|l(c)).

Segmentation of an object within an image is a different task
than a classification of an image. A classification task confirms
the presence or absence of an object in the image (image-level),
while a segmentation task assigns each voxel of the image to an
object class (voxel-level) (Maier-Hein et al.,[2022). An image-
level classification task can also be formulated as a segmenta-
tion task by checking if the reference and predicted masks are
empty. Therefore, when using a segmentation model in this
way, it is important for the performance metrics to capture be-
havior on empty masks. However, some metrics for image seg-
mentation return "NaN” or 0, if the model correctly predicts an
empty mask (e.g. Dice, Specificity, Sensitivity, loU).

For clinical deployment, images with empty reference an-
notation are possible and their presence is crucial information.
The predictions of segmentation models need to be optimized
and evaluated for correct image-level classification (Commow-
ick et al.l 2018)). For example, it is possible that a stroke lesion
in an early time window (0-4h after symptom onset) has a very
low signal and cannot be segmented on NCCT. In this case,
the reference annotation and the predicted segmentation should

both be empty and an image-classification metric should return
the optimal value. No visible and no predicted lesion would
result in a treatment decision in favor of endovascular therapy
(Powers et al.,[2018)).

We explore a potential solution by setting a volumetric
threshold tailored to each clinical context where voxel-wise
agreement is expected to go beyond clinical relevance. Be-
low the threshold, the agreement between the reference annota-
tion and prediction is automatically evaluated as an image-level
classification task (e.g. stroke present or absent in the image
USE-Evaluator).

1.4. Clinical Value

For a successful transition to clinical translatable challenge-
winning segmentation models, the focus on clinically meaning-
ful optimization and performance metrics for each clinical con-
text is crucial. Clinical value includes:

e Robustness toward uncertainty in the reference annotation
e Independence from the reference volume

e Reward of volumetric and location agreement between the
reference annotation and predictions

e Evaluation of correct classification of empty reference an-
notations and predictions

2. Metrics

2.1. Fundamentals

A 3D image consists of a voxel grid with width w, height
h, and depth d. We refer to the set of voxels as X with |X| =
wXxhxd=n.

A segmentation mask is a grid with the same shape as the
image. Pixels/voxels are assigned integer values indicating the
semantic class (e.g. organ, pathology) they belong to. In the
context of this publication, segmentation masks are either cre-
ated manually by human experts or, with an automatic algo-
rithm from an image.

A mask can be evaluated by the volume and location agree-
ment of the segmented object. On a voxel level, the agreement
between the reference mask, M, and the predicted mask, M,
can be measured with (i) voxel class agreement or (ii) spatial
distances between corresponding voxels.

For voxel class agreement, we use the assignment of vox-
els to classes, in the reference mask, as the true classes. The
model’s classification for each voxel results in a predicted mask.
Let K be the set of classes. We note that K completely partitions

the mask. Thatis, M = |J M* and M = |J M*.
keK keK
For a binary classification task (k € {0, 1}) a confusion matrix

of four cardinalities namely 7P, F P, false negatives (FN), and
true negatives (T N) can be defined, where TP+FP+TN+FN =
IX| (Table [2).


https://github.com/SophieOstmeier/UncertainSmallEmpty.git

Table 1: Definitions of Performance Metrics for Medical Image Segmentation

Category | Metric Abbr Usage - B Definition
Volume Volumetric Similarity AA) (Caradu et al., 2021} |de Vos et al., oy
2021} [Tulpin et al, 2020; Dewey] | 1 - L=t
et al.,[2019; Vania et al.,[2019)
Absolute Volume Difference | AVD (Amukotuwa et al., 2019; Brosch % Z |Vj - Vj|
etal2018) B J=1
Overlap Dice Similarity Coefficient Dice (Becker et al., [2019; Vania et al., TP
2019; [Brosch et al., [2018]) 2IXTP+FN+FP
TP
Jaccard Index, Intersection | IoU (Bertels et al., 2019) TP+FN+FP
over Union
TP
Recall = Sensitivity Recall (Vania et al.,[2019) TP+FN
TP
Precision Precision (Vania et al.,[2019) TP+FP
Distance Hausdorff Distance, q = | HD 95 (Huttenlocher et al.l {1993 [Kuijf] .
95th percentile et al| [2019; [Litjens et al.| 2014) max (2,(A, B). (B, A)) with
h,(A, B) = P" min||b - al
acA beB
and P = 95
) d(x8)+ 3, d(S.y)
Average Symmetric Surface | ASSD (Heimann et al., 2009; Janssens EQITI‘SEIS
Distance et al.,[2018} [Styner et al., 2008)
Surface Dice at Tolerance SDT (Nikolov et al., [2018; [Elguindi %
et al.,[2019;/Shusharina et al., [2020)
S nBHNE B
Boundary ToU BloU (Cheng et al., [2021) I(SNBHUES NBY)|
Accuracy2 ACC (Gautam and Raman, 2021 [Maier- R
lImalge- Hein et al |} [2022)) TPITN+FPIEN,
eve TP
classi Fi-score (equivalent to | Fj-score (Gautam and Ramanl, 2021; [Maier-| | 2TP+FP+FN;
fication' Dice)? Hein et al| [2022)
TP;
Sensitivity? Sensitivity | (Maier-Hein et al., 2022) TPi+FN;
TN;
Specificity? Specificity | (Maier-Hein et al., 2022) TNi+FP;
VI“E\X
Area Under the Curve? AUC ;{Ga}utam langol;;;nan, 2021; [Maier- %%dvthreshold
ein et al.,

! with threshold *subscript i indicates the image-level cardinalities

Table 2: Voxel-Level Cardinalities for a binary classification task
in which each voxel is assigned to one of the cardinalities depend-
ing on its mapping in the reference mask, M', and predicted mask,
M

A

M| MO
M' | TP | FN
M° | FP | TN

The volume, V, of the target object in the reference mask and
volume, V, in the predicted mask is defined as

V=|M'|xv=(TP+FN)xv 1))
V=|M'xv=(TP+FP)xv 2)

where v refers to the physical volume of each voxel.
For distance agreement, the distance between a voxel x and a
set of surface voxels S* is defined as

d(x,S%) = mingcgid(x, s°).

For a binary segmentation task with k € {0, 1}, the set of
voxels, S! € M, is defined as the surface voxels of the target
object in the reference mask, and $§1 C M as the surface voxels
of the target object in the predicted mask.

Metric definitions for common volume, overlap, and distance
metrics, that were used for the experiments, can be found with
their implementations on GitHub and in Table[T}

We note that the frequent class imbalance of 3D medical
image segmentation (|M'| << |M"|) limits meaningful perfor-
mance evaluation by any metric that includes TN (Specificity,
ROC, Accuracy, Kappa, etc.). Therefore, metrics that include
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TN in their function should be avoided. Overlap metrics mea-
sure T P relative to a combination of TP, FP, and FN. Overlap
metrics that exclude TN are Dice, Recall, and Precision. Vol-
ume metrics without 7N are VS (Volumetric Similarity) and
AVD (Absolute volume Difference).

We also note that the Jaccard index J (Intersection over
Union, IoU) and Dice D are equivalent and one can be derived
from one to the other using the following formula (Bertels et al.,
2019).

s, iy = 2L 3)
2 — D(M, M)

DM, M) = M 4)
1+ J(M, M)

The concrete choice for either one of these metrics depends on
the user or community preference(Maier-Hein et al.| [2022).

2.2. Surface Dice at Tolerance

Surface Dice is an evaluation metric introduced by (Nikolov
et al., 2018). It describes which portion of voxels on the sur-
face of the target object in the predicted mask have the same
spatial location as the surface voxels in the reference mask. For
that, it classifies the surface voxels into TP, FP, and FN de-
pending on their distance to the closest surface voxel in the ref-
erence/predicted mask. The contribution of individual voxels
to these terms is weighted by the estimated surface area that it
represents. The tolerable distance ¢ from the surface at which
a voxel still counts as a TP establishes a set of border voxels
B'. tis a variable that needs to be set according to the clini-
cal context and (estimated) inter-rater variability for the given
segmentation task.

|SEn Bk| +|s* N B

SDT = -
Sk +|s#|

k is the target object class. The tolerated distance can be
set depending on the task. A possible method to choose the
tolerated distance is to compute the distance between different
experts as an acceptable variability (e.g. ASSD Table[I). This
might lead to an optimization procedure with a realistic toler-
ance in which uncertainty within the voxel classification of the
reference mask is expected and acceptable.

The Boundary IoU with a distance d proposed by (Cheng
et al., 2021) can be converted to the Surface Dice at Tolerance
with tolerated distance ¢ by using Equ. [3] where d and 7 are
equivalent.

2.3. Uncertainty Score

We develop a score to estimate the uncertainty across a set £
of experts across the set C of cases. This score may be used as
an indicator of the uncertainty in the data set. Our score is built
around evaluating entropy, a measure of information contained
in samples, on a target region of each image.

We index cases using ¢ € C. We index the reference masks
and membership functions by expert e as M* and membership
functions as fe"(x). We consider the case where k = {0, 1}.

Our score will require counting over experts, classes, and
voxels. Let ﬂk(c, x) be the function that returns the number
of experts that puts voxel x of case c¢ in class k. Formally,
B (c, x) = |{ele € E, fX(c,x) = 1}]-

We compute the U-score over the set of voxels where at least
one expert classified the voxel as positive. We denote this set as
U=(Uﬂﬁ)

ecE

For a case, we compute its U-score as the average, over vox-

els, of the expert annotation entropy of the voxel. Formally

1
U-score = — entropy(x). 5)
U] ;} Py

With entropy computed as

Bie,x) B, x)
log .
|E| E|

entropy(c, x) = Z

k

We can compute the U-score of a dataset as the average U-
score over cases.

2.4. Voxel-level Class Imbalances

The class imbalance ratio (/R) is commonly defined as the
ratio between the cardinality of the majority class and the car-
dinality of the minority class (Zhu et al.||2020).

2.4.1. Class Imbalances of Segmentation

In this context of image segmentation, the /R is given by IR =
‘ Mma /uriry‘

An image segmentation task can be a perfectly balanced
voxel-level binary classification problem |[M'| = |M°|. How-

ever, it is often the case that the target object is small relative

to the image, that is [M'| << |M°| and % >> 1. This indi-
cates high class imbalance. This can result in even very sim-
ple models achieving many true negatives on |M°| with a low
false positive rate (Table [2). Since the number of background
voxels in medical images may vary (due to scanner settings,
and image processing) we aim to control the considered back-
ground voxels in a consistent way. We do so by restricting the
region of interest to either an organ or the immediate body cav-
ity. Background voxels in this region of interest are referred to
as MO7egion  For example, for stroke and brain tumor this would
be the brain, for the gray matter in the spinal cord this would be
the total spinal cord. We then get

|M0,regi0n|

2.4.2. Image-level Class Imbalances

In the realm of image classification, we denote the class im-
balance ratio as /R;. When considering reference and predicted
volumes that fall below a clinically reasonable threshold (i.e.
1ml for the NCCT and BRATS models), the significance of seg-
mentation performance diminishes. Images that are correctly
or incorrectly classified below this threshold are designated as



Table 3: Data set properties

Data set Target Multiple|USE' | Positive [Negative
Object Labels Cases’ | Cases’

NCCT* ischemic v v v v
core

BRATS 2019 |non- - v v v
enhancing
tumor

BRATS 2019|whole - - v -
tumor

Spinal Cord |gray v - v -
matter

I USE= uncertain, small and empty reference annotations,

2 cases with the target object present in the image,

3 case without the target object or below a volume threshold present in the
image

4 NCCT= Non-Contrast Computed Tomography

TN; or FN; respectively. As a result, we derive the equation:

_ TP; + FN;

IRj=— -
TN; + FP;

)
with an optimal value of 1. Here, the positive cases (i.e. patients
with a stroke larger than 1ml), represented by T'P; + F N, serve
as the majority class, while the negative cases (i.e. patients with
a stroke smaller than 1ml), represented by TN; + FP;, serve as
the minority class. Visual examples illustrating TN;, FN;, TP;,
and FP; can be observed in Figure

3. Methods

3.1. Data Sets

To evaluate metrics for models trained on uncertain, small,
or empty reference annotations we use several data sets (Table

B).

A de-identified dataset of 200 NCCT images of patients
with an acute ischemic stroke from the DEFUSE3 trial (Al-
bers et al., |2018) was provided to three neuroradiologists 4, 4,
and 5 years of experience in neuroradiology (B.V.,A.M.,J.J.H.)
(study design https://clinicaltrials.gov/ct2/show/
NCT02586415). The experts were instructed to segment ab-
normal hypodensity on the NCCT that corresponds to acute is-
chemic brain injury. Detailed instructions and videos, as well
as an oral explanation of the task, were given. Any missed le-
sions or missed slices were not corrected. The experts’ masks
were fused by a majority vote to form the reference mask. In
addition, 156 institutional NCCT images were added of patients
who were scanned with suspicion of stroke but were confirmed
on follow-up Diffusion-weighted MR imaging not to have a
stroke.

The BRATS 2019 public data set was used to reproduce and
compare results and included 345 MRIs of high and low-grade
glioma patients (Bakas et al., 2018} [2017; Menze et al., 2015).
One to four experts segmented the brain tumors followed by a

consensus procedure. The reference masks had four target ob-
jects; “background”, “edema”, “non-enhancing”, and “enhanc-
ing”. We used this data set to train two segmentation tasks (i)
with the target object “non-enhancing” tumor on only T1 and
(i1) with the target object whole tumor, defined as the union over
“edema”, “non-enhancing”, and “enhancing” target objects, on
T1, T1 contrast-enhanced, T2-Flair and T2.

The Spinal cord data set is a public data set with 40 annotated
MRIs of 40 healthy patients from 4 different hospitals and an-
notated by 4 experts per case. The annotations include the white
and gray matter of the spinal cord on T2(Prados et al.| [2017).
The experts’ masks were fused by a majority vote to form the

reference mask.

3.2. Data Partition

For each segmentation tasks the cases were randomly divided
into 5 folds that consisted of 80% training and 20% test exam-
ples. The default self-configured nnUNet was used to train all
folds for each segmentation task. All analyses were done on the
aggregated 5 test sets for each segmentation task (Supplemental
material, Figure|[6).

All models shared the same training schedule with 500
epochs, Stochastic gradient descent with Nestov momentum of
0.99, the initial learning rate of 0.01 with linear decay, and over-
sampling of 33% for the target lesion.

3.3. Models

3.3.1. Deep Learning models

We chose the 3D full-resolution nnUNet as our deep learning
framework (Isensee et al.| 2021)). For fairness and ease of com-
parability, we let all models undergo the same training schedule
and did not modify hyperparameters.

The default configured model included a patch size of (1 x
28 x 512 x 512) and spacing of (3.00, 0.45, 0.45), Dice and
Cross-Entropy loss function, seven stages, two 3D convolutions
per stage and a leaky ReLU as activation function.

For the NCCT ischemic core segmentation task, the model
input was the NCCT image (356 cases) to output a predicted
mask for ischemic brain tissue.

For the first BRATS 2019 segmentation task, the model input
encompasses only the T1 image (345 cases) to simulate a lower
signal-to-noise ratio and the output was the predicted mask for
the non-enhancing tumor. For the second BRATS 2019 seg-
mentation task, the model input included all available MR se-
quences images (345 cases) to output the predicted mask of all
tumor parts.

For the Spinal cord gray matter segmentation task (40 cases),
the model input was a T2 image to output a predicted mask of
gray matter.

3.3.2. Random model

To demonstrate that this trend is independent of the model,
we analyze the behavior of the Dice on a model that randomly
labels voxels.

Our objective is to investigate the impact of target object size
on the Dice score. As the class imbalance ratio increases, the
Dice score tends to decrease, creating difficulties in comparing
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Fig. 2: Example of true positives (7 P;), true negatives (T'N;), false positive (F P;) and false negative (F'N;) cases for the NCCT and BRATS
data set for a threshold of 1ml.



model performance across different levels of class imbalance.
However, we aim to demonstrate that this relationship is also a
general property not tied to a single task.

Consider a binary segmentation model that decides each
voxel’s membership in the predicted mask randomly with a bi-
ased coin toss . We will show this by deriving the expected Dice
score Ep for images drawn from a random model and showing
that the trend observed empirically matches the trend in this
theoretical model (Supplemental material 8.1}). It is cleaner to
parameterize this random model using the expected portion of
voxels that are positive. We refer to this as p and note that it can
be directly computed from the class imbalance ratio p = ﬁ.

3.4. Evaluation Tool

All evaluations were performed using the USE-Evaluator in-
spired by (Nikolov et al.| |2018; Isensee et al., |2021) (Table E])
The source code can be applied to folders with reference anno-
tation and prediction mask in .nii.gz format and produces a .xslx
file with sheets for all studies, the means, medians, and image-
level classification with bootstrapped 95% confidence interval.
A threshold flag can be set as a lower volume threshold for the
segmentation and image-level classification evaluation. If the
reference or predicted volume is below the threshold, a case is
excluded from the segmentation evaluation but included as a
negative case for the image-level classification evaluation.

3.5. Evaluation of Reference Annotations

We analyzed the variability among different experts’ annota-
tions masks, available for the NCCT and the Spinal cord data
set, with the evaluation tool described in Section To es-
timate uncertainty we compute the U-score (Equ. [5) and the
median inter-expert agreement, and the median agreement to
the majority vote (majority-expert) with the metrics presented
in Table [Tl

3.6. Evaluation of Model Performance

Performances were measured with the evaluation tool (Sec-
tion [3.4) with a threshold of 1ml for the NCCT and BRATS
2019 data sets. For other medical applications, this might de-
pend on the clinical task the model is trained on. With the
evaluator tool, this threshold can be easily changed. For the
Spinal cord data set, we did not set a threshold, because the
clinical concern in healthy populations would not be about the
non-existence vs. existence of gray matter in the spinal cord.

3.7. Evaluation of Metrics

We evaluate the segmentation metrics by correlation to un-
certainty among the expert’s masks, independence from ref-
erence volume, the reward of volumetric and location expert-
model agreement, and evaluation of correct classification of
empty reference masks or small reference volumes cases using
the R package corrplot (Version 0.92).

To compute /R and p for the stylized model, we defined the
regions as the entire brain for the NCCT and BRATS datasets,
and the entire spinal cord for the Spinal Cord dataset (Section
[2.4.1). The BET_CT was used to extract the brain on NCCT
according to (Schell et al.,2019). For the extraction of the brain

on MRI, the HD_BET was applied (Isensee et al., [2019). For
extraction of the spinal cord, the union of the gray and white
matter in the majority vote reference mask was used.

For the evaluation of empty reference and predicted masks,
we explore possible image-classification metrics and their rela-

tionship to IR;, where we refer to p; = ﬁ.

4. Results and Discussion

In this section, we will examine the relationship between
metric values and varying prevalence of uncertain, small, or
empty reference annotations.

In Section 4.1 we measure uncertainty in reference annotations.
We conduct empirical validation of the U-score across data sets
and its correlation with inter-expert variability and consensus
among the majority of experts.

In Sectiord.2] we analyze all models’ performances with each
metric across data sets in order to provide a first indication of
trends between dataset properties and metric values that we ex-
plore in further detail in the following section.

In Sectiond.3| we use the correlation of metric values to provide
empirical evidence of the link between the uncertain, small, and
empty reference annotations and the metric values.

For the Dice metric, we demonstrate that the link is even more
general by illustrating that the relationship found empirically is
present in the evaluation of a stylized theoretical model (Sec-
tion[4.3.2).

Finally, we explore trends in image-classification metrics in
section [4.4]

Upon negative tests for normal distribution, results for each
metric are shown as medians with 95% confidence interval
(bootstrapped, 1000 repetitions), and the correlations are re-
ported as Spearman’s rank correlation coefficient.

4.1. Evaluation of Reference Annotations of Experts

Variability in reference annotations can impact the model’s
segmentation performance and solutions have been discussed
(Karimi et al., 2020). However, we focus on a better choice
of evaluation techniques to enhance the clinical applicability of
segmentation models. In this regard, we first propose the in-
troduction of the U-score as a measure of uncertainty for ref-
erence annotations (Section[I.1). We found an overall median
U-score is significantly different between the NCCT ischemic
core and the Spinal cord gray matter segmentation task (0.87 +
0.05 vs. 0.39 + 0.02, respectively). These findings are consis-
tent with common measures such as inter-expert and majority-
expert agreement (supplemental material, Table [7)(Yang et al.|
2023). Inter-expert and majority-expert agreements use pair-
wise expert comparison and rely on common segmentation met-
rics to indirectly estimate uncertainty in reference annotations.
The U-score directly measures uncertainty.

We found varying distributions of reference volumes across
the studied data sets (median (IQR) volume 6 (2-21)ml, 10 (4-
25)ml, 89 (48-146)ml and 0.7 (0.3-1.1)ml for NCCT, BRATS
2019 non-enhancing tumor part segmentation task, BRATS
2019 whole tumor segmentation task and Spinal Cord gray mat-
ter segmentation, respectively.
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Fig. 3: Scatter plot with log-scale and confusion matrix with a
volume threshold of 1ml dividing 7P and TN from FP and FN.
For the NCCT data set(violet points), almost all incorrectly classi-
fied cases are too small, namely F'N, whereas for the BRATS non-
enhancing tumor data set the opposite is the case. None of the cases
of BRATS whole tumor are incorrectly classified.

We further conduct correlation analyses between the U-score
and reference volumes to common metrics outlined in Section
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4.2. Evaluation of Segmentation and Image Classification Per-
formance

The performance of the NCCT ischemic core and BRATS
2019 non-enhancing tumor models, trained using uncertain,
small, and empty reference annotations, shows similar results
across volume, overlap, and distance metrics. However, the
BRATS 2019 whole tumor and Spinal cord model, trained on
larger and more certain reference annotations, consistently out-
performs both the NCCT and BRATS 2019 non-enhancing tu-
mor model (Table [).

For image classification, the total number of cases with ref-
erence volumes < 1ml is 192 cases for the NCCT ischemic
core segmentation task, 36 cases for the BRATS 2019 non-
enhancing tumor part segmentation task and O cases for the
BRATS 2019 whole tumor . We visualize these class distri-
butions and report the confusion matrix (Figure [3)(Maier-Hein
et al.| [2022). Reference Volumes >1ml cluster around the iden-
tity line, whereas references <1ml are more spread. Sensitivity,
F1-score and ACC of the NCCT model are lower compared to
the BRATS non-enhancing tumor models, however, the AUC
and Specificity are higher for the NCCT models (Table[3)). Fur-
ther analysis between data set properties and common image
classification metrics analysis are summarized in Section[4.4]

4.3. Evaluation of Segmentation Metrics

We use the relationship between metrics and dataset proper-
ties to identify evaluation strategies robust of the presence to
uncertain, small or empty reference annotations. These recom-
mendations are backed by the empirical data (Figurdd) and we

1.00
0.751
3
A 0.50
0.251 >
.o’ = BRATS non-enhancing
3 = BRATS whole tumor
== NCCT ischemic core
= Random model
Spinal Cord
0.00 1
0.00 0.05 0.10 0.15 0.20
p

Fig. 4: Dot plot with regression lines for the Dice over class im-
balance p for all segmentation models, where p = ﬁ. The gray
areas represent 95% confidence intervals. The dark red dots and
line represent the random model with the expected Dice £, de-
fined The dashed line indicates the expected Dice E, for a

balanced reference mask.

provide an intuition of how the given formula provides the ob-
served effect (TabldT).

We categorize the segmentation metrics according to volume,
overlap, or distance agreement. We then analyze every segmen-
tation metric based on the characteristics outlined in section[T.4l
If not otherwise specified, all numbers in this section refer to
the Spearman correlation coefficients presented in Figure 5] A
summary of the core results and guidelines for the choice of
metrics are provided in Table 6]

4.3.1. Volume Agreement

VS:

Robustness toward Uncertainty and Independence from Ref-
erence Volume:

Conceptually, VS allows location variability of reference vol-
umes (Table @, because F'N and F P voxels can be anywhere in
the image without an influence on the value of VS. This charac-
teristic becomes particularly valuable when dealing with uncer-
tain reference annotations. Assuming that a source of FP and
FN is uncertainty (see Section [I.I); VS does not penalize un-
certainty as long as their difference has a linear relationship to
reference volumes. This is because VS normalizes to the sum
of the reference and predicted volume. Our findings support
this with a low correlation to uncertainty (-0.17 and -0.32 for
NCCT and Spinal Cord) and reference volume (across all data
set below 0.25). We conclude that VS value is less driven by
uncertainty or reference volume.

Reward of Volume and Location Agreement:

VS does not reward location agreement since VS measures
the relative relationship between FP and FN rather than their
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volume (V), while distance metrics (ASSD, HD 95, SDT) exhibit insignifi-

cant correlation.

AVD
Dice
Precision
Recall
ASSD
HD 95
SDTsmal
SDTarge

Uncertainty

X X X X X X X

>
=
- £
S T g S
2 z08 § =509
@ 3 o 0 = = 2
2 L 2 o o005
<> > < 00 @< I ononm
0.94 X XX X XX X X
X X X
-0.65/ 0.58|-0.59| 0.71 0.57| 0.57
X0 -0.65 X7 062 X X X
0.58 | X 0.76 -0.92 -0.58 0.87 0.87 -0.72
X |-0.59| 0.62 -057) X X | X | X | X
0.71 0.76 -0.57 -0.80 -0.58 0.73| 0.73
X1 -092 X -0.80 0.60 -0.85-0.85 0.70
X |-0.58/ X |-0.58 0.60
0.57 0.87 X 073 -0.85 1.00 -0.79
0.57 087 X 073 -0.85 1.00 -0.79
X X -072 X 0.70 -0.79 -0.79

Fig. 5(d) Certain and small reference annotations (Spinal Cord gray mat-
ter): With the exception of Dice and AVD, there is a lack of correlation be-
tween the metrics and the reference volumes. Dice and SDT exhibit a high
correlation with uncertainty.

Fig. 5: Correlation matrices of Spearman coefficient for data sets and metrics. X indicates insignificant correlations with p > 0.05. Overall
correlation patterns among metrics (e.g. Dice and SDT) remain similar over the data sets. The correlation between Dice and uncertainty,
as well as the reference volume, is reproducible in all datasets, albeit to varying degrees.
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Table 4: Results of Segmentation Task Performance !

Categories | Metrics® NCCT BRATS 2019 BRATS 2019 | Spinal Cord
Ischemic core | Non-enhancing | Whole tumor | Gray matter
tumor

Volume VS 0.58 +0.09 | 0.78 +0.03 097 =0 092 +0.02
AVD 448 +1.17 | 441 +095 495 +0.85 | 0.08 +0.04
Overlap Dice 0.56 +0.04 | 0.60 =+0.04 093 =+0.01 | 0.83 +0.02
Precision 0.69 +0.11 | 0.66 =+0.06 094 =+0.01 | 0.89 +0.03

Recall 020 +0.08 | 0.58 +0.05 093 =+0.01 | 0.79 +0.03
Distance ASSD 234 +041 | 250 =£0.15 094 =+0.07 | 0.12 +0.02
HD 95 830 +1.51 | 800 =+0.55 287 +03 0.50 +0.05
SDT small® | 0.61 +0.05 | 0.56 +0.03 093 +0.01 | 0.84 +0.08
SDT large* | 0.86 +0.03 | 0.85 +0.02 099 =0 0.84 +0.08

! median + 95% Confidence Interval (bootstrapped)

2 VS = Volumetric Similarity, AVD = Absolute Volume Difference,ASSD = Average Surface Distance, HD 95 = Hausdorff Distance 95th percentile, SDT = Surface

Dice at Tolerance

3 Surface Dice at Tolerance with 2mm for NCCT and BRATS 2019 models and 0.05mm for the Spinal Cord model
4 Surface Dice at Tolerance with 5Smm for NCCT and BRATS 2019 models and 0.1mm for the Spinal Cord model

Table 5: Results of Image-Classification Task'

Categories Metrics® NCCT BRATS 2019 BRATS 2019 | Spinal Cord
Ischemic core | Non-enhancing | Whole tumor | Gray matter*
tumor
Class imbalance | p; 0.46 0.89 1.00 -
Image-level Sensitivity | 0.67 +0.04 | 093 +0.01 1.00 +0 -
Specificity | 0.98 +0.01 | 0.53 +0.09 -
F,-score 0.79 +0.03 | 094 =+0.01 1.00 +0 -
ACC 0.84 +0.02 | 0.89 +0.02 1.00 +0 -
AUC 091 +0.02 | 0.86 =+0.03 -

! median + 95% Confidence Interval (bootstrapped)
2 1ml threshold,

3 ACC=Accuracy, AUC=Area under the Curve
“healthy cohort, no threshold for pathology set

distance. VS is therefore suitable if volume agreement is the
major clinical concern, as for some applications in neuroimag-
ing, like stroke (Powers et al., 2018)).

In theory, VS may be less appropriate for clinical datasets
and segmentation tasks that heavily rely on spatial information,
such as those involving multiple sclerosis (Filippi et al., 2019).
However, our observations indicate a consistent moderate to
strong correlation with overlap metrics (e.g., Dice coefficient
ranging from 0.58 to 0.84) and distance metrics (e.g., SDTguan
ranging from 0.57 to 0.82), particularly in datasets where refer-
ence annotations are uncertain and small in size.

Reward of Agreement of Emptiness:

For cases with empty references and predicted masks, VS re-
turns the optimal value of 1. Therefore, VS is suitable for data
sets with expected empty reference masks. Nevertheless, we
recommend setting a threshold for very small volumes (<1ml),
because the frequency of empty reference or predicted masks
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could screw the distribution of values compared to other met-
rics.

AVD:

Our findings suggest, no advantage of AVD over VS for data
sets with a small median of reference volumes and uncertainty.

In contrast to VS, AVD does not normalize to the sum of ref-
erence and predicted volumes. Larger reference volumes have
potentially larger volume differences, resulting in a notably pos-
itive correlation between AVD and reference volumes across all
data sets. In datasets with a wide spread of reference volumes
(Figure[1(b)), it is unclear whether a reduction of AVD as a met-
ric leads to slightly improved performance for large reference
volumes or substantially for small reference volumes. This am-
biguity can introduce bias when comparing model performance
within and across datasets, as evidenced by inconsistent corre-
lation patterns with overlap and distance agreement metrics in
our correlation analysis.



4.3.2. Overlap Agreement

Dice:

Robustness toward Uncertainty:

We observed that the Dice correlates more with uncertainty
compared to other metrics (-0.62 to -0.72). This indicates that
the Dice value is influenced not only by the extent of overlap
but also by the level of uncertainty.

In a theoretical context, let’s consider two scenarios. In the
best-case scenario, a model outperforms the experts (as deter-
mined by the majority vote of reference annotation) by correctly
classifying voxels. In this ideal situation, all F'P are T P, and all
FN are TN. However, the denominator contains the sum of
IM'| = TP + FN and [M'| = TP + FP (Table and would
disproportionately increase and lead to a lower Dice value. As
a result, the performance of the models is underestimated. In
the worst-case scenario, a model is inferior to the experts in
classifying voxels correctly; all F'P are truly F'P and all FN are
truly FN. The Dice value does not change. As a result, Dice
is biased toward the worst-case scenario. Hence, the Dice over-
penalizes overlap disagreement in the presence of uncertainty
between the experts’ masks with a lower value.

Independence from Reference Volume:

In our study, we consistently observed a positive correlation
between the reference volume and the /R across all datasets,
ranging from 0.40 to 0.56, with the NCCT dataset exhibiting
the highest correlation. We hypothesized that the size of the
target object affects the Dice value. More specifically, we in-
vestigated how the IR impacts the likelihood of a voxel being
classified as TP because the Dice primarily rewards accurate
voxel assignment to 7 P (%). To validate our hypoth-
esis, we analyzed the Dice value on a random model using the
parameter p (Section[2.4.T). The value of p can be directly cal-
culated from the /R and represents the probability of a voxel in
the prediction mask being classified as belonging to the target
object class (see Section [3.3.2)). We plot the Dice curve of the
random model (dark red line) and compared it to all data sets
(Figure [). If p is very low at 0.01 (1% of the brain), then the
expected Dice of the random model is 0.02. If p is 0.5 (50% of
the brain), the expected Dice is much higher at 0.5 (dashed line).
The regression lines for the random model, NCCT, and BRATS
non-enhancing tumor show a positive monotonic tendency of
the Dice values with higher p. This behavior is also present in
BRATS 2019 whole tumor and Spinal cord models with larger
p, but less (shallower slope of gray and orange lines).

We infer that a high imbalance ratio is more likely to pro-
duce lower Dice values. Location and volume errors for small
reference annotations may be more penalized than larger ref-
erence annotations, making the Dice a sub-optimal choice of
metric for data sets with small reference annotations and a wide
distribution of reference volumes.

Reward of Volume and Location Agreement:

The numerator of the Dice, which comprises 27 P, represents
the voxels assigned to both the reference and prediction masks.
The maximization of this value occurs when there is a high
agreement in terms of both location and volume between the
masks. We empirically see that the Dice rewards of volume and
location agreement with a consistent, moderate to strong corre-
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lation to VS and distance metrics across all data sets.

Reward of Agreement of Emptiness:

The Dice does not reward the agreement of emptiness between
the reference and predicted mask, but returns "NaN”. We found
a high number of cases in the NCCT data set with a Dice value
of 0. Investigation showed, that the Dice is zero if target ob-
jects are right next to each other and also zero if they are far
from each other, especially for small reference volumes. This
may lead to a disproportionate count of cases with Dice equal
to zero. Depending on the clinical context, very small reference
volumes (i.e. <1 ml) may be excluded from the evaluation of
segmentation metrics. This is done to avoid introducing bias to
the overall performance without obtaining meaningful informa-
tion.

Instead, we suggest image-classification metrics to evaluate
very small reference volumes or empty reference annotations
masks. For example, a case with V < 1ml may be better eval-
uated by image classification metrics than by a segmentation
metric. We implemented this idea with the USE-Evaluator,
where a lower volume threshold can be set that will exclude
studies with V < threshold and automatically initializes an
image-classification evaluation.

Recall and Precision:

Overall, Recall and Precision show similar behavior com-
pared to the Dice, but only capture certain aspects of overlap
agreement, and should be evaluated with other segmentation
metrics and in the context of the clinical question.

They differ in their consideration of F'P and FN in the de-
nominator. Precision rewards T P relative to the predicted vol-
ume, TP+ FP = IM 1|, and Recall TP relative to the reference
volume, TP + FN = |M"| (Table[l).

Especially Recall showed a correlation to uncertainty in the
NCCT and Spinal cord data set (-0.60 and -0.43). One can ar-
gue that in the setting of high-class imbalance, the models learn
to classify voxels with high entropy less frequently to |M"], be-
cause the chance of being correct if classified to | M| is higher,
increasing FN (Leevy et al., [2018). We then get a higher de-
nominator for Recall, thus an underestimation of uncertain ref-
erence volumes.

Similarly to the Dice, Recall, and Precision do not reward the
agreement of emptiness. We, therefore, recommend setting a
threshold for very small reference volumes and evaluating such
cases with image-classification metrics.

4.3.3. Distance Agreement

Overall, we found that distance metrics, especially SDT,
show favorable behavior in the context of small and uncertain
reference annotations, while still exhibiting a consistent corre-
lation to metrics that measure volume and overlap agreement.

SDT:

Robustness toward Uncertainty and Independence from Ref-
erence Volume:
SDT assigns cardinalities to surface voxels based on their
proximity to the nearest surface voxel in either the reference
or predicted mask. This approach emulates the behavior of
the Dice while serving as a distance metric. However, con-
trary to Dice, if the reference and predicted volumes are right



next to each other and within the border region B’, SDT still
measures this agreement. This becomes particularly advanta-
geous when a lower signal caused by pathophysiological factors
and modality-related effects introduces more uncertainty in the
outer regions of the target object compared to its inner regions,
i.e. like a stroke on NCCT. Compared to the Dice, we found
weaker correlations to both the U-score and reference volume
for the NCCT data set (-0.37, respectively).

In the Spinal cord data set, there is a correlation between
SDT to the U-score. Image analysis of a few distinct cases with
high uncertainty and low SDT value revealed deteriorating im-
age quality in the cranial and caudal slices of the spinal cord,
which is suggested to be the primary source of this relationship.

Reward of Volume and Location Agreement:

SDT shares similarities with overlap measures, due to its re-
liance on the spatial relationships among surface voxels and the
direct influence of the object size on |B'|. Consequently, SDT
captures both the agreement in location and volume, which is
further supported by its strong correlation with volume and dis-
tance metrics across all data sets (0.52-0.87).

Reward of Agreement of Emptiness:

In the presence of empty reference masks, all distance metrics
return ”inf”. Similarly, to overlap metrics, distance metrics may
need a lower bound volume threshold to evaluate empty and
small volume reference masks with image-classification met-
rics.

HD 95 and ASSD:

Given that HD 95 and ASSD are metrics based on distance
(as discussed in Section @), which implies that if the model
predicts a slightly different volume, HD 95 and ASSD should
still yield values close to an optimal result, primarily capturing
location accuracy and allowing volume error.

Since HD 95 and ASSD are distance-based metrics (as ex-
plained in Section[2.T), they primarily assess location accuracy
while accommodating for volume errors. Values are close to the
optimal even if the model’s predicted volume slightly deviates
from the reference.

Consistent with this, we found that HD 95 and ASSD exhib-
ited mostly no correlations with reference volumes and uncer-
tainty. However, similar to SDT, we observed a correlation be-
tween ASSD and the U-score in the Spinal Cord data set, likely
attributed to low image quality in the cranial and caudal slices
in distinct cases.

Overall, HD 95 and ASSD show robustness to uncertainty
and reference volume, however, mostly measure distance agree-
ment. Even though they empirically show strong correla-
tions with volume and overlap metrics across all datasets, SDT
should be preferred as a metric, if volume and location agree-
ment is crucial.

4.4. Evaluation of Image-level classification Metrics

We propose a simultaneous evaluation of image-level clas-
sification metrics besides segmentation metrics to ensure an
unbias evaluation of model performance when trained on data
sets that include cases with uncertain, small, or empty refer-
ence annotations. Negligible reference volumes below a certain
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threshold may only be evaluated with image classification met-
rics

For example, Liu et al. only included positive cases and pro-
posed image classification metric, LDR (Liu et al.|2021)). How-
ever, the agreement in image-level classification is not assessed
in the case of empty reference masks or small-volume cases.
Clinical tests are unlikely to exclusively be performed on pa-
tients with a present pathology.

Data sets with negative cases or cases with negligible refer-
ence volumes would be more representative of the distribution
of patients in clinical practice. This can have major implica-
tions for the idea of mostly positive or ambiguous cases being
read by a radiologist and negative cases confidently evaluated
by an algorithm (Wang et al., [2021).

In this section, we briefly highlight how a class imbalance be-
tween positive and negative/small-volume cases also introduces
evaluation biases for inter-models and inter-data set compari-
son.

Sensitivity, Specificity, and F;-score: Whether to use
Specificity or Sensitivity as the primary image-classification
metric depends on the clinical context. For this study, we
found higher Sensitivity, Specificity, and F;-score associated
with higher p; (Supplemental material Figure[7). However, fur-
ther studies are needed for more general statements.

ACC: The ACC evaluates the agreement in image-level clas-
sification in the case of TN; and T P; (Maier-Hein et al., 2022)).
As for Sensitivity, Specificity, and F;-score, we found that a
higher ACC value is associated with higher p; (Supplemental
material, Figure[7).

AUC: AUC is a standard multi-threshold classification met-
ric to evaluate a predictor and is not defined for populations
where only one class is present (therefore only NCCT and
BRATS non-enhancing tumor) (Maier-Hein et al., [2022). As
the true discrete class in this setting is defined by the volume
threshold, the AUC reveals information on how well the mod-
els classify volumes. We found that AUC does not change with
pi, suggesting AUC is a more robust metric for unbalanced data
sets.

5. Limitations

The first limitation is that we evaluate metrics behavior and
reference annotation uncertainty in only three medical neu-
roimaging data sets and examine four different target objects.
We introduce methodologies aimed to be applied to a broader
range of medical imaging data sets, allowing for a comprehen-
sive examination of our findings. The second limitation is that
the choice of baseline models might influence the correlations
between metrics. In order to mitigate this, we choose nnUNet, a
model that is generalizable to many medical segmentation tasks
(Isensee et al., [2021)). Furthermore, correlation does not prove
causation. For example, the correlation between reference vol-
umes and uncertainty to the value of metrics does not imply
that a higher reference volume value causes a higher metric
value. The correlation of Dice and reference volumes have been
found in previous works (Taha and Hanburyl 2015} |Liu et al.,



2021; |Commowick et al., [2018; [Maier-Hein et al., |2022) how-
ever analysis of data sets properties, in-depth analysis, quantifi-
cation of the uncertainty were missing.

6. Conclusion

We notice a mismatch between dataset properties in
challenge-winning segmentation models and cases encountered
in clinical practice. Some commonly used metrics (i.e. Dice
score) might not capture whether models’ performance gener-
alize well to the distribution of images encountered in clinical
practice. In particular, (i) the presence of uncertainty in refer-
ence annotations causes misleading values, (ii) small reference
volumes lead to unreasonable low metric values, (iii) empty ref-
erence annotations cause a return of "NaN”’, ’inf” or zero. For a
data set with uncertain, small, and empty reference annotations,
we suggest that model performance generalizes better to clini-
cal practice when evaluated by the Surface Dice at Tolerance.
We further proposed to set a lower volume threshold for very
small volumes or empty reference masks and use image-level
classification metrics such as AUC ([ USE-Evaluator).

It is crucial to evaluate the performance of the model using
multiple metrics that effectively encompass the specific objec-
tives of the clinical segmentation task. These objectives can
vary significantly across different areas of clinical practice. To
facilitate the selection of appropriate metrics, we recommend
referring to Table[6]

We highlight the difficulty of comparing models trained to
address different clinical problems. While uncertain, small, and
empty reference annotations require a rethinking of evaluation,
it also increases the value an algorithmic tool provides because
the underlying task is hard for human experts.
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8. Supplemental Material

8.1. Dice Score of the Random Model

We aim to show how the Dice score depends on the volume of
the target object, independently of the model performance. We
do this by showing that the trend of the Dice score, with respect
to volume, is present in the Dice score for a simple, random
model. Furthermore, we show that this trend is replicated in
multiple settings.

We define the random model for a parameter /R, as one
where each voxel is chosen to be positive in the predicted mask
with a probability IR and there are exactly IR x |MR°!| voxels
in the target object. Note that the expected number of predicted
positive voxels under this model is exactly IR x | MR,

Under this model, we can compute the expected Dice score,
Ep, across multiple draws. We use the standard combinations
notation, (Z) to denote the number of orderings where we flip b
heads from a coin flips. Note that by definition, TP + FN =
IR|MRO!| the size of the target object.

Ep(p) = 27 M Z D(TP,TN,FP,FN)Pr(TP,TN, FP,FN]

(®
where
2xTP
D(...) =
) (2><TP+FN+FP) ©)
and
TP+ FN\(TN + FP
Pl 1= TP+FP(| _ ) FN+TP (1
rl...] ( TP )( TN )><p (1-p) (10)
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Table 7: Reference Annotation Uncertainty: Inter-expert and Majority-expert Agreement

Categories Metric2 NCCT NCCT Spinal Spinal
Inter-expert!  Majority-expert' | Inter-expert! Majority-expert!

Uncertainty | U-score 0.87 +0.05 0.39 +0.02

Volume VS 0.50 +0.02 0.75 =+0.03 093 +0.01 095 =+0.01
AVD [ml] 1050 +2.11 425 +0.98 0.13 +0.02 0.10 =+=0.02

Overlap Dice 039 +0.05 0.67 =+0.04 0.84 +0.01 091 =+0.01
Precision 039 005 0.64 =+0.06 083 +0.02 095 =+0.01
Recall 041 =+0.04 091 =+0.02 085 +0.02 0.88 +0.01

Distance ASSD 475 +054 203 +023 0.11 +0.01 0.07 =+=0.01
HD95[mm] | 1673 +2.12 949 +1.15 050 +0.14 048 +0.13
SDT small® 040 +0.03 0.67 =+0.02 085 +0.07 093 =+0.04
SDT large* 059 005 0.83 =+0.03 085 +0.07 093 =+0.04

! per case and data set median + 95% Confidence Interval (bootstrapped)

2 VS = Volumetric Similarity, AVD = Absolute Volume Difference,ASSD = Average Surface Distance, HD 95 = Hausdorff Distance 95th percentile, SDT = Surface
Dice at Tolerances

3 Surface Dice at Tolerance with 2mm for NCCT and BRATS 2019 models and 0.05mm for the Spinal Cord model

4 Surface Dice at Tolerance with Smm for NCCT and BRATS 2019 models and 0.1mm for the Spinal Cord

e
Data set (NCCT, BRATS, Spinal cord) 0.8 — S
—
o 0.6
>
random split 5x folds <
>
0.41 Metricnames
ACC
- AUC
80% Training 20% Test 0.2 1 - F-score
examples examples - Sensitivity
Specificity
0.01
0.46 0.89 1.00
Evaluation Pi

Fig. 7: Line plot of image classification metrics value over p; for the
NCCT and BRATS 2019 non-enhancing tumor and whole tumor

data set, respectively
Fig. 6: Data Sampling and Partition of 5-fold-Cross-Validation
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