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Abstract—Nuclei segmentation is a crucial task for whole slide
image analysis in digital pathology. Generally, the segmentation
performance of fully-supervised learning heavily depends on
the amount and quality of the annotated data. However, it
is time-consuming and expensive for professional pathologists
to provide accurate pixel-level ground truth, while it is much
easier to get coarse labels such as point annotations. In this
paper, we propose a weakly-supervised learning method for
nuclei segmentation that only requires point annotations for
training. First, coarse pixel-level labels are derived from the
point annotations based on the Voronoi diagram and the k-means
clustering method to avoid overfitting. Second, a co-training
strategy with an exponential moving average method is designed
to refine the incomplete supervision of the coarse labels. Third, a
self-supervised visual representation learning method is tailored
for nuclei segmentation of pathology images that transforms the
hematoxylin component images into the H&E stained images
to gain better understanding of the relationship between the
nuclei and cytoplasm. We comprehensively evaluate the proposed
method using two public datasets. Both visual and quantitative
results demonstrate the superiority of our method to the state-
of-the-art methods, and its competitive performance compared
to the fully-supervised methods1.

Index Terms—Nuclei segmentation, Weakly-supervised, Point
annotation, Self-supervised learning, Co-training.

I. INTRODUCTION

Pathology slides contain abundant phenotypic information,
and are widely used to study the manifestations of disease by
analyzing cells or tissues under the microscope by patholo-
gists [1]. Nuclei segmentation is a crucial step in pathology
image analysis. The shape, size, density, and other indicators
of the nucleus are related to the diagnosis and treatment of
cancer [2, 3]. Different staining methods are used to increase
the contrast between the different structures for their visual
examination, where the most commonly used staining method
for nuclei analysis is hematoxylin-eosin (H&E) staining, in
which nuclei are stained blue-purple by hematoxylin (H-
component), and cytoplasm and stromal matrix are stained
red-pink by eosin (E-component) [4, 5], as shown in Fig. 1(a).
Besides, with the advent of dedicated scanners, slices can
be easily converted to digital pathology images, which are
convenient to store on computers for further processing and
analysis. Therefore, the wide availability of digital H&E
stained pathology images greatly facilitates researchers in

The first two authors contributed equally and asterisk indicates the corre-
sponding author.

1Code: https://github.com/hust-linyi/SC-Net

developing and validating advanced automatic pathological
image analysis methods with nuclei segmentation.

Traditional nuclei segmentation algorithms include water-
shed [6], thresholding [7], and other morphological opera-
tions [8], which usually require a series of pre-processing
methods such as defuzzification and contrast enhancement to
improve the image quality. In recent years, methods based on
deep learning have made significant progress [9-12]. A number
of algorithms based on models such as fully convolutional net-
works (FCN) [9] and U-Net [10] have been applied to medical
image segmentation tasks. Especially U-Net and its variants
have proven their effectiveness in nuclei segmentation [13-
16]. In addition, the contour-based method has been used to
predict more accurate nucleus boundaries [3, 11, 14, 17, 18],
which helps split the touched and overlapped nuclei.

Although the deep learning based segmentation meth-
ods have demonstrated promising performance, the fully-
supervised training of deep learning methods requires a large
amount of data with pixel-level annotations. Obtaining such
ground truth data is challenging as pixel-accurate annotation
is very time-consuming and requires professional clinical
knowledge. The limited availability of data with pixel-level
annotation thus makes nuclei segmentation still a challenge. To
conquer this problem, weakly-supervised methods have been
widely investigated, which significantly reduce the burden
of manual annotation, as they only rely on weak labels in
different granularities. Specifically, polygon labels were used
in [19] where the object detection response is propagated to
the segmentation mask. Scribble labels were used in [20] that
utilized a self-training strategy to propagate the weak labels.
Some studies [21, 22] attempted to use image-level labels
only for segmentation. However, due to the small size and a
large number of nuclei, these commonly used weak labels are
not effective for the task of nuclei segmentation. For example,
the polygon and scribble labels still require cumbersome
annotation labor, and the image tags cannot provide location
information for the enormous quantity of nuclei.

Point annotation can be viewed as the most efficient man-
ner for annotation, gaining increasing attention in cell/nuclei
segmentation. Existing methods [23-26] mainly encode the
point annotation into coarse pixel-level labels, such as point
distance maps [23], Voronoi labels [24], cluster labels [25], and
pseudo edge maps [26]. As shown in Fig. 1, these methods
typically inject the shape and texture prior knowledge of
nuclei into coarse pixel-level label. For example, the points
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(a) (b) (c) (d) (e) (f) (g)

Fig. 1. (a) H&E stained image; (b) H-component; (c) E-component; (d) fully annotated label; (e) Voronoi label; (f) cluster label; (g) inaccurate and incomplete
area of (e) and (f), compared with (d). In (e) and (f), the green, red, and black pixels denote the label of positive, negative and ignored area, respectively. In
(g), the yellow and blue masks denote the inaccurate and incomplete area, respectively.

are assumed to be around the center and the nuclei shapes
are nearly convex. Despite drastically reducing the annotation
cost and alleviating the data-imbalance problem of point
annotation, these methods still suffer from incomplete coarse
labels and inaccurate boundary information, as illustrated in
Fig. 1(g). Various methods have been proposed to eliminate
the distraction induced by the coarse labels, which can be
categorized into two classes: 1) multi-stage optimization to
refine the segmentation in a bootstrapping way [23, 24, 27];
2) adding additional constraints based on the local contrast
between nuclei and their surrounding cytoplasm [25, 26].
However, the additional constraints could introduce inaccurate
supervision, and a multi-stage learning strategy may suffer
from error accumulation (i.e., the global optimum cannot be
guaranteed).

To overcome the challenge of multi-stage optimization, one
potential end-to-end training solution is collaborative train-
ing (co-training). As a common method in semi-supervised
learning that jointly uses labeled and unlabeled data to im-
prove the generalization of the model through collaboration
among multiple learners [28], it has been broadly applied to
image classification [29], target recognition [30] and image
segmentation [31]. For medical image analysis, co-training has
been adopted for semi-supervised leaning [32] or consistency
learning in different views [30]. For cell segmentation, [33]
combined co-training with divergence loss to enlarge the
prediction difference between the two models. They further in-
troduced a divergence loss to avoid the self-deception problem,
i.e., the two networks overfitting to each other. However, the
divergence loss is in contrast to the fundamental loss and may
hurt the performance of the individual model. Moreover, when
the cell area has a low contrast or the cell shape is irregular, it
would be difficult to obtain a precise boundary. To address this
challenge, in this paper, we introduce an exponential moving
average (EMA) to periodically average pseudo labels in the co-
training process, and further combine them with coarse labels
to achieve a more stabilized and accurate cross-supervision.

Addressing the challenge caused by imposing additional
constraints, instead of directly treating the additional super-
vision as a golden standard, self-supervised learning (SSL)
provides a more effective way to exploit the implicit super-
vision. Recently, we have witnessed the advances of SSL in
natural image analysis[34-37], which can be categorized into
three types: contrastive learning [34, 35], clustering [32], and
consistency learning [37]. Extensive recent studies [38-40] in
pathology image analysis have demonstrated the effectiveness

of SSL techniques, which were originally proposed for natural
images (e.g., CPC [41], SimCLR [34], and MoCo [35]).
Subsequently, instead of straightforward extensions, recent
studies attempted to develop SSL methods addressing unique
problems encountered in pathology images, such as gigapixel
whole slide image (WSI) [39] and nuclei counting [42].
However, these contrastive-learning-based methods could suf-
fer from the opposite semantic labels [43] if the anchor is
located on the boundary of target tissues or cells, as well
as the severe data imbalance problem between the positive
and negative pairs. To address these problems, this paper
proposes a generative SSL method for nuclei segmentation
of the H&E stained pathology images. This custom-made
method benefites the nuclei segmentation network with an
auxiliary network, i.e., transforming the H-components into
the H&E images, which encourages the model to exploit the
relationship between nuclei and surrounding cytoplasm. In the
previous SSL methods [42-44], the network is pre-trained with
the pretext task, and then fine-tuned for the target task. The
discrepancy between the pretext task and the target task will
reduce the effect of self-supervision learning during model
transferring [38, 45]. Furthermore, the same network has to be
used for both tasks [46]. The proposed self-supervised setting
jointly train the pretext task and the target task in an end-to-
end manner, reducing the impact of task discrepancy.

In this paper, we aim at an end-to-end weakly-supervised
nuclei segmentation framework based only on point annota-
tions, as illustrated in Fig. 2. The primary idea behind the
method is label propagation where the original point labels
are propagated to the pixel-level labels in a coarse-to-fine
manner. Specifically, the proposed method consists of three
parts as follows. First, we convert the point annotations into
coarse pixel-level labels by training the initial segmentation
network based on the Voronoi diagram and the distance-aware
k-means clustering algorithm. The coarse pixel-level labels
have complementary information with respect to the point
labels, while also containing errors and uncertainties. Second,
to minimize the distraction caused by the incomplete coarse
labels, we design a co-training method, in which a pair of
networks supervise each other with the pseudo labels. In this
way, the two networks can mutually transfer knowledge to
each other and boost the performance. We periodically average
the pseudo labels in the training process using EMA to achieve
a more stabilized and accurate cross-supervision. Third, to
further explore the boundary information which is omitted
by the inaccurate coarse labels, we propose a self-supervised
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Fig. 2. The framework of the proposed method. (a) The pipeline of the proposed method; (b) The framework of SC-Net; (c) The process of pseudo label
generation. Lvor , Lclu, Lcot, Lcolor denote the Voronoi loss, cluster loss, co-training loss, and colorization loss, respectively.

representation learning method that transforms H-components
into the H&E images. Based on the fact that effective repre-
sentations are restored in the stain-separated H-components,
this nuclei-aware colorization proxy task can extract more de-
tails, including the correlation between nuclei and cytoplasm.
To this end, a novel end-to-end self-supervised framework
is designed, which sequentially combines a Segmentation
network with a Colorization network, named SC-Net. The
colorization network helps the segmentation network learn to
become implicitly self-aware of the nuclei boundaries from the
transformation from H-components into H&E images without
a need for manual annotations.

In addition, to balance the learning focus in the training
process, we introduce a cumulative learning strategy to inte-
grate the whole pipeline, which is designed based on two key
principles: 1) the learning focus of SC-Net should gradually
change from the representation learning (i.e., colorization) to
the target task (i.e., segmentation); and 2) with the improve-
ment of the segmentation network, the corresponding pseudo
labels become more trustworthy and should thus be assigned
a greater weight during training.

The proposed method is validated on two public
datasets, the Multi-Organ Nuclei Segmentation (MoNuSeg)
dataset [13, 47] and the Computational Precision Medicine
(CPM) dataset [48]. Extensive experiments consistently
demonstrate the effectiveness of each module and the superi-
ority of our model to the state-of-the-art methods. In summary,
the major contributions of this work are three-fold:

• We propose a novel weakly-supervised nuclei segmenta-
tion framework using only point annotations. The pro-
posed method propagates the point labels into pixel-level
labels in a coarse-to-fine manner.

• We design a co-training strategy, where a pseudo label

generation module, leveraging the EMA method to stabi-
lize the pseudo labels, successfully supplies incomplete
coarse labels.

• We propose a self-supervised method tailored for nuclei
segmentation in pathology images, with a novel SC-Net
to be self-aware of the relationship between nuclei and
cytoplasm.

II. METHODOLOGY

In this section, we describe the proposed weakly-supervised
nuclei segmentation method using point labels with label
propagation, as shown in Fig. 2(a), which consists of three
major modules: 1) nuclei segmentation based on coarse pixel-
level labels generated from the point labels; 2) a co-training
strategy based on exponential moving average (EMA) for
generating the pseudo labels, and 3) self-supervised represen-
tation learning with H-component based colorization. In the
following, we will detail each module.

A. Nuclei Segmentation with Coarse Labels

1) Coarse pixel-label generation from point label: In prac-
tice, directly using point annotation for the nuclei segmen-
tation could suffer from the data-imbalance problem due to
insufficient supervision information. To alleviate this issue, we
adopt the Voronoi diagram [24] and the k-means clustering
method [25] to generate Voronoi label and cluster label,
respectively. Specifically, for Voronoi labels, as shown in
Fig. 1(e), the image is divided into convex polygons based
on the point annotations with the assumptions that the point
labels are at the nuclei centers and nuclear shapes are convex
(even though these assumptions are not necessarily valid). For
cluster labels, as shown in Fig. 1(f), we utilize the k-means to
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obtain more supervision information of nuclei boundary and
shape as follows. First, we calculate the distance maps from
the point labels by performing distance transform between
each pair of points. Second, the distance maps are combined
with the original H&E stained images to conduct the k-
means clustering to divide all pixels into k = 3 clusters:
nuclei, background, and ignored area. The clusters that have
maximum and minimum overlap with the point annotations are
labeled as nuclei and background, respectively. The remaining
one is the ignored class. The introduction of an ignored area
allows pixels that cannot be easily determined as nuclei or
background with certainty not be forced into either class,
ensuring that the clustering can assign correct pixel labels as
much as possible [27]. Third, several morphological operations
are adopted to refine the cluster label, including connected
domain labeling, scattered region removing, morphological
opening operation, and binary hole filling.

2) Hematoxylin Component Extraction: According to the
principle of H&E staining [4], H-component of the original
pathology image can provide sufficient information for nuclei
segmentation and reduce the stain variance as well. Thus,
we apply the stain separation method [49] to separate H-
components and E-components from the original color images.

Specifically, stain separation is an estimation of the density
map from the colors at each pixel. The stain illumination
intensity in a certain spectrum depends on the tissue type and
amount of stain absorbed. This relationship can be captured
in the Beer-Lambert law [50] as follows:

x = x0 exp(−WD), (1)

where x and x0 denote the matrix of colors (i.e., three channels
corresponding to red, green, and blue) and illumination, re-
spectively, W denotes the stain color appearance matrix which
represents the color basis of each stain, and D denotes the
stain density map which represents the concentration of each
stain. And we utilize the non-negative matrix factorization
method [51] to estimate D and W . Then, the H-component
xh and the E-component xe can be extracted from the stain
color appearance matrix D as follows:

xh = x0 exp(−D[0, :]), xe = x0 exp(−D[1, :]). (2)

As shown in Fig. 1(b), although part of the color information
is lost in the obtained H-component image, the color contrast
between the nuclear and non-nuclear regions is enhanced.

3) Nuclei Segmentation with Coarse Labels: Using the
derived pixel-level coarse labels (i.e., the Voronoi and cluster
labels) could potentially achieve reasonable results for nuclei
segmentation. In this paper, we adopt the ResUNet [27] as the
segmentation network which integrates the residual blocks [52]
into the U-Net [10], as shown in Fig. 2(b). The segmentation
network is trained with cross-entropy loss with respect to the
Voronoi label and the cluster label:

Lvor = − 1

|Ωv|
∑
i∈Ωv

[vi · log yi + (1− vi) · log(1− yi)] , (3)

Lclu = − 1

|Ωc|
∑
i∈Ωc

[ci · log yi + (1− ci) · log(1− yi)] , (4)

where vi and ci denote the Voronoi label and cluster label of
nuclei at the i-th pixel, respectively; y = S(xh) denotes the
prediction of the segmentation network S with H-component
xh as input; and Ω∗ (i.e., Ωv or Ωc) is the set of non-ignored
pixels. As illustrated in Fig. 1, the Voronoi label is used to
supervise the network to separate overlapping nuclei, while
the cluster label could provide coarse shape and boundary
information for nuclei segmentation. In the following, we
elaborate the co-training strategy to further provide supervision
to the ignored area of the coarse cluster labels, denoted with
the blue color in Fig. 1(g).

B. Co-training for Incomplete Coarse Cluster Labels

With more “annotated” pixels in the cluster label, the net-
work can learn some nuclei regions near the point annotation
better, but it also can be misled by the error of the cluster
label. To address this challenge, we introduce a co-training
strategy to minimize the distraction of the erroneous cluster
label.

The co-training framework consists of a pair of segmenta-
tion networks Sa and Sb, which are trained by two subsets of
training data, i.e., Xa and Xb, respectively. To encourage the
two networks to learn different and supplementary information
from the data, we divide the training set X into two non-
overlapping subsets of equal size, i.e., Xa ∪ Xb = X and
Xa∩Xb = ∅. In the following, we detail the training procedure
of the first segmentation network Sa supervised by Sb. The
training of the second segmentation network Sb supervised
by Sa follows a similar procedure. In the training process
of Sa with the subset Xa, besides the aforementioned coarse
labels (i.e., Voronoi and cluster), we further utilize the pseudo
labels generated by Sb. To stabilize the co-training process,
instead of directly using the prediction of another network as
the pseudo label [53], we design a pseudo label generation
strategy as follows. First, we periodically calculate EMA of
the predictions to obtain more robust pseudo labels:

pn = αyb + (1− α)pn−1, (5)

where α is the EMA weight (which is empirically set to 0.1),
yb = Sb((xh)a) is the prediction of Sb with respect to the H-
component (xh)a, and n denotes the time step for the moving
average, which means how many steps the predictions are
averaged. To reduce the computational cost, we average the
predictions every γ epochs (which is empirically set to 3).
Then, the averaged predictions are used to determine the labels
for the ignored area of the cluster label:

pi =

{
ci if ci = 0 or ci = 1
pi ci = 2

(6)

where ci = [0, 1, 2] denotes the cluster label of the i-th pixel,
and the left-hand pi is the combination of the pseudo label and
cluster label. The cluster label of 0, 1, 2 means background,
foreground, and ignored area, respectively. We calculate the
co-training loss with the Kullback–Leibler (KL) divergence:

Lcot1 =
1

|Ω|
∑
i∈Ω

pi · log
pi

(ya)i
, (7)
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where pi is the i-th pixel of the pseudo label, Ω is the set
of all pixels, and ya = Sa((xh)a) denotes the predictions of
Sa with respect to the H-component (xh)a. With the training
set X split into two non-overlapping subsets Xa and Xb, two
segmentation networks are trained with the coarse labels (i.e.,
the Voronoi and cluster labels) by Xa and Xb, respectively,
the two networks could transfer knowledge to each other with
their respective pseudo labels, so as to compensate for the
missing supervision information. However, the segmentation
performance may still suffer from the inaccurate cluster label,
as shown in Fig. 1(g). Hence, our next step is to explore
an auxiliary colorization task that transforms H-component
images back into the original H&E stained images from which
more precise nuclei boundaries can be obtained.

C. Self-supervised Nuclei-aware Colorization

To exploit nuclei boundary for segmentation network, we
design a self-supervised visual representation learning method
tailored for nuclei segmentation in pathology images by image
colorization based on the H-component. The proposed pipeline
consists of two U-Nets in a sequential order, as shown in
Fig. 2(b), which first generates the probability map of the
nuclei from the H-component image, followed by a coloriza-
tion network that reconstructs the original H&E image from
the probability map. Note that the segmentation procedure
can be explicitly trained by the Voronoi label Lvor and the
cluster label Lclu in Eq. (3), as well as the co-training loss in
Eq. (7), while the colorization procedure can be trained in an
unsupervised manner that converts the H-components to the
H&E stained images. Besides, the segmentation network and
the colorization network are connected by the probability map
of the nuclei, which achieves an end-to-end training and the
colorization task would implicitly promote the nuclei represen-
tation learning of the segmentation network. The colorization
loss is computed between the predicted and true images as:

Lcolor =
1

|Ω|
∑
i∈Ω

∥C (S (xh))i − xi∥22 , (8)

where xi denotes the i-th pixel of the original H&E stained
image, Ω denotes the set of all pixels, C(·) denotes the
prediction of the colorization network, and S(xh) denotes the
probability map generated by the segmentation network from
the H-component image xh extracted from x. By solving this
proposed colorization pretext task, the segmentation network
can capture more low-level features from the H-component
image, and model the relationship between the nuclei and
cytoplasm in an implicit way.

D. Integration

The proposed method integrates the knowledge learned by
the different modules under a cumulative learning framework.
Specifically, adaptive trade-off parameters (i.e., α and β) are
adopted to control the weights of different losses. The final
loss can be formulated as:

Ltotal =LSC1 + LSC2

=Lvor1 + Lclu1 + αLcot1 + βLcolor1+

Lvor2 + Lclu2 + αLcot2 + βLcolor2,

(9)

where LSC1 and LSC2 denote the loss of each SC-Net in
the co-training procedure. Considering that the quality of
pseudo labels will be gradually improved during training, the
weight of the co-training loss should be increased accordingly.
Hence, following [54], the trade-off parameter α is set as

α = η
(

N
Nmax

)2

, where N and Nmax are the current epoch
and the total number of training epochs, respectively, and η
is a constant. On the other hand, the training focus should
gradually change from the representation learning (coloriza-
tion) to the target task (segmentation), the trade-off parameter
β should gradually decrease to facilitate the segmentation task

as β = ϵ
(
1− N

Nmax

)2

, where ϵ is a constant.

III. EXPERIMENTS AND RESULTS

A. Datasets

We evaluate our proposed method on the Multi-Organ Nu-
clei Segmentation (MoNuSeg) dataset and the Computational
Precision Medicine (CPM) dataset. Both datasets have pixel-
level annotation of the nuclei, and we obtained the point
annotation by extracting the point roughly around the center
of each mask as [23-25, 27].

MoNuSeg is a public dataset obtained by annotating the
pathology images for tumors in different organs, which con-
sists of H&E stained images captured at 40x magnification
downloaded from the cancer genome atlas (TCGA).2 It con-
tains 30 training images and 14 test images, each with the
size of 1000 × 1000 pixels. We randomly select 6 images
in the training set for validation. The training data contains
approximately 22,000 nuclei with boundary fully annotated,
and the test data contains around 7,000 annotated nuclei.

CPM contains 32 images with the size of 500 × 500 or
600 × 600 pixels, scanned at 40× magnification. It contains
four types of tumor, i.e., non-small cell lung cancer, head and
neck squamous cell carcinoma, glioblastoma multiforme, and
lower grade glioma. For each type of tumor, we randomly
select one image for validation and two images for testing,
thus all the images are divided into 20 images for training, 4
images for validation, and 8 images for testing.

B. Implementation Details and Evaluation Metrics

For data preprocessing, we crop the training images to
patches of 250 × 250 pixels with an overlap of 125 pixels
and the testing images to patches of 224× 224 pixels with an
overlap of 80 pixels. All the training patches are then randomly
cropped to 224 × 224 pixels, zoomed, flipped, and rotated
before feeding to the models. The backbone used is ResNet-
34 [52] pre-trained on ImageNet dataset [55]. We train the
network with the learning rate reduced by a factor 10 every 30
epochs with an initial value of 1×10−3. The Adam optimizer
is adopted, with weight decay 5 × 10−4. The loss function
weights η and ϵ are empirically set as 1 and 0.1, respectively.
During the inference stage, we only use the segmentation
network producing the segmentation probabilities, and discard

2https://www.cancer.gov/tcga
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the colorization network. The two trained models with the
lowest loss on validation set are integrated to give an output.

Following [27], We select four commonly used metrics to
evaluate our method, including two pixel-level metrics (i.e.,
pixel accuracy and F1 score) and two object-level metrics
(i.e., objective-level Dice coefficient (Diceobj) [56], aggregated
Jaccard index (AJI) [13]). It is worth noting that Diceobj is
often used to evaluate the overlapping between the prediction
and ground-truth, and AJI is a widely accepted method to
quantify the instance-level segmentation performance [47, 57].
Following [3, 58], we also adopt three evaluation metrics to
evaluate our approach and other methods, including Detec-
tion Quality (DQ), Segmentation Quality (SQ), and Panoptic
Quality (PQ).

C. Results and Comparison

1) Comparison with Weakly-Supervised Methods: We com-
pare our method with several representative weakly-supervised
nuclei segmentation methods. Table I presents the segmenta-
tion results of several state-of-the-art weakly-supervised meth-
ods [20, 23, 24, 26, 27, 42], of which [20, 42] have no released
code, and we reimplement the methods with the same back-
bone and hyper-parameters for a fair comparison. It is obvious
from Table I that our method achieves superior segmentation
performance compared with other weakly-supervised methods,
and the improvements to Diceobj , AJI , and PQ are significant.
In Table II, we provide the organ-wise segmentation results of
the proposed methods. It can be seen that the performance on
breast images is inferior to other organs.

It is interesting to observe that these methods achieve differ-
ent performance on the two datasets. For example, the method
of [26] achieves unsatisfactory performance on MoNuSeg,
which it works well on CPM. The reason may be that the
MoNuSeg dataset is more challenging than CPM, in which
the nuclei are more densely distributed and the background is
more complex. The method of [26] mainly relies on the edge
information of nuclei extracted from the Sobel filter, which
is hard to split the touching nuclei. In contrast, the methods
of [20, 23, 27] are based on the Voronoi diagram that splits
the point annotation into multiple convex polygons, which is
intrinsically able to handle the touching nuclei.

We believe that the superior performance owes to the
proposed co-training strategy and the colorization proxy task.
Compared with [20, 42], which perform self-training with
nuclei size and quantity, our method utilizes the co-training
strategy in which the two models mutually facilitate each
other in a bootstrapping way, so as to gradually improve the
segmentation results. Compared with [23, 24, 27], which rely
heavily on the derived ambiguous labels (i.e., the Gaussian
point masks, the Voronoi label, and the cluster label), our
method further adopts the auxiliary task of colorization to ex-
tract the unique color and texture information of H&E stained
images, thereby acting as effective supervision information of
shape and boundary of nuclei, guiding the segmentation task.
In addition, using the gray-scale images obtained by extracting
the hematoxylin component as inputs alleviates the require-
ments of additional boundary supervision, however our method

(a) (b) (c) (d) (e)

Fig. 3. Nuclei segmentation results of several variants of the proposed
method. (a) Original H&E images; the ablation settings of (b), (c), (d), and
(e)correspond to Models A, B, C, and D in Table III, respectively. Yellow, red,
and green denote true positive, false positive, and false negative, respectively.
White arrows indicate the significant differences.

can still accurately identify the nucleus boundary without
introducing the contour map for edge refinement [26]. Using
the H-component as input could potentially reduce the affect of
color variations [59], we therefore did not perform additional
staining normalization/augmentation in our experiments. In
addition, our method greatly reduces the annotation efforts
as shown in a study [27] that point annotation reduces 88%
annotation workload compared to full pixel-wise annotation.

(a) (b) (c) (d)

Fig. 4. Image colorization. (a) The input of the model with H-component;
(b) The predicted segmentation result; (c) The predicted colorization result;
(d) The H&E stained image.

2) Ablation Studies: To investigate the impact of the pro-
posed co-training and colorization methods, we validate the
effectiveness of each module on the MoNuSeg dataset. Con-
sidering that Voronoi labels provide more shape supervision
information than point annotation, we regard the model that
jointly uses the point annotation and the Voronoi label as the
baseline, and mainly evaluate the improvement of each module
upon this baseline in Table III. Model A utilizes only point
annotation and Voronoi labels with cross-entropy loss. For
a fair comparison with co-training, we employ two separate
models which have the same architectures for co-training and
average the predictions of the two models in inference. Model
B further adopts the cluster label. It can be seen that the
cluster loss is beneficial in segmenting overlapping nuclei,
improving the Diceobj from 60.20% to 72.48% and the AJI
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TABLE I
COMPARISON WITH OTHER WEAKLY-SUPERVISED METHODS WITH POINT ANNOTATION.

Model
MoNuSeg CPM

Acc F1 Diceobj AJI DQ SQ PQ Acc F1 Diceobj AJI DQ SQ PQ
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Yoo te al. [26] 86.51 72.11 56.68 29.03 43.97 72.21 31.86 90.50 79.81 72.46 49.42 61.04 73.63 45.10
Tian te al. [24] 88.01 71.47 63.96 40.51 50.67 67.19 34.12 87.87 71.74 64.39 42.11 42.86 63.03 27.06
Xie te al. [42] 91.19 77.56 72.51 51.69 68.82 72.50 49.97 89.96 75.87 70.28 49.40 59.49 70.87 42.68
Qu te al. [27] 91.52 76.76 73.24 54.32 69.72 71.28 49.84 89.90 76.56 71.17 50.91 64.10 70.66 45.69
Cha. te al. [23] 91.04 74.18 71.70 53.69 69.40 69.84 48.75 88.57 70.69 66.44 45.92 57.06 67.80 39.20
Lee te al. [20] 91.13 77.05 73.44 54.20 72.03 71.80 51.78 89.85 75.80 70.82 50.26 65.37 69.75 45.99
Ours 91.44 77.64 74.41 56.20 73.27 72.48 53.19 91.01 79.97 73.73 51.69 68.42 72.18 49.66

TABLE II
THE SEGMENTATION RESULTS OF DIFFERENT ORGAN ON MONUSEG.

Organ Acc F1 Diceobj AJI DQ SQ PQ
(%) (%) (%) (%) (%) (%) (%)

Bladder 90.74 79.99 76.95 58.76 74.19 75.49 56.00
Brain 94.19 80.10 78.01 61.63 81.87 71.61 58.59
Breast 88.01 73.34 69.20 49.33 64.69 67.50 43.66
Colon 93.17 75.60 73.88 56.51 72.81 71.48 52.05
Kidney 91.72 78.01 75.55 57.91 76.80 73.38 56.40
Lung 90.05 76.69 72.53 54.84 71.82 73.36 52.83
Prostate 93.76 79.08 75.76 57.04 74.46 74.34 55.37

TABLE III
ABLATION STUDY OF THE PROPOSED METHOD. THE ✓INDICATES THAT
THE CORRESPONDING LOSS (I.E., VORONOI LOSS Lvor , CLUSTER LOSS
Lclu , CO-TRAINING LOSS Lcot , AND COLORIZATION LOSS Lcolor ) IS

INCLUDED IN THE TOTAL LOSS.

Model Lvor Lclu Lcot Lcolor Acc (%) F1 (%) Diceobj (%) AJI (%)

A ✓ 87.91 62.86 60.20 43.01
B ✓ ✓ 90.60 77.39 72.48 51.77
C ✓ ✓ ✓ 91.26 77.64 72.87 52.96
D ✓ ✓ ✓ ✓ 91.44 77.64 74.41 56.20

from 43.01% to 51.77%, which indicates that simply using the
point annotation and the derived Voronoi labels cannot provide
sufficient supervision for the nuclei segmentation due to the
lack of boundary and area information. However, the cluster
labels generated by the k-means algorithm cannot separate
close nuclei which would introduce distraction to the training
process, as shown in Fig. 1(f). To address this challenge, Model
C utilizes the co-training strategy that the two models facilitate
each other in a bootstrapping way to eliminate the distraction
brought by the cluster labels. As expected, co-training brings
a consistent improvement in all metrics, including an 1.19%
increase to AJI. We believe that co-training compensates for
the loss of supervision information in the uncertain regions
in the cluster label, and the probability map with EMA by
another model provides more precise and robust supervision in
the nuclei boundary. Visualization of the segmentation results
can be found in Fig. 3, and it can be seen that with the co-
training strategy, the model can achieve more accurate results,
especially in the nuclei boundary area. Model D involves
colorization as a proxy task to implicitly learn to be self-
aware of the nuclei boundary. Instead of directly coloring
the H-component (Fig. 4(a)) to the H&E map (Fig. 4(d)),

we use the segmentation probability map (Fig. 4(b)) as the
input of the colorization network, which can help us to boost
the segmentation accuracy. The experimental result shows that
integrating the colorization tasks could not only improve the
Diceobj by 1.54% and AJI by 3.24%, but also promote Acc by
0.18% without dropping F1 score, proving that the colorization
task has a significant guiding effect on nuclei segmentation.
In Fig. 4(c), the improvement of colorization in the nuclei
boundary area can also be observed. In general, the four
modules used in our method have complementary advantages.
By minimizing the weighted sum of the four losses, the
proposed framework can distinguish between nuclear and non-
nuclear to the greatest extent.

3) Comparison with Fully-Supervised Methods: We com-
pare our weakly-supervised method with five fully-supervised
methods that are trained with the completely-annotated nuclei
masks, such as ResUNet [27], U-Net [10], FCN [9], PSP-
Net [60] and DeepLab [61]. The segmentation results are
shown in Table IV. It can be seen that ResUNet achieves
the best performance with 80.23% in F1 score and 58.93%
in AJI3. And with only point annotation, our method achieves
competitive performance with 74.41% in Diceobj and 56.20%
in AJI, outperforming three out of the five fully-supervised
methods, which verifies the effectiveness of our method.
We also report the performance of several state-of-the-art
methods [3, 11, 13, 14, 62-65] on MoNuSeg and CPM
dataset. It can be seen that there still exists non-negligible
performance gaps between the fully-supervised and weakly-
supervised methods.

D. Analyses of Training-Set Split Strategies

To evaluate the effect of the data split strategy of the two
models, we conduct a series of experiments with different
overlaps of the two subsets, and the results are shown in
Table V. We investigate three data-split strategies: completely
non-overlapping, partially overlapping, and completely over-
lapping. Note, the size of subsets without overlap (i.e., overlap
ratio of 0%) is a half of the subsets with complete overlap (i.e.,

3Note that for a fair comparison, we use the binary labels instead of instance
labels, and discard the tricks to separate the touching nuclei (e.g., test time
augmentation (TTA), model ensemble, multi-branch framework, heavy-weight
backbone, post-processing steps). The fully supervised ResUNet achieves
58.93% in AJI, outperforming the baseline CNN3 [13] and DIST [18] by
a margin of 8.10% and 2.95%, respectively.
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TABLE IV
COMPARISON OF THE PROPOSED WEAKLY-SUPERVISED METHOD WITH

FULLY-SUPERVISED METHODS.

Methods MoNuSeg CPM
F1 (%) AJI (%) F1 (%) AJI (%)

FCN [9] 73.92 54.58 80.39 47.88
PSP [60] 73.64 53.54 79.91 47.89
DeepLab [61] 74.45 54.39 80.28 48.61
U-Net [10] 75.75 57.38 81.36 55.16
ResUNet [27] 80.23 58.93 81.50 55.63

CNN3 [13] 76.20 50.83 - -
DIST [18] 78.63 55.98 - -
Micro-Net [14] 81.90 60.90 85.70 66.80
Hover-Net [3] 82.60 61.80 86.90 70.50
BRP-Net [62] 82.10 64.22 87.70 73.10
StarDist [63] 82.20 61.90 - -
RCSAU-Net [64] 82.00 61.90 88.00 72.70
CDNet [65] 83.16 63.31 88.0 73.26

Top 5 solutions in MoNuSeg challenge.

CIA-Net [11] - 69.07 84.16 66.48
BUPT.J.LI - 68.68 - -
pku.hzq - 68.52 - -
Yunzhi - 67.88 - -
Navid Alemi - 67.79 - -

Ours 77.64 56.20 79.72 51.32

TABLE V
EFFECT OF DIFFERENT TRAINING-DATA-SPLIT STRATEGIES.

Overlap Acc (%) F1 (%) Diceobj (%) AJI (%)

0 91.44 77.64 74.41 56.20
20% 91.31 77.32 73.59 54.69
40% 91.42 77.28 73.51 54.65
60% 91.25 77.01 72.57 53.05
80% 91.41 77.84 73.61 54.13
100% 91.04 77.54 73.17 53.02

overlap ratio of 100%). It can be seen that the best result is
achieved when the two subsets do not overlap at all, and a
partial overlap outperforms the complete overlap. We believe
that for two identical models that are co-trained, the same data
makes the image features learned by the two models the same,
resulting in no mutual supervision effect. However with non-
overlapping training sets, the two models can obtain additional
complementary information by learning from different images,
and effective mutual supervision benefits each other. The
greater the difference between the two subsets, the stronger
the effect of mutual supervision.

E. Impact of the Perturbation in Point Annotation

In clinical practice, due to the time constraint, pathologists
cannot exactly put the annotation point at the center of a
nucleus. We carry out experiments to investigate the impact of
point perturbation to segmentation performance. To simulate
the actual annotations, we perform a uniform random shift
within different ranges of the generated point annotations.
Several examples are shown in Fig. 5 illustrating that the small
shift makes the points not too far from the center, but there are

(a) (b)

Fig. 5. The visualization of shifted annotation points. (a) and (b) are patches
from two images. Yellow, red and blue points are the central points, points
offset by four pixels and eight pixels, respectively.
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Fig. 6. Quantitative results with different shifts in point annotation. (a)
Accuracy of point annotations and cluster labels; (b) Object-level metrics
of segmentation results (Seg) and cluster results (Clu).

still some cases that the points are close to the boundary or
even outside the nuclei. The number of points falling outside
of the nuclei increases as the shift increases. Fig. 6(a) gives a
quantitative illustration that as the shift increases from 0 to 20
pixels, the ratio of point annotations being within the nuclei
decreases from 98.66% to 39.54%. Obviously, the offset of the
points reduces the quality of the coarse labels, especially the
accuracy of the nuclei in cluster labels is reduced from 85.46%
to 49.72%. We train the models with the point annotations
obtained by different shifts and calculate two object-level
metrics. As illustrated by the changing trends of Diceobj and
AJI versus the shifts in Fig. 6(b), the segmentation accuracy
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Fig. 7. Quantitative results with different ratio in point annotation.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 8. Instance segmentation results with different shifts of point annotations. (a) H&E stained image, (b) ground-truth mask, (c)-(g) are results using the
point annotations with shift of 2, 4, 6, 8 and 10 pixels, respectively.

of the proposed method degrades more gradually than that of
the cluster results. The four-pixel shift only result in 1.38%
drop in Diceobj and 1.15% drop in AJI to the segmentation
results of the proposed method, but 2.75% drop in Diceobj
and 3.27% drop in AJI to the cluster results. Even though the
eight-pixel shift makes about one fifth point annotations not
in the nuclei, the segmentation performance can still reach
70.75% in Diceobj and 50.72% in AJI, respectively, which
verifies the robustness of our method to point annotation offset.
We believe that the robustness owes to the label propagation
which refines the coarse labels to compensate for the impact
of the offset. In clinical practice, professional pathologists
will ensure the quality of point annotations, thus avoiding
performance degradation caused by excessive offset. Some
nuclei instance segmentation results with different shifts of
point annotation are presented in Fig. 8. The robust instance
segmentation performance lays the foundation for further
counting and morphological feature extraction of nuclei on
pathology images.

F. Impact of the Completeness in Point Annotation

As an important component of our method, Voronoi diagram
is based on two assumption: 1) the point annotation is at the
center of the nuclei; 2) all the nuclei are labeled. The impact
of the first assumption has been studied in Sec. III-E. This
section investigates the robustness of the proposed model to
the completeness of the point annotation. As shown in Fig. 7,
to verify what level of completeness is required to train this
model without a significant loss of performance, we gradually
reduce the percentage of point annotations for training, and
then test and calculate the segmentation metrics. When only
1% of the point annotations were missing, the segmentation
metrics are only slightly reduced, as Diceobj decreases from
74.41% to 74.18% and AJI decreases from 56.20% to 56.15%.
As the percentage of annotations decreases, segmentation
metrics reduce. However, our method can still maintain good
performance when 15% of the annotations are missing. The
missing of too many annotations will greatly reduce the
accuracy of the generated coarse labels, and then lead to the
reduction of segmentation performance.

IV. DISCUSSION

This section discusses the contributions of the proposed
method, compared with the most relevant works. One of the
main contributions of the proposed method is that it achieves
comparable performance to the fully-supervised methods,
while significantly reducing the annotation efforts (e.g., reduc-
ing the annotation time by 88% [27]). This paper provides a
promising solution for weakly-supervised nuclei segmentation
with point label and could facilitate the community to further
advance the research in the field of nuclei analysis in pathology
images.

Existing methods typically adopted the conventional meth-
ods based on the shape and contrast prior of nuclei to
transform the point annotation into the coarse pixel-level
annotations to facilitate the training of deep learning models.
However, the performance could suffer from the incomplete
and inaccurate coarse labels. To address this challenge, several
studies [25, 26] proposed to inject additional supervision by
magnifying the local contrast changes to locate the boundary
of nuclei, and the others [23, 27] attempted to carefully
design a multi-stage training strategy to boost the segmen-
tation performance. However, the existing methods have two
limitations: 1) the additional supervision cannot guarantee the
correctness and may introduce more distractions; 2) the multi-
stage training strategy may cause error accumulation.

Compared to the existing methods, the advantages of this
work are as follows. First, we design a co-training strategy that
enables the two collaborative networks to transfer knowledge
between each other, so as to compensate for the missing
supervision in the coarse labels. The pseudo label produced
by the segmentation network can be gradually refined during
the training process, avoiding the misleading of the additional
supervision. To the best of our knowledge, the work of Zhao
et al. [33] is the most relevant to our co-training strategy. The
authors proposed a divergence loss to encourage the diversity
between the two models, which however may consequently
hurting the performance of each model. On the contrary, we
propose a pseudo label generation method based on EMA
to periodically average the predictions to supervise the other
model, which alleviates the problem of self-deception and



10

produces more robust pseudo labels. Second, we customize
a self-supervised learning method for nuclei segmentation in
pathology images. Different from the related methods [38-40]
that simply applied the SSL techniques from natural images,
our method appreciates the special characteristics of the H&E
staining method for pathology images, involving the prior
knowledge of nuclei. The most relevant work of our nuclei-
aware colorization method is Yang et al. [44], which designed
two pretext tasks transforming between the H-component and
E-component. On the contrary, our method employs a novel
framework, i.e., SC-Net, which sequentially combines the
segmentation network with the colorization network, enabling
the colorization network to benefit the segmentation task
during the whole training process in an end-to-end manner.
Third, instead of manually scheduling the training process in
multiple stages, we introduce cumulative learning to integrate
different modules in this pipeline. In this way, the different
modules can be integrated into a single shot training procedure.

There are several potential use-cases where point annotation
is essential. To name a few, for a locally collected dataset,
point annotation is a much more convenient way for pathol-
ogists to train the nuclei segmentation model. Second, our
method based on point annotation shows competitive perfor-
mance, which could be used to help the pathologist revised
the annotation or label the data in a semi-automatic manner.
Third, in Sec. III-E, the experiment shows that our method
is robust to the perturbation in point annotation, which could
facilitate the annotation procedure for junior pathologists.

V. CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of weakly-supervised
nuclei segmentation with only point annotation, addressing
the concern that manual annotation of nuclei/cell in pathology
images is time-consuming and labor-intensive. To this end, we
presented an annotation-efficient framework based on the idea
of label propagation to fully incorporate the prior knowledge
and explore the potential supervision information of point
annotation. The proposed method consists of three parts: 1)
coarse pixel-level label generation from the point labels; 2)
a deep co-training strategy with EMA to smoothly transfer
the knowledge between the two collaborative networks; 3)
self-supervised learning tailored for pathology images with a
novel auxiliary network to guide and verify the segmentation
network. We validated our method on two public datasets,
i.e., MoNuSeg and CPM, and both quantitative and qualitative
evaluations demonstrated the superiority of our method to the
state-of-the-art methods and the effectiveness of each module.

There are several limitations in this study. First, the point
annotations of this study are supposed to be complete, which
means it requires all the nuclei to be labeled, otherwise
the generated coarse labels would collapse. Second, the co-
training method increases the demand for memory and com-
putational power. We will try to enhance the method with
greater computational efficiency without compromising the
segmentation accuracy.

Besides that, we have identified a few further directions for
future studies. First, we plan to explore the abundant unlabeled

data in the semi-supervised learning scenario. Second, we will
further aim at the integration of different label granularities to
fully leverage as much as possible from affordable annotations.
Third, the touched and overlapped nuclei in pathology images
are challenging to segment at the instance level, leaving for
future work to further develop methods for nuclei instance
segmentation. And last but not least, we will try to adapt the
proposed method for interactive annotation to further reduce
the annotation burden of pathologists, promoting the research
of automatic pathology image analysis.
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