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A B S T R A C T

Fundus photography is prone to suffer from image quality degradation that impacts
clinical examination performed by ophthalmologists or intelligent systems. Though en-
hancement algorithms have been developed to promote fundus observation on degraded
images, high data demands and limited applicability hinder their clinical deployment.
To circumvent this bottleneck, a generic fundus image enhancement network (GFE-
Net) is developed in this study to robustly correct unknown fundus images without
supervised or extra data. Levering image frequency information, self-supervised repre-
sentation learning is conducted to learn robust structure-aware representations from de-
graded images. Then with a seamless architecture that couples representation learning
and image enhancement, GFE-Net can accurately correct fundus images and meanwhile
preserve retinal structures. Comprehensive experiments are implemented to demon-
strate the effectiveness and advantages of GFE-Net. Compared with state-of-the-art
algorithms, GFE-Net achieves superior performance in data dependency, enhancement
performance, deployment efficiency, and scale generalizability. Follow-up fundus im-
age analysis is also facilitated by GFE-Net, whose modules are respectively verified to
be effective for image enhancement.

© 2023 Elsevier B. V. All rights reserved.

1. Introduction

Owing to the superiority in safety and cost, fundus photog-
raphy has been used as a routine clinical examination to di-
agnose and monitor ocular diseases (Li et al., 2021b), such
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free-Fundus-Image-Enhancement.
∗Corresponding author: huy3, liuj@sustech.edu.cn
1Contributed equally to this manuscript. e-mail: lih3@sustech.edu.cn, li-

uhf2020@mail.sustech.edu.cn

as diabetic retinopathy (DR), glaucoma, and age-related mac-
ular degeneration (AMD). Unfortunately, fundus images are
prone to quality degradation due to imaging or cataract inter-
ferences (MacGillivray et al., 2015), leading to uncertainties in
clinical observations. According to screening studies (Philip
et al., 2005; Teng et al., 2002), over 10% of mydriatic and
20.8% of non-mydriatic fundus images are of a quality that is
unreadable to ophthalmologists. In UK Biobank, only 71.5% of
135,867 fundus images meet the quality standards required for
vessel morphometry (Welikala et al., 2017). On the other hand,
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Fig. 1. Illustration of fundus image enhancement. (a) and (d) exhibit fun-
dus images respectively with imaging and cataract interferences. (b) and
(e) are the enhancement results of the proposed algorithm. (c) and (f) visu-
alize the high-quality references.

cataracts, by attenuating and scattering the light passing through
the lens, result in degraded fundus images, which cannot be
solved with repeated photography for cataract patients (Flax-
man et al., 2017). Fig. 1 exhibits fundus images affected by
interferences, where the top row illustrates the impact from
imaging interferences, and the bottom row is an image from
a cataract patient. Compared with the high-quality references
in Fig. 1 (c) and (f), it is intractable to clearly observe fundus
details in the degraded images in Fig. 1 (a) and (d). Therefore,
unreadable image quality not only prevents reliable diagnosis
by ophthalmologists, but also impacts the performance of intel-
ligent fundus assessment systems.

An intuitive solution to improve the certainty in fundus ob-
servation is enhancing the readability of fundus images (see
Fig. 1 (b) and (e)), and efforts have hence been made to develop
enhancement algorithms (Shen et al., 2022). Histogram equal-
ization (Setiawan et al., 2013), spatial filtering (Cheng et al.,
2018), and frequency filtering (Cao et al., 2020; Mitra et al.,
2018) were leveraged to correct fundus images. Whereas these
hand-crafted methods are based on prior knowledge of statis-
tics, resulting in insensitivity to retinal details and instability to
clinical variations. In recent years, the strong image embed-
ding capability of deep learning has been introduced to adap-
tively enhance fundus images. Training and data augmentation
techniques have been subsequently developed to mitigate the
data dependency of enhancement models (Shen et al., 2020;
Ma et al., 2021; Li et al., 2022a; Liu et al., 2022). However,
unpaired or synthesized data result in suboptimal solutions, un-
favorable for structure-preservation and model stability. More
recently, to properly correct real fundus images based on syn-
thesized data, domain adaptation has been used to generalize
the model to real data (Li et al., 2022b) by visiting test data
during the training phase.

Collecting sufficient high-low quality corresponding data is
extremely expensive and even unreachable in clinics. Though
solutions have been reported in pioneer image enhancement
studies to alleviate the data dependency, clinical challenges re-
main in algorithm deployment: i) Though data dependency has
been alleviated by previous studies, unpaired data and access
to test data are still commonly necessary. Therefore, extra data

collecting and repeated model training are inevitable to deploy
the enhancement algorithms in clinics; ii) To preserve retinal
structures in the enhancement, structure guidances, such as im-
portance maps and segmentation outcomes, have been intro-
duced to highlight retinal structure details. Unfortunately, the
guidances are also sensitive to image degradations, leading to
unreliable structural clues; iii) While adversarial learning pro-
motes the performance of state-of-the-art (SOTA) algorithms, it
is liable to result in a time-consuming training phase and limited
generalizability to unknown data.

Considering the above challenges, a generic fundus image
enhancement network, termed GFE-Net, is developed in this
paper to robustly enhance unknown low-quality fundus images
only based on synthesized data (as shown in Fig. 1). A self-
supervised representation learning (SSRL) strategy is proposed
to learn robust structure-aware representations using frequency
information of fundus images. Subsequently, representation
learning and image enhancement are seamlessly coupled by
GFE-Net to properly correct unknown fundus images without
visiting any supervised or test data. The main contributions of
this paper are summarized as follows:

1) To conveniently deploy fundus image enhancement in
clinics, GFE-Net is proposed with a seamless SSRL archi-
tecture to robustly correct unknown fundus images only
based on synthesized data.

2) Frequency self-supervision is designed and integrated in
the enhancement model optimization to capture robust
structure-aware representations, thereby preserving fine
structures when correcting fundus images with unknown
degradations.

3) The elegant seamless SSRL architecture, coupled with ex-
plicit objective functions, endows GFE-Net with distinct
advantages for clinical deployments, including the effi-
cient achievement of training convergence and the elimi-
nation of additional tuning with clinical data.

4) Extensive experiments are conducted to validate the ben-
efits of GFE-Net. Compared with SOTA algorithms, the
specially designed modules within GFE-Net promise su-
perior performances in fundus image enhancement with
alleviated dependency and strong generalizability.

2. Related Work

2.1. Hand-crafted fundus image enhancement
Hand-crafted algorithms have been tailored to enhance fun-

dus images in previous studies. Contrast enhancement, which
expands the dynamic ranges of images, is an effective method
for improving image readability. Therefore, contrast limited
adaptive histogram equalization (CLAHE) (Zuiderveld, 1994)
has been introduced to restore degraded fundus images (Mi-
tra et al., 2018; Setiawan et al., 2013). Then frequency filters
have also been combined with CLAHE to enhance the fundus
image contrast (Mitra et al., 2018). Moreover, low-pass fil-
ters and α-rooting have been implemented to improve the con-
trast of the retinal structures (Cao et al., 2020). Alternatively,
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spatial filters have been developed to estimate and remove the
noise in imaging models. Dark channel prior (He et al., 2010)
and guided image filtering (GIF) (He et al., 2012) have been
extensively employed in image enhancement and restoration.
Based on GIF, structure-preserving guided retinal image filter-
ing (SGRIF) (Cheng et al., 2018) has been designed to promote
structure preservation when restoring cataract-affected fundus
images. However, indiscriminately processing the entire image
leads hand-crafted algorithms to either struggle to preserve fine
details or suffer from strict constraints in implementation.

2.2. Deep learning based fundus image enhancement

In recent years, thanks to the superiority in image representa-
tion, deep learning has been frequently applied in computer vi-
sion, accelerating the advancements in image restoration (Lore
et al., 2017; Chen et al., 2018; Huang et al., 2021). With a num-
ber of fully supervised training data, deep learning allows en-
hancement approaches to adaptively learn the mapping from a
low-quality image to the corresponding high-quality one (Isola
et al., 2017; Deng et al., 2022). Unfortunately, collecting an
abundant amount of supervised data is often impractical in med-
ical scenarios. As a result, recent algorithms strive to learn the
mapping from unpaired or synthesized data.

2.2.1. Training with unpaired data
Based on CycleGAN (Zhu et al., 2017), StillGAN (Ma et al.,

2021) was proposed to learn a suitable mapping from a low-
quality domain to a high-quality domain, or from the domain
with non-uniform illumination to a high-quality one. Besides,
inspired by contrastive unpaired translation (CUT) (Park et al.,
2020), I-SECRET (Cheng et al., 2021) was developed to en-
hance fundus images via contrastive learning. Nevertheless,
learning with unpaired data tends to be less effective in pre-
serving retinal structures, resulting in suboptimal enhancement
performance.

2.2.2. Training with synthesized data
Alternatively, high-low quality paired data were synthesized

to enforce structure preservation in fundus image enhance-
ment. Cataract fundus images were generated via image-to-
image translation (Luo et al., 2020) to train enhancement mod-
els. Through modeling the imaging interferences in fundus pho-
tography, fundus images were deliberately degraded to train a
clinical-oriented fundus enhancement network (CofeNet) (Shen
et al., 2020) under the supervision of the original ones. Further-
more, domain adaptation (Li et al., 2021a) was introduced to
bridge the domain shift between the synthesized and real data.
MAGE-Net (Guo et al., 2023) utilizes a transferable and mul-
tiple consistency approach to bridge the gap between synthetic
and real fundus image enhancement. In our previous study (Li
et al., 2022b), test data were accessed during training to gener-
alize the model learned from synthesized cataract data to real
ones by unsupervised domain adaptation.

Although recent algorithms have shown performance im-
provements in fundus image enhancement, their reliance on ad-
ditional annotations or data poses limitations on their clinical
deployment.

2.3. Self-supervised representation learning

Representation learning drives machine learning algorithms
to discover effective representations for the downstream
tasks (Bengio et al., 2013). Supervised representation learn-
ing extracts representations to solve other related tasks based
on annotated data from a specific task. However, the supervi-
sion relies on plenty of annotated data, and may not provide the
ideal representations for the tasks suffering from domain shifts.
To alleviate the annotation and data bottleneck in practical de-
ployments, SSRL (Ericsson et al., 2022) has been proposed to
provide a powerful framework for deep feature learning without
the dependency on large annotated data sets.

By carefully designing pretext tasks, SSRL produces freely
available labels that can serve as supervision to learn deep rep-
resentations and can be reused to solve downstream tasks with
comparatively small task-specific annotated data. Transforma-
tion prediction and instance discrimination are two major self-
supervised pretexts. Transformation prediction consists of sev-
eral methods, such as coloring (Larsson et al., 2016) or inpaint-
ing (Pathak et al., 2016) masked-out information in images, and
predicting the rotation angle (Komodakis and Gidaris, 2018) of
images. To correctly solve the pretext task, the information re-
garding the transformation needs to be retained in the represen-
tation. Self-supervised contrastive learning, as demonstrated
in recent studies (Bachman et al., 2019; Chen et al., 2020; Grill
et al., 2020), has emerged as a remarkable paradigm for instance
discrimination, whose core idea is to pull together positive pairs
and push apart negative pairs. Nevertheless, contrastive learn-
ing preserves the shared information between positive pairs and
eliminates the non-shared information (Wang et al., 2022). As
a result, it cannot be guaranteed that all task-relevant features
are contained in the learned representations (Tian et al., 2020).

To boost the clinical deployment of fundus image enhance-
ment, in this paper, an SSRL paradigm using frequency in-
formation is designed and seamlessly coupled with the down-
steam task to robustly correct fundus images without extra an-
notations or data training dependency.

3. Method

To efficiently and steadily improve the readability of clinical
low-quality fundus images, a generic fundus enhancement net-
work is developed to present robust enhancement without extra
annotations or data. Using the frequency self-supervision and
synthesized high-low quality image pairs, representation learn-
ing and image enhancement are seamlessly cooperated to ro-
bustly correct fundus images and preserve retinal structures.

3.1. Frequency self-supervised representation learning

Given that retinal structures are the foundation of fundus as-
sessment, it is essential to preserve the structures in fundus im-
age enhancement. Inspired by the self-supervised pretexts of
transformation prediction and contrastive learning, we employ
the frequency attributes of fundus images to perform SSRL to
learn robust representations of retinal structures.
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3.1.1. Degraded view dataset
Collecting augmented views of a sample is a commonly

adopted strategy to learn effective representations in contrastive
learning (Chen et al., 2020; Wang et al., 2022). Motivated by
this, we synthesize various degraded views from clear fundus
images to learn representations robust to image degradations.

Specifically, from an individual clear image, a set of de-
graded views is randomly synthesized, such that variant degra-
dations and consistent retinal structures are included, which
can be leveraged to learn robust representations. As reported
in Shen et al. (2020) and Li et al. (2022b), imaging interferences
and cataracts are the major degradation factors of fundus im-
ages, and style randomization of fundus images was proposed
in Liu et al. (2021). Therefore, degraded views can be gener-
ated using degradation simulation and style randomization. For
a clear image x ∈ RK , the degraded view set is given by

{x̃v} = {δv(x) | v = 1, 2, ...,V}, (1)

where x̃v ∈ RK×V , δv(·) denotes the fundus image degradations
modeled following Shen et al. (2020), Liu et al. (2021) and Li
et al. (2022b), and v is the index of the view sample which
records the models and parameters used in the degradation.

As shown in Fig. 3, the degraded view dataset is first col-
lected from a clear image with changing simulation models and
parameters, such that various degradations and consistent reti-
nal structures are contained in the dataset.

3.1.2. Frequency self-supervision
Properly reconstructing fine structures is crucial for correct-

ing degraded images, especially fundus images. According to
the Retinex theory (Land, 1977), retinal structures concentrate
in the high-frequency domain of fundus images. Thus, as vi-
sualized in Fig. 2, an SSRL strategy based on frequency in-
formation is proposed to learn robust representations of retinal
structures, circumventing the need for segmentation (Luo et al.,
2020; Shen et al., 2020).

As the structure details of a clear image are concentrated
in its high-frequency map (HFM) (Li et al., 2023), a pretext
task is established to discover robust representations for pre-
serving retinal structures. Based on the clear image x and de-
graded views {x̃v}, the HFM of x is regarded as a frequency self-
supervision to be reconstructed from that of {x̃v}. Through the

Fig. 2. SSRL using image frequency information. As retinal structures con-
centrate on HFM, E and DR learn robust structure-aware representations
from reconstructing HFM from degraded images.

above pretext task, a reconstruction network is trained to extract
structure-aware representations robust to image degradation. In
practice, the pretext task is performed with a high-pass filter
F (·) based on the Gaussian kernel, which is given by

F (x) = x − x ∗ g(r, σ), (2)

where g is a Gaussinan filter with the kernel of (r, σ).

3.1.3. Representation learning objectives
With the degraded views and frequency self-supervision,

SSRL is conducted by reconstructing the HFM of clear im-
ages from degraded ones. Since structure details are concen-
trated in the high-frequency domain, robust representations for
retinal structures can be learned from the HFM reconstruction.
HFMs are captured respectively from the clear image x and its
degraded views, serving as the supervision and inputs for an
image reconstruction network.

The reconstruction network is built with a U-Net and the op-
timization objective is given by

LR(E,DR) = E
[∑V

v=1

∥∥∥∥∥F (x) − x̂Fv

∥∥∥∥∥
1

]
, (3)

where x̂Fv = DR(E(F (x̃v))) denotes the reconstructed HFM, E
represents the image encoder, and DR denotes the representa-
tion learning decoder.

3.2. GFE-Net coupled with representation learning

Through the frequency self-superivsion, robust structure rep-
resentations can be captured in E and DR. Subsequently, the
representations need to be suitably introduced for fundus image
enhancement. As demonstrated in Fig. 3, representation learn-
ing and image enhancement are seamlessly coupled to correct
fundus images. Specifically, the GFE-Net is composed of the
encoder E, decoder DR, and an enhancement decoder DE . The
structure-aware representations are thus fully availed to pre-
serve retinal structures in the enhancement.

3.2.1. Shared encoder
The encoder E is shared by DR (blue blocks) and DE to

conduct both representation learning and image enhancement.
Therefore, E is optimized by the complementary inductive bias
between different tasks. Additionally, skip connections are
bridged between E and DR to form a U-Net to forward low-
level features.

3.2.2. Representation learning decoder
Supervised by the HFM of clear images, DR reconstructs the

HFM of degraded views to learn robust structure-aware repre-
sentations. The input vector of the l-th layer of DR is formulated
by

f l
R = [Dl−1

R ( f l−1
R ), f L−l+1], l = 2, 3, ..., L, (4)

where Dl
R denotes the l-th layer of DR, and f l is the features

captured by the l-th layer of E. Notably, f 1
R = f L, where L is

the total number of layers in E.
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Fig. 3. Workflow of the proposed algorithm. Frequency self-supervision and synthesized data supervision are cooperated to train GFE-Net. Based on
a clear image x, a degraded view dataset {x̃v} is synthesized. Then GFE-Net seamlessly couples representation learning and image enhancement, where
structure-aware representations are learned in E and DR by SSRL (shown in Fig. 2) and further forwarded to correct the fundus images in DE .

3.2.3. Image enhancement decoder
By learning the structure-aware representations consistent

with clear images, robust representations are extracted in E and
DR. Consequently, E shares structure-aware inputs between
DR and DE , and then vectors from DR further boost structure
preservation in the enhancement by DE .

DE is coupled with DR using the same architecture to import
the representations in DR. As demonstrated in Fig. 3, the out-
puts from one layer of DR and DE are concentrated as the input
to the next one of DE . The input vector of the l-th layer of DE

is given by

f l
E = [Dl−1

E ( f l−1
E ),Dl−1

R ( f l−1
R )], l = 2, 3, ..., L, (5)

where Dl
E is the l-th layer of DE , and f 1

E = f L.

3.2.4. Image enhancement objectives
The enhancement by GFE-Net is supervised by the synthe-

sized high-low quality image pairs. With the enhancement out-
comes of x̃v denoted as x̂v, an enhancement loss is calculated
by

LE(E,DR,DE) = E
[∑V

v=1

∥∥∥x − x̂v

∥∥∥
1

]
. (6)

Moreover, if DR desirably reconstructs the HFM and DE

properly enhances fundus images, the HFM of x̂v should be

consistent with x̂Fv . Therefore, a cycle-consistency loss is com-
puted by

Lcyc(E,DR,DE) = E
[∑V

v=1

∥∥∥∥∥F (x̂v) − x̂Fv

∥∥∥∥∥
1

]
. (7)

Finally, cooperating with the objective of representation
learning, the total objective function for tuning GFE-Net is de-
fined as

Ltotal(E,DR,DE) =LR(E,DR) +LE(E,DR,DE)
+Lcyc(E,DR,DE).

(8)

Notably, instead of the pretrained and fine-tuned framework,
representation learning and image enhancement are seamlessly
coupled in the architecture of GFE-Net. Therefore, conver-
gence can be efficiently achieved in training with Eq. 8, where
model optimization is only based on explicit objective func-
tions, circumventing model collapse and vanishing gradients in
adversarial learning.

3.3. Network implementation

For GFE-Net, E consists of 8 down-sampling layers, whose
down-sampling layer contains a down convolution layer, a leaky
ReLU layer, and a batch normalization layer. DR and DE con-
sist of 8 up-sampling layers, whose up-sampling layer contains
a transposed convolution layer, a ReLU layer, and a batch nor-
malization layer, while an output layer contains a ReLU layer, a
convolution layer, and a Tanh function. The convolutional and
deconvolutional layers have a kernel size of 4 × 4 and a stride
of 2.

In the training phase, the input image size was 256 × 256
and the batch size was 8. The training data were loaded with a
random scale among 286, 306, 326, and 346, and then cropped
to the size of 256 × 256. The model was trained by the Adam
optimizer for 150 epochs with an initial learning rate of 0.001
and 50 epochs with the learning rate gradually decaying to 0.
Comparative algorithms were implemented using public code
with the same learning rates and number of epochs.

4. Experiments

Experiments were implemented to interpret the performance
of the proposed algorithm. Data requirements, enhancement
performance, deployment efficiency, and scale generalizabil-
ity were comprehensively compared with SOTA algorithms to
demonstrate the superiority of GFE-Net. Then GFE-Net was
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Table 1. Datasets and evaluation metrics used in the experiments

Evaluation
With reference Without reference

Enhancement Segmentation Enhancement Diagnosis
Metrics SSIM, PSNR IoU, Dice FIQA, WFQA F1-score, Ckappa
Training ∇ DRIVE: 40 clear images ∇ DRIVE: 40 clear images ∇ 7,331 clear images in Fundus-iSee

Test △ FIQ: 196 low-high quality fundus image pairs,
△ RCF: 26 pre- and post-operative image pairs

△ EyeQ-Usable, Reject,
△ 100 cataract images from Kaggle

△ 2,669 cataract images in Fundus-
iSee

deployed to boost the segmentation and diagnosis of degraded
fundus images. Subsequently, the effectiveness of training data
and designed modules were presented in the ablation study.

4.1. Experiment Setting

In the experiments, generic enhancement models were con-
structed and verified with six fundus datasets. To fully illumi-
nate the performance of GFE-Net, eight evaluation metrics of
fundus image enhancement, segmentation, and diagnosis were
calculated, and nine SOTA algorithms were compared as base-
lines. The experimental protocol is in accordance with the Dec-
laration of Helsinki and was approved by the local Ethics Com-
mittee.

4.1.1. Datasets
The experiments used six datasets:

▷ DRIVE1: 40 clear fundus images with segmentation masks.
▷ FIQ: a private dataset acquired from Shenzhen Kangning
Hospital, contains 196 low-high quality image pairs acquired
from repeated fundus examination.
▷ RCF: a private dataset collected by Peking University Third
Hospital consists of 26 fundus images after cataract surgery cor-
responding to the ones before surgery.
▷ EyeQ (Fu et al., 2019): a subset of EyePACS2, contains
28,792 samples (16,817 ‘Good’, 6,435 ‘Usable’, and 5,540 ‘Re-
ject’) sorted according to image quality.
▷ Kaggle3: 300 clear fundus images and 100 cataract ones.
▷ Fundus-iSee: a private fundus dataset including 10,000 im-
ages (2,669 with and 7,331 without cataracts), annotated into
five categories according to fundus status.

As summarized in Table 1, paired data were synthesized from
DRIVE to train GFE-Net, and other datasets were also visited
according to the data dependency of SOTA algorithms. FIQ and
EyeQ were degraded by imaging interferences, whereas RCF,
Kaggle, and Fundus-iSee suffer from cataracts. Full reference
evaluations of enhancement and segmentation were carried out
on FIQ and RCF, while non-reference enhancement evaluations
were conducted on EyeQ and Kaggle. Additionally, to adapt
automatic diagnosis, both diagnosis and enhancement models
were learned from clear images in Fundus-iSee.

4.1.2. Evaluation metrics
For datasets with reference images, the structural similarity

(SSIM) and the peak signal to noise ratio (PSNR) were used to

1http://www.isi.uu.nl/Research/Databases/DRIVE/
2https://www.kaggle.com/c/diabetic-retinopathy-detection
3https://www.kaggle.com/jr2ngb/cataractdataset

quantify the enhancement performance. The segmentation ac-
curacy was evaluated by the intersection over union (IoU) and
the Dice coefficient between the restored images and the refer-
ence.

For datasets without reference images, MCF-Net (Fu et al.,
2019) was employed to quantify the enhancement performance
of fundus images. A fundus image quality assessment score
(FIQA) is computed according to the ratio of images identified
as ‘Good’ quality by MCF-Net (Cheng et al., 2021). Moreover,
a weighted FIQA (WFQA) (Liu et al., 2022) is introduced to
delicately evaluate the fundus image quality, which is calculated
by assigning the weights of 2, 1 and 0 to the images respectively
identified as ‘Good’, ‘Usable’ and ‘Reject’ and then dividing by
the total number of images.

The automatic diagnosis of fundus diseases was evaluated by
the two metrics, F1-score and Cohen’s kappa (Ckappa) (Jeni
et al., 2013).

4.1.3. Baselines
To demonstrate the benefits of GFE-Net, a comparative anal-

ysis was conducted against existing methods in the experi-
ments. Nine SOTA algorithms for fundus image enhancement
or restoration were implemented as baselines.

Based on spatial filtering, SGRIF (Cheng et al., 2018) was
developed to restore cataract fundus images. CycleGAN (Zhu
et al., 2017), I-SECRET (Cheng et al., 2021), and Still-
GAN (Ma et al., 2021) were proposed to learn enhancement
models from unpaired data. Synthesized data with seg-
mentation masks were used to present the enhancement algo-
rithm of Luo et al. (2020), CofeNet (Shen et al., 2020), and
MAGE-Net (Guo et al., 2023), whose segmentation modules
were learned from DRIVE. Additionally, RFormer (Deng et al.,
2022) trained on high-low quality paired real data was also em-
ployed in the experiment. Access to test data was available
in the training of I-SECRET (Cheng et al., 2021), Luo et al.
(2020), MAGE-Net (Guo et al., 2023), and ArcNet (Li et al.,
2022b), in which domain adaptation was introduced to bridge
the enhancement models from synthesized data to real ones.

4.2. Enhancement comparisons with SOTA algorithms
This section presents multiple comparisons with the SOTA

algorithms to demonstrate the clinical value of GFE-Net. Data
dependency, enhancement performance, deployment efficiency,
and scale generalizability were respectively compared to com-
prehensively understand the superiority of GFE-Net.

4.2.1. Data dependency
Conveniently deploying fundus image enhancement in clin-

ics is a fundamental motivation of this study. Given that the
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Table 2. Comparisons in data dependency, enhancement performance, and deployment efficiency.

Algorithms
Data dependency* Enhancement performance Deployment efficiency

HF SM UP TD
FIQ EyeQ RCF Kaggle Costs Training Inference

SSIM PSNR FIQA WFQA SSIM PSNR FIQA WFQA (GMac) (Hour) (Second)
SGRIF (Cheng et al., 2018) ⋆ 0.776 19.20 0.18 0.55 0.609 15.07 0.17 0.70 0.03 – 0.13
RFormer (Deng et al., 2022) 0.788 16.61 0.44 1.14 0.728 17.14 0.59 1.29 45.46 – 0.16
CycleGAN (Zhu et al., 2017) ⋆ 0.848 20.59 0.53 1.23 0.725 17.55 0.56 1.38 56.89 23.84 0.18
I-SECRET (Cheng et al., 2021) ⋆ ⋆ 0.868 21.32 0.55 1.38 0.750 18.49 0.50 1.31 56.88 16.88 0.18
StillGAN (Ma et al., 2021) ⋆ 0.871 21.44 0.73 1.54 0.748 18.24 0.54 1.29 67.12 51.71 0.20
Luo et al. (2020) ⋆ ⋆ 0.827 16.91 0.65 1.46 0.742 17.71 0.46 1.06 40.12 9.47 0.14
CofeNet (Shen et al., 2020) ⋆ 0.838 20.64 0.76 1.67 0.744 17.83 0.48 1.29 67.50 19.76 0.19
MAGE-Net (Guo et al., 2023) ⋆ ⋆ 0.861 21.64 0.52 1.35 0.762 18.12 0.69 1.61 854.92 16.23 0.27
ArcNet (Li et al., 2022b) ⋆ 0.868 21.51 0.78 1.63 0.760 18.36 0.77 1.63 18.16 6.84 0.10
GFE-Net (ours) 0.879 22.19 0.81 1.65 0.771 18.59 0.78 1.68 34.80 3.43 0.14

* Data dependency on hand-crafted features (HF ), segmentation masks (SM), unpaired training data (UP), and access to test data (TD) are indicated by ⋆.

Fig. 4. Fundus image enhancement for imaging interferences. A high-quality reference is provided for FIQ.

deployment bottleneck concentrates on the collection of train-
ing data, the data dependency of algorithms is compared and
summarized in Columns 2-5 of Table 2.

As a hand-crafted algorithm, SGRIF (Cheng et al., 2018)
can be directly applied to any fundus image without training,
but resulting in limited universality. High-low quality paired
fundus images were collected to train RFormer (Deng et al.,
2022), and the trained model was directly employed in the ex-
periment. CycleGAN (Zhu et al., 2017), I-SECRET (Cheng
et al., 2021), and StillGAN (Ma et al., 2021) employ unpaired
high-low quality data to learn the enhancement models. In ad-
dition, I-SECRET (Cheng et al., 2021) uses test data during
training to boost the generalization. Training with synthesized
data, Luo et al. (2020), CofeNet (Shen et al., 2020), MAGE-
Net (Guo et al., 2023), ArcNet (Li et al., 2022b), and GFE-Net
circumvent the dependency on high-low quality data. However,
segmentation models are necessary for Luo et al. (2020) and
CofeNet (Shen et al., 2020), which utilize the segmentation re-
sults to preserve fundus structures. Test data are accessed dur-
ing training by Luo et al. (2020), MAGE-Net (Guo et al., 2023),

and ArcNet (Li et al., 2022b), to respectively generate synthe-
sized data and adapt real data.

Therefore, compared with the SOTA algorithms, GFE-Net
minimizes the dependency on training data, thereby boosting
clinical deployment of fundus image enhancement. Further-
more, by eliminating the reliance on on knowledge from test
data, the enhancement model learned by GFE-Net can be gener-
ically applied to any fundus images without extra tuning.

4.2.2. Enhancement performance
The enhancement performance was evaluated on datasets

with imaging interferences or cataracts, where FIQ and EyeQ
suffer from imaging interferences, while RCF and Kaggle are
degraded by cataracts. As exhibited in Table 2 and Figures 4
and 5, the performances on FIQ and RCF were evaluated with
references, and non-reference evaluations were quantified on
EyeQ and Kaggle.

It should be noted that due to the dependency on extra
data, the compared SOTA algorithms, except SGRIF (Cheng
et al., 2018) and CofeNet (Shen et al., 2020), were respec-
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Fig. 5. Fundus image enhancement for cataracts. A high-quality reference is provided for RCF.

tively trained with each dataset. In contrast, GFE-Net was only
learned once from synthesized data and generically applied to
all datasets.
Imaging-interference degraded data: Quantitative compar-
isons of enhancing FIQ and EyeQ are summarized in Columns
6-9 of Table 2, and Fig. 4 visually compares the correction of
imaging interferences.

Hand-crafted spatial filters allow SGRIF (Cheng et al., 2018)
to be efficiently implemented but limit the universality. Thence,
distorted color and luminance are observed in Fig. 4 (b), corre-
sponding to the inferior results in Table 2. RFormer (Deng
et al., 2022) was trained by the paired data collected from
clinics, but its generalizability to unseen data is shown to be
mediocre. Training with unpaired high-low quality data miti-
gates the data dependency of CycleGAN (Zhu et al., 2017), I-
SECRET (Cheng et al., 2021), and StillGAN (Ma et al., 2021).
However, from unpaired data, structure preservation cannot be
favorably learned by CycleGAN as shown in Fig. 4 (d). Im-
portance maps and structure loss are hence introduced in I-
SECRET (Cheng et al., 2021) and StillGAN (Ma et al., 2021)
to preserve retinal structures. Nevertheless, undesired arti-
facts still appear in the result of StillGAN (Ma et al., 2021)
(Fig. 4 (f2)). Synthesized corresponding data are generated to
train Luo et al. (2020), CofeNet (Shen et al., 2020), MAGE-
Net (Guo et al., 2023), and ArcNet (Li et al., 2022b). Fur-
thermore, structure segmentations are employed in Luo et al.
(2020), CofeNet (Shen et al., 2020), and MAGE-Net (Guo et al.,
2023) to preserve retinal structures. Unfortunately, as visual-
ized in Fig. 4, segmentation errors resulting from low image
quality lead to artifacts in enhanced images. Decent perfor-
mance is achieved by MAGE-Net (Guo et al., 2023) and Ar-
cNet (Li et al., 2022b), which import test data during training
to adapt the model from synthesized to real degraded images.
Cataract degraded data: Restoring fundus photographs taken
through cataracts is clinically valuable to improve the certainty

of fundus assessment. Columns 10-13 in Table 2 and Fig. 5
summarize the restoration performance on RCF and Kaggle.

As collecting high-quality fundus images is impracticable
for cataract patients, restoring cataract images without any
annotation poses a fundamental challenge for enhancement
algorithms. Compared to imaging interferences, the severe
occlusion caused by cataracts exacerbates the difficulties in
image enhancement. The distorted appearance restored by
SGRIF (Cheng et al., 2018) impacts the evaluation and fundus
assessment. RFormer (Deng et al., 2022) learned from paired
data cannot be effectively generalized to cataract data. Ves-
sel loss and fractures are observed in the results from Cycle-
GAN (Zhu et al., 2017). Irregular textures commonly appear in
the images restored by I-SECRET (Cheng et al., 2021), Still-
GAN (Ma et al., 2021), Luo et al. (2020), and CofeNet (Shen
et al., 2020). Though reasonable performances are presented
by MAGE-Net (Guo et al., 2023) and ArcNet (Li et al., 2022b),
visiting test data during training limits the clinical value and
deployment efficiency.

By training only once with synthesized data, the proposed
GFE-Net demonstrates outstanding performance in both en-
hancement scenarios. GFE-Net outperforms the SOTA algo-
rithms as shown in Table 2 and preserves authentic and clean
fundus details in Figures 4(k) and 5(k). Specifically, the SOTA
algorithms are incapable of properly correcting Fig. 4-2), as
a result of assembling various types of interference. Impres-
sively, GFE-Net appropriately processes the degradation, where
sparkling artifacts are removed and authentic lesions are pre-
served. Moreover, in the evaluations on RCF and Kaggle, GFE-
Net even outperforms ArcNet (Li et al., 2022b), which is de-
signed to restore cataract images by visiting test data during
training. In summary, according to Table 2 and Figures 4 and
5, the robust representations learned by GFE-Net enable effec-
tive enhancement of fundus images degraded by various inter-
ferences, without annotations or access to test data.
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Fig. 6. Training history quantified by SSIM on validation data.

4.2.3. Deployment efficiency
Convenient deployment in clinics is a fundamental precon-

dition for fundus image enhancement algorithms. The training
history is quantified on validation data by SSIM in Fig. 6 to
visualize the training efficiency. SGRIF (Cheng et al., 2018)
and RFormer (Deng et al., 2022) are not included in Fig. 6,
since they were not trained in the experiment. As illustrated
in Fig. 6, GFE-Net is more efficient than SOTA algorithms in
achieving convergence. The SOTA algorithms have extensively
conducted adversarial learning to improve enhancement perfor-
mance. However, adversarial learning is liable to mode collapse
and vanishing gradients, resulting in a time-consuming training
phase. Alternatively, GFE-Net avoids the bottlenecks of adver-
sarial learning by optimizing with explicit objective functions
given in Eq. 8.

Moreover, the implementation costs of each algorithm are
exhibited in Columns 14-16 of Table 2 to show the deploy-
ment efficiency of GFE-Net. Specifically, computational costs
and time consumption are respectively quantified by multiply-
accumulate operation (GMac) as well as training and infer-
ence time. The efficient convergence promises GFE-Net the
benefits in training time, while significant progress has been
achieved in data dependency and image enhancement by GFE-
Net with negligible costs of computation and inference time.
Further, compared to repeatedly training the SOTA algorithms
with various datasets, GFE-Net presents an impressive univer-
sality, which was trained only once with synthesized data but
achieved remarkable performance.

4.2.4. Scale generalizability
As clinical data are acquired with various resolutions, the

generalizability to different scales is meaningful in clinics.
Thus the enhancement models learned from the image size of
256 × 256 were further applied to other scales for interpreting
the scale generalizability.

The models were applied to the scales of 512 × 512 and 768
× 768, and the SSIM of FIQ and RCF was employed to demon-
strate the scale generalizability. Fig. 7 shows the performance
on various image scales. Compared with training and testing
with identical scales, applying the models to scales larger than
training images suppresses the enhancement performance. For-
tunately, outstanding scale generalizability is provided by the
proposed algorithm, which outperforms the SOTA algorithms

Fig. 7. Scale generalizability of the enhancement models. The models
trained with the scale of 256 × 256 are also applied on the scales of 512 ×
512 and 768 × 768.

on each scale. Accordingly, GFE-Net is more convenient to
adapt various scales of test data.

4.3. Boosting for fundus image analysis

Besides improving fundus observation, another primary goal
of fundus image enhancement is to facilitate clinical examina-
tion and diagnosis. Therefore, automatic analyses were carried
out on the enhanced images to explore the clinical value of the
proposed algorithm. Specifically, retinal vessel segmentation
was conducted on FIQ and RCF, and fundus disease diagnosis
was performed on Fundus-iSee.

4.3.1. Retinal vessel segmentation
A segmentation model was trained on DRIVE using U-Net

and then applied to segment the fundus images in FIQ and RCF.
To evaluate the segmentation performance on enhanced images,
the segmentation metrics of IoU and Dice were calculated re-
garding the segmentation results of the high-quality references
in FIQ and RCF as ground truth. The segmentation results of
low-quality images were also provided as a benchmark. Table 3
summarizes the quantitative results, and Fig. 8 exhibits the vi-
sual ones.

According to Table 3 and Fig. 8, most enhancement al-
gorithms successfully improve the segmentation performance
compared to low-quality images, which verifies the effective-
ness of image restoration for automatic fundus analysis. No-

Table 3. Boosting Segmentation via Image Enhancement.

Algorithms
FIQ RCF

IoU Dice IoU Dice
Low-quality 0.179 0.304 0.350 0.518

SGRIF (Cheng et al., 2018) 0.410 0.580 0.194 0.402
RFormer (Guo et al., 2023) 0.371 0.542 0.208 0.344
CycleGAN (Zhu et al., 2017) 0.352 0.520 0.256 0.408
Luo et al. (2020) 0.335 0.502 0.306 0.469
CofeNet (Shen et al., 2020) 0.436 0.607 0.360 0.529
I-SECRET (Cheng et al., 2021) 0.453 0.623 0.371 0.541
StillGAN (Ma et al., 2021) 0.450 0.620 0.373 0.544
MAGE-Net (Guo et al., 2023) 0.472 0.646 0.414 0.585
ArcNet (Li et al., 2022b) 0.456 0.627 0.401 0.572
GFE-Net (ours) 0.468 0.638 0.418 0.587
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Fig. 8. Segmentation comparison of enhanced fundus images. The reference segmentation (j) is used as the ground truth for quantitative metrics.

Table 4. Boosting Diagnosis via Image Enhancement.
Algorithms F1-score Ckappa
Clear 0.838 0.448
Cataract 0.730 0.310

SGRIF (Cheng et al., 2018) 0.760 0.420
RFormer (Deng et al., 2022) 0.732 0.370
CycleGAN (Zhu et al., 2017) 0.724 0.286
Luo et al. (2020) 0.712 0.370
CofeNet (Shen et al., 2020) 0.754 0.416
I-SECRET (Cheng et al., 2021) 0.734 0.382
StillGAN (Ma et al., 2021) 0.739 0.348
MAGE-Net (Guo et al., 2023) 0.753 0.390
ArcNet (Li et al., 2022b) 0.761 0.428
GFE-Net (ours) 0.771 0.445

tably, it is reasonable that MAGE-Net (Guo et al., 2023) pro-
vides remarkable performance on FIQ, as it loads both segmen-
tation masks and test data during training. Due to the favor-
able structure preservation in GFE-Net, a superior segmenta-
tion performance to SOTA algorithms is achieved in the results
of GFE-Net. Accordingly, the proposed algorithm is capable of
facilitating automatic fundus analysis and examination.

4.3.2. Fundus disease diagnosis
The automatic diagnosis was implemented on Fundus-iSee to

assess the value of enhancement for fundus examination. Im-
ages in Fundus-iSee are annotated into five categories: AMD,
DR, glaucoma, high myopia, and normal fundus. Five thou-
sand clear images were randomly split from Fundus-iSee to
train the enhancement and diagnosis models, and the rest clear
and cataract images were respectively used for testing. Sub-
sequently, cataract images were enhanced by the algorithms to
compare the promotion for fundus disease diagnosis. F1-score
and CKappa were used to quantify the diagnosis performance
on the clear, cataract, and enhanced images, as summarized in
Table 4.

Due to the distorted fundus observation caused by cataracts,
the risk of misdiagnosis is increased in cataract images com-
pared to clear images, leading to a significant decrease in diag-
nosis accuracy. The performances of clear and cataract images
in Table 4 separately sketch the upper and lower benchmarks
of diagnosis on Fundus-iSee. By improving the readability
of cataract images, the fundus disease diagnosis is boosted by
most enhancement algorithms. Despite the distinctive color and
illuminance of the results from SGRIF (Cheng et al., 2018), fun-

Fig. 9. Comparison of the enhancement models learned from different
training data. Quantitative performances are also provided by SSIM and
PSNR.

dus lesions are reasonably enhanced for the diagnosis model.
Desirable performance is achieved on the images enhanced by
GFE-Net, indicating that the proposed modules properly pre-
serve and enhance fundus lesions.

4.4. Ablation study

Ablation studies on training data and designed modules were
conducted to demonstrate the impact and effectiveness of the
modules.

4.4.1. Training data
As GFE-Net is trained without supervised or extra data, the

enhanced images are only regulated by the clear images, which
are used to synthesize training data. To understand the impact of
the training data, different clear image datasets were employed
to synthesize high-quality image pairs for training. Fig. 9 visu-
alizes the variant outcomes resulting from the training data syn-
thesized from DRIVE and EyeQ, and a quantitative comparison
is also provided.

Images are properly enhanced by both models learned from
training data synthesized from DRIVE and EyeQ, and compa-
rable quantitative performances are achieved. Thence, GFE-
Net is insensitive to the training data selection, since robust
structure-aware representations are learned by SSRL. However,
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as exhibited in Fig. 9, style discrepancy is observed from the en-
hanced images. Though SSRL captures structure-aware repre-
sentations in GFE-Net, the final enhancement results are super-
vised by the clear datasets used to generate training data. Thus
it is no surprise that the image style of enhanced images follows
the clear ones. Notably, the structures in fundus images play a
more critical role in diagnosis than the image styles. Although
various styles in the training data may affect the styles of en-
hancement outcomes, their impact on the downstream analysis
is minimal.

4.4.2. Designed modules
Comparisons against the ablation of modules were conducted

to validate the effectiveness of the designed modules. The mod-
ules were successively installed according to the dependencies
between them. In the beginning, removing all the proposed
modules from GFE-Net, a U-Net was introduced as the back-
bone for fundus image enhancement. Then three modules were
installed step by step to promote the enhancement, including
(1) F (·) to extract frequency information for highlighting reti-
nal structures, (2) LR to learn structure-aware representations
under the supervision from F (·) to robustly correct fundus im-
ages, and (3)Lcyc to impose cycle-consistency between the out-
comes of DR and DE to further facilitate the network optimiza-
tion. Fig. 10 visualizes the images enhanced by various mod-
ule combinations, and quantitative evaluations on FIQ and RCF
are summarized in Table 5. Due to the discrepancy between
DRIVE and RCF, appearance gap is inevitable between the ref-
erence (Fig. 10 (f)) and the enhanced images (Fig. 10 (b-e)).
Therefore, we concentrate on analyzing the readability of en-
hanced images, as the appearance gap has little impact on fun-
dus assessment.

Table 5. Ablation study of the proposed modules.

F (·) LR Lcyc
FIQ RCF

SSIM PSNR SSIM PSNR
0.845 20.59 0.730 17.73

√
0.859 21.27 0.752 18.17

√ √
0.866 21.87 0.765 18.39

√ √ √
0.879 22.19 0.771 18.59

Fig. 10. The effect of the proposed modules. (a) cataract image. (b) w/o
F (·), LR and Lcyc. (c) w/o LR and Lcyc. (d) w/o Lcyc. (e) GFE-Net. (f)
reference.

Compared to the reference in Fig. 10 (f), the quality of Fig. 10
(a) has been severely degraded by cataracts. Using the back-
bone of U-Net, image contrast has been increased in Fig. 10 (b),
but fundus structures are still too fuzzy to observe. Thanks to
the frequency information from F (·), the readability of fundus
structures has been improved in Fig. 10 (c), though fine retinal
vessels and lesions are neglected in the zoomed box. Then LR

executes SSRL under frequency supervision, forwarding robust
structure-aware representations to the network. Retinal vessels
and hemorrhage lesions are thus visible in the zoomed box of
Fig. 10 (d). Finally, Lcyc further facilitates the network opti-
mization such that fundus structures and pathologies have been
decently enhanced in Fig. 10 (e). Correspondingly, in Table 5,
the enhancement performance progresses with module imple-
mentation, further confirming the effectiveness of the proposed
modules.

4.5. Discussion
Through the experiments, GFE-Net is demonstrated to be

an efficient generic algorithm for fundus image enhancement,
which robustly enhances unknown fundus images and preserves
retinal structures without supervised or extra data.

Comprehensive comparisons, including data dependency, en-
hancement performance, deployment efficiency, and scale gen-
eralizability, were conducted against SOTA algorithms to ver-
ify the advantages of GFE-Net in clinical deployment. Com-
pared with SOTA algorithms, our method effectively reduces
data dependency by eliminating the need for hand-crafted fea-
tures, segmentation masks, unpaired training data, or access to
test data in the deployment of GFE-Net. Additionally, GFE-
Net achieves superior enhancement performance with reason-
able computing costs. By significantly improving the readabil-
ity of fundus images, GFE-Net greatly enhances the subsequent
analysis of these images. Furthermore, the ablation study vali-
dates the effectiveness of the designed modules in GFE-Net and
highlights the impact of training data.

In contrast to the various data dependency of SOTA algo-
rithms, only synthesized data are necessary for GFE-Net. Fur-
thermore, the data dependency of SOTA algorithms often ne-
cessitates repeated training, whereas the model from GFE-Net
can be directly applied to any fundus images without the need
for additional tuning. Specifically, compared with the previous
study (Li et al., 2022b), SSRL allows GFE-Net to circumvent
the dependency on test data, such that desirable enhancement
models are learned only based on synthesized data. Moreover,
the seamless SSRL architecture improves the robustness and ef-
ficiency of task-relevant models, where GFE-Net outperforms
ArcNet (Li et al., 2022b) in enhancement performance, deploy-
ment efficiency, and scale generalizability. However, the image
style of outcomes in GFE-Net deeply depends on the training
data. Although the image style has little impact on fundus ob-
servation, automatic fundus analysis suffers from domain shifts
resulting from image styles.

5. Conclusion

Image degradation impacts fundus observation, leading to
uncertainty in fundus assessment. Although algorithms have
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been developed to enhance fundus images, cumbersome data
dependency and inconvenient applicability limit the clinical de-
ployment of fundus enhancement. To address this bottleneck, a
generic enhancement network, named GFE-Net, was proposed
in this study to robustly correct unknown fundus images with-
out dependency on supervised or extra data. By designing a
seamless SSRL architecture, GFE-Net couples frequency self-
supervision-based representation learning with down-steam im-
age enhancement. Hence robust structure-aware representa-
tions were learned only based on synthesized data to outstand-
ingly enhance fundus images suffering from unknown degra-
dations. Comprehensive experiments showed the effectiveness
and advantages of GFE-Net. GFE-Net not only outperformed
the SOTA algorithms in correcting fundus images, but also
boosted clinical deployment and follow-up fundus image anal-
ysis.
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Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E.,
Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al., 2020.
Bootstrap your own latent-a new approach to self-supervised learning. Ad-
vances in neural information processing systems 33, 21271–21284.

Guo, E., Fu, H., Zhou, L., Xu, D., 2023. Bridging synthetic and real images:
a transferable and multiple consistency aided fundus image enhancement
framework. IEEE Transactions on Medical Imaging .

He, K., Sun, J., Tang, X., 2010. Single image haze removal using dark channel
prior. IEEE transactions on pattern analysis and machine intelligence 33,
2341–2353.

He, K., Sun, J., Tang, X., 2012. Guided image filtering. IEEE transactions on
pattern analysis and machine intelligence 35, 1397–1409.

Huang, T., Li, S., Jia, X., Lu, H., Liu, J., 2021. Neighbor2neighbor:
Self-supervised denoising from single noisy images. arXiv preprint
arXiv:2101.02824 .

Isola, P., et al., 2017. Image-to-image translation with conditional adversarial
networks, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1125–1134.

Jeni, L.A., Cohn, J.F., De La Torre, F., 2013. Facing imbalanced data–
recommendations for the use of performance metrics, in: Humaine asso-
ciation conference on affective computing and intelligent interaction, pp.
245–251.

Komodakis, N., Gidaris, S., 2018. Unsupervised representation learning by
predicting image rotations, in: International Conference on Learning Repre-
sentations (ICLR).

Land, E.H., 1977. The retinex theory of color vision. Scientific american 237,
108–129.

Larsson, G., Maire, M., Shakhnarovich, G., 2016. Learning representations
for automatic colorization, in: European conference on computer vision,
Springer. pp. 577–593.

Li, H., Li, H., Zhao, W., Fu, H., Su, X., Hu, Y., Liu, J., 2023. Frequency-mixed
single-source domain generalization for medical image segmentation, in:
Medical Image Computing and Computer Assisted Intervention–MICCAI
2023: 26th International Conference, Vancouver, Canada, Springer.

Li, H., Liu, H., Fu, H., Shu, H., Zhao, Y., Luo, X., Hu, Y., Liu, J., 2022a.
Structure-consistent restoration network for cataract fundus image enhance-
ment, in: Medical Image Computing and Computer Assisted Intervention–
MICCAI 2022: 25th International Conference, Singapore, September 18–
22, 2022, Proceedings, Part II, Springer. pp. 487–496.

Li, H., Liu, H., Hu, Y., Fu, H., Zhao, Y., Miao, H., Liu, J., 2022b. An
annotation-free restoration network for cataractous fundus images. IEEE
Transactions on Medical Imaging .

Li, H., Liu, H., Hu, Y., Higashita, R., Zhao, Y., Qi, H., Liu, J., 2021a. Restora-
tion of cataract fundus images via unsupervised domain adaptation, in: 2021
IEEE 18th International Symposium on Biomedical Imaging (ISBI), IEEE.
pp. 516–520.

Li, T., Bo, W., Hu, C., Kang, H., Liu, H., Wang, K., Fu, H., 2021b. Applications
of deep learning in fundus images: A review. Medical Image Analysis ,
101971.

Liu, H., Li, H., Fu, H., Xiao, R., Gao, Y., Hu, Y., Liu, J., 2022. Degradation-
invariant enhancement of fundus images via pyramid constraint network, in:
Medical Image Computing and Computer Assisted Intervention–MICCAI
2022: 25th International Conference, Singapore, September 18–22, 2022,
Proceedings, Part II, Springer. pp. 507–516.

Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A., 2021. Feddg: Federated do-
main generalization on medical image segmentation via episodic learning in
continuous frequency space, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1013–1023.

Lore, K.G., Akintayo, A., Sarkar, S., 2017. Llnet: A deep autoencoder approach
to natural low-light image enhancement. Pattern Recognition 61, 650–662.

Luo, Y., et al., 2020. Dehaze of cataractous retinal images using an unpaired
generative adversarial network. IEEE Journal of Biomedical and Health
Informatics .

Ma, Y., Liu, J., Liu, Y., Fu, H., Hu, Y., Cheng, J., Qi, H., Wu, Y., Zhang,
J., Zhao, Y., 2021. Structure and illumination constrained gan for medical
image enhancement. IEEE Transactions on Medical Imaging .

MacGillivray, T.J., Cameron, J.R., Zhang, Q., El-Medany, A., Mulholland, C.,
Sheng, Z., Dhillon, B., Doubal, F.N., Foster, P.J., Trucco, E., et al., 2015.



Heng Li et al. /Medical Image Analysis (2023) 13

Suitability of uk biobank retinal images for automatic analysis of morpho-
metric properties of the vasculature. PLoS One 10, e0127914.

Mitra, A., Roy, S., Roy, S., Setua, S.K., 2018. Enhancement and restoration of
non-uniform illuminated fundus image of retina obtained through thin layer
of cataract. Computer methods and programs in biomedicine 156, 169–178.

Park, T., Efros, A.A., Zhang, R., Zhu, J.Y., 2020. Contrastive learning for
unpaired image-to-image translation, in: European Conference on Computer
Vision, Springer. pp. 319–345.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A., 2016. Con-
text encoders: Feature learning by inpainting, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2536–2544.

Philip, S., Cowie, L., Olson, J., 2005. The impact of the health technology
board for scotland’s grading model on referrals to ophthalmology services.
British Journal of Ophthalmology 89, 891–896.

Setiawan, A.W., Mengko, T.R., Santoso, O.S., Suksmono, A.B., 2013. Color
retinal image enhancement using clahe, in: International Conference on ICT
for Smart Society, IEEE. pp. 1–3.

Shen, J.J., Wang, R., Wang, L.L., Lyu, C.F., Liu, S., Xie, G.T., Zeng, H.L.,
Chen, L.Y., Shen, M.Q., Gao, X., et al., 2022. Image enhancement of
color fundus photographs for age-related macular degeneration: the shang-
hai changfeng study. International Journal of Ophthalmology 15, 268.

Shen, Z., Fu, H., Shen, J., Shao, L., 2020. Modeling and enhancing low-quality
retinal fundus images. IEEE transactions on medical imaging 40, 996–1006.

Teng, T., Lefley, M., Claremont, D., 2002. Progress towards automated diabetic
ocular screening: a review of image analysis and intelligent systems for di-
abetic retinopathy. Medical and Biological Engineering and Computing 40,
2–13.

Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., Isola, P., 2020. What
makes for good views for contrastive learning? Advances in Neural Infor-
mation Processing Systems 33, 6827–6839.

Wang, H., Guo, X., Deng, Z.H., Lu, Y., 2022. Rethinking minimal sufficient
representation in contrastive learning, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16041–16050.

Welikala, R., Fraz, M., Habib, M., Daniel-Tong, S., Yates, M., Foster, P., Whin-
cup, P., Rudnicka, A.R., Owen, C.G., Strachan, D., et al., 2017. Automated
quantification of retinal vessel morphometry in the uk biobank cohort, in:
2017 Seventh International Conference on Image Processing Theory, Tools
and Applications (IPTA), IEEE. pp. 1–6.

Zhu, J.Y., et al., 2017. Unpaired image-to-image translation using cycle-
consistent adversarial networks, in: Proceedings of the IEEE international
conference on computer vision, pp. 2223–2232.

Zuiderveld, K., 1994. Contrast limited adaptive histogram equalization. Graph-
ics gems , 474–485.


	Introduction
	Related Work
	Hand-crafted fundus image enhancement
	Deep learning based fundus image enhancement
	Training with unpaired data
	Training with synthesized data

	Self-supervised representation learning

	Method
	Frequency self-supervised representation learning
	Degraded view dataset
	Frequency self-supervision
	Representation learning objectives

	GFE-Net coupled with representation learning
	Shared encoder
	Representation learning decoder
	Image enhancement decoder
	Image enhancement objectives

	Network implementation

	Experiments
	Experiment Setting
	Datasets
	Evaluation metrics
	Baselines

	Enhancement comparisons with SOTA algorithms
	Data dependency
	Enhancement performance
	Deployment efficiency
	Scale generalizability

	Boosting for fundus image analysis
	Retinal vessel segmentation
	Fundus disease diagnosis

	Ablation study
	Training data
	Designed modules

	Discussion

	Conclusion

