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Abstract

Semi-supervised learning relaxes the need of large pixel-wise labeled datasets for image segmentation by
leveraging unlabeled data. A prominent way to exploit unlabeled data is to regularize model predictions.
Since the predictions of unlabeled data can be unreliable, uncertainty-aware schemes are typically employed
to gradually learn from meaningful and reliable predictions. Uncertainty estimation methods, however, rely
on multiple inferences from the model predictions that must be computed for each training step, which
is computationally expensive. Moreover, these uncertainty maps capture pixel-wise disparities and do not
consider global information. This work proposes a novel method to estimate segmentation uncertainty
by leveraging global information from the segmentation masks. More precisely, an anatomically-aware
representation is first learnt to model the available segmentation masks. The learnt representation thereupon
maps the prediction of a new segmentation into an anatomically-plausible segmentation. The deviation from
the plausible segmentation aids in estimating the underlying pixel-level uncertainty in order to further guide
the segmentation network. The proposed method consequently estimates the uncertainty using a single
inference from our representation, thereby reducing the total computation. We evaluate our method on two
publicly available segmentation datasets of left atria in cardiac MRIs and of multiple organs in abdominal
CTs. Our anatomically-aware method improves the segmentation accuracy over the state-of-the-art semi-
supervised methods in terms of two commonly used evaluation metrics.

Keywords: Anatomically-aware Representation; Plausible Segmentation; Uncertainty Estimation;
Self-ensembling; Semi-supervised Learning.

1. Introduction

Segmentation is a fundamental task in medical
image analysis, where image pixels are associated
with a target object, such as an organ, structure,
or abnormal region. It is a vital pre-processing step
in many clinical applications, notably in computer-
assisted diagnosis, intervention assistance, treat-
ment planning, and personalized medicine (Dun-
can and Ayache, 2000; Ayache and Duncan, 2016).
Recent segmentation methods based on deep learn-
ing techniques are driving progress under the full-
supervision regime, often outperforming traditional
methods (Litjens et al., 2017). Such a regime, how-
ever, relies on a large amount of annotations, which
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is time-consuming. Delineating an image at a pixel-
level is indeed challenging, especially in homoge-
neous or low-contrast regions, and requires pro-
hibitive clinical expertise. The burden of image
annotation motivates new learning strategies with
limited supervision (Cheplygina et al., 2019).

Semi-supervised learning is an emerging strategy
that alleviates annotation scarcity by leveraging un-
labeled data with a small set of labeled data. Cur-
rent semi-supervised segmentation methods typi-
cally utilize unlabeled data either in the form of
pseudo labels (Bai et al., 2017; Zheng et al., 2020) or
in a regularization term (Nie et al., 2018; Cui et al.,
2019; Peng et al., 2020). The former strategies aug-
ment the original labeled dataset with unlabeled
data alongside its corresponding model predictions,
commonly referred to as pseudo labels. Later tech-
niques incorporate unlabeled data into the train-
ing process by constraining predictions with a reg-
ularizer term. Training these semi-supervised ap-
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Figure 1: Uncertainty maps from different semi-supervision methods. K denotes the number of inferences. Green
arrows in regions of probable uncertainty due to unclear boundaries or annotator cut preference (such as in pulmonary veins cut
in top right). Red arrows in regions of lower uncertainty as they depict high image gradients in uninformative clear boundary
or inner foreground content.

proaches typically involves a supervised loss asso-
ciated with labeled data and an unsupervised loss
associated with unlabeled data.

Among regularization techniques, consistency-
based approaches (Laine and Aila, 2017; Tarvainen
et al., 2017) are often used in semi-supervision due
to simple ways to leverage unlabeled data. Their
approach encourages two or more segmentation pre-
dictions to be consistent under different perturba-
tions of the input data (Cui et al., 2019; Bortsova
et al., 2019; Li et al., 2020b). However, the seg-
mentation predictions can be unreliable and noisy
for unlabeled data since its annotations are unavail-
able. To alleviate this issue, uncertainty-aware reg-
ularization methods (Yu et al., 2019; Sedai et al.,
2019) have been proposed to gradually add reli-
able target regions in predictions. Although these
methods perform well in low-labeled data regime,
their high computation and complex training tech-
niques remain a limiting factor to broader applica-
tions. For instance, the pixel-level uncertainty ap-
proximation with Monte-Carlo Dropout (MCDO)
(Gal and Ghahramani, 2016) or ensembling (Lak-
shminarayanan et al., 2017) requires multiple pre-
dictions per image, thereby increasing the compu-
tation of each training step. Moreover, these ap-
proaches do not consider global information to esti-
mate uncertainty. The resulting uncertainty maps
capture pixel-wise disparity, most likely around
boundaries (Kendall et al., 2017). However, high
gradient regions near anatomical boundaries or in-
ner content of anatomical structures should have a
certain labeling mask. For instance, Fig. 1 shows
uncertainty captured by MCDOmostly over bound-
aries, while regions with high gradients (red arrows)
could indicate certain boundaries or anatomical de-
tails with certainty. Probable uncertainty may lie in
areas of low image gradients. For instance, anatom-
ical boundaries may be unclear due to imaging or
even non-existent in case of an arbitrary cut from

an annotator (green arrows), as illustrated in the
pulmonary veins in Fig. 1. Existing methods could
benefit from capturing informative uncertainty in
images beyond highlighting high image gradients or
all over boundaries.

The global information of the anatomical regions
is one promising direction to provide cues about
informative uncertainty in images. Our approach
will, therefore, exploit and capture global anatom-
ical information by leveraging available masks to
approximate segmentation uncertainty. Our main
idea is to learn an anatomically-aware representa-
tion from a training set of segmentation masks. The
learnt representation maps incorrect model pre-
dictions onto an anatomically-plausible segmenta-
tions. The plausible segmentation is subsequently
used to estimate the uncertainty maps and further
guide training of the segmentation network. We hy-
pothesize that the proposed uncertainty estimates
are more robust and computationally less expen-
sive than deriving them from a standard entropy
variance-based method, which requires multiple in-
ferences for each training step.

Our contributions. We propose a novel ap-
proach to estimate the uncertainty maps from an
anatomically-aware representation of the segmen-
tation masks, in order to guide the training of a
semi-supervised segmentation model. More pre-
cisely, we innovate semi-supervised segmentation
with uncertainty-based training by integrating a
pre-trained denoising autoencoder (DAE) into the
training of our segmentation network to: (i) map
the inaccurate model predictions to plausible seg-
mentation masks and (ii) estimate new uncertainty
maps that guide the training of our segmentation
model. As we approximate the uncertainty based
on the difference between predicted segmentation
and its DAE reconstruction learned from the seg-
mentation mask, it can better integrate anatomi-
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cal information. In contrast to most uncertainty-
based approaches, estimating the uncertainty map
requires a single inference from the DAE model,
thereby reducing computational complexity. Our
method is extensively evaluated on two medical
imaging datasets: the 2018 Atrial segmentation
challenge dataset (Xiong et al., 2021) and the 2021
Abdominal organ segmentation dataset (Ma et al.,
2022). Results demonstrate the superiority of our
approach over the state-of-the-art methods in semi-
supervised segmentation.
A preliminary version of this work has been pub-

lished in MICCAI 2022 (Adiga Vasudeva et al.,
2022). This work includes a comprehensive litera-
ture review, extensive experiments, and a thorough
discussion. The additional contributions in this
manuscript are summarized as follows: (i) an addi-
tional multi-class abdominal segmentation dataset
is evaluated for all our experiments, including ab-
lation studies; (ii) the impact of various design
choices made in the anatomically-aware represen-
tation prior (DAE) module are studied; (iii) a qual-
itative comparative analysis of uncertainty for dif-
ferent methods and their computation time are pro-
vided; (iv) additional related baseline that use a
Monte-Carlo Dropout-based uncertainty estimation
is provided for comparison (Wang et al., 2020);
(v) the introduction and motivation of our approach
are significantly extended with illustrations of our
uncertainty maps; (vi) our literature review is ex-
panded with recent uncertainty-aware as well as
anatomically-plausible segmentation methods.

1.1. Related Work

Semi-Supervised Segmentation. Semi-supervised
learning (SSL) is an established approach in the
literature under the paradigm of learning with lim-
ited supervision (Jiao et al., 2022). A wide range
of SSL strategies have been explored for segmenta-
tion, such as self-training (Bai et al., 2017; Zheng
et al., 2020), entropy minimization (Grandvalet
and Bengio, 2004; Wu et al., 2021), consistency reg-
ularization (Cui et al., 2019; Bortsova et al., 2019),
co-training (Peng et al., 2020; Xia et al., 2020) or
adversarial learning (Nie et al., 2018; Chaitanya
et al., 2019). For instance, self-training methods
(Bai et al., 2017; Zheng et al., 2020) typically
employ pseudo-labels on unlabeled data to train
models in an iterative way. However, potential
labeling mistakes in the pseudo labels can quickly
propagate during training, causing undesired
segmentation outcomes. Entropy minimization

strategies (Wu et al., 2021) circumvent such issues
by enforcing a high confidence in predictions but
can also easily lead to trivial solutions if additional
priors are not used. Co-training approaches (Peng
et al., 2020; Xia et al., 2020) avoid iterations but
at the cost of simultaneously training two or more
networks with multi-view images. Adversarial
methods (Nie et al., 2018; Chaitanya et al., 2019)
encourage the predictions of unlabeled images to
be closer to those of the labeled images, however,
they remain challenging in terms of convergence
(Salimans et al., 2016). Among the existing SSL
strategies, consistency regularization-based meth-
ods (Laine and Aila, 2017; Tarvainen et al., 2017)
are popular due to their simple assumption that
predictions should not change significantly under
different realistic data perturbations. This notion
is formulated as a consistency regularization term
in the loss function, which encourages predictions
to be consistent between data and its perturbed
version (Cui et al., 2019; Bortsova et al., 2019;
Li et al., 2020b). Similarly, our method leverages
unlabeled data with a consistency regularizer.

Uncertainty-based methods. The uncertainty esti-
mation approaches often employ Bayesian neural
networks (Neal, 2012), however, their training pro-
cess poses significant computational challenges. Re-
cent deep learning methods address this limita-
tion by approximating uncertainty through the gen-
eration of multiple samples (Abdar et al., 2021).
For instance, Monte-Carlo Dropout (MCDO) (Gal
and Ghahramani, 2016) performs several forward
passes through the same model with dropout en-
abled at test time to generate multiple samples for
the same input. Whereas a deep ensemble (Laksh-
minarayanan et al., 2017) trains a set of indepen-
dent models to generate multiple samples. These
approaches, however, tackle the problem of approx-
imating epistemic uncertainty associated with the
model output but not the aleatoric uncertainty as-
sociated with the model input (Kendall and Gal,
2017). A set of recent methods models the aleatoric
uncertainty by using intra-/inter-annotation vari-
ability as a proxy to the underlying input uncertain-
ties (Kohl et al., 2018; Baumgartner et al., 2019;
Monteiro et al., 2020). All of the aforementioned
methods have been shown to produce reliable un-
certainty estimations in fully-supervised segmenta-
tion (Mehta et al., 2022; Camarasa et al., 2021).

In the context of semi-supervised segmentation,
the uncertainty in the prediction is widely used
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within the optimization process (Yu et al., 2019;
Wang et al., 2020, 2021). In particular, the uncer-
tainty information assists the segmentation models
by providing reliable target regions on unlabeled
data during each training step. For instance, Yu
et al. (2019) first approximates an uncertainty map
using a predictive entropy of several predictions un-
der data and model perturbations. The generated
uncertainty map is later used to gradually add the
reliable target regions in the consistency loss term.
This idea was further extended to integrate uncer-
tainty on a feature-level (Wang et al., 2020) and
multiple prediction branches (Wang et al., 2022).
The uncertainty estimation in these approaches
commonly use MCDO (Gal and Ghahramani, 2016)
or ensembling (Lakshminarayanan et al., 2017),
which inherently relies on multiple predictions per
image. In addition to being computationally ex-
pensive, estimating such entropy-based uncertainty
is suboptimal in a multi-class scenario since it dis-
regards inter-class overlaps (Van Waerebeke et al.,
2022). More recently, multi-scale (Luo et al., 2022)
or multi-decoder (Wu et al., 2022) approaches have
been proposed to overcome the expensive compu-
tation of uncertainty using multiple predictions in
a single forward pass. Nevertheless, these methods
failed to capture the actual uncertainty regions. In
contrast to existing strategies, our method lever-
ages an anatomically-aware representation from the
available annotations to estimate the uncertainty
in a single inference step. This strategy leads to a
lower computational complexity and an improved
computational efficiency.

Towards anatomically-plausible segmentations.
Recent approaches incorporate anatomically-aware
priors in a segmentation network (Oktay et al.,
2017; Ravishankar et al., 2017; Painchaud et al.,
2020) by learning the variability of structures in a
medical imaging dataset. For instance, Oktay et al.
(2017) first learn an anatomically-aware representa-
tion with an autoencoder-based architecture using
segmentation masks. This representation is later
utilized to map a prediction into an anatomically-
plausible space. These methods use the encoder
of the representation as a global shape regularizer
that enforces the model predictions to follow the
ground truth distribution. The anatomically-aware
representation can also map an erroneous mask
into an anatomically-plausible segmentation. Such
mapping is subsequently used to correct the
segmentation predictions as a post-processing step

(Larrazabal et al., 2020; Painchaud et al., 2020) or
improve the segmentation on unseen test images
(Karani et al., 2021). In order to encode the
masks in the anatomically-aware representation, a
substantial amount of annotations are used either
from the given dataset (Larrazabal et al., 2020;
Painchaud et al., 2020) or the source domain
dataset (Karani et al., 2021). The anatomically-
aware representation is alternately substituted with
a probabilistic atlas to enforce the priors (Zheng
et al., 2019; Huang et al., 2022), which requires
an aligned dataset. For instance, Dalca et al.
(2018) learns an anatomically-aware representation
on aligned labelings and subsequently uses it for
unsupervised segmentation on aligned images. In
contrast to these approaches, our method leverages
an anatomically-aware representation in a low-data
regime with the goal of obtaining uncertainty maps
in order to guide the segmentation network during
the training process.

2. Method

An overview of the proposed anatomically-aware
uncertainty estimation for semi-supervised segmen-
tation is shown in Fig 2. The main idea is to exploit
an anatomically-aware representation that maps
the segmentation prediction into a plausible mask.
The reconstructed segmentation will be indicative
in estimating an uncertainty map, which later is
used to guide the segmentation training. The fol-
lowing subsections describe the semi-supervised set-
ting, anatomically-aware representation and uncer-
tainty estimation process.

2.1. Preliminaries

The standard semi-supervised learning consists
of N labeled and M unlabeled data in the training
set, where N ≪ M . Let DL = {(xi, yi)}Ni=1 and

DU = {(xi)}(N+M)
i=(N+1) denote the labeled and unla-

beled sets, where an input volume is represented
as xi ∈ RH×W×D and its corresponding segmen-
tation mask is yi ∈ {0, 1, ..., C}H×W×D, with C
being the number of classes. The objective is to
train a segmentation network with a combination
of supervised loss Ls and unsupervised loss Lu us-
ing labeled and unlabeled data, i.e., L = Ls +λLu,
where λ controls the weight of unsupervised loss.
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Figure 2: Overview of our uncertainty estimation from anatomically-aware representation for semi-supervised
segmentation. A pre-trained anatomically-aware representation (i.e., a DAE) module is integrated into the training of the
mean teacher model, which maps the teacher prediction pT into a plausible segmentation p̂T . The uncertainty map (U) is
subsequently estimated with the output of the teacher and the DAE model in order to further guide the student model.

2.2. Mean Teacher Formulation

Following current literature (Yu et al., 2019), we
adopt the common mean teacher approach (Tar-
vainen et al., 2017) for training a segmentation net-
work. It consists of a student (S) and a teacher (T )
model, both having the same segmentation archi-
tecture. The overall objective function is defined as
follows:

L = min
θS

N∑
i=1

Ls(f(xi; θS), yi)+

λc

N+M∑
i=1

Lc(f(xi, η; θS), f(xi, η
′; θT )), (1)

where f(·) denotes the segmentation network, and
θS and θT are the learnable weights of the stu-
dent and teacher models. The supervised loss Ls

measures the segmentation quality on the labeled
data, whereas the unsupervised consistency loss
(Lc = Lu) measures the prediction consistency be-
tween the student and the teacher models for the
same input volume xi under different perturbations
(η and η′). The balance between the supervised
and unsupervised loss is controlled by a ramp-up
weighting coefficient λc, which is defined as

λc = β ∗ e−r(1− t
tmax

)2 , (2)

where β is a consistency weight, r controls the rate
of ramp-up, t and tmax denote the current and

maximum training steps. For training, the student
model parameters (θS) are optimized with stochas-
tic gradient descent (SGD), whereas the teacher
model parameters (θT ) are updated using an ex-
ponential moving average (EMA) at each training
step t. The EMA is defined as

θtT = αθt−1
T + (1− α)θtS , (3)

where α is the smoothing coefficient of EMA that
controls the update rate.

2.3. Anatomically-aware Uncertainty Approach

The reliability of the model prediction on the un-
labeled dataset plays an essential role in the consis-
tency loss. An uncertainty-aware scheme can as-
sist this loss by providing reliable target regions.
The existing approaches (Yu et al., 2019; Wang
et al., 2020) estimate uncertainty at a pixel-level,
which fails to consider global information within the
dataset. To address this limitation, our approach
learns an anatomically-aware representation prior
in order to capture global information. The mea-
surable deviations from this prior provide informa-
tive cues about the uncertainty of the segmentation
mask. The following subsections elaborate on our
anatomically-aware uncertainty method.

2.3.1. Anatomically-aware Representation Prior

Incorporating anatomically-aware prior in deep
segmentation models is not obvious. One of the
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reasons is that, in order to integrate such prior
knowledge during training, one needs to augment
the learning objective with a differentiable term,
which is not trivial. To circumvent these difficulties,
a simpler solution is to resort to an autoencoder
trained with segmentation masks, which maps the
predictions into anatomically-plausible segmenta-
tion. This strategy has been adopted for fully-
supervised learning as a global regularizer during
training in (Oktay et al., 2017) and as a post-
processing step in (Larrazabal et al., 2020) to cor-
rect the segmentation predictions. Motivated by
this concept, we encode the available segmentation
masks in a non-linear latent space of a denoising
autoencoder (DAE) (Vincent et al., 2010) to learn
an anatomically-aware representation prior. This
learnt representation captures the global informa-
tion from the segmentation masks such that it maps
an inaccurate prediction into a plausible segmenta-
tion.

The DAE model consists of an encoder fe(·) and
a decoder fd(·) with a d-dimensional latent space as
shown in the Fig. 2. The DAE is trained to recon-
struct the clean label yi from its corrupted version
ỹi, which can be achieved with a mean squared er-
ror loss: 1

H×W×D

∑
v ||fd(fe(ỹi,v)) − yi,v||2, where

v is a voxel. Additionally, the dice loss is added to
handle the class imbalance between foreground and
background in the labels.

2.3.2. Anatomically-aware Uncertainty

The role of the uncertainty is to gradually up-
date the student model with reliable target re-
gions from the teacher model predictions. Our pro-
posed method estimates the uncertainty directly
from the anatomically-aware representation net-
work fd(fe(·)), requiring only one inference step.
First, we map the segmentation prediction from the
teacher model (pTi

) with a DAE model to produce a
plausible segmentation p̂Ti

= fd(fe(pTi
)). We sub-

sequently estimate the uncertainty as the pixel-wise
difference between the DAE output and the predic-
tion, which is given as:

Ui = ||p̂Ti − pTi ||2. (4)

Note that the uncertainty formulation is related
to the conventional sample variance-based uncer-
tainty estimation. Specifically, for a given input,
xi, and its corresponding multiple model predic-
tions, pis , the sample variance estimation is defined

as follows:

var(pi) =
1

S − 1

S∑
s=1

(pis − p̄i)
2,

where p̄i represents the sample mean and is defined
as p̄i =

1
S

∑S
s=1(pis). The parameter S denotes the

number of prediction samples. When S is set to 2,
the sample mean p̄i reduces to

pi1
+pi2

2 , resulting in
the variance estimation taking the form of:

var(pi) = (pi1 −
pi1 + pi2

2
)2 + (pi2 −

pi1 + pi2
2

)2,

= (
pi1 − pi2

2
)2 + (

pi2 − pi1
2

)2,

var(pi) =
1

2
(pi1 − pi2)

2.

The above equation is equivalent to our uncer-
tainty formulation in Eq. 4, where two samples are
drawn from the output of the teacher model and
the DAE model.

The resulting uncertainty maps from Eq. 4 are
subsequently used to obtain the reliable target re-
gions as follows: e−γUi , similarly to (Luo et al.,
2022), where γ is an uncertainty weighting factor
empirically set to 1. The reliable targets are finally
combined in a consistency loss as:

Lc(pSi
, pTi

) =

∑
v e

−γUi,v ||pSi,v
− pTi,v

||2∑
v e

−γUi,v
, (5)

where v is a voxel. Note that the consistency loss
Lc will be equivalent to a standard mean teacher
method (Tarvainen et al., 2017) when γ = 0. Over-
all, we jointly optimize the consistency loss Lc and
supervised loss Ls as learning objectives, where Ls

is a combination of cross-entropy and dice losses.

3. Experiments

3.1. Datasets

The performance of our method is validated on
two publicly available benchmarks: (a) the left
atrium (LA) binary segmentation dataset from the
2018 atrial challenge (Xiong et al., 2021), and (b)
the abdominal multi-organ segmentation dataset
from the FLARE challenge (Ma et al., 2022).
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(a) LA dataset. It consists of 100 3D late
gadolinium-enhanced magnetic resonance imaging
(LGE-MRI) scans and corresponding LA segmen-
tation masks. These scans have an isotropic res-
olution of 0.625 mm3 and are center cropped at
the heart region. The dataset is split into 80 for
training and the remaining 20 for testing as in the
literature (Yu et al., 2019; Li et al., 2020a; Wang
et al., 2020; Luo et al., 2021).

(b) FLARE dataset. This dataset consists of 361
CT scans of the abdominal region and correspond-
ing segmentation masks of four organs, namely
liver, kidney, spleen, and pancreas. These scans
are collected from multiple medical centers, having
varying resolutions. Each image is first resampled
to a uniform resolution of 2×2×2.5 mm3 and then
normalized by clipping the intensity values outside
[0.5, 0.95] percentile range. For all our experiments,
we use a fixed dataset split of 260 for training, 26
for validation, and the remaining 75 for testing.

3.2. Implementation and Training details

To validate our proposed method, we employ
a V-Net (Milletari et al., 2016) as a backbone
architecture for the segmentation networks, as
followed in earlier work (Yu et al., 2019; Wang
et al., 2020; Luo et al., 2021). Our anatomically-
aware representation prior module (i.e., a DAE)
follows a similar architecture as V-Net but without
skip connections. Such design effectively makes it
an autoencoder-style architecture, which is also
comparable to prior work (Oktay et al., 2017; Lar-
razabal et al., 2020). To encode the segmentation
mask in a latent space, a dense layer of d-dimension
is added at the bottleneck layer of the DAE module
as shown in Fig. 2. For training, the student model
uses a SGD optimizer with an initial learning rate
(lr) of 0.1 and a momentum of 0.9 with a cosine
annealing decaying (Loshchilov and Hutter, 2017).
The teacher weights (in Eq. 3) are updated by an
EMA with a rate of α = 0.99 (Tarvainen et al.,
2017). The DAE model is also trained using a SGD
optimizer with an initial lr = 0.1, a momentum
of 0.9, and decaying the lr by a factor of 2 every
5000 iterations. Following the literature (Yu et al.,
2019; Luo et al., 2022), the consistency weight
β and ramp-up factor r in Eq. 2 are set to 0.1
and 5, respectively. Inputs to both segmentation
and DAE networks are randomly cropped to a
size of 112 × 112 × 80 and 144 × 144 × 96 for LA
and FLARE datasets, respectively. We employ

online standard data augmentation techniques
such as random flipping and rotation. In ad-
dition, input labels to the DAE are corrupted
with a random swapping of pixels around class
boundaries, morphological operations (erosion and
dilation), resizing, and adding/removing basic
shapes (Van der Walt et al., 2014). The latent
space of the DAE is injected with a small noise
drawn from a Gaussian distribution to explore
different sets of plausible segmentation during
training of the segmentation network. The training
set is partitioned into N labeled and M unlabeled
splits, which are fixed across all experiments. The
batch size is set to 4 in both networks. Input batch
for the segmentation network uses two labeled and
unlabeled data. During the inference phase, the
segmentation predictions are generated using the
sliding window strategy. For the cardiac dataset
(LA), following the literature (Yu et al., 2019; Li
et al., 2020a; Luo et al., 2021), the final model is
evaluated at the last training iteration (i.e., 6000),
whereas the best validation model is selected in the
case of the abdominal dataset (FLARE). All our
experiments were run on an NVIDIA RTX A6000
GPU with PyTorch 1.8.0. The implementation of
our work is available at: https://github.com/

adigasu/Anatomically-aware_Uncertainty_

for_Semi-supervised_Segmentation.

3.3. Evaluation Metrics

We employ common Dice Score Coefficient (DSC)
and 95% Hausdorff Distance (HD) evaluation met-
rics to assess quantitative segmentation perfor-
mance. The DSC score evaluates the degree of over-
lap between ground truth and prediction regions.
In contrast, the HD score measures the distance
between ground truth and predicted segmentation
boundaries. For a fair comparison, all experiments
are run three times with a fixed set of seeds on
the same machine, and their average results are re-
ported.

4. Results

4.1. Comparison with the state-of-the-art

We first compare our method with relevant semi-
supervised segmentation approaches and report the
quantitative results in Tables 1 and 2. The upper
and lower bound from the backbone architecture V-
Net (Milletari et al., 2016) are reported at the top of
each section. Furthermore, non-uncertainty-based
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Table 1: Segmentation results on the LA test set for the 10% and 20% annotation settings. Uncertainty-based
methods with K inferences per training step are grouped at the bottom of each section, while K = - indicates non-uncertainty-
based methods. Ours achieves the best Dice (DSC) and Hausdorff (HD) scores in both annotation scenarios. The best and
second-best results are highlighted in bold and underlined, whereas the statistical significance between the top two results is
denoted in ∗. The number of labeled and unlabeled data indicated with N and M , respectively.

N/M Methods #K DSC (%) ↑ HD (mm) ↓
80/0 Upper bound - 91.23 ± 0.44 6.08 ± 1.84

8/0 Lower bound - 76.07 ± 5.02 28.75 ± 0.72
MT (Tarvainen et al., 2017) - 78.22 ± 6.89 16.74 ± 4.80
SASSnet (Li et al., 2020a) - 83.70 ± 1.48 16.90 ± 1.35
DTC (Luo et al., 2021) - 83.10 ± 0.26 12.62 ± 1.44
UAMT (Yu et al., 2019) 8 85.09 ± 1.42 18.34 ± 2.80
DUMT (Wang et al., 2020) 16 82.97 ± 1.76 14.43 ± 0.67
URPC (Luo et al., 2022) 1 84.47 ± 0.31 17.11 ± 0.60

8/72
(10%)

Ours 1 86.58± 1.03∗ 11.82± 1.42

16/0 Lower bound - 81.46 ± 2.96 23.61 ± 4.94
MT (Tarvainen et al., 2017) - 86.06 ± 0.81 11.63 ± 3.40
SASSnet (Li et al., 2020a) - 87.81 ± 1.45 10.18 ± 0.55
DTC (Luo et al., 2021) - 87.35 ± 1.26 10.25 ± 2.49
UAMT (Yu et al., 2019) 8 87.78 ± 1.03 11.10 ± 1.91
DUMT (Wang et al., 2020) 16 87.42 ± 0.97 10.78 ± 2.26
URPC (Luo et al., 2022) 1 88.58 ± 0.10 13.10 ± 0.60

16/64
(20%)

Ours 1 88.60± 0.82 7.61± 0.78∗

methods such as MT (Tarvainen et al., 2017), DTC
(Luo et al., 2021), and SASSnet (Li et al., 2020a)
and uncertainty-based methods UAMT (Yu et al.,
2019), DUMT (Wang et al., 2020), and URPC (Luo
et al., 2022) are included in our evaluation.

(a) Left Atrium segmentation. Table 1 shows the
segmentation performance on the Left Atrium (LA)
test set under the standard 10% (top) and 20%
(bottom) annotation settings. From the top half
of the table, we observe that leveraging unlabeled
data improves the lower bound across all models.
The uncertainty-based approaches typically outper-
form their non-uncertainty counterparts in terms
of DSC, but yield inferior results in terms of HD.
Among these methods, UAMT and DTC achieve
the best DSC and HD scores, respectively. Never-
theless, compared to these best-performing base-
lines, our method brings improvements in both
DSC (1.5%) and HD (0.8mm) scores. Moreover,
uncertainty estimation in our method requires a
single inference from an anatomically-aware repre-
sentation, whereas UAMT uses K=8 inferences per
training step to obtain an uncertainty map. This
highlights the efficiency of the proposed approach,
which yields a better segmentation performance yet
requires substantially less computational time at
each training step.
Furthermore, we validate our method on the 20%

annotation scenario, whose results are reported in
bottom half of Table 1. We observe a similar trend

in these results, with uncertainty-based approaches
outperforming non-uncertainty-based methods in
DSC, whereas their performance in terms of HD
is degraded. An interesting observation is that ex-
isting methods are ranked differently across the two
annotation settings, indicating that they might be
sensitive to the annotation scenario. For example,
while UAMT achieves the best DSC score under
the 10% annotation setting, URPC yields the best
results in the 20% annotation case. Similarly, the
best models are different for HD metric, i.e., DTC
under the 10% setting and SASSNet in the 20%
setting. In contrast, our method consistently out-
performs each existing approach in both DSC and
HD scores, highlighting its robustness against the
amount of labeled data.

(b) Abdominal multi-organ segmentations. Table 2
presents the performance of the abdominal multi-
organ segmentations on the FLARE test set. The
results of 10% and 20% annotation experiments are
grouped in the top and bottom half of the table,
respectively. We report individual organs as well as
average results. From the top half of the table, we
first notice that the performance of most existing
methods is improved when compared to the lower
bound in both DSC and HD scores, except SASS-
Net, DTC, and DUMT. The gap in the segmenta-
tion performance of SASSNet and DTC is due to
the use of signed distance maps (SDM), which are
designed for binary segmentation. Adopting these

8



Table 2: Segmentation results on the FLARE test set for the 10% and 20% annotation settings. Uncertainty-based
methods with K inferences per training step are grouped at the bottom of each section, while K = - indicates non-uncertainty-
based methods. Our method produces the best results on average. The best and second-best results are highlighted in bold
and underlined, whereas the statistical significance between the top two results is denoted in ∗. The number of labeled and
unlabeled data indicated with N and M , respectively.

N/M Methods #K Average Liver Kidney Spleen Pancreas

260/0 Upper bound - 85.80 ± 1.42 94.95 ± 0.30 93.20 ± 0.81 89.65 ± 2.91 65.38 ± 2.57

26/0 Lower bound - 70.09 ± 2.77 88.37 ± 2.31 81.12 ± 2.49 70.74 ± 4.41 40.14 ± 3.84
MT (Tarvainen et al., 2017) - 70.76 ± 2.79 88.77 ± 3.11 83.34 ± 1.22 72.91 ± 4.35 38.01 ± 2.62
SASSnet (Li et al., 2020a) - 61.43 ± 14.3 86.94 ± 2.88 63.59 ± 43.0 59.83 ± 18.6 35.36 ± 5.05
DTC (Luo et al., 2021) - 68.07 ± 1.42 87.99 ± 1.79 83.11 ± 3.93 66.04 ± 3.40 35.15 ± 1.26
UAMT (Yu et al., 2019) 8 73.63 ± 0.65 91.65± 0.49 84.70 ± 2.39 76.16 ± 2.58 42.01 ± 2.24
DUMT (Wang et al., 2020) 16 69.04 ± 1.39 87.28 ± 0.82 80.47 ± 3.88 68.23 ± 6.79 40.18 ± 2.59
URPC (Luo et al., 2022) 1 73.31 ± 1.11 91.09 ± 0.62 85.88 ± 1.82 75.40 ± 2.64 40.89 ± 4.05

D
S
C

(%
)
↑

26/234

(10%)

Ours 1 75.28± 1.54∗ 90.78 ± 1.26 87.09± 1.89 78.13± 1.23 45.12± 2.20∗

260/0 Upper bound - 6.37 ± 1.15 5.50 ± 2.86 3.31 ± 1.10 7.49 ± 1.94 9.17 ± 0.66

26/0 Lower bound - 18.51 ± 4.01 15.26 ± 0.90 9.89 ± 2.13 30.51 ± 11.9 18.40 ± 3.53
MT (Tarvainen et al., 2017) - 18.58 ± 1.66 12.09 ± 3.72 8.70 ± 0.85 35.89 ± 7.47 17.64 ± 1.53
SASSnet (Li et al., 2020a) - 27.76 ± 8.51 24.59 ± 23.0 15.1 ± 11.1 51.86 ± 21.3 19.53 ± 0.89
DTC (Luo et al., 2021) - 23.11 ± 6.01 21.63 ± 16.7 18.8 ± 11.3 32.64 ± 16.8 19.31 ± 2.07
UAMT (Yu et al., 2019) 8 14.30 ± 1.94 10.44± 1.45 8.08 ± 1.41 20.44 ± 6.18 18.24 ± 3.04
DUMT (Wang et al., 2020) 16 22.35 ± 3.82 13.23 ± 2.28 19.21 ± 13.9 36.17 ± 15.5 20.77 ± 3.58
URPC (Luo et al., 2022) 1 14.23 ± 1.97 11.71 ± 2.37 7.41± 1.16 20.82 ± 5.02 16.96 ± 3.00

H
D

(m
m

)
↓

26/234

(10%)

Ours 1 13.69± 0.68 10.85 ± 1.69 9.48 ± 2.10 18.45± 4.17 15.98± 1.33

52/0 Lower bound - 70.15 ± 1.58 88.40 ± 1.24 81.91 ± 2.07 68.40 ± 5.68 41.88 ± 7.44
MT (Tarvainen et al., 2017) - 72.10 ± 1.84 89.82 ± 2.30 85.15 ± 1.66 71.87 ± 4.28 41.55 ± 2.99
SASSnet (Li et al., 2020a) - 69.74 ± 4.43 88.41 ± 1.10 86.19 ± 3.13 64.11 ± 12.1 40.25 ± 3.07
DTC (Luo et al., 2021) - 68.49 ± 1.30 89.61 ± 0.71 83.31 ± 4.39 62.76 ± 5.64 38.29 ± 3.38
UAMT (Yu et al., 2019) 8 74.72 ± 1.15 89.54 ± 3.10 87.92 ± 1.52 73.07 ± 3.91 48.34± 1.41
DUMT (Wang et al., 2020) 16 72.08 ± 2.77 90.11 ± 1.66 85.43 ± 4.82 71.83 ± 0.92 40.94 ± 4.17
URPC (Luo et al., 2022) 1 74.26 ± 1.02 91.02 ± 0.54 87.91 ± 2.47 72.06 ± 1.82 46.03 ± 0.40

D
S
C

(%
)
↑

52/208

(20%)

Ours 1 76.69± 0.81∗ 91.84± 1.00∗ 88.72± 0.74 78.07± 0.69∗ 48.14 ± 1.73

52/0 Lower bound - 15.63 ± 0.33 15.18 ± 4.46 11.93 ± 4.64 20.50 ± 2.56 14.91± 2.78
MT (Tarvainen et al., 2017) - 16.39 ± 3.34 11.04± 0.58 10.89 ± 0.91 25.70 ± 9.08 17.94 ± 4.50
SASSnet (Li et al., 2020a) - 23.84 ± 0.79 34.01 ± 14.3 11.89 ± 8.66 32.28 ± 1.53 17.16 ± 1.69
DTC (Luo et al., 2021) - 22.46 ± 2.12 25.23 ± 20.1 18.09 ± 8.14 29.05 ± 4.84 17.46 ± 1.02
UAMT (Yu et al., 2019) 8 14.50 ± 2.46 16.60 ± 4.11 7.83 ± 0.76 17.91 ± 8.34 15.66 ± 0.76
DUMT (Wang et al., 2020) 16 15.53 ± 2.75 11.74 ± 2.27 8.64 ± 0.95 25.43 ± 8.42 16.31 ± 0.89
URPC (Luo et al., 2022) 1 14.16 ± 0.68 11.16 ± 2.09 8.47 ± 2.79 20.66 ± 0.80 16.33 ± 1.70

H
D

(m
m

)
↓

52/208

(20%)

Ours 1 13.11± 0.45 11.32 ± 2.29 7.79± 2.69 17.38± 4.19 15.94 ± 0.28

methods for multi-class segmentation is challeng-
ing since it requires careful hyperparameter tun-
ing of per-class SDM predictions, which is beyond
the scope of this work. Note that DUMT did not
outperform the simple baseline under a multi-class
setting, which is consistent with the observations in
(Van Waerebeke et al., 2022). Among the existing
methods, the uncertainty-based methods (UAMT
and URPC) perform well in both segmentation
metrics. These methods improve the segmentation
of liver and spleen regions, achieving the best av-
erage DSC and HD scores in UAMT and URPC,
respectively. Compared to these best-performing
baselines, our method predominantly improves the
segmentation of challenging regions, notably the
pancreas organ. Overall our anatomically-aware

method consistently performs well in all regions and
improves average DSC (1.65%) and HD (0.6mm)
scores.

The results of the 20% annotation scenario are
reported in the bottom half of Table 2. We notice
a similar trend in the results when compared to
the 10% annotation setting. All existing methods,
except SASSNet and DTC, improve the segmen-
tation performance over the lower bound in both
DSC and HD scores. Our method outperforms the
best-performing baselines (UAMT and URPC) in
most cases and improves the average DSC (1.95%)
and average HD (1mm) scores. These results show
that our method consistently outperforms the ex-
isting approaches across different datasets and la-
beling scenarios. We can, therefore, argue that in-
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cluding our novel anatomically-aware module is a
valuable alternative to existing semi-supervised seg-
mentation approaches.

4.2. Qualitative Analysis

Visual results of the left atrium (LA) segmenta-
tion obtained by different methods are depicted in
Fig. 3. In the top row (10% annotation setting), the
existing approaches produce segmentation output
with holes (SASSnet, UAMT) and noisy boundaries
(SASSnet, DTC, UAMT, DUMT). In contrast,
URPC and our methods produce smoother segmen-
tations, but URPC generates under-segmented out-
put compared to our method. Note that a post-
processing tool is commonly employed in SASSNet
to improve the segmentation performance. How-
ever, this is avoided in our experiments for a fair
comparison. In the 20% annotation setting (bottom
row), with access to more labeled data, all methods
reduce segmentation errors. Even in this case, our
method produces promising and smoother segmen-
tations when compared to existing approaches.
To highlight the deficiencies of these approaches

in multi-class segmentation, we now show qualita-
tive results on abdominal organs in Fig. 4. In the
10% annotation setting (top row), we first observe
that misclassification between different organs is a
common problem across existing approaches, no-
tably in SASSnet, DTC, UAMT, and DUMT. For
instance, part of the liver is segmented as a spleen
in SASSnet and DUMT, whereas the parts of the
spleen are misclassified as kidneys in DTC and as
pancreas in UAMT. This misclassification could be
due to either similar intensity characteristics across
different organs (Durieux et al., 2018) or the in-
efficiency of networks in discriminating multi-class
distributions (Van Waerebeke et al., 2022). Fur-
thermore, most methods (SASSnet, DTC, UAMT,
URPC) have failed to capture the challenging pan-
creas region. In contrast, our method provides an
improved segmentation in this challenging region
and minimizes classification errors. In the bottom
row of Fig. 4, adding more labeled images to the
training (20% annotation setting) also reduces clas-
sification errors (UAMT, URPC). Our method sim-
ilarly improves the segmentation performance in all
observed regions. The quantitative results from the
previous section further support the superiority of
our approach. Overall, we argue that the observed
improvements in both datasets could be attributed
to the knowledge derived from the anatomically-
aware representation.

4.3. Choice of Latent Space in DAE

Our anatomically-aware prior (DAE) plays a vi-
tal role in guiding the segmentation model. There-
fore, we investigate the impact of the design choices
made in the DAE on the final segmentation perfor-
mance. The latent space (LS) of our DAE is first
studied under varying sizes (d) across two datasets
in Fig. 5. The results show that the segmentation
performance varies with LS sizes. The best results
are achieved for d=128 in binary left atrium seg-
mentations and d=512 in abdominal multi-organ
segmentations. It indicates that the choice of the
latent space size, d, depends on the complexity of
the dataset.

Furthermore, the LS of the DAE is perturbed
with an addition of a Gaussian noise. This facil-
itates a different set of reconstructions from the
DAE when training the segmentation model. The
different reconstructions aid in better guiding the
segmentation model. To validate this notion, we
conduct experiments with and without adding a
noise in the LS across both datasets in Fig.6. The
results demonstrate that the final segmentation per-
formance improves up to 1.79% in DSC and 1.69mm
in HD by adding a noise in the LS of the DAE mod-
ule. These analyses show the impact of our design
choices in the anatomically-aware prior on the seg-
mentation performance.

4.4. Ablation Study on uncertainty

To validate the effectiveness of our uncertainty
estimation on the segmentation performance, we
conducted two experiments by adopting a thresh-
old strategy and a predictive entropy scheme used
in UAMT. Specifically, a threshold strategy filters
out the most unreliable region from the uncertainty
map (Ui), defined as H > Ui with a threshold, H,
set with a ramp-up function, as in UAMT (Yu et al.,
2019). In the entropy experiments, we estimate the
uncertainty (Ui) using the entropy of the DAE pre-
diction (p̂Ti

) and then combining it in a consistency
loss as in Eq 5. The results of these ablation ex-
periments on the LA and FLARE datasets under
the 10% and 20% annotation settings are reported
in Table 3. Compared to UAMT, our threshold
and entropy experiments improve the segmentation
performance in both DSC and HD scores in most
cases. At the same time, our proposed uncertainty
method (Sec. 2.3.2) achieves the best performance
in all the settings. These results show the merit of
our anatomically-aware uncertainty estimation for
guiding the segmentation model.
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(a) Image & GT

10
%

DSC: 84.67, HD: 33.87 DSC: 83.31, HD: 27.80 DSC: 87.52, HD: 21.98 DSC: 86.38, HD: 21.04 DSC: 88.25, HD: 23.63 DSC: 91.36, HD: 17.07

DSC: 97.23, HD: 4.00 DSC: 97.08, HD: 3.61 DSC: 97.03, HD: 4.24 DSC: 97.36, HD: 3.61 DSC: 96.03, HD: 7.00 DSC: 97.44, HD: 3.16

20
%

Figure 3: Qualitative comparison under the 10% and 20% annotation settings on LA dataset. DSC (%) and HD
(mm) scores are mentioned at the top of each image. Each image is overlaid with a contour of segmentation prediction or
ground truth (red).

(b) SASSnet (c) DTC (d) UAMT (e) DUMT (f) URPC (g) Ours

(a) Image & GT

DSC: 87.33, HD: 28.89 DSC: 86.22, HD: 8.36 DSC: 85.93, HD: 5.15 DSC: 89.55, HD: 27.70 DSC: 86.74, HD: 4.30 DSC: 94.56, HD: 1.35

10
%

DSC: 86.88, HD: 8.94 DSC: 87.91, HD: 31.55 DSC: 94.88, HD: 1.43 DSC: 87.34, HD: 8.56 DSC: 88.31, HD: 4.66 DSC: 94.97, HD: 1.31

20
%

Figure 4: Qualitative comparison under the 10% and 20% annotation settings on FLARE dataset. Average DSC
(%) and average HD (mm) scores are mentioned at the top of each image. The colorings are liver (blue), kidney (green), spleen
(red), and pancreas (yellow).

Table 3: Effectiveness of our proposed uncertainty estimation on segmentation results using different strategies.
The number of labeled and unlabeled data indicated with N and M , respectively.

LA Dataset FLARE Dataset
N/M Methods DSC (%) ↑ HD (mm) ↓ DSC (%) ↑ HD (mm) ↓

UAMT (Yu et al., 2019) 85.09 ± 1.42 18.34 ± 2.80 73.63 ± 0.65 14.30 ± 1.94
Ours (Threshold) 85.39 ± 0.91 12.96 ± 3.05 74.25 ± 1.76 14.47 ± 1.63
Ours (Entropy) 85.92 ± 1.52 11.16± 0.82 74.01 ± 0.62 15.03 ± 2.00

8/72
(10%)

Ours 86.58± 1.03 11.82 ± 1.42 75.28± 1.54 13.69± 0.68

UAMT (Yu et al., 2019) 87.78 ± 1.03 11.10 ± 1.91 74.72 ± 1.15 14.50 ± 2.46
Ours (Threshold) 88.12 ± 1.16 8.44 ± 1.96 74.80 ± 0.80 14.09 ± 1.83
Ours (Entropy) 87.76 ± 0.36 8.90 ± 0.48 74.57 ± 0.53 15.38 ± 2.57

16/64
(20%)

Ours 88.60± 0.82 7.61± 0.78 76.69± 0.81 13.11± 0.45

4.5. Impact of γ and β hyperparameters

The sensitivity of the uncertainty weight γ (in
Eq.5) and the consistency weight β on the seg-
mentation performance is shown in Fig. 7. In par-
ticular, we evaluate the segmentation performance
using DSC and HD scores by varying the γ and
β values across the LA and FLARE datasets. In
Fig. 7(a)-(b), increasing the gamma value leads to
an improvement in the segmentation performance
in both DSC and HD scores across both datasets.

The best results are usually observed for γ = 1.
Beyond that, performance generally decreases, pos-
sibly due to an exponential decrease in the weight
(Eq.5) of the reliable target regions.

Figure 7(c)-(d) shows the segmentation perfor-
mance for varying the β values. The results show
that increasing the beta value improves the segmen-
tation performance. The best result is achieved for
β=0.1 except in the LA dataset (in Fig. 7(c)), where
β=1 produces the best scores. Nevertheless, we
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Figure 5: Segmentation performance with different
latent space sizes of DAE - Each bar indicates the DSC
(top) and HD (bottom) scores under the 10% annotation
setting. The best results are obtained for the latent space
size d=128 in binary LA segmentations (a), whereas d=512
is needed for abdominal multi-organ segmentations (b).
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Figure 6: Impact of noise in the latent space of DAE
on segmentation performance - Each bar indicates the
DSC (top) and HD (bottom) scores under the 10% anno-
tation setting. Addition of a noise (orange) in latent space
improves DSC and HD scores.

chose to set β=0.1 across all our experimental sce-
narios, as this value is widely adopted in the liter-
ature on consistency-based approaches (Tarvainen
et al., 2017; Wang et al., 2021) and for a fair com-
parison with our baselines (Yu et al., 2019; Wang
et al., 2020; Luo et al., 2022).

Table 4: Comparison of average training times in sec-
onds per iteration. Our method adds a minimal overhead
on top of the MT approach for uncertainty estimation.

Methods #K LA FLARE

MT (Tarvainen et al., 2017) - 0.612 1.108
SASSnet (Li et al., 2020a) - 1.442 5.856
DTC (Luo et al., 2021) - 0.989 4.874
UAMT (Yu et al., 2019) 8 1.207 2.429
DUMT (Wang et al., 2020) 16 3.804 7.678
URPC (Luo et al., 2022) 1 0.779 1.504
Ours 1 0.745 1.266

4.6. Training time

To evaluate the speed of our uncertainty estima-
tion, we compare the computation time required
for each training iteration by the proposed and
the baseline methods in Table 4. From the table,
we observe that the non-uncertainty-based meth-
ods (SASSnet, DTC) are slower when compared
to uncertainty-based methods across both datasets,
LA and FLARE. The relative slow speed of SASS-
net and DTC is attributed to the additional compu-
tational overhead required for predicting the signed
distance maps (SASSnet, DTC) and the inclusion
of a discriminator module (SASSnet). On the other
hand, ours and the URPC method are faster than
the MCDO-based methods (UAMT and DUMT)
due to the need of only one inference when esti-
mating the uncertainty (#K=1). Overall, our ap-
proach adds a minimal overhead on top of the mean
teacher (MT) approach for estimating uncertainty
while producing superior segmentation results on
both datasets.

4.7. Uncertainty Analysis

The predicted segmentation and uncertainty
map from different uncertainty-based methods are
shown in Fig. 8. The top row shows the 10% an-
notation setting, where uncertainties are all over
the predicted regions for UAMT. These uncertain-
ties inside the prediction regions are reduced in
DUMT, possibly due to more inferences and the ad-
dition of feature uncertainty. However, the uncer-
tainties are highly focused on the prediction bound-
aries. The uncertainty is produced at arbitrary re-
gions in URPC due to their multi-scale discrepancy-
based uncertainty estimation. Our method pro-
duces uncertainty in challenging regions, such as
unclear anatomical boundaries or annotator cuts
(as in pulmonary veins), which are estimated us-
ing anatomically-aware representation. In the be-
low row of Fig. 8, increasing labeled samples (i.e.,
20% setting) improves the predictions and uncer-
tainty in most cases. Nevertheless, uncertainties are
all over the boundaries, or arbitrary regions remain
in the existing methods. Our method further im-
proves the uncertainties due to the improvement of
anatomically-aware representation using more ac-
cess to labels. Moreover, our method requires single
inference when compared to entropy-based meth-
ods.
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(a) LA - γ (b) FLARE - γ (c) LA - β (d) FLARE - β

Figure 7: Sensitivity of the consistency weight β (a, b) and the uncertainty weight γ (c, d) - Each point in a line
indicates the DSC (top) and HD (bottom) scores on LA and FLARE datasets under 10% (blue) and 20% (red) annotation
settings.

10
%
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UAMT (K = 8) DUMT  (K = 16) URPC  (K = 1) Ours  (K = 1)Image & GT

Figure 8: Uncertainty analysis on the left atrium dataset - Prediction and uncertainty map (overlaid on its image) are
shown for each uncertainty-based method. The number of inferences for generating the uncertainty map is denoted as K.

5. Discussion and Conclusion

This work proposes a novel anatomically-aware
uncertainty estimation method for semi-supervised
image segmentation. Our approach consists of
leveraging an anatomically-aware representation of
labeling masks to estimate the segmentation uncer-
tainty. The obtained uncertainty maps guide the
training of the segmentation model within reliable
regions of the predicted masks. Our experimen-
tal results demonstrate that the proposed method
yields improved segmentation results when com-
pared to state-of-the-art baselines on two publicly
available benchmarks using left atria and abdomi-
nal organs. The qualitative results also show how
our anatomically-aware approach improves segmen-
tation in challenging image areas. The ablation
studies demonstrate the effectiveness and robust-
ness of our uncertainty estimation when compared
to entropy-based methods. Adding noise in the
latent space of our representation helps to map
the predictions into a better set of plausible seg-
mentations, which improves the segmentation ac-
curacy. Unlike most uncertainty-based approaches,
our anatomically-aware uncertainty requires a sin-
gle inference, thereby reducing computational com-
plexity. Moreover, as our anatomically-aware rep-
resentation is independent of any image informa-

tion, it can be further enhanced with existing seg-
mentation masks from different datasets or imaging
modalities (Karani et al., 2021), potentially further
improving the modeling capacity of our represen-
tation. The learning representation with an ad-
ditional constraint can also be explored separately
as a post-processing tool that maps the erroneous
prediction into anatomically-plausible segmenta-
tion (Larrazabal et al., 2020; Painchaud et al.,
2020). Additionally, our anatomically-aware rep-
resentation prior could also benefit from the image
intensity information to learn a joint representation
(Oktay et al., 2017; Judge et al., 2022) for uncer-
tainty estimation in a limited supervision problem.
Overall, our proposed approach could be leveraged
to a broader range of applications where uncertain-
ties could be related to anatomical information.
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