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Abstract

For MEMS combdrive performance, the calculation of levitating force due to electrostatic field is very important, and an accurate

electrostatic analysis is essential. Because the gap size between combdrive fingers and ground plane or movable finger and fixed finger, plays

a very important role for levitation, a study of the effect of gap size variation is indispensable. For diverse gaps of MEMS comdrive design,

the dual BEM (DBEM) has become a better method than the domain-type FEM because DBEM can provide a complete solution in terms of

boundary values only, with substantial saving in modeling effort, hence the DBEM was used to simulate the fringing of field around the edges

of the fixed finger and movable finger of MEMS combdrive for diverse gap size. Results show that the less the gaps between combdrive

fingers and ground plane are, the larger the levitating force acting on the movable finger is. In addition, the levitating force becomes more

predominant as the gaps between movable finger and fixed finger decrease. By way of DBEM presented in this article, an accurate

electrostatic field can be obtained, and the follow-up control method of levitation force for MEMS combdrive can be implemented more

precisely.
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1. Introduction

A microelectromechanical systems (MEMS) combdrive

as shown in Fig. 1 usually has two sets of fingers. The one

which is connected to the substrate is called fixed fingers

(stationary electrode), and the other which is released from

the substrate is called movable fingers. When two different

voltages are applied to these two sets of fingers, the resulting

electrostatic force drives the movable fingers towards the

fixed ones. Thus, motion is produced by this combdrive in

the direction of the movement of the movable fingers [1].

Because combdrive can be designed for either electrostatic

actuator or capacitive sensing, it has become a very

important device in MEMS [2]. Basically the in-plane

interdigitated combdrives are used in in-plane or small out-

of-plane/torsional motions [3], and the asymmetric combd-

rives can be utilized to generate large out-of-plane or

torsional motions [4]. Generally speaking, in a typical

in-plane interdigitated combdrive, the capacitance is linear

with displacement, resulting in an electrostatic driving

force, which is independent of the position of the movable

fingers except at the ends of the range of travel [5]. But for

some special applications, combdrive with variable-gap

profiles can be designed that will deliver desired driving

force profiles by solving an appropriate inverse problem [6].

For in-plane interdigitated combdrives, some advantages

[2] could be found: (1) Vibrational amplitudes over 10 mm

are possible with relatively high quality factors at

atmospheric pressure, in contrast to structures which move

normal to the surface of the substrate. (2) The combdrive

capacitance is linear with displacement, resulting in an

electrostatic drive force, which is independent of vibrational

amplitude. (3) Flexibility in the design of the suspension for

the resonator. Though surface-micromachined polysilicon

resonators, which are driven by interdigitated capacitors,

have several aforementioned attractive properties, it is

essential that both movable finger and fixed finger of

combdrive remain coplanar for high quality MEMS devices.

It was reported that 2 mm-thick polysilicon resonators with
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compliant folded-beam suspensions have been observed to

levitate over 2 mm when driven by an electrostatic comb

biased with a DC voltage of 30 V [2]. Because the levitation

effect will seriously downgrade the performance and

reliability of MEMS devices, how to obtain the actual

electrostatic force responsible for levitation plays a very

important role. As a result, knowledge of the electric

potential V and electric field intensity E around fixed finger,

movable finger and ground plane of MEMS under diverse

values of gap for combdrive considering the fringing of field

around the edges are very important for engineers because

the levitating force acting on the movable finger is obvious

dependent on the electrostatic field [7].

Basically, electrical engineers are familiar with electro-

static problems, and diverse numerical methods have been

regularly used in MEMS and EM (electromagnetics).

Among diverse numerical approaches, finite element

method (FEM), which is based on the representation and

approximate solution of boundary value problems of

engineering mathematics in terms of partial differential

equations [8,9], and boundary element method (BEM) based

on integral equations [10] have moved from being research

tools for scientists to become powerful design tools for

engineers. One of the main advantages of BEM, when

compared to FEM, is that discretizations are restricted only

to the boundaries, making data generation much easier. The

BEM is also ideally suited to the analysis of external

problems where domains extend to infinity, since discreti-

zations are confined to the internal boundaries with no need

to truncate the domain at a finite distance and impose

artificial boundary conditions, and to problems involving

some form of discontinuity or singularity, due to the use of

singular fundamental solutions as test functions. It is also

interesting to point out that the unknowns in BEM are a

mixture of the potential and its normal derivative, rather

than the potential only as in FEM. This is a consequence of

the BEM being a ‘mixed’ formulation, and constitutes an

important advantage over FEM. Especially for diverse

values of gap for MEMS comdrive-gaps between fingers

and from fingers to the ground plane, many laborious works

of FEM compared with those of BEM are needed because

BEM can provide a complete solution in terms of boundary

values only, with substantial saving in modeling effort.

Therefore, there is no doubt that BEM has been become a

very appealing approach in numerical simulation of MEMS

[11] even if many engineers still use commercial package

and waste much time to set up diverse FEM models during

the variable design stage nowadays.

Although some simplified numerical models for electro-

static combdrive can be found in Refs. [4,5], there are still

three types of fringing fields not taken into account, which

result from the ground plane, widths and heights of fixed and

movable fingers. In order to obtain more reasonable

computational results for the electric field, the DBEM is

employed and developed to analyze electrostatic problems

for MEMS combdrive levitation considering the fringing of

field around the edges, since the DBEM is a very efficient

new method for solving the electrostatic problems of EM

and MEMS [12,13]. After using DBEM to accurately

calculate the electrostatic response of the comb finger

biased with a dc voltage, the induced vertical force per unit

length of the movable comb finger at different levitation

positions can be obtained. In order to check the validity of

the numerical model presented in this article, an example of

in-plane interdigitated combdrive designs from Ref. [3] is

furnished, and the solutions of DBEM are compared with

analytical solutions if available and with a commercial FEM

package [14].

As we know, with rapid increase of device density and

working frequency in VLSI circuits, the electrical character-

istics of interconnects are becoming more important factors

governing the circuit performances such as delay, power

consumption, reliability, etc. This has increased the interests

in efficient methods for calculating electrical parameters of

interconnects. Therefore, many researchers have used diverse

accelerated BEMs (e.g. FastCap, GIMEI, ODDM, QMM…,

etc.) for efficiently solving the large-scale problem of VLSI

and EM systems [15–19]. To the best knowledge of authors,

Fig. 1. Layout of a linear lateral resonator driven and sensed with interdigitated capacitors (electrostatic combdrive).
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the accelerated BEMs are very efficient for large-scale

problem because they can reduce CPU time and memory

requirement from exponential order to logarithmic order. For

a problem with N degree of freedom, or N unknowns, the

accelerated BEMs use OðN log NÞ memory, and close to

OðN log NÞ time, as opposed to the traditional methods

requiring OðN2Þmemory and OðN2Þ time [20]. As N becomes

very large, there will be a tremendous disparity in memory

and time usage between the accelerated BEMs and conven-

tional BEMs. Although many BEM researchers have used

diverse accelerated BEMs for large-scale problem (e.g.

complex VLSL modeling) because they need to deal with

the huge dense matrix from BEM. But for the concerned

levitation problem of MEMS combdrive, it is not necessary to

set up a huge BEM model because only the surface charge

distribution around the boundary of movable finger needed. In

reality, the accelerated BEM may have advantage over

DBEM for large-scale problem, but this predominance is not

obvious for the non-large-scale problem like the cases

presented in this article because the model of MEMS

combdrive is not so large as VLSI system. As the accelerated

BEM can not display its advantage (computational efficiency)

over the DBEM for non-large-scale problem, the DBEM was

used in this article because it is an alternate efficient method

for MEMS combdrive.

The paper is organized as follow. In Section 2, we

concisely introduce the procedure of DBEM for electro-

static problems. Numerical results are provided and

compared in Section 3 to establish the validity and accuracy

of the DBEM and to study the effect of gap size variation for

the levitation of MEMS combdrive. Some remarks based on

the reported results were discussed in Section 4. Finally,

there is a concise conclusion in Section 5.

2. Dual integration equation for electrostatic problems

For a homogeneous medium, the governing equation of

electrostatics can be written in the following form

72V ¼ 2r=1 ð1Þ

where 72 is the Laplacian operator. Eq. (1) is known as

Poisson’s equation; it states that the divergence of the

gradient of electric potential (V) equals 2r=1 for a simple

medium, where 1 is the permittivity of the medium and r is

the volume density of free charges [7]. At points in a simple

medium where there is no free charge, Eq. (1) is reduced to

72V ¼ 0 ð2Þ

which is known as Laplace’s equation. Eq. (2) plays a very

important role in MEMS and EM. It is the governing equation

for electrostatic problems involving a set of conductors, such

as capacitors, maintained at different potentials. Once V is

found from Eq. (2), E (electric field intensity) can be

determined from 27V ; and the charge distribution on the

conductor surfaces can be determined from rs ¼ 1En:

Generally the electrostatic problem consists of finding the

unknown potential functionF (or V) in the partial differential

equation. In addition to the fact that F satisfies 72F ¼ 0

within a prescribed solution region V; the potential function

F must satisfy certain conditions on B which is the boundary

of V. Usually these boundary conditions are the Dirichlet

ðFðxÞ ¼ f ðxÞÞ and Neumann ð›FðxÞ=›nx ¼ gðxÞÞ types.

Therefore, the governing equation of electrostatic problems

could be written in the following form.

72FðxÞ ¼ 0; x in V ð3Þ

where f ðxÞ and gðxÞ denote known boundary data, and nx

is the unit outer normal vector at the point x on the

boundary B:

Based on the dual boundary integral equation formu-

lation for electrostatic problem [13], we have

aFðxÞ ¼ CPV
ð

B
Tðs; xÞFðsÞdBðsÞ

2 RPV
ð

B
Uðs; xÞ½›FðsÞ=›ns�dBðsÞ ð4Þ

a½›FðxÞ=›nx� ¼ HPV
ð

B
Mðs; xÞFðsÞdBðsÞ

2 CPV
ð

B
Lðs; xÞ½›FðsÞ=›ns�dBðsÞ ð5Þ

where the kernel functions, Uðs; xÞ ¼ ln ðrÞ; Tðs; xÞ ¼

›Uðs; xÞ=›ns; Lðs; xÞ ¼ ›Uðs; xÞ=›nx; Mðs; xÞ ¼ ›2Uðs; xÞ=

›nx›ns; r ¼ ls 2 xl; s and x being position vectors of

the points s and x; respectively, and ns is the unit outer

normal vector at point s on the boundary (see Fig. 2).

Table 1 shows the explicit forms of the four kernel

functions Uðs; xÞ;Tðs; xÞ;Lðs; xÞ and Mðs; xÞ: In addition,

RPV is the Riemann Principal Value, CPV is the

Cauchy Principal Value, HPV is the Hadamard Principal

Fig. 2. Boundary element discretization for degenerate boundary and non-

degenerate boundary.
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Value, and a depends on the collocation point (a ¼ 2p

for an interior point, a ¼ p for a smooth boundary,

a ¼ 0 for an exterior point). The commutativity property

of the trace operator and the normal derivative operator

provides us with alternative ways to calculate the

Hadamard principal value analytically. Generally,

Eq. (4) is called singular boundary integral equation,

and Eq. (5) is called hypersingular boundary integral

equation. Since the hypersingular boundary integral

equation plays an important role in the degenerate

problems, many researchers have paid much attention to

Table 1

The explicit forms of four kernel functions in dual integral equations

Kernel function Uðs; xÞ Tðs; xÞ Lðs; xÞ Mðs; xÞ

Order of

singularity

Weak Strong Strong Hypersingular

Two-dimensional

case

lnðrÞ 2yini=r
2 yi �ni=r

2 2yiyjni �nj=r
4

2ni �ni=r
2

Three-dimensional

case

21=r 2yini=r
3 yi �ni=r

3 3yiyjni �nj=r
5

2ni �ni=r
3

Remark r2 ¼ yiyi ni ¼ niðsÞ �ni ¼ niðxÞ yi ¼ xi 2 si

Fig. 3. Cross-section of the potential contours (dashed lines) and the electric fields (solid lines) of a comb finger under levitation force induced by two adjacent

electrodes biased at a positive potential.
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this. After discretizing the boundary into 2N boundary

elements, Eqs. (4) and (5) reduce to

½U�2N£2N{t}2N£1 ¼ ½T�2N£2N{u}2N£1 ð6Þ

½L�2N£2N{t}2N£1 ¼ ½M�2N£2N{u}2N£1 ð7Þ

where ½U�; ½T�; ½L� and ½M� are the four influence matrices,

{u} and {t} are the boundary data for the primary and the

secondary boundary variables, respectively. Generally for

electrostatic problems without singularities arising from

degenerate scale, the aforementioned influence matrix ½U� is

nonsingular, either Eqs. (6) or Eq. (7) can be solved by

Gaussian elimination and LU decomposition very well. But

for degenerate scale problem, [U] matrix is singular and the

rank is deficient, then some regularization BEM in conjunc-

tion with SVD (singular value decomposition) technique

could be used [21].

3. DBEM simulation for the electrostatic field of MEMS

combdrive levitation

The successful electrostatic actuation of micromechani-

cal structures requires a ground plane under the structure in

order to shield it from relatively large vertical fields [3].

In order to demonstrate the suitability of DBEM presented

in this article, an electrostatic combdrive problem proposed

by Tang et al. [3] was used (see Case 1). In this case, a

4 mm-wide £ 2 mm-thick comb finger excited by two

identically sized electrodes situated 2 mm away from both

sides of the finger, and 2 mm above a grounded substrate

was used (see Fig. 3). The following Case 2 was used to

study the effect of the gap size variation (from 2.0 to

0.4 mm) between combdrive fingers and ground plane ðg1Þ

for levitation of MEMS comdrive, but the values of gap

between movable finger and fixed finger ðg2Þ are still

confined to 2.0 mm. In Case 3, we intend to investigate the

effect of the size variation of g2 (from 5.0 to 0.5 mm), but the

values of g1 are still confined to 2.0 mm.

Case 1: A comb finger under levitation force induced by

two adjacent electrodes biased at a positive potential Vp

shown in Fig. 3. In order to check the accuracy if using

DBEM, we will determine the electric potential distribution.

From Fig. 3, one can see that there is an obvious fringing

of field around the edges of fixed finger and movable finger,

and the physical behavior (e.g. electric potential and electric

field intensity) of this area is very complicated. Since it is

not easy to obtain the analytical solutions, and some

simplified numerical models for electrostatic combdrives

from Refs. [4,5] cannot accurately simulate the fringing

field, the FEM simulation [14] was used to compare with

the following DBEM data. Because of the fringing of field

around the edges, a large finite element model was set up in

order to obtain a reasonable result. In addition, the

symmetric boundary between two adjacent fingers using

proper Neumann boundary condition was used to simplify

the dimension of FEM and DBEM models.

Over three thousand points will be analyzed using coarse

mesh discretization (95 elements and 95 nodes; see Fig. 4)

of DBEM, and compared with reference data computed

from a large refined mesh FEM model (3608 elements and

3790 nodes; see Fig. 5a) because the results from the coarser

mesh FEM model (1490 elements and 1607 nodes; see

Fig. 5b) are not adequately accurate. The results of electric

potential under refined mesh FEM and coarse mesh DBEM

Fig. 4. The related DBEM coarse mesh discretization.

Fig. 5. The related FEM mesh discretization (Left part: refined mesh model;

Right part: coarser mesh model).
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were shown in Fig. 6. Comparing the results of electric

potential field using coarse mesh DBEM and refined mesh

FEM, one can see that the difference of electric potential

distribution listed in Table 2 is very little (,1.3%), hence

the DBEM used in this article is an efficient method for

solving electrostatic MEM combdrive problems. From

Fig. 6, the ground plane contributes to an obvious

unbalanced electrostatic field distribution if a heavily

doped polysilicon film underlies the resonator and the

comb structure like the rough sketch map shown in Fig. 3.

Case 2: Because g1 can play a very important role for the

levitation of MEMS combdrive, the effect of those will be

investigated in the following case. Similar to the aforemen-

tioned case, the values of g2 are still confined to 2.0 mm, but

g1 are variable from 2.0 to 0.4 mm. If a movable comb finger

when differential dc bias Vp is applied to the two adjacent

electrodes shown in Fig. 3, determine the distribution of

normal electric field intensity ðEnÞ on the bottom and upper

side of movable finger under diverse values of g1: Besides

En; also calculate the levitating force density F acting on the

movable finger.

Because many FEM models need to be established for

diverse gap variation, FEM is not a good choice for Case 2,

so we use DBEM to perform the following tasks since the

discretizations of DBEM are restricted only to the

boundaries, making data generation much easier than

FEM. By way of the DBEM, the distribution of normal

electric field intensity ðEnÞ on the bottom and upper side of

movable finger under diverse values of g1 were shown in

Figs. 7 and 8, respectively. From Fig. 7, one can see that the

values of normal electric field intensity ðEn;1Þ on the bottom

of movable finger are obviously dependent on the values of

g1 and the location to the left side of movable finger (loc).

Unlike En;1; the values of normal electric field intensity

ðEn;2Þ on the upper side of movable finger are only

apparently counting on the value of loc, and the

effect of the values of g1 can be ignored (see Fig. 8).

Because the charge distribution on the conductor surfaces

can be determined from rs ¼ 1En (The normal component

of the electric field En at a conductor boundary is equal to

the surface charge density rs on the conductor divided by

the permittivity 1 [7]) if 1 is a constant, the relationship

between the normal force density fn acting on the surface of

a conductor and the charge density rs of that conductor is

fn ¼ 20:5rs2
=1 ð8Þ

Thus, the electrostatic force density Fn acting on the

movable finger along the boundary

Fn ¼
ð

B
f dB ð9Þ

can be calculated if rs (or En) is known. Therefore, the

levitating force density F (normal to the substrate) acting on

each movable finger is equal to the difference of electrostatic

force density Fn between upper side and bottom of concerned

movable finger, and that is obviously dependent on the

difference of En between upper side and bottom of movable

finger. Because the difference of Fn and En between upper

side and bottom of concerned movable finger is obvious

under diverse values of g1; the levitating force density F

acting on the movable finger shown in Fig. 9 does apparently

rely on the variation of g1 if the values of g2 are still confined

to a constant value. Results also show that the less the values

of g1 are, the larger the levitating force density F is.

Case 3: Besides the effect of g1; the values of g2 also

master greatly on the levitating force. Not alike Case 2,

Fig. 6. Results of electric potential field (equipotential lines—Red color: þVp; Blue color: 0) of combdrive using coarse mesh DBEM (Left part) and refined

mesh FEM (Right part) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Table 2

The results of electric potential under DBEM and FEM

Locations ðy; zÞ Vðy; zÞ from DBEM Vðy; zÞ from FEM Difference (%)

(5.9867,5.0151) 0:1580444Vp 0:15975Vp þ1.08

(6.1889,4.8152) 0:1301514Vp 0:13162Vp þ1.13

(5.7961,4.4058) 0:06673584Vp 0:067443Vp þ1.06

(1.6000, 1.6000) 0:0748376Vp 0:073904Vp 21.25

The origin (x;0,0) of the coordinates is located at the left bottom corner

of DBEM model shown in Fig. 4.
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the values of g2 are variable from 5.0 to 0.5 mm, but the

values of g1 are still confined to 2.0 mm. If a movable comb

finger when differential dc bias Vp is also applied to the two

adjacent electrodes shown in Fig. 3, determine the

distribution of normal electric field intensity ðEnÞ on the

bottom and upper side of movable finger under diverse

values of g2; and also calculate the levitating force density F

acting on the movable finger.

Similar to Case 2, the DBEM was used since their

discretizations are only confined to the boundaries. By way of

the DBEM, the distribution of En on the bottom and upper

side of movable finger under diverse values of g2 were shown

Fig. 9. The levitating force density ðFÞ acting on the movable finger under diverse values of g1 and Vp: (unit: 1V2/mm).

Fig. 7. The distribution of normal electric field intensity ðEn;1Þ on the bottom of movable finger under diverse gaps between combdrive fingers and ground plane

ðg1Þ: (unit: Vp/mm).

Fig. 8. The distribution of normal electric field intensity ðEn;2Þ on the upper side of movable finger under diverse values of g1: (unit: Vp/mm).
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in Figs. 10 and 11, respectively. From Figs. 10 and 11, one

can see that the values of En;1 on the bottom and En;2 on the

upper side of movable finger are both obviously dependent on

the values of g2 and the value of loc. Unlike the results of

Case 2 shown in Fig. 8, the values of En,2 are not only

apparently counting on the value of loc, but also the values of

g2 (see Fig. 11). Because the difference of Fn and En between

upper side and bottom of concerned movable finger is also

notable under diverse values of g2; the levitating force

density F acting on the movable finger shown in Fig. 12 does

Fig. 11. The distribution of En;2 on the upper side of movable finger under diverse values of g2: (unit: Vp/mm).

Fig. 12. The levitating force density ðFÞ acting on the movable finger under diverse values of g2 and Vp: (unit: 1V2/mm).

Fig. 10. The distribution of En;1 on the bottom of movable finger under diverse gaps between movable finger and fixed finger ðg2Þ: (unit: Vp/mm).
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apparently rely on the variation of g2 if the values of g1

are still confined to a constant value. Results also show that

the less the values of g2 are, the larger the levitating force

density F is.

4. Discussions

1. Because the control of levitating force can get higher

quality factor of combdrive, how to get the accurate

electrostatic field is very important and indispensable

for the design of MEMS devices. After using coarse

mesh DBEM presented in this article to accurately

calculate the electrostatic response of the comb finger

biased with a dc voltage, the induced vertical force per

unit length of the movable comb finger at different

levitation positions can be obtained. Results show that

the less the gaps between combdrive fingers and

ground plane ðg1Þ are, the larger the levitating force

density ðFÞ acting on the movable finger is. In addition,

the levitating force becomes more predominant as the

gaps between movable finger and fixed finger ðg2Þ

decrease.

2. If the values of g2 are constant and the values of g1 are

variable like Case 2, the values of En;1 on the bottom

of movable finger are obviously dependent on the

values of g1 and the location to the left side of

movable finger (loc), but the values of En;2 on the

upper side of movable finger are only apparently

counting on the value of loc, and the effect of the

values of g1 can be ignored. If the values of g2 are

variable but the values of g1 are still confined

like Case 3, the values of En;1 on the bottom and

En;2 on the upper side of movable finger are both

obviously dependent on the values of g2 and the value

of loc.

3. By comparing the element mesh of refined mesh FEM

and coarse mesh DBEM of electrostatic combdrive

considering the fringing of field around the edges, one

can see that numbers of elements and nodes for

refined mesh FEM are much higher than those of

coarse mesh DBEM to get a reasonable result. Though

using FEM was widespread for MEMS device nowa-

days, it is still very difficult to establish the boundary

conditions and generate the all proper FEM because

the values of gap for MEMS comdrive-gaps between

fingers ðg2Þ and from fingers to the ground plane ðg1Þ

always change many times before final layout in the

variable design stage. Therefore, we strongly rec-

ommend the DBEM for studying the effect of gap size

variation for the levitation of MEMS combdrive

because the DBEM’s discretizations are restricted

only to the boundaries, and it’s making data

generation much easier than FEM.

5. Conclusions

The dual integral formulation of electrostatic combdrive

problems considering the fringing of field around the edges

has been presented in this article. Comparisons of the results

between FEM and DBEM analyses were discussed with

respect to diverse gap size for electrostatic MEMS

combdrive in order to demonstrate the efficiency of

DBEM. It has been ensured that the capabilities of coarse

mesh DBEM simulation are acceptable after comparison

with the refined mesh FEM data. For electrical engineering

practices, since the numbers of elements and nodes for

refined mesh FEM are much higher than those of coarse

mesh DBEM to get a reasonable result, and it wastes much

time for diverse values of gap design if using the domain-

type FEM, so the present boundary-type DBEM has great

potential for industrial applications, especially in the initial

variable design stage.
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