
ENS’06 Paris, France, 14-15 December 2006

©TIMA Editions/ENS 2006 -page- ISBN: 2-916187-05-7

Towards a Holistic CAD Platform for Nanotechnologies

E. Kolonis, M. Nicolaidis

TIMA Laboratory

ABSTRACT

Silicon-based CMOS technologies are predicted to reach
their ultimate limits by the middle of the next decade.
Research on nanotechnologies is actively conducted in a
world-wide effort to develop new technologies able to
maintain the Moore’s law. They promise revolutionizing
the computing systems by integrating tremendous
numbers of devices at low cost. These trends will provide
new computing opportunities, have a profound impact on
the architectures of computing systems, and require a new
paradigm of CAD. The paper presents a work in progress
on this direction. It is aimed at fitting requirements and
constraints of nanotechnologies, in an effort to achieve
efficient use of the huge computing power promised by
them. To move towards this goal we are developing CAD
tools able to exploit efficiently the huge computing
capabilities promised by nanotechnologies in the domain
of simulation of complex systems composed by huge
numbers of relatively simple elements.
Index terms: Nano-CAD, Bio-inspired systems, complex
systems

1. INTRODUCTION

Shrinking of silicon-based technologies will reach

its ultimate limits in about one decade. The reasons are
not only technical (leakage current, signal integrity,
energy consumption, circuit heating…), but also
economic (excessive cost of fabrication lines) [1]. Single-
electron transistors, quantum cellular automata, nano-
tubes, molecular logic devices, nano-crystals, are some of
the candidate alternative technologies [2]-[9]. In their
majority the related fabrication processes emerging in
various research centers are bottom-up, taking advantage
of the self-assembling properties of atoms to form
molecules and crystals. They should allow the fabrication
of very complex circuits at low cost and low energy
consumption [10]-[12]. Some of the characteristics of
such circuits will be: an extraordinary complexity, a high
regularity, and a low fabrication yield. One consequence
is that these processes can not produce highly
sophisticated circuits with a high morphological
differentiation, similar to MOS circuits. The fundamental
reason yielding this kind of structures is that a self-
assembling process consists on replicating a few “simple”

basic modules a large number of times to form a regular
structure (hereafter referred as nano-network). Of course,
the basic modules may gain a certain complexity as these
techniques gain on sophistication.

By integrating tremendous numbers of devices at
low fabrication cost, the self-assembling processes should
allow revolutionizing the computing systems. On the
other hand, due to their intrinsic characteristics and
constraints, these trends will have a profound impact on
future architectures, requiring possibly shifting into a non
von Neumann, highly parallel, reconfigurable computing
paradigm for their efficient exploitation [12]-[15].

A pioneering work [16] carried on at Hewlett-
Packard Laboratories illustrated an approach able to
tackle some of the constraints related to these
technologies. They developed the TERAMAC computer,
a multiprocessor built by interconnecting a large number
of FPGAs. They used defective FPGAs and error-prone
technologies to interconnect them, as an illustration of
hardware platforms composed of a large number of
identical, but error prone modules. The multiprocessor
was created by programming conventional processor
architectures into the regular structures of the FPGAs.
Prior to this mapping, test and diagnosis procedures were
applied to identify the defective elements of the system.
Then, the mapping was done in a manner that only fault-
free resources were employed. This work illustrates the
feasibility of implementing complex systems by
programming a regular network composed of a large
number of simple and identical modules, affected by high
defect densities. It provides an additional motivation for
using regular, FPGA-like, structures in nanotechnologies,
since achieving fault tolerance for the expected defect
densities would be much more difficult and costly for
other circuit structures. This fault tolerance approach is
very general, and could be used with various
reconfigurable architectures. But, as discussed in chapter
2, some other aspects must also be addressed for
exploiting efficiently the promise of nanotechnologies on
producing low-cost extraordinary complex systems.

In this paper we describe a CAD platform that
would allow tomorrow’s engineers to exploit efficiently
the extraordinary computing power promised by
nanotechnologies, in order to model and simulate
complex natural or artificial systems composed of huge
numbers of simple elements. This platform is said

E. Kolonis, M. Nicolaidis
Towards a Holistic CAD Platform for Nanotechnologies

©TIMA Editions/ENS 2006 -page- ISBN: 2-916187-05-7

holistic, because, it includes tools enabling a high-level
description and simulation of the target application (e.g. a
an ecosystem, a set of interacting particles, …), down to
tools enabling efficient circuit-level implementation.

2. A HOLISTIC CAD PLATFORM FOR
NANOTECHNOLOGIES

The present work targets CAD tools allowing

efficient use of the hardware resources promised by
nanotechnologies. It is motivated by the following
converging factors:
a- The availability of hardware platforms comprising
huge amounts of identical modules interconnected into a
regular network (the promise of nanotechnologies).
b- The flexibility of these platforms, which allow
implementing various computing architecture by
programming them.
c- The profound interest for science and technology to
explore the dynamics of complex natural and artificial
systems composed of huge numbers of identical elements.

Point c reflects the fact that natural systems are
often composed of huge numbers of simple elements. The
ability for simulating accurately natural systems
composed of huge amounts of particles (e.g. atmosphere
and oceans, chemical reactions, nuclear reactions, solar
system formation, galactic interactions, …) and biological
systems (molecular interactions in the cell, cellular
interactions in an organism, cellular differentiation in the
embryo, neural systems, interactions between organisms
in an ecosystem, ….), is a fundamental requirement for
the computing systems of the future. In addition to natural
systems, experimenting invented systems, composed of
large numbers of simple modules, is convenient for
studying the impact of the laws governing the basic
modules on the global dynamics of this kind of systems.

The availability of powerful hardware platforms,
as promised in point a, will allow to increase drastically
the accuracy of our simulations for both, the natural and
artificial systems discussed above, and push drastically
our understanding of such systems. By using a
“traditional” approach, as the one adopted in the
TERAMAC project, we can implement such applications
in two steps:

• First, program the nano-network to map a general
purpose multiprocessor architecture.

• Then, program this architecture to simulate the target
regular system.
But this approach results on severe resource waste,

since:
• Parallel computers based on conventional

architectures make poor usage of their theoretical
computational power.

• General-purpose architectures waste the hardware
resources with respect to architectures dedicated to
target applications.

A drastic gain in efficiency could be obtained if
we program the nano-networks to map directly the target
application. In other words, we will map the basic module
of the target system on a set of modules of the nano-
network. This mapping will be repeated to program as
many modules of the target system as allowed by the
complexity of the nano-network. This direct
implementation of the complex system could be done
efficiently if the nano-network architecture supports
certain reconfigurable structures and the mapping is done
in a manner that establishes the required communication
between the modules of the target system. Furthermore,
to make the approach practical, a dedicated CAD
platform has to be developed. Because this platform
should enable the direct implementation of the final
application in the nano-network, it should include high-
level tools enabling easy software-level description and
simulation of the target application down to tools
enabling its efficient implementation at circuit-level,
hence the term holistic. This is not the case of today’s
EDA platforms as the current practice is to develop
general purpose computers on which the final
applications are programmed, or, in some particular
cases, implement specific circuits accelerating power-
consuming computations for a class of applications. But,
in the later case again, the final application is
implemented by software. Therefore the proposed CAD
platform will comprise:

A High-level Modeling and Simulation tool
(HLMS): it enables easy generation of a software
description (model) of the target complex system and its
exploration through simulation on conventional
computers.

A Nano-network Architecture Fit tool (NAF). It
transforms the description of the complex system
generated by the HLMS tool into a description that fits
the constraints of the nano-network architecture.

A Circuit Synthesis tool (CS). It maps the
description generated by the NAF tool onto the
configurable architecture of the nano-network.

These tools together with the constraints imposed by
the nano-netwok architectures are discussed in the next
sections.

3. HIGH-LEVEL MODELING AND SIMULATION

TOOL (HLMS)

This tool allows easy description of the target complex
system by means of an interactive menu. Then, it
generates a software description (model) of the complex
system. Based on this description the tool can perform

E. Kolonis, M. Nicolaidis
Towards a Holistic CAD Platform for Nanotechnologies

©TIMA Editions/ENS 2006 -page- ISBN: 2-916187-05-7

preliminary simulation on conventional general-purpose
computers. Thus, before engaging the complex task of
implementing the complex system in the nano-network,
the user can simulate on conventional computers a
reduced version of the system to validate his/her various
choices concerning the system parameters and the
evolution laws of the system entities. More importantly,
the HLMS tool is mandatory for generating the software
description of the target application which is the starting
point for the other components of our synthesis platform.
Consequently, our efforts are first concentrated on the
development of this tool.
The HLMS tool and its experimentation over two families
of complex systems are presented below. A more detailed
description will be provided in [25].

The complex systems considered are systems
composed of a large number of interacting entities, in
which a rich behavior emerges as a consequence of the
large number of entities and of their interactions rather
than as a consequence of the complexity of these entities.
The entities composing the complex system can be
identical or can belong to a small set of entity types. Each
entity type will be described by:
• A set of state variables
• A set of communication signals between modules
• A set of functions that determine the evolution of the

state variables of each type of module.

The evolution of the state of the elementary entities and,
thus, of the global system is produced in the following
manner. At each simulation cycle, the evolution functions
use the present state of the state variables and the
incoming communication signals to produce the state of
the entity’s variables for the next simulation cycle (see
Figure 1).

Figure 1: elementary entity

Thanks to a graphical interface, the user can

specify the fundamental structure of his target complex
system. This is done by specifying the set of internal
variables of each entity type of the system, the inputs

received from and the outputs send to the entities with
which the specified entity interacts, and the evolution
rules that determine the next state of each internal
variable and of each output of this entity as a function of
its present state and of its inputs. To make the system
intelligible, this interface allows also specifying some
visualization parameters (e.g. associate different colors
that reflect the type or the state of an entity or specify
graphical representations of different parameters). The
graphical interface allows modifying the visualization and
the other parameters of the system even during simulation
(on-line).

Figure 2: Structure of High-level Modeling and
Simulation tool

To implement the High-level Modeling and
Simulation tool we adopted an object oriented approach
based on the Java programming language. The structure
of the tool is shown in Figure 2. It consists of a graphical
interface, an application library, a generic component
library and a simulation handler module. The tool also
includes a central program not shown in the figure. As
said earlier, the user specifies his/her target system by
means of the graphical interface. The user can save this
description in the application library for future use.
Furthermore, the central program of the tool uses this
description as well as the description of some generic
components from the library of generic components to

State of
the entity

at cycle t+1

State
variables

Communication signals
with the environment

Evolution
functions

State of
the entity
at cycle t

Loads the
generic
components

Parent
class

Classes of
elementary
entity types

Graphical
interface
(on line/ off
line)

Creation
of a new
application

Internal
representation

Execution of
simulations

Application
library

Simulation
handler

Initialization

Library of
generic

components

Java file of
the

application

Managing
class

E. Kolonis, M. Nicolaidis
Towards a Holistic CAD Platform for Nanotechnologies

©TIMA Editions/ENS 2006 -page- ISBN: 2-916187-05-7

generate an internal representation of the application.
This representation contains several classes:

• Classes of elementary entity types. For example, in
the case of an ecosystem, these entities can correspond
to the types of cells of an organism (stomach cells,
isolation cells …)

• Parent class from which the classes of elementary
entity types can inherit the variables and functions that
are common for all. For instance, in the case of an
ecosystem, this class can contain variables such as
position and heat and the functions of movement and
heat diffusion that are common to all the cells of an
organism.

• A managing class that manages the evolution of the
state of the elementary entities and can, during the
simulation, create new entities if this is allowed by the
laws governing the system.

The user can employ the graphical interface to
initialise the internal representation of the application.
Then, the central program of the tool generates a file
called “java file of the application”. Finally the simulation
handler uses this file to execute simulations.

The adopted structure and implementation are
generic and allow handling various kinds of systems
composed of large numbers of interacting entities. To
validate its versatility, we used the tool to experiment two
quite distinct families of complex systems. The first
family consists on artificial ecosystems and the second
consists on artificial “universes” composed of a set of
interacting particles governed by laws that determine the
geometry of space-time (relativistic space-time in the
example considered here) [24].

In addition to the generic modules of the High-level
Modeling and Simulation tool, it is useful to implement
specific modules for each family of complex systems to
easy the user’s tasks for creating, experimenting and
analyzing systems belonging to this family.

4. ARTIFICIAL ECOSYSTEMS

Our first experiments concern artificial ecosystems

consisting on an artificial environment (the space of the
ecosystem, the milieu which may have properties like
temperature and resistance to the motion of objects,
food/energy sources, …) in which evolve virtual multi-
cellular organisms with properties inspired from the real
world, such as cell replication and cell differentiation
leading to an adult organism from a single cell
(ontogeny), movement, food capturing, sexual
reproduction, adaptation to the environment, and

phylogeny through mutation, crossing-over, and natural
selection. Similarly to the natural organisms, the cells of
an artificial organism all share the same genetic
information (coded into “DNA” variables) and obey to
the similar elementary functions as those described by
molecular biology.

From the computational point of view each module
(a cell of an organism), is viewed as an automaton. It has
a certain number of inputs and outputs, a certain number
of internal variables, and a function associated to each
variable. This function computes the next state of the
variable from the present state of all the internal variables
and the present values of the cell inputs. A similar
function is also associated to each cell output. The
graphical interface of the High-level Modeling and
Simulation tool is used to specify these variables and their
associated functions and subsequently the other
parameters of the ecosystem. Furthermore, in order to
easy the users’ tasks we implemented some functional
modules. In particular:
An ontogeny module: this module assists the user to
code in the DNA variables the genetic information that
guide the ontogeny process of an organism.
A module of reproduction and creation of organisms:
this module manages the production of the new DNA of a
children organism by the processes of crossing-over and
genetic mutations.
A module of “natural selection”: it allows the user to
easily experiment the “natural selection process” by
selecting and eventually modifying on-line (i.e. during the
simulation). This is possible because the user graphical
interface (figure 2) allows modifying the parameters of
the system even during the execution of a simulation.
 Thanks to these modules, the user can easily create
and experiment a large variety of artificial ecosystems as
illustrated below.

4.1 Spontaneous creation of artificial organisms
In this experiment, we consider an environment with the
potential of appearance of DNA variables with arbitrary
values associated to various functions contained in a
library (library of DNA functions). In the beginning of
the simulation, we observed the appearance of DNA
combinations that led to the formation of organisms in an
arbitrary way. In the majority of the cases, the
spontaneously created organisms lacked in complexity
and ingenuity and survive for short time. As the
simulation runs for longer time, appear by chance some
organisms which survive longer because their DNA
combinations are more efficient and they begun to
populate the ecosystem. In the long run, we observe an
evolution towards forms which gain in complexity and
are better adapted to the environmental conditions. Thus,
we observed the emergence of organisms that could move

E. Kolonis, M. Nicolaidis
Towards a Holistic CAD Platform for Nanotechnologies

©TIMA Editions/ENS 2006 -page- ISBN: 2-916187-05-7

and feed (from food sources randomly distributed in
space and time), reproduce, capture another organism
(prey) in order to feed, ...

4.2 Optimization of existing functions
 These experiments concern the optimisation of
existing organs to adapt to the environmental conditions.
We consider as example the influence that has on the size
of the motion organs the factor of resistance (Fr) that the
milieu opposes to the motion of objects. We observe that
for higher values of Fr the size of the motion organs
increases and the organism spends more energy for
movement. This is necessary in order to capture enough
food to cover its other energy needs (for basic metabolism
and temperature maintenance). We also observe an
increase of the population when Fr decreases. Obviously,
in this case, the organisms can spend more energy for
reproduction (the energy saved from the movement).
Both results illustrate a good adaptability of the artificial
organisms to the evolution of the environment. Numerous
experiments on other genes also shown good adaptability.

4.3 Acquisition of new functions
These experiments illustrate another ability of the tool to
create pertinent artificial ecosystems: the evolution
towards more efficient organisms by acquisition of new
functions. The library of functions contains among others
an olfaction function (sensitivity to the concentration of
smell substances (cells) released by the food sources) and
a function of motion-direction control that reacts to the
state of other organs. The exact manner the motion
control function reacts to this state is determined by DNA
values associated to a large number of functions. Initially
the organisms of the ecosystem do not posses olfactory
and motion-control organs and move randomly. Thus,
they discover food sources only by chance. After a certain
time we observed the emergence of organisms possessing
olfaction organs, and other processing motion-control
organs. Later, new mutations created organisms that
possess both functions but their motion control functions
are not effective. Later emerged organisms that possess
several olfactory organs placed at different parts of their
body as well as motion-control organs that direct the
motion towards the direction of those olfactory organs
that sense higher concentrations of smell substances. In
environments with sparse food sources, these organisms
replace quickly all other organisms as they grasp almost
all food. This example illustrates an evolution-based
learning that codes intelligent behavior in simple
genetically-programmed functions.
 A next step in our experiments will consist on
exploring the emergence of ant-kind collaborative
societies based on genetically-programmed functions. A
further step will consist on introducing neural-type

functions. The facility offered by the tool to create and
experiment an “infinity” of artificial ecosystems by
expending the library of functions and by playing with
the environmental and other parameters allows exploring
a vast universe of artificial ecosystems.

5. SYSTEMS OF PARTICLES AND EMERGENCE

OF RELATIVISTIC SPACE-TIME

To illustrate the versatility of the High-level

Modeling and Simulation tool we have considered a
second family of complex systems referred hereafter as
artificial “universes”. They consist on large numbers of
elementary particles whose interactions obey a set of laws
specified by the user. The generic modules of the HLMS
tool allow easy creation and simulation of such systems.
However, our goal was to go one step further and study
global properties of such systems and in particularly the
structure of their space-time. Such experiments are useful
to support new interpretations of modern physics. Since
several millenniums, we consider that our world is
composed of a set of objects evolving in space with the
progress of time. The evolution of objects and some of
their properties should therefore conform to the structure
of space and time. In particular, in special relativity, the
structure of space-time is described by the Lorentz
transformations and imposes the modification of the
length of physical objects (length contraction), the
reduction of the pace of evolution of the physical
processes (time dilatation), and the loose of
synchronization of distant events when observed from
different inertial frames. As a consequence of this vision,
two theories are needed to describe the laws governing
the universe, one to describe the structure of space-time
and another to describe the behavior of elementary
particles (the elementary units that form the physical
objects and the physical processes).

Inspired from the theory of computing systems we
can view the universe as a system composed of
elementary computing modules (elementary particles),
which determine their next state as a function of their
present state and the state of the modules with which they
interact. In this vision, the form of the space at any
instance of the system’s evolution is determined by the
values of the position variables of the elementary
modules. The structure of time is determined by the
relationships of the paces of evolution of the different
processes taking place in the system. Thus, this vision
requires only a theory describing the laws governing the
evolution of elementary particles, since these laws
determine the evolution of the system, which determines
on its turn the structure of space and time.

As shown in [24], the space-time emerging in such a
system obeys Lorentz transformations if and only if the

E. Kolonis, M. Nicolaidis
Towards a Holistic CAD Platform for Nanotechnologies

©TIMA Editions/ENS 2006 -page- ISBN: 2-916187-05-7

laws of interaction of elementary particles obey a certain
condition referred as Relativistic Constraint of
Accelerations (RCA). The central idea of this condition is
that the intensity of the interactions changes accordingly
to the speed of the particles. As a consequence, the
distances of mutual equilibrium of the particles forming a
moving object are modified (contraction of lengths), the
pace of the evolution of a group of particles (a process) is
modified (dilatation of time), and the synchronism
between distant events is altered.

The aim of the experiments presented in this section
is to illustrate this vision. This is done by simulating
artificial “universes” in which the laws of interactions
between elementary particles obey the RCA condition
and by showing that the results of measurements
performed in different inertial frames obey the Lorentz
transformations. Thanks to the HLMS tool, we can easily
create and simulate artificial “universes” governed by
interaction laws obeying the RCA condition. However,
we also need new modules that allow measuring object
lengths and process durations in various inertial frames.
As a matter of fact, we implemented some new modules
facilitating performing such measurements: They include:
- A module for creating a length reference (length unit)
composed of a set of particles forming a rigid object. This
object is created in any inertial frame and at any
orientation specified by the user.
- A module for creating a time reference (clock)
composed of a set of particles that produce a periodic
process of constant period. This clock is created at any
positions and any inertial frames specified by the user.
- A module for synchronizing clocks placed at any inertial
frame and any locations specified by the user.

We used the tool to create and experiment
artificial “universes” whose laws of interactions obey the
RCA condition. We experimented laws which, for
particles at rest (position variable is constant), take
various forms such as r-2 (r being the distance between the
interacting particles), or more “strange” forms such as
P(r)/Q(r) where P(r) and Q(r) are arbitrary polynomials of
r, or eQ(r). For particles moving with arbitrary speeds these
laws were adapted to conform the RCA condition. In all
cases, as expected from the theoretical results in [24], all
measurements were in conformity with Lorentz
transformations.

6. ARCHITECTURAL SOLUTIONS AND NANO-
NETWORK ARCHITECTURE FIT TOOL (NAF)

The HLMS tool generates a software description of

the target application executable in conventional
computers. The implementation and execution of the
target application in a nano-network is conditioned by the
particular architecture of the nano-network. The aim of

the NAF tool is to transform the description generated by
the HLMS tool into a description that fits the constraints
of this architecture (figure 3). Furthermore, the NAF tool
will allow comparing the descriptions of various
implementation options of the target system, in order to
determine the most efficient ones. The description
generated by the NAF tool includes two parts, the
description of the function of the basic modules of the
complex systems and the description of the
communication of these modules. The former will be
identical to the one generated by the HLMS tool. The
generation of the later has to take into account the
communication resources of the nano-network and the
strategies that could best solve the communication
strangle, which, by the way, is the most challenging task
in highly parallel systems. Thus, determining relevant
nano-network architectures and communication strategies
is a task mandatory for implementing an efficient NAF
tool. These aspects are discussed below.

Figure 3: The architectural exploration tool

Once the functions of the modules (inputs, outputs,
internal variables and evolution rules) have been
determined, the system can be programmed in a nano-
network, consisting on a programmable (FPGA-like)
hardware. However, efficient exploitation of the hardware
resources depends on the architecture of this hardware
and the way a target application is mapped on it. For
applications where the modules are not mobile and their
function is stable in time, we can map the function of the
modules on this hardware, similarly to the mapping of
traditional hardware on FPGAs. On the other hand, for
applications using mobile modules, which eventually
have changing functions, managing the interactions
between modules is very challenging. Let us analyze the
challenging cases:

x1,y1

x2,y2

nanonetwork
simulated
environment

x3,y3

Nano-network
Architecture Fit

tool
Application

description, (HLMS)

Application
description fitting
nano-network
architecture

E. Kolonis, M. Nicolaidis
Towards a Holistic CAD Platform for Nanotechnologies

©TIMA Editions/ENS 2006 -page- ISBN: 2-916187-05-7

Figure 4: The first option for supporting applications with
moving modules

To support the movement of modules we can use three
options:
a- The first option uses a position variable to code the
position of each module in the environment. The module
moves in the environment by changing the value of this
variable, but its position in the nano-network remains
stable. Thus, modules located in physically distant
locations within the nano-network may be neighbor in the
environment and have to interact (see figure 4, modules
[x2, y2] and [x3, y3]). For performing the interaction
between such modules the nano-network should either
support interconnections of exponential complexity (in
order to be able to connect at any time any pair of
locations), or it will need to spend a number of
computation cycles proportional to the size of the
network (in order to transfer the interaction information
using local only connections). These solutions affect
severely either the size of the hardware required to map a
given application or the speed of the computation. To
avoid these problems, we must implement the application
in a manner that only local interactions are used, as
described below.

b- The second option does not use a position variable for
each module. Instead, the position of each module within
the environment is identical to its physical position in the
nano-network. In this case, when a module is moving
within the environment its implementation must also
move within the nano-network. For applications where all
modules are identical, all the areas of the nano-networks
implement the same function. Thus, module movement
requires passing the values of the variables of a module to
an unoccupied neighbor location of the nano-network, or
exchanging the values of the variables of two modules
occupying neighbor locations in the nano-network. This
can be done easily with conventional FPGA-like
architectures (non-reprogrammable or reprogrammable).
However, if the application uses modules of several
types, then, moving a module requires passing to a
neighbor location not only the values of its variables but
also its function, resulting on intense reconfiguration
process. In conventional reprogrammable FPGA
architectures this task is possible but very time
consuming, since the reconfiguration information has to
be transferred to an external system that controls the
programming of the network, and from this system to be
written to the configuration memory for reprogramming
the function of the considered locations. Doing so for a
large number of moving modules will affect dramatically
the performance of the system. Thus, conventional
FPGA-like architectures are not suitable. Instead, the

architecture of the nano-network should provide
connections for exchanging between neighbor cells the
values programming their function. This solution enables
also efficient hardware use in applications where the
function of modules can vary, as a result of their
evolution.

c- However, in applications where the different modules
occupy a small amount of the space in which they evolve,
using as position of a module in the simulated space its
physical position in the nano-network, as suggested in
point b, will waste a large amount of hardware resources.
This will happen because all unoccupied positions of the
simulated space will correspond to unused locations of
the nano-network. To cope with, we propose a solution
that merges the above cases a and b. With this solution,
the position of each module is determined by an internal
variable as in case a. In order to move, the module
increases or decreases its coordinates (e.g. the x and/or y
component of the position variable in a two-dimensional
space). However, to solve the communication problem
between modules we impose some constraints that
maintain a spatial coherence between the positions of the
modules in the simulated space and their positions in the
nano-network. A module occupying position (a, b) in the
nano-network will be mentioned as module (a, b). Its
neighbors in the nano-network occupy positions (a-1, b-
1), (a-1, b), (a-1, b+1), (a, b-1), (a, b+1), (a+1, b-1), (a+1,
b), (a+1, b+1). We impose the following spatial
constraints between the position (a, b) in the nano-
network and the position variable (x, y) in the
environment: The x component of the position variable of
module (a, b) never takes a value lower than the x
component of the position variables of modules (a-1, b-
1), (a-1, b), (a-1, b+1). Also, this component never takes
a value higher than the x component of the position
variables of modules (a+1, b-1), (a+1, b), (a+1, b+1). The
y component of the position variable of module (a, b)
never takes a value lower than the y component of the
position variables of modules (a-1, b-1), (a, b-1), (a+1, b-
1). Also, this component never takes a value higher than
the y component of the position variables of modules (a-
1, b+1), (a, b+1), (a+1, b+1). With these constraints, the
modules surrounding the module (a, b) in the simulated
space are the same as in the nano-network (i.e. (a-1, b-1),
(a-1, b), (a-1, b+1), (a, b-1), (a, b+1), (a+1, b-1), (a+1, b),
(a+1, b+1)). Thus, (a, b) will only interact with its eight
neighbors in the nano-network, requiring only local
communications. While this solution maintains local
communications as in point b, it does not require using as
many modules as the locations of the simulated space. In
fact, since, a module can move by modifying its position
variable, we do not associate a location of the nano-
network to each unoccupied position of the simulated

E. Kolonis, M. Nicolaidis
Towards a Holistic CAD Platform for Nanotechnologies

©TIMA Editions/ENS 2006 -page- ISBN: 2-916187-05-7

space, avoiding the waste of the hardware resources. It is
therefore suitable for applications where the modules
occupy a small amount of the simulated space (e.g. in an
artificial ecosystem living organisms occupy a small
amount of the environment). But, as a counterpart, we
need to maintain the spatial constraints announced earlier.
For that, each module receives from its eight neighbors in
the nano-network the value of their position variable.
When the new values of the position variables of two
modules do not conform to the spatial constraints, the
mapping of the modules in the nano-network is modified
to satisfy these constraints (an example is given in figure
5).

Figure 5: Example maintaining the spatial constraints in
case c.
i- the spatial constraints are respected
ii- a module moves in the simulated environment and

destroys the conformity to the spatial constraints
iii- two modules exchange their positions in the nano-

network but the balance is not yet restored
iv- another change is made in the nano-network and the

spatial constraints are restored

The remapping is done locally, by using a nano-network
architecture allowing local reprogramming as described
in point b. In some situations, this remapping may involve
all the modules of a certain area of the nano-network, and
may take several cycles since the remapping of some cells
may involve the remapping of new cells. But excepting
very special situations, the remapping will not involve
large areas of the nano-network, since it is not propagated
through the empty space surrounding a group of neighbor
modules (e.g. the cells of a living organism or of a group
of living organisms). During the remapping of the
modules, when a location of the nano-network is
reprogrammed, it cannot compute and send valid outputs
to its neighbors. Thus, it activates a signal to inform them.
In response, the neighbors do not perform new
computations until this signal is deactivated. In addition,
at the next clock cycle they activate a similar signal to
inform their neighbors, which interrupt computation on
their turn, and so on. A wave of interruptions propagates
through the nano-network, but it is stopped when the
empty space surrounding the cells of an organism or of a

group of organisms is reached. Thus, these interruptions
remain local and do not affect the operation of the rest of
the network.

The above discussion determines three architectures:
1. For applications using modules deprived of movement,

conventional FPGA-like architectures (reprogrammable
or non-reprogrammable) can be used.

2. For applications using a single module-type provided
with movement, conventional reprogrammable FPGA-
like architectures can be used. The position of each
module will be determined by a position variable.

3. For applications using multiple types of modules which
possess movement capabilities, we will employ
architectures allowing local transfer of the function of
one location of the nano-network to a neighbor location.
Two different approach will be used to determine the
position of each module in the simulated space:

3a- if the simulated space is of similar size with the space
of the nano-network, this position will be identical to its
physical position in the nano-network.

3b- if the simulated space is much larger than the
space of the nano-network, this position will be
determined by a position variable. In addition, spatial
constraints will be imposed to the position variable, as
described earlier in point c.

These approaches may solve the communication
problem for various complex systems, which is known to
be the most challenging problem in highly parallel
architectures. This problem is exacerbated by the total
parallelism of the approach considered here. However,
the criteria for determining the best architecture for an
application may not be clear (consider for instance the
criteria for selecting approach 3a or 3b). One of the goals
of the NAF tool is to enable making such choices. Thus,
this tool should be able for each of these choices to create
a description fitting the nano-network architecture and
then to evaluate its efficiency. This tool is in many
aspects similar to the High-level Modeling and
Simulation tool as it generates descriptions similar to the
ones generated by it. The difference is that it introduces
in the descriptions of the system modules and of their
communications the constraints of the selected
implementation. For instance, in case 3b, it introduces the
spatial constraints imposed to the position variable of
each module. The next step of this work is to implement
the NAF tool. This step consists on modifying the HLMS
tool in order to introduce the described constraints.

7. CIRCUIT SYNTHESIS TOOL (CS)

This tool maps the target complex system on the

configurable architecture of the nano-network (figure 6).
The input of this tool is the description of the target
complex system created by the NAF tool. From this

3,5
2,6
3,7

4,5
6,5
4,7

6,3
6,4
5,7

7,3
7,4
8,7

3,5
2,6
3,7

4,5
6,5
4,7

6,3
5,4
5,7

7,3
7,4
8,7

3,5
2,6
3,7

4,5
5,4
4,7

6,3
6,5
5,7

7,3
7,4
8,7

3,5
2,6
3,7

5,4
4,5
4,7

6,3
6,5
5,7

7,3
7,4
8,7

i ii

iv iii

E. Kolonis, M. Nicolaidis
Towards a Holistic CAD Platform for Nanotechnologies

©TIMA Editions/ENS 2006 -page- ISBN: 2-916187-05-7

description the CS tool first creates an RTL description of
the function executed by the basic module(s) composing
the target complex system and of their interconnections.
Then it maps this description on the configurable
architecture of the nano-network.

The transformation of the high-level description of
the function of the basic modules and of their
interconnections into an RTL description does not
represent a new research challenge as this task is similar
to that addressed by high-level synthesis tools, like those
described in [17]-[19].

The second component of the synthesis tool is
similar to synthesis tools used today to map RTL
descriptions on reconfigurable architectures of FPGA
families [20]-[22]. Similar approaches would be used for
developing a tool that maps RTL descriptions on
reconfigurable architectures of nano-networks. This
component too does not represent a new challenge.

Figure 6: Circuit synthesis tool

CONCLUSIONS

By considering the constraints for fabricating

components including huge amounts of devices (nano-
networks), as promised by nanotechnologies, we suggest
using a non von Neumann, highly parallel, reconfigurable
computing paradigm, for implementing applications of
profound interest for science and technology. They
consist of complex systems composed of large numbers
of simple elements. Then, we describe a CAD platform
aimed at exploiting efficiently the nano-networks for
implementing this kind of applications. This platform
includes:
- A High-level Modeling and Simulation (HLMS)
tool allowing implementing in a traditional software
approach complex systems composed of a large number
of identical modules.
- A Nano-network Architecture FIT (NAF) tool
allowing adapting the high-level description generated by
HLMS to the nano-network architecture.

- A Circuit Synthesis tool allowing mapping the
description generated by the NAF tool on the architecture
of the nano-network.

The first of these tools was finalized and described
shortly in this paper. It allows generating at low user
effort a software representation (model) of the target
complex system and exploring its behavior through
simulation experiments. The versatility of the tool was
illustrated by experimenting two quite different families
of complex systems: artificial ecosystems and artificial
“universes”. Our first experiments of artificial ecosystems
showed their rich behavior and the interest to pursue the
exploration of more complex cases. The experiments of
artificial “universes” illustrated the mechanisms of
emergence of relativistic space-time geometry in such
systems. Ongoing work concerns the development of the
second (NAF) tool.

REFERENCES

[1] International Technology Roadmap for Semiconductors.
<http://public.itrs.net >, 2004.
[2] D. Klein et al “A single electron transistor made from a
candmium selenide nanocrystal”, Nature, Vol. 389, pp.699-701,
Octob. 1997.
[3] S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, and
P. L. McEuen, “High performance electrolyte-gated carbon
nanotube transistors”, Nano Letters 2, 869 (2002).
[4] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P.
Avouris, “Vertical scaling of carbon nanotube field-effect
transistors using top gate electrodes”, Appl. Phys. Lett. 80, 3817
(2002).
[5] P. J. Burke, "AC Performance of Nanoelectronics: Towards
a Ballistic THz Nanotube Transistor", Solid-State Electronics
48, 1981 (2004).
[6] X. Huo, M. Zhang, P. C. H. Chan, Q. Liang, and Z. K. Tang,
"High-frequency S. parameters characterization of back-gate
carbon nanotube field-effect transistors," in IEEE IEDM Tech.
Digest, 2004, p. 691.
[7] A.O. Orlov, R. Kummamuru, J. Timler, C.S. Lent, G.L.
Snider, G.H. Bernstein, “Experimental studies of quantum-dot
cellular automata devises”, Mesoscopic Tunnelling Devises,
2004: ISBN: 81-271-0007-2
[8] D. Cory, A. Fahmy, and T. Havel,
“ExperimentalImplementation of Fast Quantum Searching,”
Proc. Nat. Acad. Sci. U.S.A. 94, 1634 (1997)
[9] B. Kane, “A Silicon-based Nuclear Spin Quantum
Computer”, Nature 393, 133 (1998).
[10] V Ng et al, “Nanostructure array fabrication with
temperature-controlled self-assembly techniques” 2002
Nanotechnology 13 554-558
[11] N. Bowden, A. Terfort, J. Carbeck, and G.M. Whitesides,
"Self-assembly of mesoscale objects into ordered two-
dimensional arrays," Science, v. 276, April 1997, pp. 233-235.
[12] A. DeHon et al, “Sub-lithographic Semiconductor
Computing Systems”, Appearing in HotChips 15, Stanford
University, August 17–19, 2003

Model of the
target system

RTL description

Nano-network

Mapping

Circuit
Synthesis

tool

E. Kolonis, M. Nicolaidis
Towards a Holistic CAD Platform for Nanotechnologies

©TIMA Editions/ENS 2006 -page- ISBN: 2-916187-05-7

[13] Andr´e DeHon, “Array-Based Architecture for FET-based,
Nanoscale Electronics”, IEEE Transactions on Nanotechnology,
2(1):23–32, March 2003.
[14] S. Goldstein et al, “Reconfigurable computing and
electronic nanotechnology”, ASAP ’03, pp. 132-142, June 2003
[15] J. Han, P. Jonen, “A system architecture solution for
unreliable nanoelectronic devices”, Nanotechnology, Vol. 14,
No. 2, pp. 224-230, 2003.
[16] J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams, “A
Defect-Tolerant Architecture: Opportunities for
Nanotechnologies”, Science, June 98, Vol.280, p.p.1716-1721.
[17] Elliott, J.P.: Understanding Behavioral Synthesis: A Prac-
tical Guide to High-Level Design. Kluwer Academic Pub-
lishers, 1999.
[18] Gajski, D., Ramacahndran, L.: Introduction to high level
synthesis. IEEE Design and Test Computer, October 1994.
[19] Genoe, M., et al.: On the use of VHDL-based behavioral
synthesis for telecom ASIC design. In Proc. Intl. Symposium on
System Synthesis ISSS'95, Feb. 1995.
[20] Xue-Jie Zhang, Kam-wing Ng, Gilbert H. Young. High-
level synthesis starting from RTL and using genetic algorithms
for dynamically reconfigurable FPGAs. Proc. of the 1998 ACM
fifth international symposium on Field-programmable.
[21].J. Cong and C. Wu "Optimal FPGA Mapping and Retiming
with Efficient Initial State Computation", IEEE Trans. On
Computer-Aided Design of Integrated Circuits and Systems,
vol. 18, no. 11, pp 1595 -1607, November 1999.
[22] Timothy J. Callahan, Philip Chong, André DeHon, John
Wawrzynek. Fast module mapping and placement for datapaths
in FPGAs Pages: 123 - 132. of the 1998 ACM fifth
international symposium on Field-programmable.
[23] N. Gracias et al “Gaia: An Artificial Life Environment for
Ecological Systems Simulation” ALIFE V, 124-131.
[24] M. Nicolaidis, “Une Philosophie Numérique des Univers”,
TIMA EDITIONS, June 2005, ISBN: 2-916187-00-6
[25] E.Kolonis, M. Nicolaidis, “Computational Opportunities
and CAD for Nanotechnologies”, Keynote, Workshop on
Robust Computing with Nano-scale Devices: Progresses and
Challenges, DATE 2007, April 16-20, 2007, Nice France.

