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Abstract

Analog and Mixed Signal (AMS) designs are an important part of embedded sys-
tems that link digital designs to the analog world. Due to challenges associated with
its verification process, AMS designs require a considerable portion of the total de-
sign cycle time. In contrast to digital designs, the verification of AMS systems is
a challenging task that requires lots of expertise and deep understanding of their
behavior. Researchers started lately studying the applicability of formal methods
for the verification of AMS systems as a way to tackle the limitations of conven-
tional verification methods like simulation. This paper surveys research activities in
the formal verification of AMS designs as well as compares the different proposed
approaches.

1 Introduction

The latest technological advancement of integrated circuits design and semi-
conductors manufacturing paved the way to the development of system on
chip (SoC) designs. On the other hand, a cornerstone in embedded systems
are analog and mixed signal (AMS) SoC designs (See Figure 1), which are
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integrated circuits, required at the interfaces with the real world environment
[34]. Among the important functionalities of AMS designs are the processing
of analog signal on the front and back ends of the system. Other functionalities
include converting between analog and digital data representation, frequency
synthesis and generating timing reference. In addition, analog circuits are used
for biasing which is necessary for correct and stable operations of the system.
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Fig. 1. Embedded System Architecture

Computer-aided design (CAD) tools for AMS design have been proposed and
developed to overcome challenges in the design process of such circuits. For in-
stance, the need to design and improve the quality of more complex integrated
systems with the tight constraints of increasingly shorter time-to-market and
productivity increase. Such CAD tools and concepts are then needed to pro-
vide unique insights into the behavior and characteristics of the integrated
circuits, to help the designer select best design strategies. Finally, CAD tools
should tackle the crucial activity to correctly and efficiently model as well as
simulate performance behavior of AMS designs.

In recent years, some breakthrough have been made in different aspects of
the CAD procedure, especially in the development of hardware description
languages (HDL) suitable to describe the different AMS behaviors [47]; e.g.,
VHDL-AMS [55] and Verilog-AMS [54]. Other advances have been made in
the design procedure, namely analog synthesis and topology selections (in
top-down methodologies), design related optimizations like design centering
and device sizing and analog layout automation [48]. One important aspect
of CAD design is analysis and verification which is a challenging task that
requires lots of expertise and deep understanding of AMS behavior.

Verification challenges arise throughout the different phases of the design pro-
cess. In addition, unlike digital designs, a wide difference of properties and re-
quirements exists between the different classes of AMS designs. For instance,
among the verification challenges at the implementation level of analog cir-
cuits are the functionalities defined directly in terms of continuous electrical
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quantities. These are usually sensitive to environment factors like signal noise,
temperature, in addition to higher order physical effects like different para-
sitics and current leakage. As a consequence the physical implementation is
subject to frequent extractions, analysis and iterated modifications.

Additionally, problems ranging from correct functionality of the integrated de-
signs to conformance to system specification like area and power consumption
need to be considered and tackled appropriately in order to deliver the correct
design. For example, clock jitter is a functional verification challenge for AMS
designs where PLL designs are used. Jitter can be defined as the deviations in
a clock output transition from ideal positions. Clock jitter effect is apparent
where the conversions between analog and digital signals are done at higher
resolutions and higher data rates. Another verification issue at the functional
level is the stability requirement of ∆Σ modulators. A ∆Σ modulator is said
to be stable if the integrator output remains bounded under a bounded input
signal. Gain parameters for instance affect the stability, hence careful selection
of such parameters is usually required.

Verification issues arise throughout the design flow. For a consistent design
flow, a compliance certificate approving the correspondence between differ-
ent design levels (or different designs at a specific level) is needed to ensure
correctness of the end product and its conformity to the specification. For
instance, in the bottom-up design methodology (see Figure 2), the process
starts with the design of the individual blocks, which are verified individu-
ally and then combined to form the system. However, the verification can be
quite expensive as the entire system is represented at the transistor level. A
solution to the above mentioned problem lies in the integration at a higher
level than the implementation level, such that the analysis for the whole de-
sign can be applied. This is achieved by the development of symbolic analysis
which are simplification methods developed to obtain simplified models (e.g.,
macromodel, behavioral models) preserving the properties of interest. To en-
sure correctness of the methodology, some notion of equivalence needs to be
verified between the implementation and the generated models. In addition,
we need to ensure that extracted models when combined preserve specification
properties.

To tackle analysis and verification issues, simulation and testing techniques
were developed for the verification of AMS designs [48]. Traditionally, simula-
tion was used where the evaluation of the results is often done manually in an
informal fashion and the search of the state space is not complete. The sim-
ulation goal varies from DC and operating point analysis, (linearized) small
signal analysis; i.e., AC, noise and distortion analysis and transient analysis
used to predict the nonlinear behavior of a circuit and periodic steady state
analysis. However, simulation lacks the rigor needed to ensure correctness of
the design as well as it does not provide the guarantees needed for correct
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Fig. 2. Bottom-up Design Methodology

correspondence between the implementation and the approximate models at
subsequent design levels, or two models at the same level where robustness
and parameter tolerances are considered. In addition, such method falls short
to validate interesting properties of the design behavior such as temporal re-
quirements.

The relative success of formal methods for digital design verification [37] has
triggered research for more complex systems like real-time, control and hybrid
systems [2]. In general, formal verification consists of mathematically estab-
lishing that an implementation satisfies its specification. The implementation
refers to the system design which should be verified. This entity can represent
a design description at any level of the system abstraction hierarchy. The spec-
ification usually refers to the property with respect to which correctness is to
be determined. It can be expressed in a variety of ways, such as behavioral de-
scription, an abstract structural description, a timing diagram which reflects
the behavior of the system at different time points, a temporal logic formula,
etc. Using formal methods, a decision procedure checks whether a mathemat-
ical model for the design satisfies some given properties in the specification.
Formal verification techniques naturally group themselves into theorem prov-
ing methods and automated state space exploration methods.

In theorem proving [37], also known as proof based methods, the designer
constructs a mathematical proof that a model or a structure meets their spec-
ification to be proven within the logic system, using axioms and inference rules.
Thus, theorem proving is a powerful verification technique. It can provide a
unifying framework for various verification tasks at different hierarchical lev-
els. However, the task of proving complex theorems requires the aid of experts,
in addition to great effort and creativity on the part of the user.

The main state space exploration methods are equivalence checking and model
checking [9]. In equivalence checking, the output signals of two different mod-
els of the designs are compared for a given set of input conditions. In contrast
to theorem proving, no mathematical proof needs to be developed, but the
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correctness of the method relies on the exploration and comparison of the
reachable state spaces. In model checking, the model of the design under ver-
ification is a kind of transition system describing all its possible behaviors.
The specification is a temporal logic formula property. State exploration algo-
rithms are then applied to check whether the model satisfies the given property
or not. In case the property does not hold, a counterexample describing the
failure point(s) is generated. Then the design can be corrected and reverified.
The main advantage of the state exploration method is its automation, while
the main drawback is the state explosion problem which is the principle lim-
iting factor of the technology. The efficiency of state exploration and model
checking methods depends heavily on the size of the reachable state space.
The larger the state space, the more time and memory it takes to verify a
system.

During the last two decades, formal verification has been applied to digital
hardware and software systems. Recently, however, formal verification tech-
niques have been adapted and applied to the verification of AMS systems as a
way to tackle the limitations of conventional simulation techniques [29]. In ad-
dition, hybrid semi-formal techniques combining simulation and formal based
methods have been developed as a way to benefit from the advantages of these
methods, where logical models are used to analyze the simulation results. In
this paper, we provide a survey and comparison of the research activities in the
field of formal verification of AMS design. We survey formal techniques used
in AMS verification along with comparison of the relevant projects. We end
each section with discussions about its pros and cons along with perspectives
for future directions. Equivalence checking methods applied to AMS designs
are surveyed in Section 2, followed by model checking and reachability tech-
niques in Section 3, run-time verification in Section 4 and deductive methods
in Section 5, before concluding with a general discussion in Section 6.

2 Equivalence Checking

2.1 Introduction

Equivalence checking is a problem where we are given two system models and
are asked whether these systems are equivalent with respect to some notion
of conformance, or functionally similar with respect to their input-output be-
havior [37]. Verification can be based on specific properties like transient or
steady state response properties, in time domain or frequency domain. Such
correspondence relation between designs is classically done through exhaustive
testing by proving that two expressions are equivalent, which can be a difficult
task for any reasonably large circuit. Instead, symbolic reasoning methods can
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prove or disprove equivalence using decision procedures over the whole range
of inputs described symbolically. Therefore, it is possible to compare circuits
on the same level of abstraction as well as on different levels, e.g., SPICE
netlists versus analog behavioral models, behavioral versus macromodel, or
macromodel versus device level, etc.

Consider an AMS C design which is represented with two different models
Mod1(C) and Mod2(C). The models can be a transfer function if the analysis
is in frequency domain or system of equations (ODE, differential algebraic
equations DAE or algebraic equations) if the analysis is in the time domain.
The equivalence checking problem is described as

∀Ip∀Par.Mod1(C) ∼ Mod2(C)

where Ip is the set of input signals, Par is the set of parameters variation and
∼ is an equivalence relation.

An important requirement in behavior equivalence is the specification of tol-
erance or bounds on parameters and signals which may be needed. A failure
occurs if the comparison finds that the results of both design levels are dif-
ferent or different beyond a certain tolerance. In the rest of this section, we
survey the relevant work dealing with the equivalence checking problem. A
comparison between these work is outlined in the end of the section.

2.2 Relevant Work

In [6], the authors proposed a method for applying equivalence checking be-
tween two designs (e.g., specification and implementation) of analog systems
described by their linear transfer function. The verification idea is based on the
discritization of the transfer functions to the Z-domain using bilinear transfor-
mation, thereby, the design can be represented in terms of discrete-time com-
ponents and encoded into FSM representation like Binary Decision Diagrams
(BDDs). The verification problem can be stated as follows: the transient be-
havior of the implementation mimics that of the specification iff for any initial
state of the specification, there exists a state in the implementation such that
the FSMs representing the two circuits produce identical output sequences for
all input sequences.

The discretization of the behavior raises issues like the error analysis which
must be accounted for tolerance between the output sequences for both models
must be specified. Another issue is state space explosion when the inherited
discretization of the design is encoded. This is largely due to the large word
size used to encode real signals. Finally, the methodology is only practical
for linearized systems as transfer function generation for non-linear circuits is
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very difficult in general.

Realizing the coefficient of a transfer function exactly using actual components
and devices is not always possible as the tolerance region around nominal
characteristic must be taken into account. The ideas in [6] have been extended
in [49] in the following way. Given the transfer function description of both the
specification and implementation, verify the conformance of the magnitude
and phase response of the implementation against the specification over a
desired frequency range. The equivalence verification problem is modeled in
[49] as an optimization problem by ensuring that the implementation response
is bounded within an envelope around the specification under the influence of
parameter variation.

The conformance in [49] is defined using the notion of different frequency
bands product response functions (PRFs) of both design models and which
serve as objective functions for the global optimization routine. Such definition
allows s-domain verification, hence avoiding loss of precision due to the bilinear
transformation used in [6].

Conformance checking with parameters variation was also investigated in [31],
where the authors present an equivalence checking for linear analog circuits
to prove that an actual circuit fulfills a specification in a given frequency
interval for all parameter variations. Linear analog circuits can be described by
transfer functions, extracted from the netlist by symbolic analysis methods (in
case of implementation), resulting in a parameterized description of the circuit
behavior. The main idea of the procedure is to compare by inclusion the value
sets of the transfer functions of specification and implementation. To ensure
soundness, the authors chose an over-approximation for the implementation
transfer function while an under-approximation is chosen for the specification
transfer function.

Comparing [6] with [31], we see that in the first work, the authors trade-off
accuracy for practicality. They adapt the developed technology based on BDD
equivalence checking for verification of analog systems. This comes at the cost
of precision which is affected by the discretization process. In contrast, the
authors in the second work insist on soundness by checking that the imple-
mentation of the behavior is included in the specification behavior.

While the above-mentioned work are concerned with frequency domain verifi-
cation, others tend to focus on verification in time domain. For instance, in [30],
the authors proposed an equivalence checking approach based on qualitative
comparison between two representations of the non-linear analog system. How-
ever, direct comparison of vector fields for non-linear systems is usually not
possible. Therefore, the authors propose to apply non-linear transformations
on the sample state spaces to make the comparison possible. The difference
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between the evaluations of the sampled equations is then calculated allowing
the identification of behavior similarity between the two designs under verifi-
cation by giving an explicit error measure. Unfortunately, finding the correct
transformations is a non trivial task and automation is not possible, leading
to the introduction of some heuristics to analyze and approximate qualitative
behaviors of the circuits, but affecting the soundness of the methodology. The
authors applied their methodology for comparison verification of two CMOS
inverters with different parameters as well as the verification of an Opamp
against its specification.

Another equivalence checking verification approach was proposed in [50] for
verifying VHDL-AMS designs. The idea is based on combining equivalence
checking, rewriting systems and simulation into a verification environment.
The verification methodology consists of partitioning the specification and im-
plementation codes into digital, analog and data converter components. Digi-
tal components are verified using classical equivalence checking, while analog
specification and implementation are simplified using rewriting rules and pat-
tern matching. Furthermore, the outputs are fed to comparators to be verified
by using simulation. This syntactic method can only be performed on simple
designs where rewriting techniques can be easily applied. While the presented
methodology is practical, it ignores the coupling between the analog and dig-
ital parts.

Such syntactic verification for analog circuits can only be applied when the
designs are treated at higher level (architectural or behavioral and functional
levels) as at low level, non-linear behavior makes such approaches impractical
for verification. Instead of direct simulation, advanced verification techniques
mentioned earlier can be used to compare analog model behaviors.

2.3 Discussion and Perspectives

In general, the nature of analog circuits, most notably the presence of tol-
erance margins, makes equivalence verification a difficult problem. However,
with careful definition of bounds on the parameters as well as the signals,
certain compliance relations can be checked. In addition, in contrast to equiv-
alence checking for digital systems where a canonical representation allows
easy comparison of two functions representation, no such form exists for ana-
log systems and all the methods presented are design driven in the sense that
a priori knowledge of the qualitative and quantitative properties of the design
under verification is a requirement for the methodology development. In sum-
mary, error analysis and unified equivalence theory for AMS are important
candidates for the success of such verification methodology. Table 1 draws a
brief comparison among the above mentioned projects. It describes the class
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of system verified, the models used, the analysis regions and domains, the
adopted analysis techniques, the tool used, and the case studies verified.

Table 1
Equivalence Checking Techniques

[6] [49] [31] [30] [50]

Type of Systems Linear Linear Linear Non-linear Non linear

Analog Analog Analog Analog AMS

Models Transfer Transfer Transfer ODE - DAE ODE - DAE

function function function FSM

Analysis Regions Transient Transient Transient Near operating N/A

response response response point

Analysis Domain Z-domain S-domain S domain Time Time

Techniques OBDDs Global Interval Qualitative Rewriting, SAT

and Analysis comparisons optimization analysis analysis simulation

Tools N/A Matlab MAPLE MAPLE M-CHECK

Case Studies Low Pass Filters Band pass CMOS inverter D/A

filter Opamp filter, opamp opamp converter

A future application for such verification can be developed for post layout
extraction. Layout extraction is the translation of an integrated circuit lay-
out back into the electrical circuit (netlist). This extracted circuit is needed
for various analysis including circuit simulation, power analysis, etc. For high
frequency designs, layout-induced parasitics significantly change the transfer
function of a design, and thus modify the AC and transient behavior of a sys-
tem. For example, layout parasitics are responsible for offsets of opamps and
transconductors. Formal methods can play an important role for low level ver-
ification. As a complement to conventional simulation results, formal methods
can be developed for compliance checking between the design circuit and the
extracted one.

3 Model Checking and Reachability Analysis

3.1 Introduction

Sometimes, we are interested in global properties connected to the dynamic
behavior of the AMS system. For example, we might be interested in reacha-
bility properties, like, ”From the initial states, can we reach a state where a
certain condition holds?” Temporal logics [9] are logical formalisms designed
for expressing such properties.

Model checking [9] is a powerful technique for the automatic verification of
dynamic properties of the system. Model checking was initially developed for
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discrete finite state systems and has been successful in validating communica-
tion protocols and hardware circuits. Model checking approaches completely
explore the whole state space to check whether the system satisfies the desired
specification. A model-checking algorithm determines whether a mathemati-
cal model of a system meets a specification that is given as a temporal-logic
formula. The model checking problem is defined as follows: Given a model M
of a design and a property P expressed in temporal logic, check M |= P , i.e.,
check if P holds in the model M .

In recent years [32], model-checking algorithms have also been developed for
real-time systems that are described by discrete programs with real-valued
clocks as well as for hybrid systems. Model checking and reachability analysis
of AMS designs have the potential of validating designs over a range of param-
eters and for all possible input signals all at once such that none of them drives
the system into a bad state. An important issue is the solution of the system
of differential equations; that is, the collection of continuous time trajectories
starting from a set of initial states where in practice the initial conditions are
usually not known exactly but only known to lie within some range. However,
the effectiveness of model checking is severely constrained by the state space
explosion problem and even undecidability limitations when the systems are
described by differential equations [33]. It is not always possible to generate
a computational model representing all possible executions (behaviors) of a
program as well as all its possible execution environments. In such cases, ab-
straction techniques are usually required in order to achieve the verification
task [35]. The goal of the abstraction is to transform uncomputable problems
to computable ones or computable problems into more efficiently computable
ones. The main idea of model abstraction is to find a map between the ac-
tual set of values of state variables and a small set of abstract values such
that a simulation relation exists between the original transition system and
the newly created one preserving the desired properties. The model checking
problem thus becomes the following: given a model M and a temporal logic
property P , compute an abstraction M∗ of the model and an abstraction
P ∗ of the property and check whether M∗ |= P ∗. In the remaining, we de-
scribe several ideas concerned with using model checking techniques for the
verification of AMS designs.

3.2 Relevant Work

The first effort in applying model checking for electronic designs is the work
in [36], where the authors proposed verification of digital designs at the tran-
sistor level. Given a circuit, they construct a finite-state discrete abstraction
by partitioning the continuous state space representing the characteristics of
transistors into fixed size multidimensional cubes. Heuristics methods are then
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used to predict possible transitions between these cubes. The final constructed
model is then encoded into an automata that is verified subsequently against
some properties using conventional model checking techniques.

In a series of papers [20,21,58], the authors tried to overcome the expensive
computational method in [36], by using discretization and projection tech-
niques of the state space into category of geometric polygons called projecta-
hedra (projected polyhedra) [22]. Such models have the property of reducing
the dimension of the state space, while maintaining an over-approximation of
the dynamic behavior of the design. While this method results in less precise
analysis due to projection, it still allows sound verification. Variant approaches
of polyhedral based analysis were adapted in [10,23].

In [10], the authors used techniques developed for hybrid system verification
to verify AMS designs. For systems described using differential equations,
they use the tool d/dt [5] to overapproximate the reachability analysis. In
order to tackle the state explosion problem for the class of discrete time AMS
designs, they proposed to use techniques from optimal control (i.e., hybrid
constrained optimization) in order to find bounds of the reachability. The idea
is to reformulate bounded time reachability analysis as a hybrid constrained
based optimization problem that can be solved by techniques such as mixed-
integer linear programming (MILP)[7]. The basic idea is to compute a set of
worst case trajectories which implies the safety of all other trajectories.

In [23], the authors use the Checkmate tool [8] for the verification of AMS
designs. The tool is based on constructing abstractions of the continuous dy-
namics, using flow pipes approximations, which are sequences of polyhedra
that follow the natural contour of the vector field. Therefore, the state space
is partitioned along the waveforms that the system can generate for the given
set of initial conditions and there is no need to discretize the entire state space.
Checkmate specifications to be verified can be provided as ACTL formulas.
For the verification of systems like ∆-Σ modulator, which is described by dis-
crete time components, a modification of the tool to support discrete time
analysis was proposed [23].

The work in [23] has been extended further in [16] for the PHAver tool [14]. In
this work, the authors proposed a refinement process for the state space, which
is carried out using iterations between forward and backward reachability.
Such technique as claimed in [16] allows generating more precise bounds for
the reachable states.

In [60], the authors proposed a more precise approximation for the reachable
states of the AMS designs, where state space exploration algorithms are han-
dled with Taylor approximations over interval domains. Such modeling allows
the computation over continuous quantities while avoiding the unsoundness
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inherent in the numerical Taylor approximation. They use the techniques along
with symbolic manipulation analysis for the bounded model checking of safety
and liveness properties. The approach is applied for both discrete and contin-
uous time AMS designs.

In [39], the authors proposed modeling analog designs using timed hybrid
petri nets (THPN), which is an extension of petri nets for real-time and hy-
brid systems. They proposed two methods for the generation of the THPNs
verification model. In the first method, they translate the circuits differential
equation into THPNs. This is done by first discretizing the state space as
in [27,28] and then encoding the state space into THPNs. Additionally, they
developed an algorithm in [40], to generate THPNs from simulation data.
Over-approximation based analysis is applied on the generated model. In [45],
the authors compared verification using their methodology in [39] against sim-
ulation results, by examining the effect of variable delays caused by parasitic
capacitances and interconnect capacitances on the performance and function-
ality of the circuits. In [38], they enhanced their methodology in [39] by using
a variant of petri nets named labeled hybrid Petri nets (LHPNs), that offer a
more efficient representation. BDD based symbolic algorithms and satisfiabil-
ity modulo theories (SMT) [44] techniques are then applied in [56,57] to check
for properties of the design.

In contrast to the on-the-fly techniques mentioned above, a priori state space
division have been explored as a way to obtain abstractions of the analog be-
havior of the systems. In [27,28], the authors proposed to use an automatic
state space subdivision method, by discretizing the whole continuous state
space into variable sized regions where each of these regions represents a ho-
mogeneous part of the state space and is treated as a discrete state of the
simplified system. Some kind of estimation techniques are then proposed to
describe possible transitions between partitions under the condition of retain-
ing the essential nonlinear behavior of the analog system. Different criteria
take care of the resulting error during discretization and try to automatically
minimize the error by choosing a suitable subdivision of the state space. The
discretized state space is then encoded and CTL based model checking is ap-
plied. The proposed approach was implemented in a tool called Amcheck [29].
In [19], the authors proposed extending their previous work for the verifica-
tion of time constraints of analog signals like rise and fall time. The presented
extensions are based on developing a specification language ASL [51] tailored
to represent properties of interest in analog circuit design, such as offset, gain,
rise time, and slew rate.

In [13], the authors developed a bounded model checking tool (Property-

Checker) for the verification of the quasi-static behavior of AMS designs.
The basic idea is based on validity checking of first order formulas over a fi-
nite interval of time steps using SAT-modulo theories. In contrast to other
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approaches, the work presented in [13] trades-off accuracy with efficiency by
basing the analysis on rational numbers rather than real numbers.

3.3 Discussions and Perspectives

As a summary, we can classify model checking and reachability analysis into
three categories:

• On-the-fly model checking: Where the set of reachable states corresponds
to the overapproximate solution of the system equations, which is obtained
for a bounded period of time.

• Abstract model checking: The whole state space is subdivided into regions
and then heuristic rules define the transitions between states. Conventional
model checking algorithms are applied on the new abstract model of the
system, which is generally described as a finite state automaton.

• Model checking as a symbolic decision procedure: The verification problem
is turned into a satisfiability or constraint solving problem that is defined
for bounded steps.

In the first two types, the generated state space can be encoded symbolically
such that discrete model checking algorithms can be applied. Time bounded
ACTL properties are usually the property language of choice. One drawback
of abstraction is its over-approximation of behavior. If more behaviors are
added and a universally quantified property is True, then it will still be True

on a concrete system. This method works well with safety properties (e.g.,
something bad will never happen) but often leads to false negatives when rea-
soning about liveness properties (e.g., eventually, something good will happen).
The consequence of the over-approximation of the possible executions is that
nonexisting executions are considered, some of which are erroneous, which
leads to false alarms (also called false positives). A false alarm corresponds to
the case when the abstract semantics intersects the forbidden zone while the
concrete semantics does not intersect this forbidden zone. So a potential error
is signaled which can never occur in reality. The imprecision problem can often
be solved by choosing a more refined abstract model, which is more precise
and so often more complex, which results in larger computation costs. The
approach used in [13], while it avoids the overapproximation issue, is limited
to simplified models of AMS design. In fact, the approach does not support
systems described using differential equations, however, it is more suitable
for systems described using difference equations. Tables 2(a) and 2(b) give
a comparison between the work presented in this section. They describe the
class of system verified, the models used, the analysis regions and domains,
the adopted analysis and state space partitioning techniques, the tools used,
and the case studies verified.
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Table 2
Model Checking Techniques

(a) Comparisons Table

Project [36] [20–22] [23] [10]

Type of Systems Non-linear Non-linear Non-Linear Non-linear

Models ODE ODE HA/ ODE - DAE HA/ODE -DAE

Analysis Regions No restriction No restriction No restriction No restriction

Analysis Domain Time Time Time Time

Techniques Simulation Projection Numerical Numerical

and Analysis lang. containment numerical appro. approx. approx., MILP

State Space Fixed size Projectaherda Convex Orthogonal

partitions hyperCubes polyhedra polyhedra

Temporal Logic N/A - ACTL -

Verification Abstract On-the-fly On-the-fly On-the-fly

Method model checking reachability model checking reachability

Tools COSPAN Matlab/ Coho Checkmate d/dt

Case Studies Interlock circuits Van der Pool Tunnel diode Low pass filter

oscillator, toggle circuit ∆ − Σ mod ∆ − Σ mod.

(b) Comparisons Table (Cont’)

Project [29,19,27,28,51] [39,45,38,56,40,57] [13] [16] [60]

Type of Systems Non-linear Non-linear AMS Non-linear Non-linear

Models ODE, DAE THPN/ODE piecewise linear Piecewise ODE/SRE

automaton ODE

Analysis No No Steady Steady No restriction

Regions restriction restriction state state

Analysis Domain Time Time Time Time Time

Techniques Numerical Numerical Bounded Numerical Numerical and

and Analysis analysis approx. MC approx. Symbolic approx

State Space HyperCubes Convex - Convex Taylor

partitions polygons polygons models

Temporal Logic ASL/CTL-AT ACTL FOL - LTL

Verification Abstract On-the-fly/Symbolic Symbolic On-the-fly On-the-fly/symbolic

Method model checking model checking model checking reachability model checking

Tools Amcheck ATACS/LEMA SVC, PHAver Mathematica

Property checker

Case Studies Schmidt trigger, Tunnel diode Sequential Tunnel diode Oscillators

Opamp , VCO PLL AMS circuit VCO ∆ − Σ mod
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Other successful trends in the related hybrid system theory that can be ex-
plored in the model checking of AMS is the use of sound methods like con-
straint solving techniques and logical based methods like quantifier elimina-
tion. In addition, model checking in the frequency domain has yet to be de-
veloped.

4 Run-Time Verification

4.1 Introduction

Model checking of AMS circuits is computationally expensive and therefore
suffers from the state-space explosion problem that makes exhaustive verifi-
cation very hard and poses limitations in memory and/or time resources. In
order to cope with these problems, run-time verification (logical monitoring)
methods were developed where no computational model is needed prior to the
verification, avoiding state space explosion [59]. By employing logical moni-
tors, an efficient analysis of the results is achieved, avoiding exhaustive inspec-
tion, by testing whether a given behavior satisfies a property [53]. Monitors
for hybrid systems have been developed in [53], where the authors developed
tools for monitoring real-time and hybrid systems. Timed and linear hybrid
automata can be used to monitor real-time and hybrid behavior, respectively.

Property monitoring of AMS designs is performed in general using assertions
and tests. The monitoring can be described in general as follows: the AMS
design under verification is simulated by attaching it to a testbench which
provides the inputs necessary to drive while monitoring its output. Assertions
have the property that they are always checked, regardless of what tests are
running. An assertion is a piece of code that continually observes one or more
signals and raises a fault when it detects an error condition. They can be
placed in the models or in the circuit where they check that the design is
being used correctly. The monitor could be as simple as observing a current
or voltage, or could be more complicated, taking several signals, processing
them and then compare against the expected results.

The main challenges in this technique is the development of adequate moni-
tors. This process can be performed in two different fashions: namely, Offline

and Online monitoring [42]. Offline monitoring starts after the whole sequence
is given. Online monitoring is interleaved with the process of reading the se-
quence and is similar to the way the sequence is read by an automaton. The
two types of monitoring have their strengthes and weaknesses. Offline moni-
toring allows the verification of more complex properties like those described
backward in time (e.g., using past operators). However, Offline monitoring re-
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quires the gathering of simulation or execution data in advance which can cost
lots of time and memory resources. In addition, violations are not detected as
soon as they happen but only after simulation is finished. On the other hand
online monitoring is more practical when simpler properties are needed to be
verified and violations are identified as soon as they occur. In the following
we survey the main projects concerned with monitoring AMS designs

4.2 Relevant Work

In [41], the authors proposed an offline methodology for monitoring the sim-
ulation of continuous signals described by differential equations. This work is
based on extending the PSL (Property Specification Language) [1] logic to
support monitoring analog signals, by defining the syntax and semantics of
metric timed linear temporal logic (MTL) [52] and extending it with predicates
over reals to define the signal temporal logic (STL) [41]. STL is then synthe-
sized into timed automata [43,42] which monitor simulation traces to check
for property violation in an online fashion. The approach was implemented in
[46]. No techniques for test case generation is proposed.

A different effort for using PSL properties to monitor AMS designs was pro-
posed in [3], where the authors generated observers from PSL properties to
monitor the behavior of discrete-time designs. While the approach limits the
classes of circuits to be verified, it has the advantage of using the standard
PSL languages making it attractive to be incorporated in the design flow.

In [11,12], the authors use an extended temporal logic, AnaCTL (CTL for
analog circuit verification), for monitoring the transient behavior of non-linear
analog circuits. The transient response of a circuit under all possible input
waveforms is represented as an FSM created by means of repeated SPICE
simulations, bounding and discretizing the continuous state space of an analog
circuit. Exhaustive simulation is again a drawback as the created FSM is not
guaranteed to cover the total transient behavior leading to soundness problem.

An online monitoring technique was proposed in [15], where the authors used
linear hybrid automata as template monitors for time domain features of os-
cillatory behaviors, such as bounds on signal amplitude and jitter. For the
automata with an error state, the reachability computation can be stopped as
soon as this state is reachable. The monitors are used within the PHAver tool
where nonlinear circuit equations are modeled with piecewise affine differential
inclusions.

In [61], the authors propose an online monitoring methodology for analog sys-
tems. They present a run-time verification methodology based on monitoring
the behavior (solution flow) of analog circuits validated using interval analy-
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sis. Given the system description and its specification described by non-linear
differential equations and timed computational temporal logic (T-CTL) for-
mulas, respectively, the authors build a timed automata monitor which can
detect bad behavior within a specified time period of the interval arithmetics
simulation.

4.3 Discussion and Perspectives

Run-time verification, although considered only a partial verification tech-
nique, combines desirable properties from simulation and formal verification
while avoiding the undesirable ones. No computational model needs to be gen-
erated prior to the verification, avoiding state space explosion. By employing
logical monitors, an efficient analysis of the results is achieved, avoiding ex-
haustive inspection by engineers. In addition, guiding the testcase generation
by the monitors, enhances the code coverage.

Although appealing, several issues must be addressed to make run-time ver-
ification useful. Among these issues are monitoring properties in frequency
domain, synthesizing monitors from the specification as well as developing
testcase generation approaches to guide the verification. An important re-
quirement in monitoring analog behavior is the specification of tolerance or
bounds which may be needed when comparing analog signals. A failure occurs
if the comparison finds that the actual and expected results are different or
different beyond a certain tolerance. Table 3 summarizes the main character-
istics of the described projects. It describes the class of systems verified, the
models used, the monitors language, the monitoring methods, analysis regions
and domains, the adopted analysis techniques, the tools used, and the case
studies verified.

5 Proof Based and Symbolic Methods

5.1 Introduction

Theorem provers are formal systems that were developed to prove design prop-
erties using formal deduction based on a set of inference rules [37]. Even though
these deductive methods are not constrained by any decidability frontiers,
their application requires expertise and significant human intervention which
makes their application to complex systems very difficult. A lot of research
has been focusing on extending theorem provers with decision procedures for
verification assistance and automation, as well as formalizing important theo-
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Table 3
Run-time Verification Techniques

[41–43,46] [11] [15] [61] [3]

Type of Non-linear Non-linear Piecewise Non-linear Non-linear

Systems affine

Models ODE ODE ODE ODE SRE

Monitors STL Ana CTL Linear HA TCTL, Timed Automata PSL observers

Monitoring Type Offline/Online Offline Online Online Offline

Analysis No Transient No No No

Regions restriction response restriction restriction restriction

Analysis Domain Time Time Time Time Time

Techniques Numerical Numerical Numerical Numerical Numerical

simulation simulation approx. approx. simulation

Tools AMT & Matlab Spice simulator PHAver AWA Matlab

Case Studies Sine wave VCO Tunnel diode Tunnel diode PLL

signals, memory Opamp circuit circuit ∆Σ Mod

ries like the real analysis theory. Some primary efforts on verifying AMS sys-
tems using theorem provers started recently. In addition to deductive based
methods, induction and symbolic based methods were also proposed to prove
properties of some classes of AMS designs.

5.2 Relevant Work

In [18], the authors used the PVS theorem prover to formally prove the func-
tional equivalence between behavioral specification of VHDL-AMS designs and
approximated linearized models of their synthesized netlist. The verification
was applied for DC and small signal analysis. The ideas presented can be
considered as a starting point for a methodology to verify analog designs, yet
important extensions should be studied more, like avoiding informal lineariza-
tion, in addition to tackling more complex verification issues especially related
to AC analysis.

Similar but more elaborate research was done in [26]. The author proposed
an approach for specifying and reasoning about implementations of digital
systems that are described at the analog level of abstraction. The approach
relies upon specifying the behaviors of analog components (such as transistors)
by conservative approximation techniques based on piecewise-linear predicates
on voltages and currents. Theorem proving was initially used to check for the
implication relation between the implementation and the specification [24].
In order to automate the verification process, the author proposed afterwards
using constraint based techniques instead [25].

In [4], the authors propose a new symbolic verification methodology for proving
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the properties of analog and mixed signal (AMS) designs using Mathematica.
Starting with an AMS description and a set of constraint properties described
in the form of generalized recurrence equations, an induction based verification
strategy is applied to prove the correctness of the properties. The procedure is
iterative in the sense that if the proof is obtained, then the property is verified.
Otherwise, generated counterexamples are analyzed and constraint refinement
is applied and the verification is repeated until the property is verified or a
concrete counterexample is identified. Such methodology is suitable for AMS
systems that can be described using discrete time models.

5.3 Discussion and Perspectives

Proof based methods for AMS designs is still premature and the proposed
techniques have been only explored for the verification of basic properties.
Challenging verification issues including analysis in time and frequency do-
mains, AC analysis, error analysis are yet to be done. One main strength
of such techniques is the possibility of the integration of theorem provers
and computer algebra which can help establish new verification techniques
for AMS designs and overcome limitation of the approximated methods like
model checking and compliance verification. In Table 4, we highlight some
main points of the work surveyed. It describes the class of system verified, the
models used, the analysis domains, the adopted analysis techniques, the tools
used, and the case studies verified.

Table 4
Theorem Proving

[18] [24–26] [4]

Type of systems Piecewise Piecewise Piecewise

linear linear non-linear

Modelling set of predicates set of predicates Generalized

over real over real recurrence equations

Domain Analysis Time Time Time

Verification Method Deduction Deduction and constraint Rewriting, induction

solving constraint solving

Tool PVS N / A Mathematica

Case Studies Analog Receiver TTL DSM modulators

Transmitter

6 Conclusion

In summary, the AMS design process must ensure, with a high degree of con-
fidence, the proper functionality in all possible situations and to be able to
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meet its performance requirements. Therefore, precise constraints and prop-
erties identification along with verification from the behavioral level through
functional and circuit levels is needed. This motivates the necessity of using
formal verification methodologies throughout the design process.

In this paper, we summarized the research activities in the application of for-
mal methods for the verification of AMS systems. We tried to be as exhaustive
as possible in collecting the different related work as well as giving comparisons
among the research proposed.

The formal verification of AMS designs is a relatively young research field and
still under-developed, which is a bad and a good sign at the same time. It is bad
because this shows the lack of extensive research which is due mainly to the
complexity of the verification process and the challenging problems mostly
inherited from the hybrid systems. Also, it is due to the different scientific
backgrounds between AMS engineers, control engineers and computer scien-
tists. However, this can motivate interdisciplinary collaborations. The good
news is that room for exploration is yet wide open. Among the interesting di-
rections is developing an AMS theory with high-order logic, process algebraic
languages for AMS designs and formalizing the AMS theory within a formal
theory like abstract interpretation, and developing specification logics for fre-
quency properties among others. Another important direction is incorporating
formal verification within the design flow, hence complementing simulation,
testing and symbolic analysis. Also, the problem of extending classical tem-
poral logics to derive suitable descriptions of analog properties is of great
interest.

As the field of research did not reach the maturity phase yet, standard aspects
for comparisons of the various projects is not well defined and there is a
lack of a coherent framework and criteria that allows a theoretical analysis
and comparison of the methods. We made some efforts in this direction by
categorizing and comparing the available state of art projects in several aspects
we believe are important to identify the qualitative strengths and weaknesses
of each project.

One drawback of our comparison is the lack of testing of the several ap-
proaches. This is due to different reasons. First the public unavailability of
the prototypes developed in the various projects. Second the lack of bench-
marks required for comparison. We hope that in the future, we overcome these
two obstacles so that more insights can be gained about the available method-
ologies for AMS formal verification.
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